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ABSTRACT

While the majority of time series classification research has focused on modeling fixed-
length sequences, variable-length time series classification (VTSC) remains critical in
healthcare, where sequence length may vary among patients and events. To address this
challenge, we propose Stochastic Sparse Sampling (SSS), a novel VTSC framework devel-
oped for medical time series. SSS manages variable-length sequences by sparsely sampling
fixed windows to compute local predictions, which are then aggregated and calibrated to
form a global prediction. We apply SSS to the task of seizure onset zone (SOZ) localization,
a critical VTSC problem requiring identification of seizure-inducing brain regions from
variable-length electrophysiological time series. We evaluate our method on the Epilepsy
iEEG Multicenter Dataset, a heterogeneous collection of intracranial electroencephalogra-
phy (iEEG) recordings obtained from four independent medical centers. SSS demonstrates
superior performance compared to state-of-the-art (SOTA) baselines across most medical
centers, and superior performance on all out-of-distribution (OOD) unseen medical centers.
Additionally, SSS naturally provides post-hoc insights into local signal characteristics
related to the SOZ, by visualizing temporally averaged local predictions throughout the
signal.

1 INTRODUCTION

Artificial intelligence (AI) in medicine has received significant attention in recent years, with various
applications to clinical diagnosis and treatment planning (Rajpurkar et al., 2022). Despite its advancements,
the actual integration into everyday clinical practice remains limited, with much of it attributed to the
challenges of handling the complexity and variability in medical data. One particularly challenging aspect
of this variability lies in the nature of medical time series data. Variable-length time series are prevalent
throughout many areas of healthcare, including heart rate monitoring, blood glucose measurements, and
electrophysiological recordings where sequence length can vary dependent on the recording or length of
an event (Agliari et al., 2020; Deutsch et al., 1994; Walther et al., 2023). Yet, the majority of time series
classification (TSC) literature focuses solely on methods that process fixed-length sequences (Ismail Fawaz
et al., 2019; Mohammadi Foumani et al., 2024).

At the same time, healthcare applications require greater interpretability from modern time series methods
to expand their applicability in critical domains and accelerate clinical adoption (Amann et al., 2020).
This interpretability is especially crucial in contexts where the relationship between pathology and signal
characteristics is not well understood, as it can provide valuable insights for both clinicians and scientists.
Recent studies in time series classification (TSC) have explored the explainability of specific signal segments,
as opposed to full-signal analysis, which proves particularly useful for uncovering important characteristics
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such as motifs, anomalies, or frequency patterns (Early et al., 2024; Crabbé & Van Der Schaar, 2021; Huang
et al., 2024). However, there still remains a significant need for models with built-in interpretability in medical
applications. Such methods would allevaiate the burden of implementing both a base model and a specialized
interpretability method—which may require more domain expertise—and may more effectively facilitate
clinical adoption.

The need for variable-length time series classification (VSTC) methods with built-in interpretability is
particularly relevant in seizure onset zone (SOZ) localization—the task of identifying brain regions from
which seizures originate—as effective treatment requires analysis of variable-length signals (Balaji & Parhi,
2022). The World Health Organization (WHO) reports epilepsy affects over 50 million people globally,
establishing it as one of the most common yet poorly understood neurological disorders (Organization et al.,
2019; Stafstrom & Carmant, 2015). Additionally, one-third of patients do not respond to antiepileptic drugs,
making surgery the last resort and accurate SOZ localization essential for effectively planning the operation.
The process of SOZ identification involves a two-step procedure: initial implantation of electrodes in areas
suspected to contain the SOZ, followed by recording and visual analysis of intracranial electroencephalog-
raphy (iEEG) signals by medical experts. The task of SOZ localization reduces to classifying individual
electrode recordings, representing different regions within the brain. Effective localization of the SOZ is
challenging due to the absence of clinically validated biological markers and the variable-length nature of
iEEG signals—consequently, surgical success rates range from 30% to 70% (Löscher et al., 2020; Li et al.,
2021).

Figure 1: An overview of Stochastic Sparse Sampling (SSS) training procedure. (A) For a given time
series, we sample windows of fixed-length at random throughout the signal. (B) Each window is processed
independently by a local model with parameters θ, outputting the local predictions ŷ1, . . . , ŷk. (C) Local
predictions are then fed through an aggregation function to form the final prediction ŷ.

Contributions. While our work primarily focuses on VTSC, we also evaluate our method’s performance on
OOD data and explore its potential for providing local explanations. To this end, we propose Stochastic Sparse
Sampling (SSS) a novel framework for VTSC developed for medical time series. The main contributions of
our paper are listed as follows:

• Robustness to long and variable-length sequences. SSS samples fixed-length windows, and
processes them independently through a single model. This prevents context overload in long
sequences seen in infinite-context methods, and does not utilize padding, truncation, or interpolation

2



094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2025

required by finite-context methods. By relying on a single local model, SSS utilizes far fewer
parameters compared to finite-context methods that traditionally ingest the entire signal, which
significantly reduces computational cost during training and the risk of overfitting over long
sequences.

• Generalization to unseen patient populations. SSS demonstrates strong performance on
out-of-distribution (OOD) data from unseen medical centers. When trained on data from one or
more medical centers and evaluated on a completely new center with a different patient population,
SSS outperforms all baselines in our comparisons. This result suggests SSS’s potential as a
foundation model for TSC, opening new avenues for research and clinical applications.

• Explainability through local predictions: Our method enhances model interpretability by directly
tying each output—a probability score for each window—to the overall prediction. This capability
is crucial in critical clinical settings, such as SOZ localization, which traditionally relies on visual
analysis. Given the significant risks associated with brain region removal, any proposal should be
designed to integrate within clinical workflows. Moreover, in the absence of universally recognized
biological markers for epilepsy, SSS offers the potential to further our understanding the SOZ and to
identify novel markers.

• Compatibility with modern and classical backbones. SSS integrates with any time series backbone.
This ensures that our approach leverages well-established frameworks now and into the future,
allowing for adaptability across a diverse array of contexts.

2 RELATED WORK

TSC methodologies can be broadly categorized into finite-context methods, which operate on fixed-length
input segments, and infinite-context methods, which handle variable-length sequences without being restricted
to a predetermined window size. For a formal treatment, please see Appendix A.5.

Finite-context methods. Finite-context methods are among the most commonly used approaches for TSC.
Transformer-based models have gained significant attention, with variations such as sparse attention, series
decomposition, and patching techniques (Vaswani et al., 2017; Kitaev et al., 2020; Zhou et al., 2021; Wu et al.,
2021; Zhou et al., 2022; Liu et al., 2022; Nie et al., 2023; Liu et al., 2024). Several temporal convolutional
networks (TCNs) have also been proposed, to capture temporal dependencies through dilated convolutions
and Inception-like architectures (Lai et al., 2018; Bai et al., 2018; Ismail Fawaz et al., 2020; Wu et al., 2022;
Luo & Wang, 2024). Recently, multilayer perceptrons (MLPs) and simple linear models have demonstrated
competitive performance as well (Chen et al., 2023; Zeng et al., 2023). Despite the significant rise of finite-
context methods, these methods are inherently limited in their ability to handle variable-length sequences, and
will require the use of either padding, truncation, or interpolation for VTSC. Furthermore, as the sequence
length increases, so does the number of model parameters, which leads to not only greater computational cost
but an increased risk of overfitting.

Infinite-context methods. The recurrent neural network (RNN) family includes several models capable of
ingesting variable-length time series (Rumelhart et al., 1986). Long-short term memory (LSTM) networks
introduce memory cells and gating mechanisms to better handle long-term dependencies (Hochreiter &
Schmidhuber, 1997). Gated recurrent units (GRUs) simplify the LSTM architecture while maintaining
similar performance (Bahdanau et al., 2014). State space models (SSMs) have gained recent attention,
with approaches such as S4 introducing structured parameterization to enable efficient computation over
long sequences, while still attempting to capture long-range dependencies (Gu et al., 2021). Building on
this, Mamba introduces a selective SSM that adapts to input dynamics, further improving processing of
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long-range dependencies in time series data while while maintaining linear time complexity with respect to
sequence length (Gu & Dao, 2023). Despite these advancements, RNNs and SSMs can still struggle with
retaining information in extremely long sequences and may be prone to vanishing or exploding gradients
(Salehinejad et al., 2017). ROCKET offers an alternative, using random convolutional kernels to convert
input into a fixed-length representation for VTSC, but at the cost of interpretability and potentially limited
model expressivity (Dempster et al., 2020).

SOZ localization methods. Several recent proposals have been tailored specifically to SOZ localization.
Functional connectivity graphs compute patient-specific channel metrics to capture brain connectivity patterns
(Grattarola et al., 2022; Fang et al., 2024), offering insights into functional relationships associated with
seizures. However, their reliance on intra-patient dynamics makes them unsuitable for a single model that
can generalize across multi-patient, heterogeneous datasets. Alternatively, electrical stimulation methods
that use intracranial electrodes (Johnson et al., 2022; Yang et al., 2024) can enhance localization accuracy
through induced responses analyzed by TCNs and logistic regression models. Yet, these approaches require
both fixed-length windows and the use of active stimulation. For our purpose of building a general model for
SOZ localization, which can be applied to multiple patients (with a potentially varying number of channels)
without electrical stimulation, we do not consider such approaches in our study.

3 METHOD

3.1 VARIABLE-LENGTH TIME SERIES CLASSIFICATION

Consider a collection of time series X =
{
(x

(1)
t )T1

t=1, . . . , (x
(n)
t )Tn

t=1

}
with labels Y = {y(1), . . . , y(n)},

where each series i has sequence length Ti ∈ N, and for each time point t, the vector x(i)
t ∈ RMi has Mi ∈ N

channels. The goal of VTSC is to learn a classifier fθ which maps each series (x(i)
t )Ti

t=1 to its corresponding
class in {1, . . . ,K} for K ∈ N classes. We require that fθ can handle sequences of any length—that is, it has
infinite context—since we assume that each Ti can be arbitrarily large at inference time. Otherwise, we must
adjust a finite-context classifier using padding, truncation, or interpolation.

3.2 STOCHASTIC SPARSE SAMPLING

3.2.1 SPARSE TRAINING

Figure 1 provides an overview of SSS at train time. During each training epoch, SSS performs a sampling
procedure without replacement to create each batch. Fix L ∈ N as the window size and let W be the
collection of all windows with size L from all time series in X . Within any batch, a window is drawn from
W , where the probability of it originating from series i is set to pi ≈ Ti/

(∑n
j=1 Tj

)
for every i. More

formally, for each i, let Ni be the random variable representing the number of windows from series i in a
batch of size B. Then Ni ∼ Binomial(B, pi), and consequently E[Ni] = Bpi. This proportional sampling
ensures fair representation of each series based on its length, allowing longer sequences—which contain more
information—to contribute more samples. By sampling only a subset of windows, SSS introduces sparsity
into the training process, reducing computational cost found in finite-context methods, and the likelihood of
context overload in infinite-context methods. Also note that by sampling with replacement, the model sees
each window exactly once during a single training epoch.

After sampling a batch of windowsW0 = {w1, . . . ,wB}, each wb ∈ W0 is processed independently by a
local model fθ to obtain a local prediction ŷb = fθ(wb) ∈ [0, 1]K , representing our probability distribution
over K ∈ N classes. The choice of fθ can be any time series backbone, in our experiments we select
PatchTST (Nie et al., 2023). For each time series 1 ≤ i ≤ n, denote:

Wi = {w ∈ W0 | w is from series i}, (1)
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as the collection of windows in the batch originating from series i, and let:
Yi = {fθ(w) | w ∈ Wi}, (2)

be the set of multiset of window probabilities. To obtain the global prediction for time series i, we aggregate
window probabilities from all examples originating from it, given by:

ŷ(i) = Aggr(Yi) =
∑
ŷ∈Yi

α(ŷ)ŷ, (3)

where each α(ŷ) ∈ [0, 1] represents the weight of window probability ŷ to the final output, satisfying∑
ŷ∈Yi

α(ŷ) = 1; that is, Aggr(·) produces a convex combination over ŷ1, . . . , ŷn. In our experiments, we
use mean aggregation, i.e., α(ŷ) = 1

|Yi| for all ŷ ∈ Yi, due to its simplicity and effectiveness for our current

objectives. This formulation guarantees that ŷ(i) remains a valid probability distribution over K classes
(proof in Appendix A.3), and allows for potential of non-uniform aggregation functions, enabling weighting
of window predictions based on factors such as prediction uncertainty, or frequency characteristics.

Algorithm 1 SSS Training Algorithm (Single Epoch)

Input: Time series X =
{
(x

(1)
t )T1

t=1, . . . , (x
(n)
t )Tn

t=1

}
, labels Y = {y(1), . . . , y(n)}, model fθ with

parameters θ, batch size B
Output: Updated model parameters θ
W ← Set of all windows from each series in X
whileW ≠ ∅ do

▷ Sample B windows with probability Ti/
(∑

j Tj

)
from series i, for all i

W0 ← SAMPLE(W , B)
for i = 1, . . . , n do
Wi ← {w ∈ W0 |w is from series i} ▷ Windows from series i
Yj ← {fθ(w)|w ∈ Wj} ▷ Window probabilities for series i
ŷ(i) ← AGGREGATE(Yj) ▷ Final probability for series i

Lbatch ← 1
n

∑n
i=1 L(ŷ(i), y(i)) ▷ Loss over the batch

θ ← UPDATE(θ,Lbatch) ▷ Update local model parameters
W ←W \W0 ▷ Remove sampled windows from the pool

return θ

3.2.2 INFERENCE

To the derive the prediction for a time series (x(i)
t )Ti

t=1 at inference time, we utilize all windows from the
selected time series, to form its final prediction ŷ(i). LetWi be the collection of all windows from series i.
We pass each window through the local model to obtain the multiset of window probabilities Yi as shown in
Equation (2). Before the aggregation step, we utilize a calibrator gϕ : [0, 1]K → [0, 1]K , which adjusts each
individual window probability to reduce the presence of noise, and define:

Ỹi = {gϕ(ŷ) | ŷ ∈ Yi}, (4)

which is then fed into the final prediction during the aggregation step ŷ(i) = Aggr(Ỹi). By calibrating the
window probabilities before aggregation, we correct for biases or misestimations in the predicted probabilities,
which occur when the output probabilities of the local models do not accurately reflect the true likelihood
of the event. We consider isotonic regression and Venn-Abers predictors for our calibration method. It is
important to note, that these calibration techniques do not alter underlying structure of fθ and do not utilize
input features from the time series; rather, they adjust the output probabilities to mitigate the effect of noise
during the aggregation step. For more information regarding calibration methods see Appendix A.4.
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4 EXPERIMENTS

4.1 BASELINES

For our finite-context baselines, we include a variety of modern time series backbones including PatchTST,
which uses subwindows as tokens in combination with the traditional Transformer architecture (Nie et al.,
2023; Vaswani et al., 2017). TimesNet is a TCN architecture that models both interperiod and intraperiod
dynamics by leveraging Fast Fourier Transform (FFT) features to slice the signal into multiple views, which
are then processed through inception blocks (Wu et al., 2022; Ismail Fawaz et al., 2020). ModernTCN, is
a recently proposed TCN which decouples temporal and channel information processing by using separate
DWConv and ConvFFN modules for more efficient representation learning (Luo & Wang, 2024). DLinear
is linear neural network, which has shown to outperform several modern Transformer-based architecutres,
utilizing traditional seasonal-trend decomposition techniques (Zeng et al., 2023). In our infinite-context
baselines, we utilize ROCKET, which applies randomly initialized, fixed convolutional kernels to the input
sequence. ROCKET compresses the resulting convolutional outputs to the maximum value and the proportion
of positive values (PPV), where these features then fed to a linear classifier (Dempster et al., 2020). We also
consider GRUs and an LSTM network, both of which are popular RNN frameworks designed to capture long-
term dependencies in sequential data (Bahdanau et al., 2014; Hochreiter & Schmidhuber, 1997). Additionally,
use the recent SSM architecture, Mamba, which utilizes selective state updates to enable efficient long-range
dependency modeling (Gu & Dao, 2023). Further details regarding configurations and hyperparameter tuning
for each baseline can be found in Appendix C.

4.2 DATASET

The Epilepsy iEEG Multicenter Dataset1 consists of iEEG signals with SOZ clinical annotations from
four medical centers including the Johns Hopkins Hospital (JHH), the National Institute of Health (NIH),
University of Maryland Medical Center (UMMC), and University of Miami Jackson Memorial Hospital
(UMH). Since UMH contained only a single patient with clinical SOZ annotations, we did not consider it in
our main evaluations; however, we did use UMH within the multicenter evaluation in 1 and the training set for
OOD experiments for SOZ localization on unseen medical centers in Table 2. We select the F1 score, Area
Under the Receiver Operator Curve (AUC), and accuracy for our evaluation metrics. For summary statistics
and information on the dataset see Appendix B.1.

4.3 UNIVARIATE VTSC

For each patient iEEG recording, the goal of SOZ localization is to determine the the correct of channels
or electrodes which belong the seizure onset zone. This effectively reduces the task to univariate TSC.
While several channel-dependent methods have been proposed for SOZ localization (see section 2), we focus
primarily on channel-independent solutions for two key reasons: (1) they are more resilient to interpatient
variability and are unaffected by factors like channel count and therefore can be applied in multiple hospital
settings, and (2) they generalize better to domains beyond electrophysiological data, as they learn local signal
characteristics rather than explicitly modeling functional connectivity between electrode sites, which may not
be present in other medical time series.

Table 1 summarizes our experimental results for SOZ localization on each individual medical center, along
with training and evaluation on all medical centers. Within the multicenter evaluation, SSS outperforms all
baselines for each evaluation metric. SSS also shows strong performance for the JHH and NIH centers, with
comparable results in the UMMC center. We attribute this difference in performance for UMMC due to the
fact that it is the only center where the sampling frequency of patient recordings can differ between patients

1https://openneuro.org/datasets/ds003029/versions/1.0.7
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Table 1: SOZ localization. F1 score, AUC, and Accuracy are reported for each medical center, averaged over
5 seeds. For each center, we train and evaluate a separate model; the first column represents training and
evaluation on all centers. Bolded values with ∗ and † denote the best and second-best results, respectively.

All JHH NIH UMMC

Model F1 AUC Acc. F1 AUC Acc. F1 AUC Acc. F1 AUC Acc.

SSS (Ours) 0.7629∗ 0.7999∗ 72.35∗ 0.8187∗ 0.8851∗ 81.37∗ 0.6716∗ 0.6853 64.22† 0.7978† 0.8279† 76.06

PatchTST (Nie et al., 2023) 0.7097† 0.7852† 66.83 0.7419† 0.8045† 71.82 0.6402 0.7036† 62.11 0.8015∗ 0.8121 77.58

TimesNet (Wu et al., 2022) 0.6897 0.7174 65.98 0.6891 0.8029 73.64† 0.5950 0.6806 66.00∗ 0.7821 0.8099 77.06†

ModernTCN (Luo & Wang, 2024) 0.6938 0.7305 68.42 0.6710 0.7508 67.73 0.5055 0.7220∗ 64.00 0.6371 0.8203 71.76

DLinear (Zeng et al., 2023) 0.6916 0.7044 68.41 0.6873 0.7395 66.36 0.6055 0.6405 59.50 0.7658 0.7729 77.05

ROCKET (Dempster et al., 2020) 0.6847 0.7481 69.27 0.6753 0.7752 69.09 0.6520† 0.6546 62.63 0.7686 0.7900 74.55

Mamba (Gu & Dao, 2023) 0.6452 0.7134 64.39 0.6456 0.6764 62.27 0.5974 0.6050 58.95 0.7900 0.8424∗ 76.36

GRUs (Bahdanau et al., 2014) 0.6948 0.7340 65.85 0.6140 0.6959 63.18 0.6171 0.6283 62.63 0.7920 0.8211 77.27∗

LSTM (Hochreiter & Schmidhuber, 1997) 0.6709 0.7144 65.43 0.6571 0.6190 59.09 0.5657 0.5909 54.74 0.7604 0.8060 73.64

(250-1000 Hz), whereas JHH and NIH both have sampling frequencies of 1000 Hz. We also observe that
in general, finite-context perform better on the chosen evaluation metrics in comparison to infinite-context
methods, for in-distribution univariate VTSC.

4.4 OUT-OF-DISTRIBUTION VTSC

Table 2 reports our results for SOZ localization in the OOD setting. At train time, from the collection of four
medical center datasets, we omit one and train on the remaining three. At inference time, we test solely on
the omitted medical center to gauge how well each method performs OOD. For iEEG signals from epilepsy
patients, inter-patient variability can be significant due to differences in placement of electrodes in the brain,
and the inherent heterogeneity of epileptogenic networks across individuals. Thus, even among medical time
series, this can be one of the most challenging tasks to perform OOD. SSS outperforms each baseline on each
unseen medical center, often by a considerable margin when compared to finite-context methods.

Table 2: Out-of-Distribution SOZ localization. F1 score, AUC, and Accuracy are reported for unseen medical
centers, averaged over 5 seeds. For each center, we train on all other centers and evaluate on the selected
center. Bolded values with ∗ and † denote the best and second-best results, respectively.

JHH NIH UMMC

Model F1 AUC Acc. F1 AUC Acc. F1 AUC Acc.

SSS (Ours) 0.6981∗ 0.6590∗ 57.80∗ 0.6492∗ 0.6092∗ 54.73† 0.7243∗ 0.8048∗ 72.42∗

PatchTST (Nie et al., 2023) 0.6175 0.5267 50.46 0.5986 0.4829 48.17 0.5067 0.5274 57.63

TimesNet (Wu et al., 2022) 0.5261 0.4501 47.00 0.4461 0.4407 45.85 0.3177 0.3108 46.14

ModernTCN (Luo & Wang, 2024) 0.4934 0.4970 49.54 0.4019 0.4651 48.71 0.3804 0.4474 50.55

DLinear (Zeng et al., 2023) 0.4205 0.4775 47.25 0.5090 0.4945 50.54 0.5602 0.5236 56.00

ROCKET (Dempster et al., 2020) 0.5784 0.5777 56.71† 0.5051 0.5522 52.91 0.5608 0.5941 58.36

Mamba (Gu & Dao, 2023) 0.5790 0.5835† 55.68 0.6183† 0.5767† 55.69∗ 0.5715 0.5953 55.76

GRUs (Bahdanau et al., 2014) 0.5779 0.4868 48.80 0.5824 0.5588 53.66 0.6689† 0.7645† 69.30†

LSTM (Hochreiter & Schmidhuber, 1997) 0.6362† 0.5165 50.92 0.5774 0.5678 53.87 0.6581 0.6616 62.36
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In comparison to Table 1, we observe the opposite trend between finite- and infinite-context methods, whereas
infinite-context methods seem to perform better OOD. In contrast, SSS demonstrates robust performance
both in distribution (where finite-context methods excel) and OOD (where infinite-context methods excel).

4.5 QUALITATIVE VISUALIZATION

Figure 2: Visualization of SSS window probabilities throughout iEEG channels at inference time, using the
PatchTST backbone with window size 1024. The heatmap represents locally averaged window probabilities
over time, with color intensity being proportional to the likelihood of the channel belonging to the SOZ.

Figure 3: Visualization of SSS window probabilities for OOD iEEG channels at inference time, using the
PatchTST backbone with window size 1024. The heatmap represents locally averaged window probabilities
over time, with color intensity being proportional to the likelihood of the channel belonging to the SOZ.
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5 DISCUSSION

5.1 REVIEW OF RESULTS

In general, we observe that SSS outperforms modern finite-context and infinite-context methods both
in-distribution and OOD for univariate VTSC. SOZ localization presents a significant challenge due to
intra-patient and inter-patient variability, and with our evaluation the collection of 3 heterogeneous datasets,
serving rigorous testbed for assessing the generalizability of SSS’s capabilities for learning local signal
characteristics in medical time series. While our experiments focus on univariate VTSC, as outlined in
section 3.2.1 and 3.2.2, SSS can be easily applied to the multivariate setting.

Our results from the multicenter evaluation Table 1 indicate that SSS benefits from a diversity of data
distributions and volume of training examples, given by the magnitude in performance differences, when
compared to single cluster results. Furthermore, our OOD experiments from Table 2 suggest that SSS may
be learning local signal characteristics present in different patient populations, leading to a advantage over
finite-context and infinite-context methods. Our visualizations of SSS’s predictions OOD in Figure 3 supports
this notion, as there exist clear qualitative differences in locally averaged window probabilities with respect
to anomalous signal characteristics, such as spikes or increases in amplitude or frequency. Figure 2 shows
SSS’s predictions in-distribution which also suggest a form of implicit semantic segmentation for anomalous
local regions of the signal with respect to the SOZ probability. More analysis is needed to further solidify our
understanding, which would benefit from a rigorous explainability study in future works.

5.2 CONCLUSION

To conclude, this work introduces novel VTSC framework, Stochastic Sparse Sampling (SSS), specifically
tailored for medical time series applications. SSS blends the best of both worlds between finite-context
methods (enabling usage of finite-context backbones) while allowing sampling of the entire signal in a
computationally efficient manner that is less prone to context overload from infinite-context methods. SSS
learns local signal characteristics, which provides the added benefit of inherent interpretability, and provides
superior performance to the SOTA in-distritbuion and OOD for unseen medical centers. For future work, it
would be valuable to: (1) benchmark SSS across a wider variety of variable-length medical time series, (2)
provide further rigorous post-hoc insights into the window probability distribution given by SSS, and (3)
potentially include uncertainty estimates within the aggregation function to highlight anomalous regions of
the signal.

9
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A STOCHASTIC SPARSE SAMPLING

A.1 SAMPLING IMPLEMENTATION

Let X =
{
(x

(1)
t )T1

t=1, . . . , (x
(n)
t )Tn

t=1

}
be the collection of variable-length time series. To achieve the sampling

procedure outlined in section 3.2, we first construct the set all windowsW by performing the slicing window
method over each individual time series in X . For a window size L, with window stride S, and a time
series i with sequence length Ti, we obtain Ai = ⌊Ti−L

S ⌋ + 1 windows. Note that Ai ∝ Ti for each i.
During training, we convertW to a PyTorch dataset and use the native PyTorch dataloader with batch size
B. When a batch is sampled, windows are drawn uniformly fromW , and thus for each i, the probability of
observing a window from series i is pi = Ai/(

∑n
j=1 Aj) ≈ Ti/(

∑n
j=1 Tj). If Ni represents the number of

windows in the batch from series i, then we achieve the desired sampling property of Ni ∼ Binomial(B, pi)
where pi ≈ Ti/(

∑n
j=1 Tj). Note that this procedure uses sampling without replacement; one may consider

replacement, however, we did not experiment with this and leave modifications with more complex sampling
procedures as a future direction.

A.2 ABLATIONS

A.2.1 BATCH SIZE

Table 3: Performance of SSS over various batch sizes.

Batch Size F1 Score AUC Acc. (%)

128 0.7563 ± 0.02717 0.8139 ± 0.04302 70.79 ± 2.323
512 0.7498 ± 0.02354 0.7965 ± 0.03526 69.46 ± 3.109
2048 0.7651 ± 0.03568 0.8194 ± 0.05166 71.40 ± 6.078
4096 0.7441 ± 0.02987 0.7979 ± 0.06818 68.09 ± 4.848
8192 0.7629 ± 0.02829 0.7999 ± 0.05331 72.35 ± 4.965

Table 3 reports mean F1 score, AUC, and accuracy
(%) with standard deviations, are reported over 5
seeds, for the evaluation on all medical centers. Each
experiment uses the best configuration described in
Table 6. While the aggregation function in Equation
(3) may benefit from a higher number of samples
within the batch (due to mean approximation), we
observe that the performance of SSS remains rela-
tively constant across various batch sizes, and thus
does not require large batch sizes to achieve ade-
quate performance.

A.2.2 WINDOW SIZE

Table 4: Performance of SSS over various window sizes L.

L F1 Score AUC Acc. (%)

512 0.7567 ± 0.01075 0.8141 ± 0.03054 70.62 ± 2.165
1024 0.7629 ± 0.02829 0.7999 ± 0.05331 72.35 ± 4.965
2048 0.7334 ± 0.03003 0.7719 ± 0.04762 68.52 ± 3.353

Table 4 follows the same experimental setup as Table
3, but varies over the window size L instead of batch
size. While the performance of L = 512 and L =
1024 remain relatively on par, we notice that the
F1 score drops significantly for L = 2048 along
with all other metrics. This suggests that a large
receptive field may not be advantageous, and that
SSS benefits from processing localized areas of the
signal. Indeed, as L increases we expect to reach a similar performance to the finite-context PatchTST
baseline, with a decrease in performance as a result.

A.2.3 CALIBRATION

Table 4 follows the same experimental setup as Table 3, but varies over the window size L instead of batch
size. While the performance of L = 512 and L = 1024 remain relatively on par, we notice that the F1
score drops significantly for L = 2048 along with all other metrics. This suggests that a large receptive field
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may not be advantageous, and that SSS benefits from processing localized areas of the signal. Indeed, as L
increases we expect to reach a similar performance to the finite-context PatchTST baseline, with a decrease in
performance as a result.

A.3 CONVEX AGGREGATION

Theorem 1 (Probability Distribution Guarantee). Fix K,n ∈ N. Suppose α1, . . . , αn ≥ 0 satisfies∑n
i=1 αi = 1, and v1, . . . ,vn ∈ [0, 1]K each satisfy

∑K
j=1 vik = 1 for 1 ≤ i ≤ n. That is, each

vi = (vi1, vi2, . . . , viK)T represents a valid discrete probability distribution over K classes. Then the convex
combination:

y =

n∑
i=1

αi vi, (5)

also represents a valid discrete probability distribution, satisfying
∑K

j=1 yj = 1.

Proof. By construction, yj =
∑n

i=1 αivij for each entry 1 ≤ j ≤ K. Then yj ≥ 0, since for each 1 ≤ i ≤ n
and 1 ≤ j ≤ K we are given that αi ≥ 0 and vij ≥ 0. Furthermore, we can write:

n∑
j=1

yj =

K∑
j=1

n∑
i=1

αivij

=

n∑
i=1

K∑
j=1

αivij (Swap summation order)

=

n∑
i=1

αi

K∑
j=1

vij

=

n∑
i=1

αi (
∑K

j=1 vij = 1 for all i)

= 1 (
∑n

i=1 αi = 1)

It follows that since each yj ≥ 0 and
∑K

j=1 yj = 1, then y represents a valid discrete probability distribution
over K classes.

A.4 CALIBRATION

Table 5: Performance of SSS with different calibration
methods.

Calibration Method F1 Score AUC Acc. (%)

Isotonic Regression 0.7629 ± 0.02829 0.7999 ± 0.05331 72.35 ± 4.965
Venn-ABERS 0.7637 ± 0.02704 0.8003 ± 0.05308 72.47 ± 4.773
No Calibration 0.7291 ± 0.06909 0.7830 ± 0.03844 69.93 ± 4.635

Let ŷ1, . . . , ŷn ∈ [0, 1] be the uncalibrated window
probabilities, each with a corresponding binary label
y1, . . . , yn ∈ {0, 1} derived from the label of the
time series; that is, if ŷi = fθ(wi) for a window
wi, then the window label yi is inherited from the
global time series it was sampled from. The goal
of probability calibration is to transform each ŷi
into ỹi = gϕ(ŷi), such that ỹi represents true like-
lihood of a class. Within this context, probability
calibration can help mitigate the impact of temporal
fluctuations and local anomalies by adjusting probabilities for each individual windows. Note that while
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calibration may yield more refined probability estimates with reduced noise, it is an integral intermediate step
rather than a global optimization procedure on the final probabilities. For each calibration we considered, we
provide a short description below.

Isotonic regression is a nonparametric method that fits a weighted least-squares model subject to motonicity
constraints (Silvapulle & Sen, 2011). Formally, this can be stated as a quadratic program (QP) given by:

min
g

n∑
i=1

wi(ỹi − yi)
2 subject to ỹi ≤ ỹj for all i, j where ŷi ≤ ŷj . (6)

where ỹi = g(ŷi) and wi ≥ 0 are weights assigned to each datapoint, which are often each set to wi = 1 to
provide equal importance over all inputs. The monotonicity constraint ensures that uncalibrated probabilities
will always map to equal or higher calibrated probabilities. Due its nonparametric nature, isotonic regression
can adapt to various probability distributions across diverse datasets. However, this flexibility comes at a
cost as it is also prone to overfitting on smaller datasets, potentially adjusting to noise rather than properly
calibrating its inputs.

Venn-Abers predictors is based on the concept of isotonic regression but extends it to ensure validity within
the framework of conformal prediction, which provides uncertainty estimates with distribution-free theoretical
guarantees (Vovk & Petej, 2014; Angelopoulos & Bates, 2021). For an uncalibrated probability ŷ, two
isotonic calibrators are trained:

p0 = g0(ŷ) and p1 = g1(ŷ) (7)

where g0 and g1 are isotonic functions derived from augmented sets. These sets include (ŷ, 0) and (ŷ, 1)
respectively, alongside all other uncalibrated probabilities and their respective labels. The values p0 and p1
represent likelihoods for class 0 and class 1, while the interval [p0, p1] provides an uncertainty estimate of
where the true probability resides. The final calibrated probability is then given by:

ỹ =
p1

1− p0 + p1
. (8)

Venn-Abers predictors provide guaranteed validity in terms of calibration, meaning the predicted probabilities
closely match empirical frequencies. While we do not explicitly utilize the uncertainty interval [p0, p1] (only
the calibrated score ỹ), this method can be effective in scenarios requiring risk assessment or critical tasks
where rigorous uncertainty estimates are crucial. We leave this as a future direction to implement conformal
prediction within the context of SSS, to provide uncertainty guarantees based off of window predictions,
which may be useful for post-hoc interpretability. In comparsion to isotonic regression, Venn-Abers can be
more computationally intensive, as it requires fitting two isotonic functions simultaneously.

A.5 FINITE-CONTEXT & INFINITE-CONTEXT METHODS

Definition 2. Let X be a vector space over R and fθ : X → Y be a model with parameters θ and output
space Y . We say that fθ has finite-context if X is finite-dimensional, that is, there exists some n ∈ N such
that X ∼= Rn as vector spaces. Whereas fθ is said to have infinite-context if X = R(∞) is the space of real
number sequences with finite support2.

Note that this definition refers to the native capabilities of fθ, without the usage of data manipulation
techniques such as padding, truncation, and interpolation. We utilize this formalization to separate our
baselines, so that we may better understand the advantages and limitations of both.
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Table 6: Hyperparameter search space for SSS (with PatchTST backbone). Best configuration is highlighted
in red.

Parameter Search Values
dmodel {16, 32, 64}
dff {32, 64, 128}
num_heads {2, 4, 8}
num_enc_layers {1, 2, 3}
lr {10−4, 10−5}
L {512, 1024, 2048}
batch_size {2048, 4096, 8192}
gϕ {isotonic regression,Venn-Abers predictors}

A.6 SSS IMPLEMENTATION AND CONFIGURATIONS

B DATASET AND PREPROCESSING

B.1 DATASET

Table 7: iEEG Multicenter Dataset Summary: For each medical center, we report the total number of patients
recorded (n), the number of patients with seizure onset zone (SOZ) annotations (nSOZ), the number of time
series recordings (nts), the percentage of time series labeled as SOZ (pSOZ), the type of iEEG method used
(e.g., electrocorticography, ECoG), the sampling frequency (Hz) (noting that some recordings may vary), and
post-operative patient outcomes following SOZ surgical resection.

Medical Center n nSOZ nts pSOZ iEEG Type Frequency (Hz) Patient Outcomes

JHH 7 3 1458 7.48% ECoG 1000 No
NIH 14 11 3057 12.23% ECoG 1000 Yes
UMMC 9 9 2967 5.56% ECoG 250-1000 Yes
UMF 5 1 129 25.58% ECoG 1000 No

Table 7 provides an overview of the iEEG Multicenter Dataset. For each cluster, we filter out patients (n)
who have SOZ annotations (nSOZ). All channels for all patients are group together into one dataset per
medical center, where nts indicates the number of examples. However, due to the heavy imbalance between
SOZ-labeled time series and non-SOZ labeled time series, the number of examples used for training and
validation decreases significantly once we employ class balancing, resulting in ⌊2 · pSOZ · nts⌋ examples for
each medical center, which is then split into training, validation, and testing.

B.2 DATA PREPROCESSING

Each patient recording contains multiple channels corresponding to individual electrodes from the iEEG
device. During preprocessing, for all patients, we extract all channels and balance the dataset to have an equal
number of SOZ and non-SOZ channels. After, we partition this dataset into train, validation, and test channels
with a 70%/10%/20% split respectively, and ensure that during the window sampling phase of SSS there is
no temporal leakage from the test set. Each channel, or univariate time series, is z−score normalized to have
zero mean and unit standard deviation.

2Every sequence in R(∞) must have finitely many non-zero terms.
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Due to the extremely long sequence length of several channels, we required downsampling to fit the dataset
into memory (250GB RAM). To achieve this, for each channel we applied a 1D average pooling layer with
kernel_size=24 and kernel_stride=12 before feeding it to the baseline model or before performing
the window sampling procedure for SSS at train-time.

Finite-context methods required either padding, truncation, or interpolation due to fit each sequence into its
limited context window. For each finite-context method we perform a combination of padding and truncation
according to the chosen window size L: if the sequence length of the original time series exceeded L, it was
truncated to obtain the first L time points, otherwise if it was less than L, it was padded with zeros at the end
of the sequence to ensure a sequence length of L.

B.3 EVALUATION METRICS

B.3.1 F1

The F1 score is defined as the harmonic mean of precision and recall, given by:

F1 = 2 · Precision · Recall
Precision + Recall

, (9)

where,

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
, (10)

and,

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
. (11)

We select the F1 score as our primary evaluation metric for SOZ localization for the following reasons.
The F1 score balances the need to correctly identify all regions of the SOZ (recall) with the need to avoid
misclassifying healthy regions as SOZ (precision). This balance is crucial in surgical planning, where both
missing SOZs and unnecessarily removing healthy tissue can have severe consequences. Unlike accuracy,
which overlooks the difference between false positives and false negatives, the F1 score provides a more
nuanced evaluation by considering both, making it well-suited in clinical contexts such as SOZ localization.

B.3.2 AUC

We complement the F1 score with the Area Under the Receiver Operating Characteristic curve (AUC), defined
by:

AUC =

∫ 1

0

TPR(t) · dFPR(t)
dt

dt (12)

While the F1 score provides insight into the balance between precision and recall at a specific threshold,
AUC assesses the model’s overall discriminative ability across all thresholds. This threshold-independent
evaluation is relevant for critical scenarios where the threshold maybe be adjusted from 0.5, which is not
common in clinical settings.

C IMPLEMENTATION AND EXPERIMENTAL CONFIGURATIONS

For each baseline, we perform grid search and optimize with respect to best accuracy score on the evaluation
for all medical centers. L refers to the window size parameter, dmodel is the model dimension, and dff
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is the dimension of the feed-forward network. The grid search parameters for each baseline are shown
below; for information on the implementation of SSS, see Appendix A.6. In all experiments, we train
using the Adam optimizer (Kingma & Ba, 2014), for 50 epochs, with cosine learning rate annealing (one
cycle with 50 epochs in length) which adjusts the learning rate down by two orders of magnitude (e.g.,
10−4 to 10−6) by the last epoch. We also implement early stopping with a patience of 15, and apply
learnable instance normalization (Kim et al., 2021) for each input. For most of the baselines we use a
dropout rate of 0.2 − 0.3, and weight decay to 10−4 − 10−5, but do not explicitly tune these parameters
in our grid search. For finite-context methods we set the batch size to the entire dataset (596 individual
univariate time series for all clusters), whereas infinite-context methods required batch size of 1 due to their
variable-length. The code for SSS and baseline implementations is available at the following anonymous link:
https://anonymous.4open.science/r/sss-0D75/.

PatchTST: We adapt the official implementation github.com/yuqinie98/PatchTST, but swap out
the attention module with the native PyTorch torch.nn.MultiheadAttention module.

Table 8: Hyperparameter search space for PatchTST. Best configuration is highlighted in red.

Parameter Search Values
dmodel {16, 32, 64}
dff {32, 64, 128}
num_heads {2, 4, 8}
num_enc_layers {1, 2, 3}
lr {10−4, 10−5}
L {1000, 3000, 5000, 10000}

TimesNet: We use the official implementation github.com/thuml/Time-Series-Library.

Table 9: Hyperparameter search space for TimesNet. Best configuration is highlighted in red.

Parameter Search Values
dmodel {16, 32, 64}
dff {32, 64, 128}
num_kernels {4, 6}
top_k {3, 5}
num_enc_layers {1, 2}
lr {10−4, 10−5}
L {1000, 3000, 5000, 10000}
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ModernTCN: We use the official implementation github.com/luodhhh/ModernTCN.

Table 10: Hyperparameter search space for ModernTCN. Best configuration is highlighted in red.

Parameter Search Values

lr {10−4, 10−5}
dmodel {16, 32, 64}
num_enc_layers {1, 2}
large_size_kernel {9, 13, 21, 51}
small_size_kernel 5
dw_dims {128, 256}
ffn_ratio {1, 4}
L {1000, 3000, 5000, 10000}

DLinear: We use the implementation from github.com/thuml/Time-Series-Library.

Table 11: Hyperparameter search space for DLinear. Best configuration is highlighted in red.

Parameter Search Values
moving_avg {10, 25}
lr {10−4, 10−5, 10−6}
L {1000, 3000, 5000, 10000}

ROCKET: We use the official implementation github.com/angus924/rocket and follow the stan-
dard implementation of 10, 000 kernels.

Table 12: Hyperparameter search space for ROCKET. Best configuration is highlighted in red.

Parameter Search Values
num_kernels {10000}
lr {10−4, 10−5, 10−6}

Mamba: We use the package mambapy which builds upon the official Mamba implementation. We

Table 13: Hyperparameter search space for Mamba. Best configuration is highlighted in red.

Parameter Search Values

lr {10−4, 10−5, 10−6}
dmodel {16, 32, 64}
num_enc_layers {1, 2, 3}

also employ patching from (Nie et al., 2023), which we observed led to greater to performance, with
patch_size = 64 and patch_stride = 16.

GRUs: We utilized the native PyTorch module torch.nn.GRU.

19

https://github.com/luodhhh/ModernTCN
https://github.com/thuml/Time-Series-Library
https://github.com/angus924/rocket/blob/master/code/rocket_functions.py
https://github.com/alxndrTL/mamba.py
https://pytorch.org/docs/stable/generated/torch.nn.GRU.html


893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2025

Table 14: Hyperparameter search space for GRUs. Best configuration is highlighted in red.

Parameter Search Values

lr {10−4, 10−5, 10−6}
dmodel {16, 32, 64}
num_enc_layers {1, 2, 3}
bidirectional {True,False}

C.1 COMPUTATIONAL RESOURCES

Our experiments were conducted on 4x NVIDIA RTX 6000 Ada Generation GPUs using the PyTorch
framework with CUDA Paszke et al. (2019). Although we have not tracked explicitly the amount of consumed
GPU hours, all experiments can be conducted for 5 seeds no more than 2− 3 hours with a similar setup.
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