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ABSTRACT

In the existing model pruning literature, the weight gradient has been extensively
utilized to measure the importance of weight, where the gradient is well-known to
be sensitive to perturbations. On the other hand, the widely used large language
models (LLMs) have several billion model parameters, which could increase the
fragility of few-shot gradient pruning. In this work, we experimentally show that
one-shot gradient pruning algorithms could lead to unstable results under perturba-
tions to model weights. Even the minor error of switching between data formats
bfloat16 and float16 could result in obviously different outcomes. To address such
instabilities, we leverage optimization analysis and propose an LLM structural
pruning method, called MoreauPruner, with provable robustness against weight
perturbations. In MoreauPruner, the model weight importance is estimated based
on the neural network’s Moreau envelope, which can be flexibly combined with
ℓ1-norm regularization techniques to induce the sparsity required in the pruning
task. We extensively evaluate the MoreauPruner algorithm on several well-known
LLMs, including LLaMA-7B, LLaMA-13B, LLaMA3-8B, and Vicuna-7B. Our nu-
merical results suggest the robustness of MoreauPruner against weight perturbation
and how robust importance estimation in MoreauPruner contributes to successful
accuracy-based scores compared to several existing pruning methods.

1 INTRODUCTION

In the rapidly evolving field of Natural Language Processing (NLP), transformer-based Large Lan-
guage Models such as GPTs (Dettmers et al., 2022) and LLaMAs (Touvron et al., 2023; AI@Meta,
2024) have become foundational technologies, driving significant advances across various tasks.
These models excel in understanding and generating human language due to their scalable archi-
tecture, which allows performance to improve with an increase in parameters. However, deploying
these large models poses significant challenges due to their substantial computational and memory
demands. To address these challenges, considerable research has been directed toward model pruning
(Han et al., 2015; Wen et al., 2016; Ma et al., 2023; Zhang et al., 2023), a technique aimed at reducing
model size while maintaining or enhancing model performance.

While effective in accelerating LLMs for efficient deployment, existing pruning methods generally
focus on fixed pre-trained models, neglecting potential perturbations in the weights and their effect
on pruning outcomes. These perturbations can originate from various sources, including quantization
errors during transitions between precision levels, errors introduced by post-training operation
merging(DeepSeek-AI, 2024), position embedding extension(Su et al., 2024) when the attention
window is enlarged and so on. With minor changes mentioned above, the modified models usually
produce similar outputs compared with unmodified models. Therefore, when there is a need to prune
those slightly modified models, we may expect that the pruned modified models are similar to the
pruned original models. For example, some popular LLMs (Touvron et al., 2023) are trained with the
weight format bfloat16 (BF16) and deployed with the weight format float16 (FP16). As both BF16
and FP16 utilize 16-bit to represent a floating point, the negligible transition error will not affect
inference results in most cases. Considering that the basic idea of pruning is removing unnecessary
weights and keeping the essential weights, it is straightforward to believe that the models pruned from
BF16 and FP16 will be close to each other. However, current gradient-dependent pruning methods
(Ma et al., 2023; Zhang et al., 2023; LeCun et al., 1989; Hassibi & Stork, 1992) utilize gradient to
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Figure 1: While gradient-based pruning methods are sensitive to weight perturbation, the proposed
MoreauPruner gives a robust estimation of weight importance.

indicate the importance of weight elements while gradient is known to be sensitive to such weight
perturbations, leading to significant variations in pruning outcomes, as depicted in Figure 1. Such
inconsistency in pruned outcomes could be anti-intuitive, and a robust weight importance estimation
against weight perturbation is intuitively beneficial to enhance the performance of pruning algorithms.

This paper introduces MoreauPruner, a novel robust structural pruning algorithm for LLMs, designed
to mitigate the effects of weight perturbations while preserving model performance. MoreauPruner
utilizes the gradient of the loss function’s Moreau envelope (Moreau, 1965; Zhang & Farnia, 2023;
T Dinh et al., 2020), a well-established optimization tool for function smoothing, to reduce weight
sensitivity to perturbations during the pruning process. We show that the gradient of the Moreau
envelope remains stable within the neighborhood of given weight in parameter space. This stability
enables MoreauPruner to generate robustness pruning result against weight perturbations, with any
norm-bounded perturbation resulting in only a bounded change of the Moreau gradient. Additionally,
by incorporating an ℓ1-group-norm-based regularization penalty, MoreauPruner promotes group-level
sparsity in the gradient, which is suitable for structural pruning to facilitate real-life acceleration
on hardware platforms. Our empirical results suggest that MoreauPruner improves the robustness
of pruning outcomes against weight perturbations and achieves state-of-the-art post-pruning model
performance among baseline LLM pruning methods.

Our contributions through this work are threefold:

• We emphasize the importance of consistent pruning criteria against minor weight perturbations, an
aspect previously neglected in the literature. This work is among the first to tackle the robustness
of pruning algorithms to such perturbations.

• We introduce MoreauPruner, a structural pruning algorithm that offers provable robustness to
weight perturbations, leveraging the Moreau envelope to ensure the smoothness and stability of the
pruning process.

• Through extensive experimentation with widely-used large language models such as LLaMA-
7B, LLaMA-13B, LLaMA3-8B, and Vicuna-7B, we demonstrate that MoreauPruner achieves a
state-of-the-art performance in both robustness to weight perturbation and overall performance of
compressed models.

2 RELATED WORK

2.1 EFFICIENT LARGE LANGUAGE MODELS

Large Language Models (LLMs) (Touvron et al., 2023; Achiam et al., 2023; Chiang et al., 2023;
AI@Meta, 2024) have achieved remarkable performance by following the scaling laws (Kaplan
et al., 2020). However, deploying LLMs can be challenging due to high inference costs in resource-
limited scenarios. Various methods have been proposed to reduce model size, including knowledge
distillation (Hinton et al., 2015; Sanh et al., 2019; Sun et al., 2019; 2020), which involves transferring
the knowledge from the original model to a smaller one; model quantization (Dettmers et al., 2022;
Xiao et al., 2023; Yao et al., 2022; Zafrir et al., 2019), which reduces the bit length of the model
weights; and model pruning (Han et al., 2015; Frankle & Carbin, 2018; Fang et al., 2023; Park et al.,
2023), which involves removing non-essential weights to speed up inference. This work primarily

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

focuses on pruning LLMs (Xia et al., 2023; Ma et al., 2023; Bair et al., 2024; Xu & Zhang, 2024;
Ashkboos et al., 2024; Zhang et al., 2024; Yin et al., 2023; Ji et al., 2023; van der Ouderaa et al.,
2023; Dong et al., 2024), where gradients are particularly sensitive to weight perturbations due to the
large scale of the model.

2.2 PRUNING CRITERIA

To determine which weights to prune during the pruning phase, the importance of each weight is
assessed using various criteria. Several studies (Sun et al., 2023; Li et al., 2018; Han et al., 2015;
Elesedy et al., 2020) adopt a magnitude-based criterion, retaining weights with larger magnitudes
post-pruning. Recent approaches (Sun et al., 2023) also consider activation values to evaluate
weight importance. Some prevalent criteria are based on Taylor Expansion approximation (LeCun
et al., 1989; Ma et al., 2023; Yu et al., 2022; Hassibi et al., 1993; Hassibi & Stork, 1992), utilizing
differential information (zero-th, first, and second order) to estimate output changes if weights
are removed. Notably, (Zhang et al., 2023) highlights that, in LLMs, gradients can be efficiently
approximated using low-rank methods (Hu et al., 2021) when the direct computation of the gradient
is too costly. Nevertheless, gradients can be highly sensitive to weight modifications, rendering
gradient-based pruning criteria susceptible to variations in weight. In response, MoreauPruner offers
proven robustness against any norm-bounded weight perturbation, maintaining model performance.

3 PRELIMINARIES

In this section, we provide a review of prior Taylor-expansion-based structural pruning methods,
along with the notation and definitions used in the paper.

3.1 NOTATION AND DEFINITIONS

Let D = {xi}Ni=1 denotes a text dataset with N samples. f(w,x) is the next token prediction loss on
sample x with a parameterized language model and its weight w ∈ Rd. Then the expectation of loss
on dataset D is

L(w,D) = 1

N

N∑
i=1

f(w,xi). (1)

The ℓp-norm of an input vector v is represented as ∥v∥p. Furthermore, we use notation ∥v∥p,q
to denote the ℓp,q-group-norm of v defined in the following equation for given variable subsets
S1, ..., St ⊂ {1, ..., d}:

∥v∥p,q =
∥∥[∥vS1∥p, ..., ∥vSt∥p]

∥∥
q
, (2)

which means ∥v∥p,q is the ℓq-norm of a vector containing the ℓp-norms of the subvectors of v
characterized by index subsets S1, ..., St ⊂ {1, ..., d}.

3.2 ESTIMATING IMPORTANCE SCORE VIA TAYLOR EXPANSION

Recent pruning methods usually estimate the impact of removing the k-th element of parameter
vector w via Taylor Expansion,

I(w(k)) = ∥L(w,D)− L(w(k) = 0,D)∥1

=

∥∥∥∥∂L(w,D)∂w(k)
w(k) − 1

2
w(k)Hkk(x)w

(k) +O(|w(k)|3)
∥∥∥∥
1

.

In the above equations, L(w(k) = 0,D) denotes masking out a single weight element w(k) in the
neural network. Hessian matrix H is approximated by a diagonal one and Hkk is the k-th element
on the diagonal. In some of previous pruning methods, the first-term is typically neglected since
the the model is well-trained and converged on the training dataset, where ∂L(w,D)

∂w(k) ≈ 0. However,
a recent LLM pruning work(Ma et al., 2023) point out the calibration dataset used in pruning is
out of the training data and ∂L(w,D)

∂w(k) ̸= 0. Given that the heavy computational cost of the Hessian
matrix is unacceptable for LLMs, unlike small models, the importance score of parameter w(k) can
be approximated using the first term in the Taylor Expansion,

I(w(k)) =

∥∥∥∥∂L(w,D)∂w(k)
w(k)

∥∥∥∥
1

. (3)
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Unstructured pruning algorithms directly remove weight elements with lower importance score.
Contrast to them, to achieve real-time acceleration on hardware, structural pruning algorithms remove
weight elements in group, i.e., all elements in a channel, blocks or heads. The importance score of
the weight vector in a structure I(wi) can be easy obtained by summarizing the importance of its
elements I(w(k)

i ),

I(wi) =
∑
k

I(w
(k)
i ). (4)

Once the importance score of each structure I(wi) is obtained, existing pruning algorithms tend
to pruning structures with smaller importance scores. However, as we mentioned in Section 1, the
simple gradient in Equation (3) is sensitive to weight perturbations, which further leads to an unstable
pruning result. Motivated by this fact, we have designed a robust pruning criterion in MoreauPruner
and detailed it in the next section. By substituting the simple gradient-based importance score in
Equation (3) with this new criterion, we demonstrate that the pruning algorithm becomes more robust
to weight perturbations and yields improved post-pruning performance.

3.3 DEPENDENCY-AWARE STRUCTURAL PRUNING

Previous works(Fang et al., 2023; Ma et al., 2023) suggest that structural pruning should consider
dependency among structures. Here, a weight group G = {wi}Mi=1 represents a collection of coupled
structures, where M is the number of structures in one group, and wi denotes the weight for each
structure. The group can be effiently detected by Fang et al. (2023). And the importance score of the
group G is then estimated as follows:

I(G) =
M

Agg
i=1

I(wi), (5)

where Agg is a customized aggregation function chosen from options like Summation, Production,
Max, etc. After assessing the importance of each group, groups with lower importance are pruned
to achieve a pre-determined pruning ratio. We adopt the pruning strategy in our MoreauPruner and
choose Summation in Equation (5), following Ma et al. (2023).

4 MOREAUPRUNER

In this section, we introduce the proposed pruning method, MoreauPruner. We start by detailing
the proposed perturbation-robust pruning criteria. In the second subsection, we introduce the two
versions of MoreauPruner.

4.1 ROBUSTIFYING GRADIENT VIA MOREAU ENVELOPE

Here we leverage the notion of Moreau envelope from the convex optimization literature to propose
an optimization-based approach to robust gradient-based pruning. The considered robust gradient
follows Moreau-Yosida regularization, based on which the Moreau envelope of a neural network’s
parameters is defined as follows.

Definition 1. Consider function g : Rd → R and regularization parameter ρ > 0. The Moreau
envelope of g at input weight w, gρ : Rd → R is defined to be

gρ(w) := inf
w̃
g(w̃) +

1

2ρ

∥∥w̃ −w
∥∥2
2
. (6)

Following Zhang & Farnia (2023), instead of utilizing the simple gradient as previous pruning
methods do, we employ the gradient of the Moreau envelope as a robust evaluation of the local
sensitivity of the loss function sensitivity to altering the model weights,

Definition 2. Given the input weight w and regularization parameter ρ > 0, we define MoreauGrad
as the Moreau envelope gρ’s gradient MGρ[g] : Rd → Rd:

MGρ[g](w) := ∇gρ(w). (7)

To analyze the gradient of Moreau envelope, we first discuss the optimization-based smoothing
enforced by the Moreau envelope. Note that the Moreau envelope is known as an optimization tool to
turn non-smooth convex functions (e.g. ℓ1-norm) into smooth functions, where the smoothness is
usually regarding the input variable x. Here in the pruning case, we discuss the smoothness regarding

4
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the function parameters w and extend the result to the weakly-convex functions which also apply to
non-convex functions.
Theorem 1. Suppose that the parameterized function g(w) : Rd → R is β-Lipschitz, i.e. it
satisfies

∣∣g(w) − g(v)
∣∣ ≤ β∥w − v∥2 for every v,w ∈ Rd. Consider the Gaussian-smoothed

gσ(w) = Eu∼N (0,σ2I)

[
g(w + u)

]
. Then, for every 0 < ρ < σ

β , the following robustness guarantee
will hold of the Moreau envelope of the Gaussian-smoothed gρσ(w):

∥MGρ[gσ](w1)−MGρ[gσ](w2)∥2 ≤
σ∥w1 −w2∥2

min{σρ, σ − ρβ}
.

We defer the proof of the above theorem into appendices due to the space limitation.

Theorem 1 indicates that the change of gradient of Moreau Envelope will be bounded by the change
of weights, denoting the robustness property of MoreauGrad MGρ[gσ](w). We note that the above
definition can be combined with sparsity-based norm penalties, such as ℓ1-norm ∥ · ∥1 or ℓ2,1-group
norm ∥ · ∥2,1. Here, we generalize Zhang & Farnia (2023)’s definition of (group)sparse-Moreau
envelop. Given a convex function h : Rd → R, we propose the following definition of h-Moreau
envelope:
Definition 3. Given convex function h, input weight w, and regularization parameter ρ > 0, we
define h-MoreauGrad of function g, denoted by h-MGρ[g](w), as 1

ρ

(
v∗(w) − w

)
where v∗(w)

denotes the optimal solution to the following optimization problem:

min
v∈Rd

g(v) +
1

2ρ

∥∥v −w
∥∥2
2
+ h

(
v −w

)
. (8)

Here, we extend the robustness guarantee of Theorem 1 to a general h-MoreauGrad.
Theorem 2. Consider the setting of Theorem 1 and suppose h is a convex function. Then, for every
0 < ρ < σ

β , the following robustness guarantee will hold of the h-Moreau envelope of gρσ(w):

∥h-MGρ[gσ](w1)− h-MGρ[gσ](w2)∥2 ≤
σ∥w1 −w2∥2

min{σρ, σ − ρβ}
.

We defer the proof of the above theorem into appendices due to the space limitation.

Similar to Theorem 1, Theorem 2 shows the robustness of h-MoreauGrad h-MGρ[gσ](w) for a given
convex function h. In our numerical analysis, we specifically focus on GroupSparse-MoreauGrad
which is the h-MoreauGrad with the group-norm h(v) = η∥v∥2,1. η is the sparsity parameter.

Algorithm 1 MoreauPruner Algorithm

Require: samples x, network with parameter f(w), regularization parameter ρ, group-sparsity η,
noise std σ, stepsize γ, and optimization length T .

1: Initialize w(0) = w;
2: for t = 0, . . . , T do
3: Draw noise vectors z1, . . . ,zm ∼ N (0, σ2Id×d);
4: Compute gt =

1
m

∑m
i=1∇f(w(t) + zi,x);

5: Update w(t+1) ← (1− γ
ρ )w

(t) − γ(gt − 1
ρw);

6: if GroupSparse then
7: Update w(t+1) ← GSTγη(w

(t+1) −w) +w;
8: end if
9: end for

10: Compute importance score I(w) =
∥∥∥ 1
ρ (w

(T ) −w)w
∥∥∥
1
;

11: Prune network f(w) according to I(w);
12: Finetune pruned network w/ LoRA;
13: Return finetuned network;

4.2 LEVERAGING MOREAUGRAD FOR ROBUST PRUNING

MoreauPruner. With the defined MoreauGrad MGρ[g](w), we established a robust estimation on
the influence of removing a weight element w(k) based on Equation (3),

MGρ-I(w(k)) = ∥MGρ[g](w)⊙w∥(k)1 , (9)

5
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where g(w) is the exception of loss function L(w,D) defined in Equation (1), and ⊙ denotes
Hadamard product.

We should note that the difference w̃∗
ρ(w)−w is aligned with gρ’s gradient (Moreau, 1965; Zhang

& Farnia, 2023),

∇gρ(w) = −1

ρ
(w̃∗

ρ(w)−w), (10)

where the optimal solution w̃∗
ρ(w) of the optimization problem in Equation (6) can be obtained

over a calibration dataset with the first-order gradient descent optimization method. By combining
Equations (7) and (10), Equation (9) can be computed. Since Equation (9) is a robust version of
Equation (3), the robust importance score of the structure wi and group G can also be estimated by
aggregating the importance score of each element with Equation (4) and Equation (5). We denote the
structural pruning method removing groups with smaller robust importance score as MoreauPruner.

MoreauPruner-GS. Similar to MoreauPruner, the group-sparse robust estimation on the influence of
removing parameter w(k) is,

h-MGρ-I(w(k)) = ∥h-MGρ[gσ](w)⊙w∥(k)1 , (11)
where the group sparsity is conducted at the channel level in our implementation, i.e., each variable
subset in the 2, 1-group-norm is a channel in the model. To compute the GroupSparse-MoreauGrad
h-MGρ[gσ](w), we utilize the proximal gradient descent algorithm as described in Algorithm 1.
Note that we apply the group-soft-thresholding function as the proximal operator for the ℓ2,1-norm
function present in GroupSparse-MoreauGrad,

GSTα(v)Si
:=

{
0 if ∥vSi

∥2 ≤ α(
1− α

∥vSi
∥2

)
vSi

if ∥vSi
∥2 > α.

Once the optimization of h-Moreau envelope ends, the GroupSparse-MoreauGrad h-MGρ[gσ](w)
can be calculated according to Definition 3. We treat the method as MoreauPruner-GS to mark the
group sparsity of importance score obtained during optimization.

After the pruning phase, a post-training with LoRA(Hu et al., 2021) is applied to the pruned model to
recover model performance, as suggested by previous works.

5 NUMERICAL RESULTS

In this section, we conducted experiments on several famous LLMs to evaluate the proposed More-
auPruner’s performance and support our theoretical claim. We also provided further insights in the
discussion subsection on how and why MoreauPruner works well.

5.1 EXPERIMENTAL SETTINGS

Pre-trained Models. To demonstrate the versatility of MoreauPruner across different scales, we
evaluate it on four open-source large language models: LLaMA-7B(Touvron et al., 2023), LLaMA-
13B(Touvron et al., 2023), Vicuna-7B(Chiang et al., 2023) and LLaMA3-8B(AI@Meta, 2024).

Evaluation. Building on prior research (Zhang et al., 2023; Ma et al., 2023; Sun et al., 2023), we
assess our method using seven zero-shot classification tasks on datasets centered around common
sense reasoning: BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2021), ARC-easy (Clark et al., 2018), ARC-challenge (Clark et al.,
2018), and OpenbookQA (Mihaylov et al., 2018). Consistent with (Gao et al., 2023), the model ranks
options in multiple-choice tasks or generates answers for open-ended questions. Furthermore, we
perform a zero-shot perplexity (PPL) analysis on WikiText2 (Merity et al., 2016) and PTB (Marcus
et al., 1993) with 128-token segments, aligning our methodology with that of Zhang et al. (2023); Ma
et al. (2023).

Implementation Details. In pruning phase, to align with the protocols of the closely related gradient-
based method (Ma et al., 2023), our model pruning utilizes a calibration set of ten randomly selected,
128-token truncated sentences from the Bookcorpus (Zhu et al., 2015). The gradient of the Moreau
envelope is computed using this calibration set, with the optimization step length fixed at ten. The
pruning process typically completes in approximately 30 minutes on CPUs. In the post-training phase,
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Table 1: Algorithms’ robustness against weight perturbation. Diff denotes the absolute difference
between weight formats, bfloat16 and float16. Rounding results in changes to the last digit.

(a) 0-shot PPL on WikiText2

Method Format Pruning Ratio
5% 10% 15% 20%

LLM-Pruner
(Ma et al., 2023)

BF16 13.80 17.73 32.60 95.82
FP16 13.75 17.79 32.10 96.57

Diff(↓) 0.05 0.07 0.51 0.75

MoreauPruner
BF16 13.89 17.42 31.05 91.79
FP16 13.83 17.45 30.99 91.79

Diff(↓) 0.05 0.03 0.06 0.00

(b) 0-shot PPL on PTB

Method Format Pruning Ratio
5% 10% 15% 20%

LLM-Pruner
(Ma et al., 2023)

BF16 25.00 32.10 61.87 202.86
FP16 24.85 32.16 61.15 210.12

Diff(↓) 0.15 0.06 0.72 7.26

MoreauPruner
BF16 25.00 32.22 60.43 176.24
FP16 24.95 32.29 60.43 174.19

Diff(↓) 0.05 0.06 0.00 2.05

we finetune the pruned model with a LoRA(Hu et al., 2021). A refined version of the Alpaca(Taori
et al., 2023) dataset comprising about 50,000 samples is employed, with training extending over
two epochs and generally taking three hours on a single NVIDIA RTX 3090 Ti GPU for 7B models.
Detailed hyper-parameter selections are available in the appendices.

Structural Pruning Baselines. We compare MoreauPruner against two fundamental pruning
techniques: Magnitude and Random. Magnitude pruning evaluates weight significance based on
the magnitude of the weight matrix, whereas Random pruning indiscriminately removes weights.
Additionally, we benchmark against three advanced alternatives: LLM-Pruner (Ma et al., 2023),
which uses a gradient-based metric to determine weight importance; LoraPrune (Zhang et al., 2023),
which utilizes a LoRA(Hu et al., 2021)-guided pruning criterion; and WANDA (Sun et al., 2023),
designed for unstructured or semi-structured pruning but adaptable to other structural frameworks.

We also introduce SmoothGrad, a preliminary version of MoreauPruner that enhances network
smoothness by applying Gaussian smoothing during the inference, as we explained in Theorem 1.
The importance scores are estimated with the smoothed gradient using Equation (3), and the we
still remove those parameter groups with lower importance scores. A thorough comparison of these
methods is documented in appendices.

5.2 ROBUSTNESS AGAINST WEIGHT PERTURBATION

As we previously discussed, few-shot gradient-based pruning methods are significantly influenced by
the changes of the gradient. Even minor differences on model weight can lead to markedly different
pruning outcomes. In contrast, MoreauGrad is theoretically robust against norm-bounded weight
perturbation. To validate this assertion, we adhered to the channel-wise pruning protocol established
in prior research (Ma et al., 2023), removing a fixed ratio of channels based on their importance score.

When utilizing 16 bits to store a float number, BF16 has larger range while FP16 has better precision.
Considering that some LLMs are trained on BF16 and inferred on FP16, our experiments were
conducted on the LLaMA-7B model using both BF16 and FP16 weight bit formats. We standardized
the calibration sample selection during pruning across different settings to ensure a fair comparison.
Upon completing the pruning process, we performed a zero-shot perplexity (PPL) analysis using
128-token segments on the WikiText2 and PTB datasets and compared the discrepancies between
FP16 and BF16. The findings are presented in Table 1. Due to the space limitation, we put the full
evaluation results on zero-shot question-answering in appendices.

The results indicate that, for MoreauPruner, the performance under different weight format is closer
to each other, which indicates a better consistency of pruning outcomes. The result demonstrates the
robustness of MoreauPruner against weight perturbations caused by different weight formats.

5.3 COMPARISON ON CHANNEL IMPORTANCE ESTIMATION

As detailed in previous sections (Section 3.2 and Section 4.2), both MoreauPruner and certain existing
structured pruning algorithms assign an importance score to each channel within a given layer.
Channels deemed less important are more likely to be pruned. To better understand the functionality
of MoreauPruner, we conducted a detailed comparison of channel importance estimation.

Within each weight structure (e.g., a layer) of the model, all channels are ranked according to the
importance scores assigned by different pruning algorithms. A higher ranking indicates a more

7
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(a) Layer 0, up_proj (b) Layer 7, up_proj (c) Layer 15, up_proj

(d) Layer 23, up_proj (e) Layer 31, up_proj

Figure 2: The channel ranking in up projector module of LLaMA-7B
given by our method and baseline algorithm. A large ranking denotes a
more important channel.

Disagreement on 
Shallow Layers

(a) WikiText2

Disagreement on 
Shallow Layers

(b) PTB

Figure 3: Only prun-
ing weight in a single
layer.

important channel. We compared the channel rankings generated by our main competitor, LLM-
Pruner (Ma et al., 2023), and MoreauPruner. The ranking pairs are plotted in a figure to illustrate the
(in)consistency between the two methods. Some examples from up projector module from different
layers of LLaMA-7B are shown in Figure 2. The ranking relationship indicates that the significant
disagreement between MoreauPruner and gradient-based baseline occurs on shallow layers (closer
to input), where the gradient is known as fragile due to the accumulation during the long backward
propagation process.

We conducted an experiment in Figure 3 to investigate the effect of the disagreement. For each time,
we remove the weight selected by algorithms in a single layer and test the zero-shot perplexity on
both datasets. The significant performance gap occurs on shallow layers between MoreauPruner and
gradient-based baseline, which shows the effectiveness of our method in distinguishing essential
weights. Extended examples and detailed analyses can be found in the Appendices.

5.4 ZERO-SHOT PERFORMANCE

We have developed two variants of our method, named MoreauPruner and MoreauPruner-GS,
according to whether the sparsity penalty is applied. These techniques were tested on four pretrained
models: LLaMA-7B, Vicuna-7B, LLaMA-13B and LLaMA3-8B, with their performance detailed
in Tables 2 to 5 and we also provide full evaluation results in appendices. We should note that the
pruning setting in the literature varies among different works. We keep the same experiment setting
with our primary baseline LLM-Pruner for a fair comparison. LoRAPrune and WANDA (marked as
‡) do not share the same protocols with our main experiments as we detailed in appendices; we list
the results here for reference.

The evaluations indicate that MoreauPruner can effectively maintain the model performance. For
example, for the largest model LLaMA-13B, We have noticed that the performance gap between
the compressed and original models is closer than that of the 7B models. After a quick recovery,
the zero-shot accuracy of the compressed with 80% parameters is nearly equivalent to the original
model’s performance (64.94% vs. 64.97%). Such a phenomenon may indicate more redundant
weights in the larger models. In other words, those huge LLMs (≥13B) can be potentially inferred
with less trade-off on performance. On other models, we have observed that with a 20% reduction in
parameters on LLaMA-7B, MoreauPruner and MoreauPruner-GS maintains 95.48% and 95.64% of
the original performance with a quick post-training. On Vicuna-7B, MoreauPruner-GS maintains
96.16% of the original performance. An interesting fact is that on Vicuna-7B and LLaMA-13B,
MoreauPruner-GS surpassed MoreauPruner by a notable margin, thanks to the structural sparsity
introduced during optimization.
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Table 2: Zero-shot performance of the compressed LLaMA-13B. ∗ is implemented according to
open-source code. The best results is bold. The methods proposed in this paper are filled with green.

Pruning Ratio Method WikiText2(↓) PTB(↓) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA QA-Average

Ratio = 0% LLaMA-13B† 11.58 44.54 68.47 78.89 76.24 70.09 74.58 44.54 42.00 64.97

Ratio = 20%
w/o finetune

LLM-Pruner∗(Ma et al., 2023) 16.43 59.96 63.00 77.53 73.79 64.33 69.07 40.96 40.60 61.33
SmoothGrad 16.55 59.96 62.94 77.04 73.78 65.98 68.35 40.53 41.40 61.43

MoreauPruner 16.95 61.39 62.48 77.64 73.61 66.38 67.47 39.68 40.60 61.12
MoreauPruner-GS 17.11 61.39 72.97 77.53 74.44 64.09 66.08 40.44 41.40 62.42

Ratio = 20%
w/ finetune

LLM-Pruner∗(Ma et al., 2023) 15.04 57.00 67.28 79.00 75.13 69.06 71.68 41.89 43.60 63.95
SmoothGrad 15.01 56.55 66.39 79.05 74.95 69.46 71.17 42.75 43.40 63.88

MoreauPruner 15.52 57.44 64.86 79.22 75.07 70.48 71.68 43.60 42.80 63.96
MoreauPruner-GS 15.28 57.67 75.17 78.24 74.77 68.19 70.12 43.09 45.00 64.94

Table 3: Zero-shot performance of the Pruned LLaMA-7B. † denotes results from Ma et al. (2023)
and ‡ denotes results from Zhang et al. (2023).

Pruning Ratio Method WikiText2(↓) PTB(↓) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA QA-Average

Ratio = 0% LLaMA-7B† 12.62 22.14 73.18 78.35 72.99 67.01 67.45 41.38 42.40 63.25

Ratio = 20%
w/o finetune

Magnitude† 582.41 1022.17 59.66 58.00 37.04 52.41 33.12 28.58 29.80 42.65
Random† 27.51 43.19 61.83 71.33 56.26 54.46 57.07 32.85 35.00 52.69

WANDA‡(Sun et al., 2023) 22.12 38.19 64.93 70.14 58.12 55.39 56.63 33.98 35.43 53.23
LLM-Pruner∗(Ma et al., 2023) 19.09 34.23 56.91 75.08 66.81 60.06 60.94 36.43 40.00 56.60

LoRAPrune‡(Zhang et al., 2023) 20.67 34.12 57.98 75.11 65.81 59.90 62.14 34.59 39.98 56.50
SmoothGrad 18.91 34.30 59.60 75.14 65.98 61.01 60.77 37.12 39.80 57.06

MoreauPruner 18.61 32.92 55.44 76.17 66.47 63.61 61.53 37.80 40.60 57.37
MoreauPruner-GS 18.72 34.91 62.51 75.52 68.29 62.75 54.88 36.35 40.80 57.30

Ratio = 20%
w/ finetune

WANDA‡(Sun et al., 2023) 18.43 33.16 65.75 74.70 64.52 59.35 60.65 36.26 39.40 57.23
LLM-Pruner∗(Ma et al., 2023) 17.62 30.57 65.78 76.44 68.67 64.33 63.26 36.35 41.00 59.40

LoRAPrune‡(Zhang et al., 2023) 16.80 28.75 65.62 79.31 70.00 62.76 65.87 37.69 39.14 60.05
SmoothGrad 17.45 30.57 66.48 76.99 68.64 65.35 63.68 37.80 41.00 59.99

MoreauPruner 17.01 30.27 66.61 77.04 68.32 65.59 65.57 38.40 41.20 60.39
MoreauPruner-GS 16.65 30.69 68.87 77.26 69.81 65.04 63.64 38.23 40.60 60.49

Table 4: Zero-shot performance of the com-
pressed Vicuna-7B. Full results can be found
in Appendices.

Pruning Ratio Method WikiText2(↓) PTB(↓) QA-Average

Ratio = 0% Vicuna-7B† 16.11 61.39 62.71

Ratio = 20%
w/o finetune

Magnitude† 3539.98 5882.21 40.41
Random† 34.63 112.44 52.18

LLM-Pruner∗ 25.74 92.87 56.18
SmoothGrad 25.99 92.87 56.17

MoreauPruner 25.54 94.34 56.76
MoreauPruner-GS 30.69 108.16 56.76

Ratio = 20%
w/ finetune

LLM-Pruner∗ 19.47 72.33 57.72
SmoothGrad 19.51 72.05 57.64

MoreauPruner 19.66 73.47 58.60
MoreauPruner-GS 19.13 73.76 60.03

Table 5: Results on LLaMA3-8B.
Pruning Ratio Method WikiText2(↓) PTB(↓) QA-Average

Ratio = 0% LLaMA-8B† 14.14 27.98 70.33

Ratio = 20%
w/o finetune

LLM-Pruner 25.74 45.69 58.29
MoreauPruner-GS 25.40 43.78 60.68

Ratio = 20%
w/ finetune

LLM-Pruner 23.71 42.01 64.11
MoreauPruner-GS 22.98 39.25 65.37

Table 6: Larger recovery set boosts performance.
Pruning Ratio Method Recovery Set QA-Average

Ratio = 0% LLaMA-7B† N/A 63.25

Ratio = 20%
w/ finetune

MoreauPruner-GS Alpaca(50k) 60.49
MoreauPruner-GS LaMini(2.59M) 63.17 (+2.68)

According the the results on strongest foundational model LLaMA3-8B that is pre-trained with more
high-quality data compared with previous version. MoreauPruner-GS still works well without any
hyper-parameter modification. We have noticed that the performance of pruned LLaMA3-8B drops
more than that of LLaMA-7B. This may lead by the fact that the pretraining of LLaMA3-8B is more
sufficient according to official report and there is less redundant model weight. However, the pruned
LLaMA3-8B still beats the original LLaMA-7B by a noticeable margin (63.25% vs. 65.37%).

5.5 FURTHER DISCUSSION

In this subsection, we extended our experiment to identify how MoreauPruner works. We also
discussed that with more computational resource, how can MoreauPruner be further improved.

Effect of Function Smoothing. In our preliminary evaluations, we introduced SmoothGrad to assess
the impact of function smoothing. This approach often matches or exceeds the performance of
gradient-based competitors. Notably, on the benchmark model LLaMA-7B, SmoothGrad outper-
formed all baseline methods prior to finetuning. These findings suggest that gradient-based pruning
methods could benefit from function smoothing, as it helps mitigate the excessive sharpness of certain
parameters within the differential space.
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Table 7: The performance of the MoreauPruner-GS on
LLaMA-7B with different calibration set size. We repeat
three times and report the mean and variance for each
setting.

Pruning Ratio Calibration WikiText2(↓) PTB(↓) QA-Average

Ratio = 20%
w/o finetune

10 18.72±0.29 34.91±0.85 57.30±0.53
1000 18.50±0.10 32.16±0.19 58.12±0.31

Ratio = 20%
w/ finetune

10 16.65±0.16 30.69±0.21 60.49±0.26
1000 16.95±0.09 30.21±0.23 60.63±0.12
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Figure 4: The effect of different (a)
pruning ratio; (b) hyper-paramter η.

Larger Recovery Set. In the main experiments, the recovery phase was conducted on Alpaca(Taori
et al., 2023), utilizing a dataset of 50k samples. To demonstrate the potential enhancement achieved
by the pruned model, we carried out an experiment on a significantly larger dataset, LaMini(Wu
et al., 2023), consisting of 2.59 million samples. The findings, presented in Table 6, reveal that the
performance of the compressed model closely approximates that of the base model (63.17% v.s.
63.25%), respectively. These results further substantiate the hypothesis of the presence of redundant
weights in LLMs.

Larger Calibration Set & Randomness Analyses. To be strictly aligned with our primary baseline
and have a fair comparison, we utilize only ten randomly picked samples as the calibration set to
judge the importance score of weight. Unavoidably, the small calibration set introduces randomness
to model performance. To further evaluate our method, we enlarge the size of the calibration set
utilized during the pruning phase. We found that a larger calibration set can efficiently improve
pruning quality and reduce randomness in performance as shown in Table 7. Estimating gradient
importance on 1000 samples raises the average zero-shot accuracy from 57.30% to 58.12% and
decreases PPL by 0.22 and 2.75 on WikiText2 and PTB. However, the difference in post-finetuning
performance is shrinking, resulting in only a 0.14% difference in average accuracy.

Effect of Pruning Ratio. We explored the influence of varying pruning ratios as illustrated in
Figure 4a. It is evident that our methods consistently work well across different pruning ratios. This
stability underscores the robustness and effectiveness of our pruning strategies.

Impact of Hyper-parameters. The hyper-parameter η controls the ratio of group-sparsity of
MoreauPruner-GS during optimization. We conduct an ablation study on LLaMA-7B with 20%
sparsity to evaluate the impact of different hyper-parameter values η. The results illustrated in
Figure 4b give the average 0-shot accuracy after finetuning. According to the results, we choose
η=5e-6 for all the experiments in this paper.

6 CONCLUSION

In this paper, we discussed how minor changes in model weights can lead to unstable pruning results
for large language models (LLMs). To address this instability, we introduced MoreauPruner, a weight-
perturbation structural pruning method. Our theoretical analysis demonstrates that MoreauPruner
is robust to norm-bounded perturbations. Numerical experiments conducted on well-known LLMs
suggest that MoreauPruner can efficiently compress LLMs while maintaining their performance. For
future work, we propose combining structural pruning technology with other model compression
methods to accelerate model inference and reduce computational costs.

Limitations. The authors acknowledge that the number of parameters utilized in the models for
this paper only reach 13B due to limited hardware budget. The performance of MoreauPruner on
extremely large-scale models (e.g., 30B, 70B, etc.) will be further explored once enough hardware
resources are available.
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A PROOF

A.1 PROOF OF THEOREM 1

As Theorem 1 assumes a Lipschiz function g, we can apply the Stein’s lemma (Landsman et al.,
2013) to show

∇gσ(w) = E[∇g(w + Z)] = E[g(w + Z)
Z

σ2
]

Therefore, for every w,w′ ∈ Rd and unit-ℓ2-norm vector ∥u∥2 = 1 we have the following

∣∣u⊤(∇gσ(w)−∇gσ(w′))
∣∣ = ∣∣u⊤(E[∇g(w + Z)]− E[∇g(w′ + Z)])

∣∣
=

∣∣∣∣u⊤(E
[
Z

σ2
g(w + Z)

]
− E

[
Z

σ2
g(w′ + Z)

]
)

∣∣∣∣
=

∣∣∣∣E [
u⊤Z

σ2
(g(w + Z)− g(w′ + Z))

]∣∣∣∣
≤E

[∣∣u⊤Z
∣∣

σ2
|g(w + Z)− g(w′ + Z)|

]

≤E

[∣∣u⊤Z
∣∣

σ2
β∥w −w′∥2

]

=
β∥w −w′∥2

σ
E
[∣∣u⊤Z

σ

∣∣]
≤β∥w −w′∥2

σ
.

In the above, note that u⊤Z
σ ∼ N (0, 1). As a result, the gradient of gσ will be β

σ -Lipschitz, and gσ is
β
σ -smooth, which means for every w,w′ we have,∣∣gσ(w′)−∇gσ(w)⊤(w′ −w)

∣∣ ≤ β

2σ
∥w −w′∥22

As a result, Θ(w) = gσ(w) + β
2σ∥w∥

2
2 will be a convex function. Therefore, we can rewrite the

definition of the Moreau envelope as

gρσ(w) = min
w̃∈Rd

Θ(w̃)− β

2σ
∥w̃∥22 +

1

2ρ
∥w̃ −w∥22

= min
w̃∈Rd

Θ(w̃) + (
1

2ρ
− β

2σ
)∥w̃∥22 −

1

ρ
w⊤w̃ +

1

2ρ
∥w∥22

=
1

2ρ
∥w∥22 −

1

ρ
max
w̃∈Rd

{
w⊤w̃ − ρΘ(w̃)− σ − ρβ

2σ
∥w̃∥22

}
.

Therefore, ρgρσ(w) is the subtraction of the Fenchel conjugate of c(w) = ρΘ(w)+ σ−ρβ
2σ ∥w̃∥

2
2 from

the 1-strongly-convex 1
2∥w∥

2
2. Then, we apply the result that the Fenchel conjugate of a µ-strongly

convex function is 1
µ -smooth convex function in Zhou (2018). Therefore, the following Fenchel

conjugate

c∗(w) := max
w̃∈Rd

{
w⊤w̃ − ρΘ(w̃)− σ − ρβ

2σ
∥w̃∥22

}
is a σ

σ−ρβ -smooth convex function. Since, we subtract two convex functions from each other where
the second one has a constant Hessian I , then the resulting function will be smooth of the following
degree:

1

ρ
max

{
| σ

σ − ρβ
− 1|, |0− 1|

}
=

σ

min{σρ, σ − ρβ}
,

which completes the proof of the theorem.
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A.2 PROOF OF THEOREM 2

To prove Theorem 2, we note that the additional h is a convex function. Given the formulation of the
h-Moreau envelope of gρσ(w) and the assumption 0 < ρ < σ

β in the theorem, we have

gρσ,h(w) := min
w̃∈Rd

gσ(w̃) +
1

2ρ
∥w̃ −w∥22 + h(w̃ −w),

= min
w̃∈Rd

Θ(w̃) + (
1

2ρ
− β

2σ
)∥w̃∥22 −

1

ρ
w⊤w̃ +

1

2ρ
∥w∥22 + h(w̃ −w),

where Θ(w) = gσ(w) + β
2σ∥w∥

2
2 is a convex function. Then the function ϕ : Rd → R defined as

ϕ(w̃) = (
1

2ρ
− β

2σ
)∥w̃∥22 −

1

ρ
w⊤w̃

is a σ−ρβ
σρ -strongly-convex function. As a result, Θ(w̃) + ϕ(w̃) + h(w̃ − w) is strongly-convex

function with strong-convexity degree σ−ρβ
σρ . Therefore, the optimization of h-Moreau envelope has

a unique locally and globally optimal solution. we define the proximal operator of h function as

proxh(·)(w) := argmin
w′∈Rd

h(w′) +
1

2
∥w′ −w∥22.

Then since the objective function of h-Moreau envelope consists of the following two convex
functions (w.r.t. δ := w̃−w) tw(δ) := gσ(w+ δ) + 1

2ρ∥δ∥
2
2 and h(δ), the optimal solution δ∗ will

satisfy the following equation with γ > 0:

δ∗ = proxγh(·)
(
δ∗ − γ∇tw(δ∗)

) γ=ρ
= proxρh(·)

(
−ρ∇gσ(w + δ∗)

)
.

The above implies that, if we use ψ to denote the identity map we will get:

δ∗(w) =
(
(ψ + proxρh(·) ◦ ρ∇gσ)−1 − ψ

)
(w).

Note that in the above ψ + proxρh(·) ◦ ρ∇gσ will be a (1− ρβ
σ )-monotone operator, where we call

t : Rd → Rd τ -monotone if for every w,v ∈ Rd:
(v −w)⊤

(
t(v)− t(w)

)
≥ τ∥v −w∥22.

The monotonicity arises because the gradient of a λ-weakly convex function is -λ-monotone, and
the proximal operator is known to be 1-monotone. Hence, δ∗(w) will be a Lipschitz function with
the following Lipschitz constant (note that (ψ + proxρh(·) ◦ ρ∇gσ)−1 is a monotone function with a
degree between 0 and σ

σ−ρβ ):

max

{
| σ

σ − ρβ
− 1|, |0− 1|

}
= max

{
ρβ

σ − ρβ
, 1

}
.

Therefore, for any given convex function h, the h-MoreauGrad

h-MGρ[g](w) :=
1

ρ
δ∗(w)

will be a Lipschitz function with the constant σ
min{σρ,σ−ρβ} . Then the proof the theorem is finished.

B EXTENDED COMPARISON ON CHANNEL RANKING ASSIGNMENT

In Section 5.2 of the main text, we demonstrate the inconsistency in ranking assignments across
different layer depth. Here, we extend the discussion by exploring how this inconsistency happens
on different modules. Several examples from different layers are illustrated in Figures 5 and 6. The
experimental results indicate that the major disagreements between MoreauPruner and gradient-based
methods occur in the most shallow and deepest layers. Given that these layers are known to be
sensitive to pruning (Ma et al., 2023; Yin et al., 2023; Ji et al., 2023), the performance gap between
gradient-based methods and MoreauPruner can be partially attributed to differences in channel
pruning within these layers. Additionally, we observed that the ranking stability among the middle
layers suggests that the weights in these layers of LLMs may have converged to a flatter minimum,
as both gradient-based and robust-gradient-based measurements yield similar sensitivity rankings.
The numerical results also suggest that while gradient-based methods and MoreauPruner generally
agree on the importance of channels within the attention module, there is more disagreement in the
feed-forward network (FFN) module.
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(a) layer 0, q_proj (b) layer 0, k_proj (c) layer 0, v_proj (d) layer 0, o_proj

(e) layer 7, q_proj (f) layer 7, k_proj (g) layer 7, v_proj (h) layer 7, o_proj

(i) layer 15, q_proj (j) layer 15, k_proj (k) layer 15, v_proj (l) layer 15, o_proj

(m) layer 23, q_proj (n) layer 23, k_proj (o) layer 23, v_proj (p) layer 23, o_proj

(q) layer 31, q_proj (r) layer 31, k_proj (s) layer 31, v_proj (t) layer 31, o_proj

Figure 5: The channel ranking in attention module with different layer depths in LLaMA-7B given
by different algorithms.

C COMPLETE RESULTS FOR TABLES IN THE MAIN TEXT

We include the full evaluation results on the effect of weight perturbation between BF16 and FP16 in
Table 8. The column labeled Diff represents the difference between the BF16 and FP16 columns,
indicating sensitivity to weight perturbation. Notably, MoreauPruner shows a lower difference in most
cases, demonstrating the consistency of pruning results. Furthermore, MoreauPruner often yields
better PPL (Perplexity) and QA (Question-Answering) accuracy, indicating superior performance.

Additionally, we provide the complete evaluation results for Vicuna-7B and LLaMA3-8B in Tables 9
and 10. The full results of the effect of larger recovery set are illustrated in Table 11.
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(a) layer 0, up_proj (b) layer 0, down_proj (c) layer 0, gate_proj

(d) layer 7, up_proj (e) layer 7, down_proj (f) layer 7, gate_proj

(g) layer 15, up_proj (h) layer 15, down_proj (i) layer 15, gate_proj

(j) layer 23, up_proj (k) layer 23, down_proj (l) layer 23, gate_proj

(m) layer 31, up_proj (n) layer 31, down_proj (o) layer 31, gate_proj

Figure 6: The channel ranking in feed-forward network module with different layer depths in LLaMA-
7B given by different algorithms.

D COMPARED WITH SCRATCH TRAINING

We compare our MoreauPruner-GS with StableLM-3B1 with a similar parameter size. With
MoreauPruner-GS, We prune LLaMA-7B and get a compact model with 3.45B parameters. Both
models are finetuned on Alpaca(Taori et al., 2023) dataset for a fair comparison. The result can be
found in Table 12. MoreauPruner-GS sometimes achieves better results compared with LLMs that
are trained from scratch. We also recognize that the pruned model may not consistently surpass other
models with similar scale, due to the significant disparity in the size of the training corpus.

1https://huggingface.co/stabilityai/stablelm-tuned-alpha-3b
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Table 8: Full evaluation results of weight perturbation on LLaMA-7B (w/o finetune).
Pruning Ratio Method Format WikiText2(↓) PTB(↓) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA QA-Average

5%

LLM-Pruner
(Ma et al., 2023)

BF16 13.80 25.00 71.83 76.39 69.77 66.14 63.93 38.99 40.40 61.06
FP16 13.75 24.85 71.68 76.22 69.75 66.54 63.76 39.16 40.40 61.07

Diff(↓) 0.05 0.15 - - - - - - - 0.01

MoreauPruner
BF16 13.89 25.00 72.39 76.55 70.07 66.38 65.24 39.68 40.60 61.56
FP16 13.83 24.95 72.17 76.33 70.17 66.93 65.28 39.25 40.40 61.50

Diff(↓) 0.05 0.05 - - - - - - - 0.05

10%

LLM-Pruner
(Ma et al., 2023)

BF16 17.73 32.10 68.72 74.16 64.44 64.09 60.44 36.95 39.00 58.26
FP16 17.79 32.16 68.17 73.94 64.39 63.38 61.03 37.29 38.60 58.11

Diff(↓) 0.07 0.06 - - - - - - - 0.14

MoreauPruner
BF16 17.42 32.22 70.31 74.16 64.60 65.11 61.41 36.35 38.00 58.56
FP16 17.45 32.29 70.29 74.01 64.81 65.24 61.19 36.58 38.00 58.59

Diff(↓) 0.03 0.06 - - - - - - - 0.03

15%

LLM-Pruner
(Ma et al., 2023)

BF16 32.60 61.87 65.78 70.67 54.93 59.75 54.25 32.51 36.40 53.47
FP16 32.10 61.15 66.21 70.46 54.97 59.43 54.92 32.59 36.40 53.57

Diff(↓) 0.51 0.72 - - - - - - - 0.10

MoreauPruner
BF16 31.05 60.43 66.48 70.89 55.33 60.54 54.76 33.02 36.20 53.89
FP16 30.99 60.43 66.06 70.78 55.51 60.93 55.26 32.42 36.00 53.85

Diff(↓) 0.06 0.00 - - - - - - - 0.04

20%

LLM-Pruner
(Ma et al., 2023)

BF16 95.82 202.86 63.84 63.11 41.43 54.22 41.41 28.17 32.00 46.31
FP16 96.57 210.12 62.74 63.11 41.01 55.17 41.04 27.89 31.80 46.11

Diff(↓) 0.75 7.26 - - - - - - - 0.20

MoreauPruner
BF16 91.79 176.24 64.71 64.40 41.78 56.02 40.86 28.92 34.20 47.27
FP16 91.79 174.19 64.63 64.47 41.69 55.93 41.08 29.36 33.94 47.30

Diff(↓) 0.00 2.05 - - - - - - - 0.03

Table 9: Zero-shot performance of the compressed Vicuna-7B.
Pruning Ratio Method WikiText2(↓) PTB(↓) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA QA-Average

Ratio = 0% Vicuna-7B† 16.11 61.39 76.54 77.20 70.70 67.25 65.15 41.30 40.80 62.71

Ratio = 20%
w/o finetune

Magnitude† 3539.98 5882.21 55.90 56.15 32.37 51.85 30.01 28.41 28.20 40.41
Random† 34.63 112.44 61.47 70.89 54.67 56.27 55.60 31.74 34.60 52.18

LLM-Pruner∗(Ma et al., 2023) 25.74 92.87 61.62 74.76 63.76 56.20 63.22 36.69 37.00 56.18
SmoothGrad 25.99 92.87 60.73 74.97 63.75 54.22 64.90 37.03 37.60 56.17

MoreauPruner 25.54 94.34 56.82 75.79 64.73 56.35 65.95 37.88 39.80 56.76
MoreauPruner-GS 30.69 108.16 61.47 75.24 66.56 61.72 57.24 37.12 38.00 56.76

Ratio = 20%
w/ finetune

LLM-Pruner∗(Ma et al., 2023) 19.47 72.33 64.43 76.44 65.39 60.46 63.22 35.92 38.20 57.72
SmoothGrad 19.51 72.05 63.46 75.68 65.38 60.93 62.79 36.43 38.80 57.64

MoreauPruner 19.66 73.47 63.15 76.77 65.96 60.85 65.74 37.12 40.60 58.60
MoreauPruner-GS 19.13 73.76 65.41 76.99 68.17 65.27 66.37 38.23 39.80 60.03

Table 10: Zero-shot performance of the compressed LLaMA3-8B.
Pruning Ratio Method WikiText2(↓) PTB(↓) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA QA-Average

Ratio = 0% LLaMA-8B† 14.14 27.98 81.35 80.79 79.17 72.53 80.09 53.41 45.00 70.33

Ratio = 20%
w/o finetune

LLM-Pruner(Ma et al., 2023) 25.74 45.69 67.55 74.97 63.33 67.80 62.29 35.49 36.60 58.29
MoreauPruner-GS 25.40 43.78 73.73 75.08 64.93 68.03 66.11 39.25 37.60 60.68

Ratio = 20%
w/ finetune

LLM-Pruner(Ma et al., 2023) 23.71 42.01 77.52 77.69 71.75 67.96 71.63 42.24 40.00 64.11
MoreauPruner-GS 22.98 39.25 76.57 78.67 73.17 69.14 74.49 43.77 41.80 65.37

Table 11: The effect of larger recovery set.
Pruning Ratio Method Recovery Set BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA AQ-Average

Ratio = 0% LLaMA-7B† N/A 73.18 78.35 72.99 67.01 67.45 41.38 42.40 63.25

Ratio = 20% MoreauPruner-GS 50k(Taori et al., 2023) 68.87 77.26 69.81 65.04 63.64 38.23 40.60 60.49
MoreauPruner-GS 2.59M(Wu et al., 2023) 76.97 76.82 68.51 66.30 70.88 41.89 40.80 63.17 (+2.68)

Table 12: Comparison between scratch-training and LLaMA-3B obtained by MoreauPruner-GS
Method #Param BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA QA-Average

StableLM-3B† 3.6B 48.78 69.48 44.52 54.62 50.93 25.17 27.40 45.84
MoreauPruner-GS 3.5B 62.26 68.39 49.58 55.72 50.97 30.20 35.40 50.36

E EXPERIMENT DETAILS

E.1 A DETAILED COMPARISON OF METHODS

We list the comparison on the experiment setting utilized in our baselines, which can be found in
Table 13. We should note that the strong competitor LoRAPruning(Zhang et al., 2023) employs an
iteratively pruning style, which allows algorithms gradually remove less important weight during
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Table 13: A detailed comparison between methods.

Method Pruning Criterion Calibration Set (Size) Post-Training Set (Size) Iteratively Pruning Smoothness

Random random N/A N/A ✗ ✗

Magnitude ∥wi∥2 N/A N/A ✗ ✗

WANDA(Sun et al., 2023) ∥w(k)∥1∥xi∥2 C4(0.128k) C4(20k) ✗ ✗

LoRAPrune(Zhang et al., 2023)
∥∥∥(LoRA-guided ∂L(w,D)

∂w(k) )w(k)
∥∥∥
1

C4(20k) C4(20k) ✓ ✗

LLM-Pruner(Ma et al., 2023)
∥∥∥∂L(w,D)

∂w(k) w(k)
∥∥∥
1

Bookcorpus(0.01k) Alpaca(50k) ✗ ✗

SmoothGrad Ez

∥∥∥∂L(w+z,D)
∂w(k) w(k)

∥∥∥
1

Bookcorpus(0.01k) Alpaca(50k) ✗ ✓

MoreauPruner ∥MGρ[g](w)⊙w∥(k)1 Bookcorpus(0.01k) Alpaca(50k) ✗ ✓

MoreauPruner-GS ∥h-MGρ[gσ](w)⊙w∥(k)1 Bookcorpus(0.01k) Alpaca(50k) ✗ ✓

multiple rounds of model pruning and is more time-consuming. Our methods and our primary
baseline LLM-Pruner utilize one-shot pruning for efficiency.

E.2 PARAMETERS CHOOSING

In the pruning stage, we randomly pick a batch from BookCorpus (Zhu et al., 2015) with ten 128-
token truncated sentences. The batch choice remains the same among LLM-Pruner, SmoothGrad,
MoreauPruner, and MoreauPruner-GS in our experiments. Since deep layers and shallow layers are
sensitive to pruning, following previous works (Ma et al., 2023), we only prune the middle layers in
this stage. For example, when we aim to prune 20% parameters from LLaMA-7B, we remove 25%
parameters from layer 4 to layer 30.

For SmoothGrad, we pass the batch to the model 100 times. We utilized a element-wised Gaussian
smoothing, i.e., for weight parameter w(k), the intensity of Gaussian is σ = 0.05∥w(k)∥1. The
smooth gradient is empirically calculated by averaging the inportance scores of each forward pass.

For both MoreauPruner and MoreauPruner-GS, we also apply the element-wise Gaussian smoothing
to the model weights during the optimization of the gradient of the Moreau Envelope, as SmoothGrad
does. The hyper-parameter ρ is set to 0.05 for MoreauPruner and 0.2 for MoreauPruner-GS. The
stepsize γ used in the optimization of the gradient of the Moreau Envelope is 1e-3 for MoreauPruner
and 2e-4 for MoreauPruner-GS. The hyper-parameter η is set to 5e-6 as explained in the main text.
We conducted a parameter search on LLaMA-7B to find suitable hyper-parameters.

In the fine-tuning stage, we use the protocol from previous work (Ma et al., 2023) and employ a
LoRA with rank (r=8). The batch size is 64. The learning rate is 1e-4 for Alpaca (Taori et al., 2023)
and 5e-5 for Lamini (Wu et al., 2023). The training length is two epochs for Alpaca and three epochs
for Lamini.
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F FREQUENTLY ASKED QUESTIONS

In this section, we provide answers to frequently asked questions about our work.

▷ When pruning an existing model, the parameters are fixed. Why is it meaningful to
consider the robustness of pruning criteria against weight perturbation?
Intuitively, the basic goal of pruning is to remove unnecessary weights while retaining
the essential ones. It is reasonable to expect that a pruning algorithm should produce
similar results for a model in BF16 and FP16 formats, as models in these formats generally
yield the same inference results. The unexpected discrepancy between the two pruned
models indicates a bias in the evaluation of weight importance. Therefore, ensuring pruning
consistency under minor perturbations can serve as a guiding principle during the design
phase of pruning criteria. The improvements in the performance of pruned models, as shown
in our numerical results, further support this argument.

▷ There are many structured pruning methods in the literature. Why does MoreauPruner
only compare several of them in this paper?
The main motivation behind MoreauPruner is to draw attention to the robustness of pruning
criteria against weight perturbation. Given that pruning technologies have been extensively
explored over the past thirty years, there is significant variation in experiment settings across
different methods. These include variations in selected models, calibration/recovery sets,
recovery methods, iterative versus one-shot pruning, evaluation metrics/datasets, and more,
making it difficult to identify a universally optimal setting.
Therefore, in our paper, we adopt the setting from a recent, powerful, gradient-based
baseline, LLM-Pruner, and focus on comparing our method with several competitors that
utilize similar experimental setups to ensure a clear comparison. The numerical results and
conclusions presented in the main text support our motivations under the selected settings.
Our theoretical analysis holds across settings that satisfy our assumption.

▷ Quantization technologies, another widely-used model compression method, can
achieve high compression ratios (≥ 50%) without significant performance drops. Why
do we still need pruning methods like MoreauPruner, which typically maintain perfor-
mance only at lower pruning ratios?
Pruning and Quantization, as two mainstream model compression methods, are developed
for different purposes and each has its own advantages and disadvantages. In practical
applications, the choice of compression method should consider several factors. For example,
mainstream hardware does not support arbitrary data formats. In cases where an 8-bit model
needs to be compressed by approximately 12.5%, pruning would often be a better choice
than attempting to quantize the model to 7 bits. Each method serves specific needs, and
pruning remains a viable option when fine control over compression is required.
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