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ABSTRACT

In the existing model pruning literature, the weight gradient has been extensively
utilized to measure the importance of weight, where the gradient is well-known to
be sensitive to perturbations. On the other hand, the widely used large language
models (LLMs) have several billion model parameters, which could increase the
fragility of few-shot gradient pruning. In this work, we experimentally show that
one-shot gradient pruning algorithms could lead to unstable results under perturba-
tions to model weights. Even the minor error of switching between data formats
bfloat16 and float16 could result in obviously different outcomes. To address such
instabilities, we leverage optimization analysis and propose an LLM structural
pruning method, called MoreauPruner, with provable robustness against weight
perturbations. In MoreauPruner, the model weight importance is estimated based
on the neural network’s Moreau envelope, which can be flexibly combined with
{1-norm regularization techniques to induce the sparsity required in the pruning
task. We extensively evaluate the MoreauPruner algorithm on several well-known
LLMs, including LLaMA-7B, LLaMA-13B, LLaMA3-8B, and Vicuna-7B. Our nu-
merical results suggest the robustness of MoreauPruner against weight perturbation
and how robust importance estimation in MoreauPruner contributes to successful
accuracy-based scores compared to several existing pruning methods.

1 INTRODUCTION

In the rapidly evolving field of Natural Language Processing (NLP), transformer-based Large Lan-
guage Models such as GPTs (Dettmers et al.,[2022) and LLaMAs (Touvron et al.| 2023 |Al@Metal
2024) have become foundational technologies, driving significant advances across various tasks.
These models excel in understanding and generating human language due to their scalable archi-
tecture, which allows performance to improve with an increase in parameters. However, deploying
these large models poses significant challenges due to their substantial computational and memory
demands. To address these challenges, considerable research has been directed toward model pruning
(Han et al.| 2015} Wen et al., 2016; Ma et al.,[2023;Zhang et al.,2023), a technique aimed at reducing
model size while maintaining or enhancing model performance.

While effective in accelerating LLMs for efficient deployment, existing pruning methods generally
focus on fixed pre-trained models, neglecting potential perturbations in the weights and their effect
on pruning outcomes. These perturbations can originate from various sources, including quantization
errors during transitions between precision levels, errors introduced by post-training operation
merging(DeepSeek-Al 2024), position embedding extension(Su et al., 2024) when the attention
window is enlarged and so on. With minor changes mentioned above, the modified models usually
produce similar outputs compared with unmodified models. Therefore, when there is a need to prune
those slightly modified models, we may expect that the pruned modified models are similar to the
pruned original models. For example, some popular LLMs (Touvron et al.;|2023) are trained with the
weight format bfloat16 (BF16) and deployed with the weight format float16 (FP16). As both BF16
and FP16 utilize 16-bit to represent a floating point, the negligible transition error will not affect
inference results in most cases. Considering that the basic idea of pruning is removing unnecessary
weights and keeping the essential weights, it is straightforward to believe that the models pruned from
BF16 and FP16 will be close to each other. However, current gradient-dependent pruning methods
(Ma et al.} 2023; Zhang et al., 2023} |[LeCun et al.,|1989; Hassibi & Storkl [ 1992)) utilize gradient to
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Figure 1: While gradient-based pruning methods are sensitive to weight perturbation, the proposed
MoreauPruner gives a robust estimation of weight importance.

indicate the importance of weight elements while gradient is known to be sensitive to such weight
perturbations, leading to significant variations in pruning outcomes, as depicted in Figure[I} Such
inconsistency in pruned outcomes could be anti-intuitive, and a robust weight importance estimation
against weight perturbation is intuitively beneficial to enhance the performance of pruning algorithms.

This paper introduces MoreauPruner, a novel robust structural pruning algorithm for LLMs, designed
to mitigate the effects of weight perturbations while preserving model performance. MoreauPruner
utilizes the gradient of the loss function’s Moreau envelope (Moreaul, [1965; Zhang & Farnia, 2023},
T Dinh et al.,|2020), a well-established optimization tool for function smoothing, to reduce weight
sensitivity to perturbations during the pruning process. We show that the gradient of the Moreau
envelope remains stable within the neighborhood of given weight in parameter space. This stability
enables MoreauPruner to generate robustness pruning result against weight perturbations, with any
norm-bounded perturbation resulting in only a bounded change of the Moreau gradient. Additionally,
by incorporating an ¢ -group-norm-based regularization penalty, MoreauPruner promotes group-level
sparsity in the gradient, which is suitable for structural pruning to facilitate real-life acceleration
on hardware platforms. Our empirical results suggest that MoreauPruner improves the robustness
of pruning outcomes against weight perturbations and achieves state-of-the-art post-pruning model
performance among baseline LLM pruning methods.

Our contributions through this work are threefold:

» We emphasize the importance of consistent pruning criteria against minor weight perturbations, an
aspect previously neglected in the literature. This work is among the first to tackle the robustness
of pruning algorithms to such perturbations.

* We introduce MoreauPruner, a structural pruning algorithm that offers provable robustness to
weight perturbations, leveraging the Moreau envelope to ensure the smoothness and stability of the
pruning process.

* Through extensive experimentation with widely-used large language models such as LLaMA-
7B, LLaMA-13B, LLaMA3-8B, and Vicuna-7B, we demonstrate that MoreauPruner achieves a
state-of-the-art performance in both robustness to weight perturbation and overall performance of
compressed models.

2 RELATED WORK

2.1 EFFICIENT LARGE LANGUAGE MODELS

Large Language Models (LLMs) (Touvron et al., 2023}, |Achiam et al., 2023} |Chiang et al., 2023},
Al@Metal 2024) have achieved remarkable performance by following the scaling laws (Kaplan
et al.,[2020). However, deploying LLMs can be challenging due to high inference costs in resource-
limited scenarios. Various methods have been proposed to reduce model size, including knowledge
distillation (Hinton et al.} 2015} |Sanh et al., 2019} Sun et al.| 2019;[2020), which involves transferring
the knowledge from the original model to a smaller one; model quantization (Dettmers et al., 2022;
Xiao et al., [2023} [Yao et al.| [2022; [Zafrir et al., 2019), which reduces the bit length of the model
weights; and model pruning (Han et al.| 2015} [Frankle & Carbinl 2018} [Fang et al., [2023]; |Park et al.}
2023), which involves removing non-essential weights to speed up inference. This work primarily
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focuses on pruning LLMs (Xia et al., [2023} [Ma et al., 2023 Bair et al.| 2024; Xu & Zhang, [2024;
Ashkboos et al.|, 2024} [Zhang et al.|, 2024} Yin et al.} 2023 J1 et al.| 2023} van der Ouderaa et al.
2023} Dong et al.| |2024), where gradients are particularly sensitive to weight perturbations due to the
large scale of the model.

2.2 PRUNING CRITERIA

To determine which weights to prune during the pruning phase, the importance of each weight is
assessed using various criteria. Several studies (Sun et al., 2023} |Li et al., 2018} |Han et al., 2015}
Elesedy et al., 2020) adopt a magnitude-based criterion, retaining weights with larger magnitudes
post-pruning. Recent approaches (Sun et al., |2023)) also consider activation values to evaluate
weight importance. Some prevalent criteria are based on Taylor Expansion approximation (LeCun
et al.,|1989; Ma et al., 2023} |Yu et al., [2022; |Hassibi et al.|, |[1993; |Hassibi & Storkl, [1992)), utilizing
differential information (zero-th, first, and second order) to estimate output changes if weights
are removed. Notably, (Zhang et al., 2023) highlights that, in LLMs, gradients can be efficiently
approximated using low-rank methods (Hu et al.,|2021)) when the direct computation of the gradient
is too costly. Nevertheless, gradients can be highly sensitive to weight modifications, rendering
gradient-based pruning criteria susceptible to variations in weight. In response, MoreauPruner offers
proven robustness against any norm-bounded weight perturbation, maintaining model performance.

3 PRELIMINARIES

In this section, we provide a review of prior Taylor-expansion-based structural pruning methods,
along with the notation and definitions used in the paper.

3.1 NOTATION AND DEFINITIONS

Let D = {x;}]¥, denotes a text dataset with N samples. f(w, ) is the next token prediction loss on
sample x with a parameterized language model and its weight w € R<. Then the expectation of loss
on dataset D is

1 N
D)=+ > fw, ;). (1)
=1

The ¢,-norm of an input vector v is represented as ||v||,. Furthermore, we use notation ||v||, 4
to denote the £, ,-group-norm of v defined in the following equation for given variable subsets
S1,...,5: C {1, ceey d}

||V|p7q = H[HV&”pv---vHVSth]qu (2)

which means ||v||, q is the {,-norm of a vector containing the ¢,-norms of the subvectors of v
characterized by index subsets S1, ..., Sy C {1,...,d}.

3.2 ESTIMATING IMPORTANCE SCORE VIA TAYLOR EXPANSION

Recent pruning methods usually estimate the impact of removing the k-th element of parameter
vector w via Taylor Expansion,

I(w®)) = ||L(w D) — L(w™ =0,D)||,
8'w(k) 1

In the above equations, L w(k = 0, D) denotes masking out a single weight element w®) in the
neural network. Hessian matrlx H is approximated by a diagonal one and Hy, is the k-th element

on the diagonal. In some of previous pruning methods, the first-term is typically neglected since
the the model is well-trained and converged on the training dataset, where agivu(’,;)b) ~ 0. However,
a recent LLM pruning work(Ma et al., 2023) point out the calibration dataset used in pruning is

out of the training data and BL( ol k) ;é 0. Given that the heavy computational cost of the Hessian

1
— Sw O Hw® + 0w )

matrix is unacceptable for LLMs, unlike small models, the importance score of parameter w'*) can

be approximated using the first term in the Taylor Expansion,
OL(w,D

I(w(k)) — ‘(w’)w(k) 3)

Ow(k)

1
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Unstructured pruning algorithms directly remove weight elements with lower importance score.
Contrast to them, to achieve real-time acceleration on hardware, structural pruning algorithms remove
weight elements in group, i.e., all elements in a channel, blocks or heads. The importance score of
the weight vector in a structure I(w;) can be easy obtained by summarizing the importance of its
(k)

),

)

elements I (w

I(w;) =Y I(w). )
k

Once the importance score of each structure (w;) is obtained, existing pruning algorithms tend
to pruning structures with smaller importance scores. However, as we mentioned in Section ] the
simple gradient in Equation (3) is sensitive to weight perturbations, which further leads to an unstable
pruning result. Motivated by this fact, we have designed a robust pruning criterion in MoreauPruner
and detailed it in the next section. By substituting the simple gradient-based importance score in
Equation (3) with this new criterion, we demonstrate that the pruning algorithm becomes more robust
to weight perturbations and yields improved post-pruning performance.

3.3 DEPENDENCY-AWARE STRUCTURAL PRUNING

Previous works(Fang et al.,|2023; Ma et al., [2023)) suggest that structural pruning should consider
dependency among structures. Here, a weight group G = {w; } M, represents a collection of coupled
structures, where M is the number of structures in one group, and w; denotes the weight for each
structure. The group can be effiently detected by |[Fang et al.|(2023). And the importance score of the
group @ is then estimated as follows:

M
1(G) = Agg I(wi), ®)

where Agg is a customized aggregation function chosen from options like Summation, Production,
Max, etc. After assessing the importance of each group, groups with lower importance are pruned
to achieve a pre-determined pruning ratio. We adopt the pruning strategy in our MoreauPruner and
choose Summation in Equation @), following Ma et al.| (2023)).

4 MOREAUPRUNER

In this section, we introduce the proposed pruning method, MoreauPruner. We start by detailing
the proposed perturbation-robust pruning criteria. In the second subsection, we introduce the two
versions of MoreauPruner.

4.1 ROBUSTIFYING GRADIENT VIA MOREAU ENVELOPE

Here we leverage the notion of Moreau envelope from the convex optimization literature to propose
an optimization-based approach to robust gradient-based pruning. The considered robust gradient
follows Moreau-Yosida regularization, based on which the Moreau envelope of a neural network’s
parameters is defined as follows.

Definition 1. Consider function g : R* — R and regularization parameter p > 0. The Moreau
envelope of g at input weight w, g° : R — R is defined to be

. - 1, .
g°(w) = 1gfg(w)+%||w—'w||§. 6)

Following [Zhang & Farnial (2023)), instead of utilizing the simple gradient as previous pruning
methods do, we employ the gradient of the Moreau envelope as a robust evaluation of the local
sensitivity of the loss function sensitivity to altering the model weights,

Definition 2. Given the input weight w and regularization parameter p > 0, we define MoreauGrad
as the Moreau envelope g°’s gradient MG”[g] : R — R<:

MG’ [g](w) := Vg’ (w). O

To analyze the gradient of Moreau envelope, we first discuss the optimization-based smoothing
enforced by the Moreau envelope. Note that the Moreau envelope is known as an optimization tool to
turn non-smooth convex functions (e.g. ¢1-norm) into smooth functions, where the smoothness is
usually regarding the input variable x. Here in the pruning case, we discuss the smoothness regarding
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the function parameters w and extend the result to the weakly-convex functions which also apply to
non-convex functions.

Theorem 1. Suppose that the parameterized function g(w) : RY — R is B-Lipschitz, i.e. it
satisfies |g(w) — g(v)| < Bllw — v||2 for every v,w € R Consider the Gaussian-smoothed
9o (W) = Eyn(0,021) [g(w + u)] Then, for every 0 < p < 3, the following robusmess guarantee
will hold of the Moreau envelope of the Gaussian-smoothed g° (w):

IMG[go](w1) = MGP[go](w2)[]2 <

ollwy — wsll
min{op,o — pf}’

We defer the proof of the above theorem into appendices due to the space limitation.

Theorem|T]indicates that the change of gradient of Moreau Envelope will be bounded by the change
of weights, denoting the robustness property of MoreauGrad MG”[g,](w). We note that the above
definition can be combined with sparsity-based norm penalties, such as ¢;-norm || - ||; or {2 1-group
norm || - [|2,1. Here, we generalize [Zhang & Farnia| (2023)’s definition of (group)sparse-Moreau
envelop. Given a convex function h : R? — R, we propose the following definition of h-Moreau
envelope:
Definition 3. Given convex function h, input weight w, and regularization parameter p > 0, we
define h-MoreauGrad of function g, denoted by h-MG”[g](w), as %(V*(W) — w) where v*(w)
denotes the optimal solution to the following optimization problem:
1

‘I;IEl%}i g(v)—i-%Hv—WH;—ﬁ-h(v—w). (8)
Here, we extend the robustness guarantee of Theorem|[I]to a general h-MoreauGrad.
Theorem 2. Consider the setting of Theorem|I|and suppose h is a convex function. Then, for every
0<p< % the following robusmess guarantee will hold of the h-Moreau envelope of g2 (w):

ollwy — woll

min{op,o — pB}’

[h-MG”[g5](w1) — h-MG”[g](w2)ll, <

We defer the proof of the above theorem into appendices due to the space limitation.

Similar to Theorem 1} Theorem [2] shows the robustness of h-MoreauGrad h-MG” [g,](w) for a given
convex function h. In our numerical analysis, we specifically focus on GroupSparse-MoreauGrad
which is the h-MoreauGrad with the group-norm h(v) = n||v||2,1. 7 is the sparsity parameter.

Algorithm 1 MoreauPruner Algorithm

Require: samples x, network with parameter f(w), regularization parameter p, group-sparsity 7,
noise std o, stepsize -y, and optimization length 7.

1: Initialize w(® = w;

2: fort=0,...,Tdo

3:  Draw noise vectors 21, . . ., 2, ~ N(0, O'QIdxd);

4. Compute g; = L 3" Vf(w® + 2, x);

5. Update w1 « (1 — %)’w(t) — (gt — %w);

6:  if GroupSparse then

7: Update w1 « GST,,, (w*V) — w) + w;

8: endif

9: end for
10: Compute importance score I (w) = H%(w(T) - w)w‘ X

11: Prune network f(w) according to I(w);
12: Finetune pruned network w/ LoRA;
13: Return finetuned network;

4.2 LEVERAGING MOREAUGRAD FOR ROBUST PRUNING

MoreauPruner. With the defined MoreauGrad MG”[g](w), we established a robust estimation on
the influence of removing a weight element w*) based on Equation ,

MG-I(w™®) = [MG[g](w) © w]{", ©
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where g(w) is the exception of loss function L(w, D) defined in Equation (1), and ® denotes
Hadamard product.

We should note that the difference w};(w) — w is aligned with ¢g”’s gradient (Moreau, 1965} Zhang
& Farnial [2023)),
1 ~ %

Vg’ (w) = —;(wp(w) —w), (10)
where the optimal solution w;(w) of the optimization problem in Equation (E]) can be obtained
over a calibration dataset with the first-order gradient descent optimization method. By combining
Equations (7)) and (I0), Equation (9) can be computed. Since Equation (9) is a robust version of
Equation (3)), the robust importance score of the structure w; and group G can also be estimated by
aggregating the importance score of each element with Equation (@) and Equation (5). We denote the
structural pruning method removing groups with smaller robust importance score as MoreauPruner.

MoreauPruner-GS. Similar to MoreauPruner, the group-sparse robust estimation on the influence of
removing parameter w () is,

h-MGP-I(w®) = | h-MG?[g, ] (w) ® w]| (11)
where the group sparsity is conducted at the channel level in our implementation, i.e., each variable
subset in the 2, 1-group-norm is a channel in the model. To compute the GroupSparse-MoreauGrad
h-MG”[g,](w), we utilize the proximal gradient descent algorithm as described in Algorithm
Note that we apply the group-soft-thresholding function as the proximal operator for the /5 ;-norm
function present in GroupSparse-MoreauGrad,

0 lf||'US1||2 Sa
GSTa(v)s, i= {(1 - i) s iflos,

Once the optimization of h-Moreau envelope ends, the GroupSparse-MoreauGrad h-MG”[g,|(w)
can be calculated according to Definition[3] We treat the method as MoreauPruner-GS to mark the
group sparsity of importance score obtained during optimization.

2 > Q.

After the pruning phase, a post-training with LoRA(Hu et al.||2021)) is applied to the pruned model to
recover model performance, as suggested by previous works.

5 NUMERICAL RESULTS

In this section, we conducted experiments on several famous LLMs to evaluate the proposed More-
auPruner’s performance and support our theoretical claim. We also provided further insights in the
discussion subsection on how and why MoreauPruner works well.

5.1 EXPERIMENTAL SETTINGS

Pre-trained Models. To demonstrate the versatility of MoreauPruner across different scales, we
evaluate it on four open-source large language models: LLaMA-7B(Touvron et al.}[2023)), LLaMA-
13B(Touvron et al., [2023)), Vicuna-7B(Chiang et al., 2023) and LLaMA3-8B(Al@Meta, |[2024).

Evaluation. Building on prior research (Zhang et al.l 2023; Ma et al., [2023} |Sun et al., [2023)), we
assess our method using seven zero-shot classification tasks on datasets centered around common
sense reasoning: BoolQ (Clark et al.|[2019), PIQA (Bisk et al.}|2020), HellaSwag (Zellers et al.|[2019),
WinoGrande (Sakaguchi et al.| |2021)), ARC-easy (Clark et al.||2018]), ARC-challenge (Clark et al.,
2018)), and OpenbookQA (Mihaylov et al.,|2018)). Consistent with (Gao et al., [2023)), the model ranks
options in multiple-choice tasks or generates answers for open-ended questions. Furthermore, we
perform a zero-shot perplexity (PPL) analysis on WikiText2 (Merity et al.|[2016) and PTB (Marcus
et al.,|1993) with 128-token segments, aligning our methodology with that of [Zhang et al.| (2023)); |Ma
et al.[(2023)).

Implementation Details. In pruning phase, to align with the protocols of the closely related gradient-
based method (Ma et al., 2023)), our model pruning utilizes a calibration set of ten randomly selected,
128-token truncated sentences from the Bookcorpus (Zhu et al.,2015)). The gradient of the Moreau
envelope is computed using this calibration set, with the optimization step length fixed at ten. The
pruning process typically completes in approximately 30 minutes on CPUs. In the post-training phase,
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Table 1: Algorithms’ robustness against weight perturbation. Diff denotes the absolute difference
between weight formats, bfloat16 and float16. Rounding results in changes to the last digit.

(a) 0-shot PPL on WikiText2 (b) 0-shot PPL on PTB
. Pruning Ratio Pruning Ratio
Method Format 5% 10% 15% 20% Method Format 50 10% 15%  20%
BF16 | 13.80 17.73 32.60 95.82 BF16 |25.00 32.10 61.87 202.86
(ﬁ;gjmz‘}fzr% FPI16 |13.75 17.79 3210 96.57 (N%gf;;f“z“oezr}, FPI6 |24.85 32.16 61.15 210.12
A====11 piff() | 0.05 0.07 051 0.75 Y| Diff(}) | 0.15 0.06 072 7.26
BF16 | 13.89 17.42 31.05 91.79 BF16 |25.00 32.22 6043 176.24
MoreauPruner FP16 | 13.83 17.45 30.99 91.79 MoreauPruner | FP16 |24.95 3229 60.43 174.19
Diff(}) | 0.05 0.03 0.06 0.00 Diff(}) | 0.05 0.06 0.00 2.05

we finetune the pruned model with a LoRA(Hu et al., 2021)). A refined version of the Alpaca(Taori
et al.| |2023) dataset comprising about 50,000 samples is employed, with training extending over
two epochs and generally taking three hours on a single NVIDIA RTX 3090 Ti GPU for 7B models.
Detailed hyper-parameter selections are available in the appendices.

Structural Pruning Baselines. We compare MoreauPruner against two fundamental pruning
techniques: Magnitude and Random. Magnitude pruning evaluates weight significance based on
the magnitude of the weight matrix, whereas Random pruning indiscriminately removes weights.
Additionally, we benchmark against three advanced alternatives: LLM-Pruner (Ma et al., 2023),
which uses a gradient-based metric to determine weight importance; LoraPrune (Zhang et al.| 2023),
which utilizes a LoORA(Hu et al., |2021)-guided pruning criterion; and WANDA (Sun et al., [2023)),
designed for unstructured or semi-structured pruning but adaptable to other structural frameworks.

We also introduce SmoothGrad, a preliminary version of MoreauPruner that enhances network
smoothness by applying Gaussian smoothing during the inference, as we explained in Theorem I}
The importance scores are estimated with the smoothed gradient using Equation (3), and the we
still remove those parameter groups with lower importance scores. A thorough comparison of these
methods is documented in appendices.

5.2 ROBUSTNESS AGAINST WEIGHT PERTURBATION

As we previously discussed, few-shot gradient-based pruning methods are significantly influenced by
the changes of the gradient. Even minor differences on model weight can lead to markedly different
pruning outcomes. In contrast, MoreauGrad is theoretically robust against norm-bounded weight
perturbation. To validate this assertion, we adhered to the channel-wise pruning protocol established
in prior research (Ma et al.|, |2023)), removing a fixed ratio of channels based on their importance score.

When utilizing 16 bits to store a float number, BF16 has larger range while FP16 has better precision.
Considering that some LLMs are trained on BF16 and inferred on FP16, our experiments were
conducted on the LLaMA-7B model using both BF16 and FP16 weight bit formats. We standardized
the calibration sample selection during pruning across different settings to ensure a fair comparison.
Upon completing the pruning process, we performed a zero-shot perplexity (PPL) analysis using
128-token segments on the WikiText2 and PTB datasets and compared the discrepancies between
FP16 and BF16. The findings are presented in Table[I] Due to the space limitation, we put the full
evaluation results on zero-shot question-answering in appendices.

The results indicate that, for MoreauPruner, the performance under different weight format is closer
to each other, which indicates a better consistency of pruning outcomes. The result demonstrates the
robustness of MoreauPruner against weight perturbations caused by different weight formats.

5.3 COMPARISON ON CHANNEL IMPORTANCE ESTIMATION

As detailed in previous sections (Section[3.2]and Section[d.2)), both MoreauPruner and certain existing
structured pruning algorithms assign an importance score to each channel within a given layer.
Channels deemed less important are more likely to be pruned. To better understand the functionality
of MoreauPruner, we conducted a detailed comparison of channel importance estimation.

Within each weight structure (e.g., a layer) of the model, all channels are ranked according to the
importance scores assigned by different pruning algorithms. A higher ranking indicates a more
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Figure 2: The channel ranking in up projector module of LLaMA-7B Figure 3: Only prun-
given by our method and baseline algorithm. A large ranking denotes a ing weight in a single
more important channel. layer.

important channel. We compared the channel rankings generated by our main competitor, LLM-
Pruner (Ma et al.}2023)), and MoreauPruner. The ranking pairs are plotted in a figure to illustrate the
(in)consistency between the two methods. Some examples from up projector module from different
layers of LLaMA-7B are shown in Figure[2] The ranking relationship indicates that the significant
disagreement between MoreauPruner and gradient-based baseline occurs on shallow layers (closer
to input), where the gradient is known as fragile due to the accumulation during the long backward
propagation process.

We conducted an experiment in Figure [3]to investigate the effect of the disagreement. For each time,
we remove the weight selected by algorithms in a single layer and test the zero-shot perplexity on
both datasets. The significant performance gap occurs on shallow layers between MoreauPruner and
gradient-based baseline, which shows the effectiveness of our method in distinguishing essential
weights. Extended examples and detailed analyses can be found in the Appendices.

5.4 ZERO-SHOT PERFORMANCE

We have developed two variants of our method, named MoreauPruner and MoreauPruner-GS,
according to whether the sparsity penalty is applied. These techniques were tested on four pretrained
models: LLaMA-7B, Vicuna-7B, LLaMA-13B and LLaMA3-8B, with their performance detailed
in Tables 2]to[5]and we also provide full evaluation results in appendices. We should note that the
pruning setting in the literature varies among different works. We keep the same experiment setting
with our primary baseline LLM-Pruner for a fair comparison. LoORAPrune and WANDA (marked as
1) do not share the same protocols with our main experiments as we detailed in appendices; we list
the results here for reference.

The evaluations indicate that MoreauPruner can effectively maintain the model performance. For
example, for the largest model LLaMA-13B, We have noticed that the performance gap between
the compressed and original models is closer than that of the 7B models. After a quick recovery,
the zero-shot accuracy of the compressed with 80% parameters is nearly equivalent to the original
model’s performance (64.94% vs. 64.97%). Such a phenomenon may indicate more redundant
weights in the larger models. In other words, those huge LLMs (>13B) can be potentially inferred
with less trade-off on performance. On other models, we have observed that with a 20% reduction in
parameters on LLaMA-7B, MoreauPruner and MoreauPruner-GS maintains 95.48% and 95.64% of
the original performance with a quick post-training. On Vicuna-7B, MoreauPruner-GS maintains
96.16% of the original performance. An interesting fact is that on Vicuna-7B and LLaMA-13B,
MoreauPruner-GS surpassed MoreauPruner by a notable margin, thanks to the structural sparsity
introduced during optimization.
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Table 2: Zero-shot performance of the compressed LLaMA-13B. * is implemented according to
open-source code. The best results is bold. The methods proposed in this paper are filled with

Pruning Ratio | Method | WikiText2(]) PTB(}) | BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA | QA-Average
Ratio = 0% | LLaMA-13Bf | 1158 44.54 | 6847 7889  76.24 70.09 7458 4454 4200 | 6497
LLM-Pruner*(Ma et al.| 2023} 16.43 59.96 | 63.00 7753 7379 64.33 69.07 4096  40.60 61.33
Ratio = 20% SmoothGrad 16.55 59.96 | 6294 77.04 7378 65.98 6835 4053 41.40 6143
wlo finetune MoreauPruner 16.95 6139 | 6248 77.64 7361 66.38 6747 39.68  40.60 61.12
MoreauPruner-GS 17.11 6139 | 7297 7153 7444 64.09 66.08 4044  41.40 62.42
LLM-Pruner*(Ma et al.| 2023} 15.04 57.00 | 67.28 79.00  75.13 69.06 71.68 4189  43.60 63.95
Ratio = 20% SmoothGrad 15.01 56.55 | 66.39 79.05 7495 69.46 7117 4275 4340 63.88
w/ finetune MoreauPruner 15.52 5744 | 6486 7922  75.07 70.48 71.68  43.60 42.80 63.96
MoreauPruner-GS 15.28 57.67 | 75.17 7824 7477 68.19 7012 43.09  45.00 64.94

Table 3: Zero-shot performance of the Pruned LLaMA-7B. T denotes results from Ma et al.[(2023))
and ¥ denotes results from Zhang et al. (2023).

Pruning Ratio | Method | WikiText2(}) PTB(}) | BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA | QA-Average
Ratio =0% | LLaMA-7B} | 1262 22.14 | 73.18 7835  72.99 67.01 6745 4138 4240 | 6325
Magnitude’ 582.41 1022.17] 59.66 58.00  37.04 52.41 3312 2858 29.80 42.65
Random! 27.51 43.19 | 61.83 7133 56.26 54.46 57.07 3285 35.00 52.69
) WANDA*(Sun et al.|2023) 22.12 38.19 | 6493 70.14  58.12 55.39 56.63 3398 3543 53.23
Ratio =20% | LLM-Pruner”(Ma et al.|[2023) 19.09 3423 | 5691 7508  66.81 60.06 60.94 3643 40.00 56.60
wlo finetune | 1 oR APrune*(Zhang et al.J[2023} 20.67 34.12 | 5798 7511 6581 59.90 62.14 3459 3998 56.50
SmoothGrad 18.91 3430 | 59.60 75.14 6598 61.01 60.77 37.12  39.80 57.06
MoreauPruner 18.61 3292 | 5544 7617 66.47 63.61 61.53  37.80 40.60 57.37
MoreauPruner-GS 18.72 3491 | 62.51 7552 6829 62.75 54.88 3635 40.80 57.30
WANDA*(Sun et al.|2023) 18.43 33.16 | 6575 7470 6452 59.35 60.65 3626 39.40 57.23
LLM-Pruner*(Ma et al.|[2023) 17.62 30.57 | 6578 7644  68.67 64.33 63.26 3635 41.00 59.40
Ratio =20% | LoRAPrune!(Zhang et al.]2023} 16.80 2875 | 65.62 7931  70.00 62.76 65.87 37.69 39.14 60.05
w/ finetune SmoothGrad 17.45 30.57 | 6648 7699  68.64 65.35 63.68 37.80 41.00 59.99
MoreauPruner 17.01 3027 | 66.61 77.04 6832 65.59 65.57 3840 4120 60.39
MoreauPruner-GS 16.65 30.69 | 68.87 7726  69.81 65.04 63.64 3823 40.60 60.49
Table 4: Zero-shot performance of the com- Table 5: Results on LLaMA3-8B.
PI'CASSGd \él.cuna-7B. Full results can be found Pruning Ratio | Method | WikiText2(|) PTB(]) | QA-Average
1n Appendices. Ratio=0% | LLaMA-8BT | 1414 2798 | 7033
Pruning Ratio ‘ Method ‘ WikiText2(}) PTB(]) ‘ QA-Average Ratio = 20% LLM-Pruner 25.74 45.69 58.29
- - w/o finetune | MoreauPruner-GS 25.40 43.78 60.68
Ratio=0% | Vicuna-7Bf |  16.11 6139 | 6271
- T Ratio = 20% LLM-Pruner 23.71 42.01 64.11
Magnitude 3539.98 588221 4041 w/ finetune | MoreauPruner-GS 22.98 39.25 65.37
Random' 34.63 112.44 52.18
Ratio =20% | LLM-Pruner® 25.74 92.87 56.18 .
wio finetune | SmoothGrad 25.99 92.87 5617 Table 6: Larger recovery set boosts performance.
MoreauPruner 25.54 94.34 56.76
MoreauPruner-GS 30.69 108.16 56.76 Pruning Ratio | Method | Recovery Set | QA-Average
LLM-Pruner* 19.47 72.33 57.72 Ratio = 0% ‘ LLaMA-7B ‘ N/A ‘ 63.25
Ratio = 20% SmoothGrad 19.51 72.05 57.64 -
w/ finetune MoreauPruner 19.66 73.47 58.60 Ratio =20% | MoreauPruner-GS |  Alpaca(50k) 60.49
MoreauPruner-GS 19.13 73.76 60.03 w/ finetune | MoreauPruner-GS | LaMini(2.59M) | 63.17 (+2.68)

According the the results on strongest foundational model LLaMA3-8B that is pre-trained with more
high-quality data compared with previous version. MoreauPruner-GS still works well without any
hyper-parameter modification. We have noticed that the performance of pruned LLaMA3-8B drops
more than that of LLaMA-7B. This may lead by the fact that the pretraining of LLaMA3-8B is more
sufficient according to official report and there is less redundant model weight. However, the pruned
LLaMA3-8B still beats the original LLaMA-7B by a noticeable margin (63.25% vs. 65.37%).

5.5 FURTHER DISCUSSION

In this subsection, we extended our experiment to identify how MoreauPruner works. We also
discussed that with more computational resource, how can MoreauPruner be further improved.

Effect of Function Smoothing. In our preliminary evaluations, we introduced SmoothGrad to assess
the impact of function smoothing. This approach often matches or exceeds the performance of
gradient-based competitors. Notably, on the benchmark model LLaMA-7B, SmoothGrad outper-
formed all baseline methods prior to finetuning. These findings suggest that gradient-based pruning
methods could benefit from function smoothing, as it helps mitigate the excessive sharpness of certain
parameters within the differential space.
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Table 7: The performance of the MoreauPruner-GS on
LLaMA-7B with different calibration set size. We repeat
three times and report the mean and variance for each

o
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0-shot Accurancy
n
&

0-shot Accurancy
Y
3

Settlng. 501 — LLM-Pruner
Ours MoreauPruner-GS
Pruning Ratio | Calibration | WikiText2(]) PTB(]) QA-Average b o5 5
Ratio = 20% 10 18.724£0.29  34.91+£0.85 57.30+0.53 pruning ratio "
w/o finetune 1000 18.50+0.10  32.16+0.19  58.12+0.31 (a) (b)
Ratio = 20% 10 16.65+0.16  30.69+£0.21 60.49+026 1o . .
w/ finetune 1000 ‘ 1695:0.09 30212023 6063012 Figure 41 The effect of different (a)

pruning ratio; (b) hyper-paramter 7.

Larger Recovery Set. In the main experiments, the recovery phase was conducted on Alpaca(Taori
et al.| 2023), utilizing a dataset of 50k samples. To demonstrate the potential enhancement achieved
by the pruned model, we carried out an experiment on a significantly larger dataset, LaMini(Wu
et all [2023), consisting of 2.59 million samples. The findings, presented in Table[6] reveal that the
performance of the compressed model closely approximates that of the base model (63.17% v.s.
63.25%), respectively. These results further substantiate the hypothesis of the presence of redundant
weights in LLMs.

Larger Calibration Set & Randomness Analyses. To be strictly aligned with our primary baseline
and have a fair comparison, we utilize only ten randomly picked samples as the calibration set to
judge the importance score of weight. Unavoidably, the small calibration set introduces randomness
to model performance. To further evaluate our method, we enlarge the size of the calibration set
utilized during the pruning phase. We found that a larger calibration set can efficiently improve
pruning quality and reduce randomness in performance as shown in Table[/| Estimating gradient
importance on 1000 samples raises the average zero-shot accuracy from 57.30% to 58.12% and
decreases PPL by 0.22 and 2.75 on WikiText2 and PTB. However, the difference in post-finetuning
performance is shrinking, resulting in only a 0.14% difference in average accuracy.

Effect of Pruning Ratio. We explored the influence of varying pruning ratios as illustrated in
Figure da] It is evident that our methods consistently work well across different pruning ratios. This
stability underscores the robustness and effectiveness of our pruning strategies.

Impact of Hyper-parameters. The hyper-parameter n controls the ratio of group-sparsity of
MoreauPruner-GS during optimization. We conduct an ablation study on LLaMA-7B with 20%
sparsity to evaluate the impact of different hyper-parameter values 7. The results illustrated in
Figure [4b] give the average 0-shot accuracy after finetuning. According to the results, we choose
n=>5e-6 for all the experiments in this paper.

6 CONCLUSION

In this paper, we discussed how minor changes in model weights can lead to unstable pruning results
for large language models (LLMs). To address this instability, we introduced MoreauPruner, a weight-
perturbation structural pruning method. Our theoretical analysis demonstrates that MoreauPruner
is robust to norm-bounded perturbations. Numerical experiments conducted on well-known LLMs
suggest that MoreauPruner can efficiently compress LLMs while maintaining their performance. For
future work, we propose combining structural pruning technology with other model compression
methods to accelerate model inference and reduce computational costs.

Limitations. The authors acknowledge that the number of parameters utilized in the models for
this paper only reach 13B due to limited hardware budget. The performance of MoreauPruner on
extremely large-scale models (e.g., 30B, 70B, etc.) will be further explored once enough hardware
resources are available.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.

10



Under review as a conference paper at ICLR 2025

arXiv preprint arXiv:2303.08774, 2023.

Al@Meta. Llama 3 model card. 2024. URL https://github.com/meta-1lama/llama3/
blob/main/MODEL_CARD .md.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. In ICLR,
2024.

Anna Bair, Hongxu Yin, Maying Shen, Pavlo Molchanov, and Jose Alvarez. Adaptive sharpness-
aware pruning for robust sparse networks. In /CLR, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
pp. 74327439, 2020.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//1msys.org/blog/2023-03-30-vicuna/.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924-2936,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

DeepSeek-Al. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model,
2024.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. In NeurIPS, 2022.

Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang Wang, and Xiaowen Chu.
Pruner-zero: Evolving symbolic pruning metric from scratch for large language models. arXiv
preprint arXiv:2406.02924, 2024.

Bryn Elesedy, Varun Kanade, and Yee Whye Teh. Lottery tickets in linear models: An analysis of
iterative magnitude pruning. arXiv preprint arXiv:2007.08243, 2020.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In CVPR, pp. 16091-16101, 2023.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In ICLR, 2018.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In NeurIPS, 2015.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain surgeon.
Advances in neural information processing systems, 5, 1992.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEFE international conference on neural networks, pp. 293-299. IEEE, 1993.

11


https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://zenodo.org/records/10256836

Under review as a conference paper at ICLR 2025

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Yupeng Ji, Yibo Cao, and Jiucai Liu. Pruning large language models via accuracy predictor. arXiv
preprint arXiv:2309.09507, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Zinoviy Landsman, Steven Vanduffel, and Jing Yao. A note on stein’s lemma for multivariate elliptical
distributions. Journal of Statistical Planning and Inference, 143(11):2016-2022, 2013.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Guiying Li, Chao Qian, Chunhui Jiang, Xiaofen Lu, and Ke Tang. Optimization based layer-wise
magnitude-based pruning for dnn compression. In IJCAI, volume 330, pp. 2383-2389, 2018.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. In NeurIPS, 2023.

Mitch Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus
of english: The penn treebank. Computational linguistics, 19(2):313-330, 1993.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381-2391, 2018.

Jean-Jacques Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la Société mathéma-
tique de France, 93:273-299, 1965.

Seungcheol Park, Hojun Choi, and U Kang. Accurate retraining-free pruning for pretrained encoder-
based language models. In ICLR, 2023.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99—-106,
2021.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. In NeurlIPS, 2019.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023.

Sigi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model
compression. arXiv preprint arXiv:1908.09355, 2019.

Siqgi Sun, Zhe Gan, Yuwei Fang, Yu Cheng, Shuohang Wang, and Jingjing Liu. Contrastive distillation
on intermediate representations for language model compression. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 498-508, 2020.

Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau envelopes.
Advances in Neural Information Processing Systems, 33:21394-21405, 2020.

12



Under review as a conference paper at ICLR 2025

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu—-lab/stanford_alpaca)l 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Tycho FA van der Ouderaa, Markus Nagel, Mart Van Baalen, Yuki M Asano, and Tijmen Blankevoort.
The llm surgeon. arXiv preprint arXiv:2312.17244,2023.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In NeurIPS, 2016.

Minghao Wu, Abdul Waheed, Chiyu Zhang, Muhammad Abdul-Mageed, and Alham Fikri Aji.
Lamini-lm: A diverse herd of distilled models from large-scale instructions. arXiv preprint
arXiv:2304.14402, 2023.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In ICML, pp. 38087—
38099. PMLR, 2023.

Jing Xu and Jingzhao Zhang. Random masking finds winning tickets for parameter efficient fine-
tuning. In ICML, 2024.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
Advances in Neural Information Processing Systems, 35:27168-27183, 2022.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Mykola Pechenizkiy,
Yi Liang, Zhangyang Wang, and Shiwei Liu. Outlier weighed layerwise sparsity (owl): A missing
secret sauce for pruning llms to high sparsity. arXiv preprint arXiv:2310.05175, 2023.

Fang Yu, Kun Huang, Meng Wang, Yuan Cheng, Wei Chu, and Li Cui. Width & depth pruning
for vision transformers. In Proceedings of the AAAI Conference on Artificial Intelligence, pp.
3143-3151, 2022.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8bert: Quantized 8bit bert. In 2079
Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing-NeurIPS Edition
(EMC2-NIPS), pp. 36-39. IEEE, 2019.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics, 2019.

Jingwei Zhang and Farzan Farnia. Moreaugrad: Sparse and robust interpretation of neural networks
via moreau envelope. ICCV, 2023.

Mingyang Zhang, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, Bohan Zhuang, et al. Pruning
meets low-rank parameter-efficient fine-tuning. arXiv preprint arXiv:2305.18403,2023.

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci. Plug-
and-play: An efficient post-training pruning method for large language models. In The Tielfth
International Conference on Learning Representations, 2024.

Xingyu Zhou. On the fenchel duality between strong convexity and lipschitz continuous gradient.
arXiv preprint arXiv:1803.06573, 2018.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In Proceedings of the IEEE international conference on computer
vision, pp. 19-27, 2015.

13


https://github.com/tatsu-lab/stanford_alpaca

Under review as a conference paper at ICLR 2025

A  PROOF

A.1 PROOF OF THEOREM

As Theorem [T] assumes a Lipschiz function g, we can apply the Stein’s lemma (Landsman et al.)
2013) to show

Vao(w) = E[Vg(w + Z)] = Elg(w+ Z) 5]

Therefore, for every w, w’ € R and unit-fo-norm vector ||u||2 = 1 we have the following

[u” (Voo (w) = Vgo (w'))| = [u’ (E[Vg(w + Z)] - E[Vg(w' + Z)))|

"® | Gow+2)] - E| Sow 4 2))

I
= = =

- [ Etgtw+2) - ot + 2)

g
u'Z
<E | 2 |\9(W+Z)*g(w’+z)\
[u'Z| ,
<E | ——Bllw —w'|
g

flw — o w2
= E
e
_Blw—w'l;
o

I;l the above, note that “sz ~ N(0,1). As aresult, the gradient of g, will be §—Lipschitz, and g, is

;—smooth, which means for every w, w’ we have,

B

92 (w') = Vg ()T (w —w)| <

lw — w'|3
As aresult, O(w) = g,(w) + % lw]|3 will be a convex function. Therefore, we can rewrite the
definition of the Moreau envelope as

B

20
1 B 1 1

— min O(d R A YT TP Be S TR

Iuin, (W)+(2p 55 1%l v w+2p||'w|\z

1
P _ in O ~ 112 ety 2
95 (w) = min, ©(w) ]z + 57 llw = wllz

1 ~ ~ o—pB, .
=—|lw|3 — — max {wTw — pO(w) — w||§} .
P weR? o

Therefore, pg? (w) is the subtraction of the Fenchel conjugate of c¢(w) = pO(w) 4 752 5|2 from
the 1-strongly-convex % ||w||3. Then, we apply the result that the Fenchel conjugate of a y-strongly
convex function is %—smooth convex function in |Zhou (2018). Therefore, the following Fenchel

conjugate

* — Ty -9~ P8 o
e (uw) = mx {wTi - po(w) - 3l

isa Y -smooth convex function. Since, we subtract two convex functions from each other where
the second one has a constant Hessian I, then the resulting function will be smooth of the following

degree:
1 o o
—max{|———-1,[0-1]p = ——,
p {J—pﬂ 4 |} min{op,o — pS}
which completes the proof of the theorem.
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A.2 PROOF OF THEOREM

To prove Theorem 2] we note that the additional A is a convex function. Given the formulation of the
h-Moreau envelope of g2 (w) and the assumption 0 < p < & 1n the theorem, we have

. . 1. -
9o p(w) == min g, () + —— [l — w|3 + h(w — w),
’ weRY

2p
= min, O(@) + (5 ~ 50) |l ~ S0 + o l[w]} + Al - w),
weR? 2p 20 p

where O(w) = g, (w) + 2/% [lw]|3 is a convex function. Then the functlon ¢ : R? — R defined as

L
P(w) = 27) - *)H I3 - ;wT 0

is a ”7’)5 -strongly-convex function. As a result, ©(w) + ¢(w) + h(w — w) is strongly-convex

funct10n with strong-convexity degree < g 5 Therefore, the optimization of h-Moreau envelope has
a unique locally and globally optimal solution. we define the proximal operator of h function as

1
prox, (w) := argmin h(w') + S|jw’ — wl|3.
w’GRd 2

Then since the objective function of h-Moreau envelope consists of the following two convex
functions (W.r.t. § := W — W) t4,(8) := go(w + ) + ﬁ 16]|% and h(8), the optimal solution §* will
satisfy the following equation with v > 0:
8" = prox, () (8" — YVt (6%)) k=4 prox ) (—pVgo (w + 6%)).

The above implies that, if we use 1) to denote the identity map we will get:

5" (w) = (v + proxyug) © pVar) ™! — 1) (w).
Note that in the above ) + prox,,(.y © pVg, will be a (1-— %)-monotone operator, where we call
t : R? — R? 7-monotone if for every w, v € R%:

(v —w)" (t(v) — t(w)) > 7llv - wlj3.

The monotonicity arises because the gradient of a A-weakly convex function is -A-monotone, and
the proximal operator is known to be 1-monotone. Hence, §*(w) will be a Lipschitz function with

the following Lipschitz constant (note that (¢ + prox .y © pVgo)~! is a monotone function with a

degree between 0 and a_”p 7 ):

a _ B
max{ U—pﬁlHOH} max{a_pﬁ,l}.

Therefore, for any given convex function h, the h-MoreauGrad

BMGP () = =6 (w)

will be a Lipschitz function with the constant Then the proof the theorem is finished.

o
min{op,c—pB}"

B EXTENDED COMPARISON ON CHANNEL RANKING ASSIGNMENT

In Section of the main text, we demonstrate the inconsistency in ranking assignments across
different layer depth. Here, we extend the discussion by exploring how this inconsistency happens
on different modules. Several examples from different layers are illustrated in Figures [5|and[6] The
experimental results indicate that the major disagreements between MoreauPruner and gradient-based
methods occur in the most shallow and deepest layers. Given that these layers are known to be
sensitive to pruning (Ma et al., 2023} |Yin et al.|[2023} Ji et al.| [2023), the performance gap between
gradient-based methods and MoreauPruner can be partially attributed to differences in channel
pruning within these layers. Additionally, we observed that the ranking stability among the middle
layers suggests that the weights in these layers of LLMs may have converged to a flatter minimum,
as both gradient-based and robust-gradient-based measurements yield similar sensitivity rankings.
The numerical results also suggest that while gradient-based methods and MoreauPruner generally
agree on the importance of channels within the attention module, there is more disagreement in the
feed-forward network (FFN) module.
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Figure 5: The channel ranking in attention module with different layer depths in LLaMA-7B given

by different algorithms.

C COMPLETE RESULTS FOR TABLES IN THE MAIN TEXT

We include the full evaluation results on the effect of weight perturbation between BF16 and FP16 in
Table[8] The column labeled Diff represents the difference between the BF16 and FP16 columns,
indicating sensitivity to weight perturbation. Notably, MoreauPruner shows a lower difference in most
cases, demonstrating the consistency of pruning results. Furthermore, MoreauPruner often yields
better PPL (Perplexity) and QA (Question-Answering) accuracy, indicating superior performance.

Additionally, we provide the complete evaluation results for Vicuna-7B and LLaMA3-8B in Tables 9]
and[T0] The full results of the effect of larger recovery set are illustrated in Table[TT]

1
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Figure 6: The channel ranking in feed-forward network module with different layer depths in LLaMA-
7B given by different algorithms.

D COMPARED WITH SCRATCH TRAINING

We compare our MoreauPruner-GS with StableLM—3BE| with a similar parameter size. With
MoreauPruner-GS, We prune LLaMA-7B and get a compact model with 3.45B parameters. Both
models are finetuned on Alpaca(Taori et al., 2023 dataset for a fair comparison. The result can be
found in Table[T2] MoreauPruner-GS sometimes achieves better results compared with LLMs that
are trained from scratch. We also recognize that the pruned model may not consistently surpass other
models with similar scale, due to the significant disparity in the size of the training corpus.

'https://huggingface.co/stabilityai/stablelm-tuned-alpha-3b
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Table 8: Full evaluation results of weight perturbation on LLaMA-7B (w/o finetune).

Pruning Ratio | Method | Format | WikiText2(|) PTB(]) | BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA | QA-Average

LLM.Pruner | BF16 13.80 2500 | 71.83 7639  69.77 66.14 6393 3899 4040 |  61.06
(Mactallpoa3) | FP16 13.75 2485 | 71.68 7622 69.75 6654 6376 39.16 4040 |  61.07
sa0 SIS piff()) 0.05 0.15 - - - - - - - 0.01
’ BFI6 13.89 2500 | 7239 7655 7007 6638 6524 3968 4060 | 6136
MoreauPruner | FP16 13.83 2495 | 7217 7633 70.17 6693 6528 3925 4040 | 6150
Diff(}) 0.05 0.05 - - - - - - - 0.05
LLM.Pruner | BF16 17.73 32.10 | 6872 74.16  64.44 6409 6044 3695 39.00 | 5826
(Mastaripoas) | FP16 17.79 32.16 | 68.17 7394  64.39 6338 6103 3729 3860 | 58.11
10% ! | Diff() 0.07 0.06 - - - - - - - 0.14
° BFI6 17.42 3222 | 7031 7416 64.60 65.11 6147 3635 3800 | 5856
MoreauPruner | FP16 17.45 3229 | 7029 7401  64.81 6524 6119 3658 3800 | 5859
Diff(}) 0.03 0.06 - - - - - . . 0.03
LLM-Pruner | BF16 32.60 61.87 | 6578 70.67  54.93 5975 5425 3251 3640 | 5347
(Mastaripoas) | FP16 32.10 61.15 | 6621 7046  54.97 5943 5492 3259 3640 | 5357
15% S22 piff(l) 051 072 - - - - - - - 0.10
¢ BF16 31.05 6043 | 6648 7089 5533 6054 5476 33.02 3620 | 53.89
MoreauPruner | FP16 30.99 6043 | 66.06 7078 5551 6093 5526 3242 3600 | 5385
Diff(}) 0.06 0.00 - - - - - - - 0.04
LLM-Pruner | BF16 9582 202.86 | 63.84 63.11 4143 5422 4141 2817 3200 | 4631
(Mastaripoas) | FP16 96.57  210.12 | 6274 63.11 4101 5517 4104 27.89 3180 |  46.11
20% SE=2 piff()) 0.75 7.26 - - - - - - - 0.20
¢ BF16 9179 17624 | 6471 6440 4178 5602 4086 2892 3420 | 4727
MoreauPruner | FP16 9179 174.19 | 64.63 6447  41.69 5593 4108 2936 3394 | 4730
Diff(}) 0.00 205 | - - - - - - - 0.03
Table 9: Zero-shot performance of the compressed Vicuna-7B.
Pruning Ratio | Method | WikiText2(}) PTB(]) | BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA | QA-Average
Ratio=0% | Vicuna-7BY | 1611 6139 | 7654 7720  70.70 67.25 65.15 4130 4080 | 6271
Magnitude’ 3539.98  5882.21| 5590 56.15  32.37 51.85 3001 2841 2820 | 4041
Random' 34.63 11244 | 6147 70.89  54.67 5627 5560 3174 3460 | 5218
Ratio =20% | LLM-Pruner*(Ma etalJ2023} | 25.74 92.87 | 6162 7476  63.76 5620 6322 3669 37.00 | 56.18
wio finetune SmoothGrad 25.99 92.87 | 60.73 7497 6375 5422 6490 37.03 37.60 | 5617
MoreauPruner 2554 9434 | 5682 7579 6473 5635 6595 37.88 3980 | 5676
MoreauPruner-GS 30.69 108.16 | 61.47 7524  66.56 6172 5724 3712 3800 | 5676
| LLM-Pruner*(Ma ctal|2023) | 19.47 7233 | 6443 7644 6539 6046 6322 3592 3820 | 5772
Ratio = 20% SmoothGrad 19.51 7205 | 6346 75.68 6538 6093 6279 3643 3880 | 57.64
wl finetune MoreauPruner 19.66 7347 | 63.15 7677 6596 60.85 6574 37.12 40.60 |  58.60
MoreauPruner-GS 19.13 7376 | 6541 17699  68.17 6527 6637 3823 3980 |  60.03
Table 10: Zero-shot performance of the compressed LLaMA3-8B.
Pruning Ratio | Method | WikiText2(}) PTB() | BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA | QA-Average
Ratio =0% | LLaMA-8BY | 1414 2798 | 81.35 80.79  79.17 72.53 80.09 5341 4500 | 7033
Ratio =20% | LLM-Pruner(Ma etal 2023} |  25.74 4569 | 67.55 7497  63.33 67.80 6229 3549 36.60 | 58.29
w/o finetune MoreauPruner-GS 25.40 4378 | 7373 7508 64.93 6803 6611 3925 37.60 |  60.68
Ratio = 20% | LLM-Pruner(Ma etal.|2023} | 2371 4201 | 7752 7769 LIS 6796 7163 4224 40.00 |  64.11
wi finetune MoreauPrunci-GS 22.98 39.25 | 7657 7867  73.17 69.14 7449 4377 4180 | 6537
Table 11: The effect of larger recovery set.
Pruning Ratio | Method | Recovery Set | BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA | AQ-Average
Ratio=0% | LLaMA-7BT | N/A | 7318 7835  72.99 67.01 6745 4138 4240 |  63.25
Ratio = 207 | MoreauPruner-GS | S0k{Taori etal.J2023} | 68.87 77.26  69.81 6504 63.64 3823 40.60 | 6049
=27 | MoreauPruner-GS | 2.59M(Wau et al.|[2023] | 76.97 7682  68.51 6630 7088 41.89 40.80 | 63.17 (+2.68)

Table 12: Comparison between scratch-training and LLaMA-3B obtained by MoreauPruner-GS

Method | #Param | BoolQ PIQA HellaSwag WinoGrande ARC-¢ ARC-c OBQA | QA-Average

StableLM-3B* 3.6B | 48.78 69.48 44.52 54.62 5093 25.17 2740 45.84
MoreauPruner-GS | 3.5B | 62.26 68.39 49.58 55.72 50.97 3020 35.40 50.36

E EXPERIMENT DETAILS

E.1 A DETAILED COMPARISON OF METHODS

We list the comparison on the experiment setting utilized in our baselines, which can be found in
Table[T3] We should note that the strong competitor LoRAPruning(Zhang et all, 2023) employs an
iteratively pruning style, which allows algorithms gradually remove less important weight during
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Table 13: A detailed comparison between methods.

Method Pruning Criterion Calibration Set (Size) Post-Training Set (Size) Iteratively Pruning Smoothness
Random random N/A N/A X X
Magnitude [lw;|2 N/A N/A X X
WANDA(Sun et al.| 2023} ™ |11 |1]|2 C4(0.128K) C4(20k) X X
LoRAPrune(Zhang et al.||2023) ||(LoRA-guided %)w(” H C4(20k) C4(20k) v X

1
LLM-Pruner(Ma et al.|2023} H%MHH Bookcorpus(0.01k) Alpaca(50k) x X
1

SmoothGrad E. H%wm )1 Bookcorpus(0.01k) Alpaca(50k) X v
MoreauPruner [IMG”[g](w) ® wHY€> Bookcorpus(0.01k) Alpaca(50k) X v
MoreauPruner-GS [|h-MG”[g,](w) ® stk) Bookcorpus(0.01k) Alpaca(50k) X v

multiple rounds of model pruning and is more time-consuming. Our methods and our primary
baseline LLM-Pruner utilize one-shot pruning for efficiency.

E.2 PARAMETERS CHOOSING

In the pruning stage, we randomly pick a batch from BookCorpus (Zhu et al.,[2015) with ten 128-
token truncated sentences. The batch choice remains the same among LLM-Pruner, SmoothGrad,
MoreauPruner, and MoreauPruner-GS in our experiments. Since deep layers and shallow layers are
sensitive to pruning, following previous works (Ma et al.}|2023)), we only prune the middle layers in
this stage. For example, when we aim to prune 20% parameters from LLaMA-7B, we remove 25%
parameters from layer 4 to layer 30.

For SmoothGrad, we pass the batch to the model 100 times. We utilized a element-wised Gaussian
smoothing, i.e., for weight parameter w(*), the intensity of Gaussian is o = 0.05||w®)||;. The
smooth gradient is empirically calculated by averaging the inportance scores of each forward pass.

For both MoreauPruner and MoreauPruner-GS, we also apply the element-wise Gaussian smoothing
to the model weights during the optimization of the gradient of the Moreau Envelope, as SmoothGrad
does. The hyper-parameter p is set to 0.05 for MoreauPruner and 0.2 for MoreauPruner-GS. The
stepsize y used in the optimization of the gradient of the Moreau Envelope is le-3 for MoreauPruner
and 2e-4 for MoreauPruner-GS. The hyper-parameter 7 is set to Se-6 as explained in the main text.
We conducted a parameter search on LLaMA-7B to find suitable hyper-parameters.

In the fine-tuning stage, we use the protocol from previous work (Ma et al., [2023)) and employ a
LoRA with rank (r=8). The batch size is 64. The learning rate is 1e-4 for Alpaca (Taori et al., 2023)
and Se-5 for Lamini (Wu et al.|[2023)). The training length is two epochs for Alpaca and three epochs
for Lamini.
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F FREQUENTLY ASKED QUESTIONS

In this section, we provide answers to frequently asked questions about our work.

> When pruning an existing model, the parameters are fixed. Why is it meaningful to
consider the robustness of pruning criteria against weight perturbation?
Intuitively, the basic goal of pruning is to remove unnecessary weights while retaining
the essential ones. It is reasonable to expect that a pruning algorithm should produce
similar results for a model in BF16 and FP16 formats, as models in these formats generally
yield the same inference results. The unexpected discrepancy between the two pruned
models indicates a bias in the evaluation of weight importance. Therefore, ensuring pruning
consistency under minor perturbations can serve as a guiding principle during the design
phase of pruning criteria. The improvements in the performance of pruned models, as shown
in our numerical results, further support this argument.

> There are many structured pruning methods in the literature. Why does MoreauPruner
only compare several of them in this paper?
The main motivation behind MoreauPruner is to draw attention to the robustness of pruning
criteria against weight perturbation. Given that pruning technologies have been extensively
explored over the past thirty years, there is significant variation in experiment settings across
different methods. These include variations in selected models, calibration/recovery sets,
recovery methods, iterative versus one-shot pruning, evaluation metrics/datasets, and more,
making it difficult to identify a universally optimal setting.
Therefore, in our paper, we adopt the setting from a recent, powerful, gradient-based
baseline, LLM-Pruner, and focus on comparing our method with several competitors that
utilize similar experimental setups to ensure a clear comparison. The numerical results and
conclusions presented in the main text support our motivations under the selected settings.
Our theoretical analysis holds across settings that satisfy our assumption.

> Quantization technologies, another widely-used model compression method, can
achieve high compression ratios (> 50%) without significant performance drops. Why
do we still need pruning methods like MoreauPruner, which typically maintain perfor-
mance only at lower pruning ratios?
Pruning and Quantization, as two mainstream model compression methods, are developed
for different purposes and each has its own advantages and disadvantages. In practical
applications, the choice of compression method should consider several factors. For example,
mainstream hardware does not support arbitrary data formats. In cases where an 8-bit model
needs to be compressed by approximately 12.5%, pruning would often be a better choice
than attempting to quantize the model to 7 bits. Each method serves specific needs, and
pruning remains a viable option when fine control over compression is required.
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