
Under review as a conference paper at ICLR 2024

PRIVILEGEDDREAMER: EXPLICIT IMAGINATION OF
PRIVILEGED INFORMATION FOR ADAPTATION IN UN-
CERTAIN ENVIRONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Numerous real-world control problems involve dynamics and objectives affected
by unobservable hidden parameters, ranging from autonomous driving to robotic
manipulation. To represent these kinds of domains, we use Hidden-parameter
Markov Decision Processes (HIP-MDPs), which model sequential decision prob-
lems where hidden variables parameterize transition and reward functions. Ex-
isting approaches, such as domain randomization, domain adaptation, and meta-
learning, simply treat the effect of hidden parameters as additional variance and
often struggle to effectively handle HIP-MDP problems, especially when rewards
are parameterized by hidden variables. To address this, we introduce Privileged-
Dreamer, a model-based reinforcement learning framework that extends Dreamer,
a powerful world-modeling approach, by incorporating an explicit parameter es-
timation module. We introduce a novel dual recurrent architecture that explicitly
estimates hidden parameters from limited historical data and enables us to con-
dition the model, actor, and critic networks on these estimated parameters. Our
empirical analysis on five diverse HIP-MDP tasks demonstrates that it outper-
forms state-of-the-art model-based, model-free, and domain adaptation learning
algorithms. Furthermore, we also conduct ablation studies to justify our design
decisions.

1 INTRODUCTION

The Markov Decision Process (MDP) has been a powerful mathematical framework for modeling
a spectrum of sequential decision scenarios, from computer games to intricate autonomous driving
systems; however, they often assume fixed transition or reward functions. In many real-world do-
mains, there exists a family of related problems characterized by the presence of hidden or uncertain
parameters that play a significant role in their dynamics or reward functions, which is referred to as
a hidden-parameter MDP (HIP-MDP) (Doshi-Velez & Konidaris, 2016). For instance, autonomous
driving must deal with diverse vehicles with distinctive dynamic attributes and properties for better
driving experience, while the agricultural industry sorts produce that varies in weight. Consequently,
research endeavors have explored diverse algorithmic approaches, including domain randomization
(Tobin et al., 2017), domain adaptation (Peng et al., 2020), and meta-learning (Wang et al.), to
address these challenges effectively.

We approach these HIP-MDP problems using model-based reinforcement learning because a world
model holds significant promise in efficiently capturing these dynamic behaviors characterized by
hidden parameters, ultimately resulting in improved policy learning. Particularly, we establish our
framework based on Dreamer (Hafner et al., 2019), which has been effective in solving multiple
classes of problems, including DM control suite (Tassa et al., 2018), Atari (Hafner et al., 2020), and
robotic control (Wu et al., 2022). Our initial hypothesis was that the Dreamer framework may be
able to capture parameterized dynamics accurately by conditioning the model on latent variables,
leading to better performance at the end of learning. However, Dreamer is designed to predict
action-conditioned dynamics in the observation space and does not consider the effect of hidden
parameters.

1

Under review as a conference paper at ICLR 2024

This paper presents PrivilegedDreamer to solve HIP-MDPs via explicit prediction of hidden param-
eters. Our key intuition is that a recurrent state space model (RSSM) of model-based RL must be
explicitly conditioned on hidden parameters to capture the subtle changes in dynamics or rewards.
However, a HIP-MDP assumes that hidden variables are not available to agents. Therefore, we
introduce an explicit module to estimate hidden parameters from a history of state variables via a
Long short-term memory (LSTM) network, which can be effectively trained by minimizing an ad-
ditional reconstruction loss. This dual recurrent architecture allows accurate estimation of hidden
parameters from a short amount of history. The estimated hidden parameters are also fed into the
transition model, actor, and critic networks to encourage their adaptive behaviors conditioned on
hidden parameters.

We evaluate our method in five HIP-MDP environments, where two of them have parameter-
conditioned reward functions. We compare our method against several state-of-the-art baselines,
including model-based (DreamerV2 (Hafner et al., 2020)), model-free (Soft Actor Critic (Haarnoja
et al., 2018) and Proximal Policy Optimization (Schulman et al., 2017)), and domain adaptation
(Rapid Motor Adaptation (Kumar et al., 2021)) algorithms. Our PrivilegedDreamer achieves 41%
higher average rewards over five tasks, particularly on HIP-MDPs with parameterized reward func-
tions. We further analyze the behaviors of the learned policies to investigate how rapid estimation
of hidden parameters affects the final performance and also to justify the design decisions of the
framework. Finally, we outline a few interesting future research directions.

2 RELATED WORK

World Models Model-based RL improves sample efficiency over model-free RL by learning an
approximate model for the transition dynamics of the environment, allowing for policy training
without interacting with the environment itself. However, obtaining accurate world models is not
straightforward because the learned model can easily accumulate errors exponentially over time. To
alleviate this issue, Chua et al. (2018) designs ensembles of stochastic dynamics models to attempt
to incorporate uncertainty. The Dreamer architecture (Hafner et al., 2019; 2020; 2023) models
the environment using the recurrent state space machine, which also includes the recurrent GRU
network (Cho et al., 2014) and the VAE (Kingma & Welling, 2013), via reconstructing the input from
a latent space. With this generative world model, the policy is trained with imagined trajectories in
this learned latent space. Robine et al. (2023) and Micheli et al. (2022) leverage the Transformer
architecture (Vaswani et al., 2017) to autoregressively model the world dynamics and similarly train
the policy in latent imagination. Our work is built on top of the Dreamer architecture, but the idea
of explicit modeling of hidden parameters has the potential to be combined with other architectures.

Randomized Approaches without Explicit Modeling One of the most popular approaches to
deal with uncertain or parameterized dynamics is domain randomization (DR), which aims to im-
prove the robustness of the policy by exposing the agent to randomized environments. It has been
effective in many applications, including manipulation (Peng et al., 2018; Tobin et al., 2017; Zhang
et al., 2016; James et al., 2017), (Tobin et al., 2017), locomotion (Peng et al., 2020; Tan et al., 2018),
autonomous driving (Tremblay et al., 2018), and indoor drone flying (Sadeghi & Levine). Domain
randomization has also shown great success in deploying trained policies on actual robots, as in Tan
et al. (2018), which used it for sim-to-real transfer for a quadrupedal robot, and Peng et al. (2018),
which used it to improve performance for a robotic manipulator. While DR works very well in
many situations, it tends to lead to an overly conservative policy that is suboptimal for challenging
problems with a wide range of transition or reward functions.

Domain Adaptation Another common strategy for dealing with variable environments is to incor-
porate the hidden environmental parameters into the policy for adaptation. This privileged informa-
tion of the hidden parameters can be exploited during training, but at test time, system identification
must occur online. For model-free RL, researchers typically train a universal policy conditioned
on hidden parameters and estimate them at testing time by identifying directly from a history of
observations (Yu et al., 2017; Kumar et al., 2021; Nahrendra et al., 2023). Another option is to im-
prove state estimation while training in diverse environments, which similarly allows for adaptation
without needing to perform explicit system identification (Ji et al., 2022). For model-based RL, the
problem of handling variable physics conditions is handled in multiple ways. A few research groups

2

Under review as a conference paper at ICLR 2024

Nagabandi et al. (2018); Sæmundsson et al. (2018) propose using meta-learning to rapidly adapt to
environmental changes online. Wang & van Hoof (2021) uses a graph-based meta RL technique to
handle changing dynamics. Ball et al. (2021) used data augmentation in offline RL to get zero-shot
dynamics generalization. The most applicable methods for our work are the problems that use a
learned encoder to estimate a context vector that attempts to capture the environmental information
and is used to condition the policy and for forward prediction, as in Wang et al. (2022); Lee et al.
(2020); Huang et al. (2021); Seo et al. (2020).

3 PRIVILEGEDDREAMER: ADAPTATION VIA EXPLICIT IMAGINATION

3.1 BACKGROUND

Hidden-parameter MDP A Markov decision process (MDP) formalizes a sequential decision
problem, which is defined as a tuple (S,A, T,R, p0), where S is the state space, A is the action
space, T is the transition function, R is the reward function, and p0 is the initial state distribution.
For our work, we consider the hidden-parameter MDP (HIP-MDP), which generalizes the MDP
by conditioning the transition function T and/or the reward function R on an additional hidden
latent variable ω sampled from a distribution pω (Doshi-Velez & Konidaris, 2016). Without losing
generality, ω can be a scalar or a vector. In the setting of continuous control, which is the primary
focus of this work, this latent variable represents physical quantities, such as mass or friction, that
govern the dynamics but are not observable in the state space.

Dreamer For our model, we build upon the DreamerV2 model of Hafner et al. (2020). Dream-
erV2 uses a recurrent state space model (RSSM) to model dynamics and rewards. This RSSM
takes as input the state xt and the action at to compute a deterministic recurrent state ht =
fϕ(ht−1, zt−1, at−1) using a GRU fϕ and a sampled stochastic state zt ∼ qϕ(zt|ht, xt) using an
encoder qϕ. The combination of these deterministic and stochastic states is used as a representation
to reconstruct the state x̂t ∼ pϕ(x̂t|ht, zt), and to also predict the reward r̂t ∼ pϕ(r̂t|ht, zt) and
the discount factor γ̂t ∼ pϕ(γ̂t|ht, zt). The final component of the RSSM is the transition predictor
ẑt ∼ pϕ(ẑt|ht). This computes the stochastic state zt using only the deterministic state ht, which is
necessary for training in imagination where the state xt is not available.

For policy learning, Dreamer adopts an actor-critic network, which is trained via imagined rollouts.
For each imagination step t, the latent variable ẑt is predicted using only the world model, the
action is sampled from the stochastic actor: at ∼ πθ(at|ẑt), and the value function is estimated
as: vψ ≈ Epϕ,pθ [

∑
γτ−tr̂τ], where r̂t is computed from the reward predictor above. The actor is

trained to maximize predicted discounted rewards over a fixed time horizon H . The critic aims to
accurately predict the value from a given latent state. The actor and critic losses are:

Actor loss: L = Epϕ,pθ [
H−1∑
t=1

− lnπθ(ât|ẑt)sg(V λ
t − vψ(ẑt))− ηH[at|ẑt]]

Critic loss: L = Epϕ,pθ [
H−1∑
t=1

1

2
(vψ(ẑt)− sg(V λ

t))
2]

3.2 ALGORITHM

While the original DreamerV2 layout works effectively for many tasks, in the HIP-MDP domain,
it falters, especially in the case where the reward explicitly depends on the hidden latent variable.
Even though the RSSM has memory to determine the underlying dynamics, prior works such as Seo
et al. (2020) have shown that this hidden state information is poorly captured implicitly and must be
explicitly learned.

Explicit Imagination via LSTM To help remedy this, we incorporate an additional independent
module for estimating the privileged information from the available state information. This dual
recurrent architecture allows us to effectively estimate the important hidden parameters in the first
layer and model other variables conditioned on this estimation in the second layer. Our estimation
module ω̃t ∼ ηϕ(ω̃t|xt, at−1) takes the state xt and previous action at−1 as inputs and predicts the

3

Under review as a conference paper at ICLR 2024

intermediate hidden parameter ω̃t. It is still parameterized by ϕ because we treat it as part of the
world model. The estimation module is comprised of an LSTM (Hochreiter & Schmidhuber) fol-
lowed by MLP layers to reshape the output to that of the privileged data. We use an LSTM because
its recurrent architecture is more suitable to model subtle and non-linear relationships between state
and hidden variables over time. However, the choice of the architecture was not significant to the
performance. In our experience, LSTM and GRU demonstrated similar performance.

Note that we use ω̃t to make the recurrent world model conditioned on the estimated hidden variable.
For the actor and critic, we feed the value from the prediction head, ω̂t which will be described in
the next paragraph.

Additional Prediction Head We also added an additional prediction head pϕ(ω̂t|ht, zt), which is
similar to the reward or state prediction heads. While the previous LSTM estimation η predicts the
intermediate parameter ω̃t to make the model conditioned on the hidden parameter, this additional
prediction head offers two major improvements: 1) encouraging the RSSM state variables ht and zt
to contain enough information about the hidden parameter and 2) improving the prediction accuracy.

Hidden Variable Loss We design an additional loss to train the estimation module, which is
similar to the other losses of the DreamerV2 architecture. We do not use the discount predictor
from the original DreamerV2 architecture as all of our tests are done in environments with no early
termination. We group the other Dreamer losses all under LDreamer to highlight our differences.
This makes the total loss for the world model:

L(ϕ) = LDreamer + Eqϕ(z1:T |a1:T ,x1:T ,ω1:T)[

T∑
t=1

− ln ηϕ(ω̃t|xt, at−1)− ln pϕ(ω̂t|ht, zt)].

where the first loss is to compute an intermediate estimate ω̃ for the hidden parameter ω using the
environment states x and actions a and the second term is the world model reconstruction loss for ω̂
based on the RSSM latent variables h and z.

It is important to highlight that relying solely on this hidden parameter loss term is not sufficient.
Theoretically, it seems like the loss encourages the recurrent state variables ht and zt to encapsulate
all relevant information and increase all the model, actor, and critic networks’ awareness of hidden
parameters. However, in practice, this privileged information remains somewhat indirect to those
networks. Consequently, this indirect access hinders their ability to capture subtle changes and
results in suboptimal performance.

Hidden parameter conditioned Networks (ConditionedNet) Once we obtain the estimated hid-
den parameter ωt, we feed this information to the networks. This idea of explicit connection has been
suggested in different works in reinforcement learning, such as rapid motor adaptation (RMA) (Ku-
mar et al., 2021) or meta strategy optimization (MSO) (Yu et al., 2020). Similarly, we augment
the inputs of the representation model zt ∼ qϕ(zt|ht, xt, ω̃t), the critic network vψ , and the actor
network πθ to encourage them to incorporate the estimated ω̃t and ω̂t.

Additional Proprioceptive State as Inputs In our experience, it is beneficial to provide the esti-
mated state information as additional inputs to the actor and critic networks. We hypothesize that
this may be because the most recent state information xt is highly relevant for our continuous control
tasks. On the other hand, the RSSM states ht and zt are indirect and more suitable for establishing
long-term plans.

Summary On top of DreamerV2, Our PrivilegedDreamer includes the following components:

Recurrent hidden parameter predictor: ω̃t ∼ ηϕ(ω̃t|ht, zt)
HIP-conditioned representation model: zt ∼ qϕ(zt|ht, xt, ω̃t)

HIP prediction head: ω̂t ∼ pϕ(ω̂t|ht, zt)
HIP-conditioned critic: vt ∼ vψ(vt|ht, zt, xt, ω̂t)
HIP-conditioned actor: ât ∼ πθ(at|ht, zt, xt, ω̂t)

4

Under review as a conference paper at ICLR 2024

Figure 1: Architecture of the PrivilegedDreamer. Compared to the default DreamerV2 model (top),
our architecture (bottom) adopts an explicit parameter estimation model η to predict the hidden
parameters ωt from a history of states. Then, the estimated parameters ω̃t are fed into the model to
establish the explicit dependency.

We omit the unchanged components from DreamerV2, such as input and reward predictors, for
brevity. A schematic of the model architecture used for training the world model itself can be
seen in Figure 1. This setup trains the encoder network, decoder network, and the latent feature
components z and h. The estimation module η that initially estimates the value of ω̃t is also trained
here.

Figure 2: Policy network training architecture.

For training the policy network in imagination,
we use the structure in Figure 2. When train-
ing the policy, we start with a seed state sam-
pled from the replay buffer and then proceed
in imagination only, as in the original Dream-
erV2. Via this setup, the actor and critic net-
works are trained to maximize the estimated
discounted sum of rewards in imagination using
a fixed world model. However, the key differ-
ence is that both the actor and critic networks
take the estimated parameter ω̂t from the pre-
diction head as an additional input, as well as
the reconstructed state x̂t. Because the entire
model can learn the parameter estimation much faster than the world model, this new connection
works almost the same as providing the ground-truth hidden parameter for the majority of the learn-
ing time. We will discuss this behavior in the discussion section.

4 EXPERIMENTS

We evaluate PrivilegedDreamer on several HIP-MDP problems to answer the following research
questions:

1. Can our PrivilegedDreamer solve HIP-MDP problems more effectively than the baseline
RL and domain adaptation algorithms?

2. Can the estimation network accurately find ground-truth hidden parameters?

3. What are the impacts of the HIP reconstruction loss and hip-conditioned policy?

5

Under review as a conference paper at ICLR 2024

Task Physics Randomization Target Range Reward
Walker Run Contact Friction [0.05 - 4.5] Fixed

Pendulum Swingup Mass Scaling Factor of Pendulum [0.1 - 2.0] Fixed
Throwing Mass Scaling Factor of Ball [0.2 - 1.0] Fixed
Sorting Mass Scaling Factor of Arm [0.2 - 1.0] Parameterized

Pointmass X/Y Motor Scaling Factor
X [1 - 2]
Y [1 - 2]

Parameterized

Table 1: Parameter randomization applied for each task.

Walker Pendulum Throwing Sorting Pointmass

Figure 3: Five HIP-MDP tasks used in our experiments.

4.1 HIP-MDP TASKS

We evaluate our model on a variety of continuous control tasks from the DeepMind Control
Suite (Tassa et al., 2018), along with some tasks developed in MuJoCo (Todorov et al., 2012). All
tasks involve operating in a continuous control environment with varying physics. The tasks are as
follows:

• DMC Walker Run - Make the Walker run as fast as possible in 2D, where the contact
friction is variable.

• DMC Pendulum Swingup - Swing a pendulum to an upright position, where the pendulum
mass is variable.

• Throwing - Control a paddle to throw a ball into a goal, where the ball mass is variable.

• Sorting - Move an object to a desired location, where the object mass is variable and the
target location depends on the mass: heavier objects to the left and lighter objects to the
right.

• DMC Pointmass - Move the point mass to the target location, where the x and y motors are
randomly scaled. The target location depends on the motor scaling: away from the center
for high motor scaling and towards the center for lower motor scaling.

When we design these tasks, we start by simply introducing randomization to the existing two tasks,
DMC Walker Run and DMC Pendulum Swingup. Then, we purposely design the last two tasks,
Sorting and DMC Pointmass, to incorporate a reward function that depends on their hidden param-
eters. Throwing also implicitly necessitates a policy for identifying the ball’s mass and adjusting its
trajectory. However, its reward function is not explicitly parameterized.

All the environments are visualized in Figure 3 and their randomization ranges are summarized in
Table 1. A full description of all the environments used is in Section A in the appendix.

4.2 BASELINE ALGORITHMS

The baseline algorithms that we compare against are as follows:

• DreamerV2 : original DreamerV2 model proposed by Hafner et al. (2020).

6

Under review as a conference paper at ICLR 2024

Method Walker Pendulum Throwing Sorting Pointmass Mean
PrivilegedDreamer 766.20 ± 20.19 563.14 ± 147.44 788.59 ± 45.66 554.65 ± 26.25 670.23 ± 13.93 668.56 ± 70.87
Dreamer + Decoder + ConditionedNet 576.89 ± 96.68 329.80 ± 37.10 785.78 ± 64.18 180.85 ± 46.55 492.77 ± 17.82 473.22 ± 58.87
Dreamer + Decoder 671.85 ± 10.46 259.84 ± 26.08 707.51 ± 20.63 87.74 ± 43.24 480.96 ± 29.91 441.58 ± 28.21
DreamerV2 (Hafner et al., 2020) 715.57 ± 39.95 289.43 ± 214.12 706.09 ± 26.24 167.61 ± 33.38 488.41 ± 3.60 473.42 ± 99.26
SAC (Haarnoja et al., 2018) 475.22 ± 13.02 454.67 ± 268.98 945.65 ± 17.02 74.85 ± 88.03 393.49 ± 210.47 468.78 ± 158.03
PPO (Schulman et al., 2017) 79.73 ± 10.95 470.04 ± 324.05 707.03 ± 115.63 229.93 ± 181.12 545.86 ± 72.22 406.52 ± 176.93
RMA (Kumar et al., 2021) 75.28 ± 11.31 516.83 ± 386.43 624.57 ± 118.70 82.33 ± 416.57 545.31 ± 357.86 368.86 ± 305.00

Table 2: Model performance after 2 million timesteps of training

0 0.5M 1M 1.5M 2M
0

200

400

600

800

0 0.5M 1M 1.5M 2M

0

200

400

600

800

0 0.5M 1M 1.5M 2M

400

500

600

700

800

900

0 0.5M 1M 1.5M 2M

−200

0

200

400

600

0 0.5M 1M 1.5M 2M

200

400

600

0 0.5M 1M 1.5M 2M
0

200

400

600

PrivilegedDreamer Dreamer + Decoder + ConditionedNet Dreamer + Decoder DreamerV2 SAC PPO RMA

Timestep Timestep Timestep

Timestep Timestep Timestep

Re
w

ar
d

Re
w

ar
d

Walker Pendulum Throwing

Sorting Pointmass Mean

Figure 4: Learning curves for all tasks. PrivilegedDreamer shows the best performance against all
the baseline algorithms, except for the throwing task that requires a very long horizon prediction.

• Proximal Policy Optimization (PPO): model-free, on-policy learning algorithm proposed
by Schulman et al. (2017) using the implementation from Raffin et al. (2021).

• Soft Actor Critic (SAC): model-free, off-policy learning algorithm proposed by Haarnoja
et al. (2018) using the implementation from Yarats & Kostrikov (2020).

• Rapid Motor Adaptation (RMA): model-free domain adaptation algorithm proposed by
Kumar et al. (2021), which estimates hidden parameters from a history of states and actions.
We train an expert PPO policy with ω as input and compare to the student RMA policy,
which is trained with supervised learning to match ω using a history of previous states.

We select our baseline to cover all the state-of-the-art in model-based/model-free, on-policy/off-
policy, domain randomization/adaptation algorithms. All models were trained for 2 million
timesteps in each environment randomized as specified in Table 1.

To validate our design choices, we further evaluate the following intermediate versions of the algo-
rithm.

• Dreamer + Decoder: This version only trains a decoder ω̂t ∼ pϕ(ω̂t|ht, zt) by minimizing
the hidden variable loss without an estimation module η. Also, ω̂t is not provided to the
actor and critic and ht and zt are expected to contain all the information about the hidden
parameter ωt.

• Dreamer + Decoder + ConditionedNet: This version is similar to the previous Dream +
Decoder, but the estimated ω̂t is given to the actor and critic networks.

Note that the proposed PrivilegedDreamer can be viewed as the combination of Dreamer, an exter-
nal estimation module, and conditioned networks trained with the hidden variable loss (Privileged-
Dreamer = Dreamer + ExternalEstimation + Decoder + ConditionedNet).

7

Under review as a conference paper at ICLR 2024

0 0.5M 1M 1.5M 2M

1e−3

1e−2

0 0.5M 1M 1.5M 2M

1e−6

1e−5

1e−4

1e−3

0 0.5M 1M 1.5M 2M
1e−3

1e−2

1e−1

Dreamer + Decoder Dreamer + Decoder + ConditionedNet PrivilegedDreamer

Timestep Timestep Timestep

Re
co

ns
tr

uc
tio

n
Er

ro
r

Pendulum Throwing Pointmass

Figure 5: Hidden parameter reconstruction error during learning.

0 500 1000
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 500 1000

0.035

0.04

0.045

0.05

0 500 1000

1.1

1.2

1.3

1.4

1.5

0 500 1000

1.3

1.4

1.5

1.6

1.7

1.8

Dreamer + Decoder Dreamer + Decoder + ConditionedNet PrivilegedDreamer Real Value

Timestep Timestep Timestep Timestep

Pa
ra

m
et

er
 V

al
ue

Pendulum Throwing Pointmass Pointmass

Figure 6: Online parameter estimation within an episode. The two estimated values for the Point-
mass model are shown in separate plots to improve readability.

4.3 EVALUATION

Performance To evaluate the effectiveness of the proposed method, we first compare the learning
curves and the final performance of all the learned models. Learning curves for all models are shown
in Figure 4, where the means and standard deviations are computed over three random seeds. Since
RMA is trained in a supervised fashion using an expert policy and is not trained using on-policy
environment interactions, we do not have a comparable learning curve, so we display the average
performance as a horizontal line for comparison. Table 2 shows the average reward over 100 runs
for each seed. We also report the average performance over five tasks in both Figure 4 and Table 2.

Overall, the proposed PrivilegedDreamer achieves the best average reward over five tasks. It shows a
significant performance improvement over the second best model, vanilla DreamerV2, in both stan-
dard DM Control Suite tasks (Walker, Pointmass, Pendulum) as well as tasks we created ourselves
(Sorting, Throwing). Performance margins are generally larger in the Sorting and DMC Pointmass
tasks, where PrivilegedDreamer is the only model tested that does appreciably better than random.
This is likely because the reward for these tasks explicitly depends on ω and DreamerV2 only im-
plicitly adapts its behaviors to the hidden parameters. This indicates that a novel architecture of
PrivilegedDreamer is effective for solving HIP-MDPs, particularly when the reward function is pa-
rameterized. We suspect that RMA and PPO do especially poorly on the Walker task because the
2 million timestep training limit is insufficient for on-policy algorithms. Similarly, we suspect that
the small training size affects the ability of RMA to effectively adapt, and that it would be more
competitive with our method with a larger training dataset, which our method does not need due to
its better sample efficiency.

One notable outlier is the great performance of SAC on the Throwing task. We suspect that the
nature of the problem makes it difficult for model-based RL algorithms, both PrivilegedDreamer
and DreamerV2. In this task, a policy only has a few steps to estimate its hidden parameters and
predict the ball’s trajectory, which can easily accumulate model errors over a long time horizon. On
the other hand, SAC, a model-free RL algorithm, efficiently modifies its behaviors in a model-free

8

Under review as a conference paper at ICLR 2024

fashion without estimating a ball trajectory. On-policy algorithms, PPO and RMA, are not sample-
efficient enough to achieve good performance within two million steps.

Hidden Parameter Estimation PrivilegedDreamer is based on the assumption that estimating
hidden parameters is crucial for solving HIP-MDPs. Figure 5 illustrates the reconstruction errors
during the learning process for the Pendulum, Throwing, and Pointmass tasks. In all cases, our
PrivilegedDreamer exhibits faster convergence, typically within less than 0.5 million environmental
steps, resulting in more consistent learning curves. Additionally, Figure 6 displays the real-time
estimation of hidden parameters during episodes. Our model accurately predicts these parameters
within just a few steps, enhancing the performance of the final policies. These findings justify the
effectiveness of an external LSTM-based hidden parameter estimation module.

4.4 ABLATION STUDIES

Comparing our full PrivilegedDreamer model to the ablations, we see that our model is superior
and each component is necessary for optimal performance. From Figure 5, we see that our full
model is significantly better at reconstructing the hidden variable ω than Dreamer + Decoder +
ConditionedNet, which is already better than Dreamer + Decoder. With this low reconstruction er-
ror, online estimation of ω is very effective, as shown in Figure 6, which shows that our method
rapidly converges within 5% of the real value, while the ablated versions take longer to converge
to a lower quality estimate. Specifically, our agents find near-correct hidden parameters at the be-
ginning of the episodes within a few environmental steps in all scenarios, while the other baselines
take more than 500 steps (Dreamer+Decoder+ConditionedNet in Pointmass) or converge to wrong
values (Dreamer+Decoder in Pendulum and Pointmass).Using this high quality estimate of ω within
our ConditionedNet, Figure 4 and Table 2 demonstrate that our method greatly outperforms the ab-
lations. This validates our hypothesis that incorporating a good estimate of ω into the world model
and policy networks improves the performance of a RL policy operating in an environment with
variable ω.

5 CONCLUSION

This paper presents a novel architecture for solving problems where the dynamics are dictated by
hidden parameters. We model these problems with the Hidden parameter Markov Decision Process
(HIP-MDP) and solve them using model-based reinforcement learning. We introduce a new model
PrivilegedDreamer, based on the DreamerV2 world model, that handles the HIP-MDP problem via
explicit prediction of these hidden variables. Our key invention consists of an external recurrent
module to estimate these hidden variables to provide them as inputs to the world model itself. We
evaluate our model on five HIP-MDP tasks, including both DeepMind Control Suite tasks and tasks
we manually created where the reward explicitly depends on the hidden parameter, and found our
model significantly outperforms the DreamerV2 model, as well as the other baselines we tested
against.

Our research opens up several intriguing agendas for future investigation. Firstly, this paper has con-
centrated our efforts on studying hidden parameter estimation within proprioceptive control prob-
lems, intentionally deferring the exploration of visual control problems like Atari games or vision-
based robot control for future works. We believe that the same principle of explicitly modeling
hidden parameters can be effectively applied to these visual control challenges with minor adjust-
ments to the neural network architectures. Furthermore, we plan to investigate more complex robotic
control problems, such as legged locomotion (Wu et al., 2022), where real-world dynamics may be
too sensitive to be precisely replicated by any of the hidden parameters. In such cases, we anticipate
the need to devise better approximation methods. Lastly, we plan to delve into multi-agent scenar-
ios in which these hidden parameters have an impact on the AI behavior of other agents. These
subsequent research directions promise to extend the scope and impact of the original paper.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Philip J. Ball, Cong Lu, Jack Parker-Holder, and Stephen Roberts. Augmented world models fa-
cilitate zero-shot dynamics generalization from a single offline environment. 4 2021. URL
http://arxiv.org/abs/2104.05632.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
of neural machine translation: Encoder-decoder approaches. 9 2014. URL http://arxiv.
org/abs/1409.1259.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. 5 2018. URL http://
arxiv.org/abs/1805.12114.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). 11 2015. URL http://arxiv.org/abs/1511.
07289.

Finale Doshi-Velez and George Konidaris. Hidden parameter markov decision processes: A
semiparametric regression approach for discovering latent task parametrizations. volume 2016-
January, pp. 1432–1440. International Joint Conferences on Artificial Intelligence, 2016.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. 12 2019. URL http://arxiv.org/abs/1912.01603.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. 10 2020. URL http://arxiv.org/abs/2010.02193.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. 1 2023. URL http://arxiv.org/abs/2301.04104.

Sepp Hochreiter and Jurgen Schmidhuber. Long short-term memory.

Biwei Huang, Fan Feng, Chaochao Lu, Sara Magliacane, and Kun Zhang. Adarl: What, where, and
how to adapt in transfer reinforcement learning. 7 2021. URL http://arxiv.org/abs/
2107.02729.

Stephen James, Andrew J. Davison, and Edward Johns. Transferring end-to-end visuomotor control
from simulation to real world for a multi-stage task. 7 2017. URL http://arxiv.org/abs/
1707.02267.

Gwanghyeon Ji, Juhyeok Mun, Hyeongjun Kim, and Jemin Hwangbo. Concurrent training of a
control policy and a state estimator for dynamic and robust legged locomotion. IEEE Robotics
and Automation Letters, 7, 2022. ISSN 23773766. doi: 10.1109/LRA.2022.3151396.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. 12 2013. URL http:
//arxiv.org/abs/1312.6114.

Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor adaptation for
legged robots. 2021. doi: 10.15607/RSS.2021.XVII.011.

Kimin Lee, Younggyo Seo, Seunghyun Lee, Honglak Lee, and Jinwoo Shin. Context-aware
dynamics model for generalization in model-based reinforcement learning. 5 2020. URL
http://arxiv.org/abs/2005.06800.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world mod-
els. 9 2022. URL http://arxiv.org/abs/2209.00588.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S. Fearing, Pieter Abbeel, Sergey Levine,
and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-
reinforcement learning. 3 2018. URL http://arxiv.org/abs/1803.11347.

10

http://arxiv.org/abs/2104.05632
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1805.12114
http://arxiv.org/abs/1805.12114
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1912.01603
http://arxiv.org/abs/2010.02193
http://arxiv.org/abs/2301.04104
http://arxiv.org/abs/2107.02729
http://arxiv.org/abs/2107.02729
http://arxiv.org/abs/1707.02267
http://arxiv.org/abs/1707.02267
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/2005.06800
http://arxiv.org/abs/2209.00588
http://arxiv.org/abs/1803.11347

Under review as a conference paper at ICLR 2024

I Made Aswin Nahrendra, Byeongho Yu, and Hyun Myung. Dreamwaq: Learning robust
quadrupedal locomotion with implicit terrain imagination via deep reinforcement learning. 1
2023. URL http://arxiv.org/abs/2301.10602.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer
of robotic control with dynamics randomization. 2018. doi: 10.1109/ICRA.2018.8460528.

Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Edward Lee, Jie Tan, and Sergey
Levine. Learning agile robotic locomotion skills by imitating animals. In Robotics: Science
and Systems, 07 2020. doi: 10.15607/RSS.2020.XVI.064.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Jan Robine, Marc Höftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world
models are happy with 100k interactions. 3 2023. URL http://arxiv.org/abs/2303.
07109.

Fereshteh Sadeghi and Sergey Levine. Cad 2 rl: Real single-image flight without a single real image.
URL https://youtu.be/nXBWmzFrj5s.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. 7 2017. URL http://arxiv.org/abs/1707.06347.

Younggyo Seo, Kimin Lee, Ignasi Clavera, Thanard Kurutach, Jinwoo Shin, and Pieter Abbeel.
Trajectory-wise multiple choice learning for dynamics generalization in reinforcement learning.
10 2020. URL http://arxiv.org/abs/2010.13303.

Steindór Sæmundsson, Katja Hofmann, and Marc Peter Deisenroth. Meta reinforcement learning
with latent variable gaussian processes. 3 2018. URL http://arxiv.org/abs/1803.
07551.

Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez, and
Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. 4 2018. URL
http://arxiv.org/abs/1804.10332.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Ried-
miller. Deepmind control suite. 1 2018. URL http://arxiv.org/abs/1801.00690.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. 3
2017. URL http://arxiv.org/abs/1703.06907.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control,
2012.

Jonathan Tremblay, Aayush Prakash, David Acuna, Mark Brophy, Varun Jampani, Cem Anil, Thang
To, Eric Cameracci, Shaad Boochoon, and Stan Birchfield. Training deep networks with synthetic
data: Bridging the reality gap by domain randomization. 4 2018. URL http://arxiv.org/
abs/1804.06516.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. 6 2017. URL http:
//arxiv.org/abs/1706.03762.

J X Wang, Z Kurth-Nelson, D Tirumala, H Soyer, J Z Leibo, R Munos, C Blundell, D Kumaran, and
M Botvinick. Learning to reinforcement learn.

Junjie Wang, Yao Mu, Dong Li, Qichao Zhang, Dongbin Zhao, Yuzheng Zhuang, Ping Luo, Bin
Wang, and Jianye Hao. Prototypical context-aware dynamics generalization for high-dimensional
model-based reinforcement learning. 11 2022. URL http://arxiv.org/abs/2211.
12774.

11

http://arxiv.org/abs/2301.10602
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
http://arxiv.org/abs/2303.07109
http://arxiv.org/abs/2303.07109
https://youtu.be/nXBWmzFrj5s
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2010.13303
http://arxiv.org/abs/1803.07551
http://arxiv.org/abs/1803.07551
http://arxiv.org/abs/1804.10332
http://arxiv.org/abs/1801.00690
http://arxiv.org/abs/1703.06907
http://arxiv.org/abs/1804.06516
http://arxiv.org/abs/1804.06516
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2211.12774
http://arxiv.org/abs/2211.12774

Under review as a conference paper at ICLR 2024

Qi Wang and Herke van Hoof. Model-based meta reinforcement learning using graph structured
surrogate models. 2 2021. URL http://arxiv.org/abs/2102.08291.

Philipp Wu, Alejandro Escontrela, Danijar Hafner, Ken Goldberg, and Pieter Abbeel. Daydreamer:
World models for physical robot learning. 6 2022. URL http://arxiv.org/abs/2206.
14176.

Denis Yarats and Ilya Kostrikov. Soft actor-critic (sac) implementation in pytorch. https://
github.com/denisyarats/pytorch_sac, 2020.

Wenhao Yu, Jie Tan, C. Karen Liu, and Greg Turk. Preparing for the unknown: Learning a universal
policy with online system identification. 2 2017. URL http://arxiv.org/abs/1702.
02453.

Wenhao Yu, Jie Tan, Yunfei Bai, Erwin Coumans, and Sehoon Ha. Learning fast adaptation with
meta strategy optimization, 2020.

Fangyi Zhang, Jürgen Leitner, Michael Milford, and Peter Corke. Modular deep q networks for sim-
to-real transfer of visuo-motor policies. 10 2016. URL http://arxiv.org/abs/1610.
06781.

12

http://arxiv.org/abs/2102.08291
http://arxiv.org/abs/2206.14176
http://arxiv.org/abs/2206.14176
https://github.com/denisyarats/pytorch_sac
https://github.com/denisyarats/pytorch_sac
http://arxiv.org/abs/1702.02453
http://arxiv.org/abs/1702.02453
http://arxiv.org/abs/1610.06781
http://arxiv.org/abs/1610.06781

Under review as a conference paper at ICLR 2024

A ENVIRONMENT CONFIGURATION

All of the environments we use are from the DeepMind Control Suite Tassa et al. (2018) or were
developed by us using MuJoCo Todorov et al. (2012). The full configuration of each environment is
shown below. For each entry below, the dimension is shown in parentheses.

• DMC Walker Run
– Observation space: Position (9), Velocity (9)
– Action space: Joint angles (6)
– Hidden parameter ω: Contact friction (1)
– Reward function: r = rstand ∗ rmove, where rstand rewards standing upright and
rmove rewards moving forward at a particular velocity

• DMC Pendulum Swingup
– Observation space: Position (1), Velocity (1)
– Action space: Pendulum angle (1)
– Hidden parameter ω: Pendulum mass scale (1)
– Reward function: r = rupright, where rupright rewards the pole being in an upright

configuration
• Throwing

– Observation space: Position (2), Velocity (2)
– Action space: Throwing arm angle (1)
– Hidden parameter ω: Ball mass scale (1)
– Reward function: r = exp (−|x− xgoal|), which gives a reward based on the distance

to the goal position
• Sorting

– Observation space: Position (1), Velocity (1)
– Action space: Sorting arm angle (1)
– Hidden parameter ω: Sorting arm mass scale (1)
– Reward function: r = exp (−|x− xgoal|), which gives a reward based on the distance

to the goal position

– The goal position xgoal is determined as follows:
{

+0.2 if ω < 0.6,

−0.2 otherwise.

• DMC Pointmass Easy
– Observation space: Position (2), Velocity (2)
– Action space: Pointmass motors (2)
– Hidden parameter ω: Pointmass motor scales (2)
– Reward function: The reward function depends on ω and is defined as follows: r ={

exp (−|x− xgoal|) if
∑

ω < 3,

(1− exp (−|x− xgoal|)) otherwise.

13

Under review as a conference paper at ICLR 2024

B DREAMER HYPERPARAMETERS

Parameter Value
Replay buffer size 5 x 105

γ discount 0.99
Batch size 1024
Learning rate (encoder, decoder, and LSTM) 10−4

Learning rate (actor) 2 x 10−4

Learning rate (critic) 8 x 10−5

Hidden layers (all networks) [400, 400, 400, 400]
Hidden dimension (actor and critic) 1024
Discount λ 0.95
Gradient clipping threshold 100
Imagination horizon 15
LSTM hidden dimension 64

C PPO HYPERPARAMETERS

Parameter Value
Learning rate 3 x 10−4

Steps per update 2048
Batch size 64
γ discount 0.99
GAE λ 0.95
Clip range 0.2
Gradient clipping threshold 0.5

D SAC HYPERPARAMETERS

Parameter Value
Replay buffer size 106

Seed steps 5000
Initial temperature 0.1
γ discount 0.99
Batch size 1024
Learning rate (all networks) 10−4

Hidden layers (actor and critic) [1024, 1024]
Critic τ 0.005

14

Under review as a conference paper at ICLR 2024

E RMA HYPERPARAMETERS

Parameter Value
Encoder shape [256, 128]
History size 25
Train size 100000
Learning rate 0.004
Activation ELU Clevert et al. (2015)

15

	Introduction
	Related Work
	PrivilegedDreamer: Adaptation via Explicit Imagination
	Background
	Algorithm

	Experiments
	HIP-MDP Tasks
	Baseline Algorithms
	Evaluation
	Ablation Studies

	Conclusion
	Environment Configuration
	Dreamer Hyperparameters
	PPO Hyperparameters
	SAC Hyperparameters
	RMA Hyperparameters

