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Abstract

The rapidly increasing size of large language
models (LLMs) presents significant challenges in
memory usage and computational costs. Quantiz-
ing both weights and activations can address these
issues, with hardware-supported fine-grained scal-
ing emerging as a promising solution to miti-
gate outliers. However, existing methods strug-
gle to capture nuanced block data distributions.
We propose BlockDialect, a block-wise fine-
grained mixed format technique that assigns a
per-block optimal number format from a format-
book for better data representation. Additionally,
we introduce DialectFP4, a formatbook of FP4
variants (akin to dialects) that adapt to diverse
data distributions. To leverage this efficiently,
we propose a two-stage approach for online Di-
alectFP4 activation quantization. Importantly, Di-
alectFP4 ensures energy efficiency by selecting
representable values as scaled integers compatible
with low-precision integer arithmetic. BlockDi-
alect achieves 10.78 % (7.48 %) accuracy gain
on the LLaMA3-8B (LLaMA2-7B) model com-
pared to MXFP4 format with lower bit usage per
data, while being only 5.45 % (2.69 %) below full
precision even when quantizing full-path matrix
multiplication. Focusing on how to represent over
how to scale, our work presents a promising path
for energy-efficient LLM inference.

1. Introduction

Quantization is a crucial technique (Gholami et al., 2022)
to address the challenges posed by the exponential growth
in Large Language Models (LLMs), including memory bot-
tlenecks (Frantar et al., 2022; Alizadeh et al., 2023; Gho-
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Figure 1. Overview of BlockDialect technique workflow.

lami et al., 2024) and increased computational costs (Xiao
et al., 2023). By reducing numerical precision, quantiza-
tion effectively reduces memory usage and data movement
overhead (Kim et al., 2023). Additionally, leveraging low-
precision operation results in improvements in inference
speed, area, and energy efficiency (Xiao et al., 2023; Cao
et al., 2024; Rouhani et al., 2023a). A key challenge in LLM
quantization lies in handling outliers - elements with much
larger magnitudes compared to the rest (Dettmers et al.,
2022). Outliers skew the scaling factor, diminishing the
representation capacity for the majority of the elements (Liu
et al., 2023). To counter this issue, block-wise quantization
has been adopted as a common solution (Frantar et al., 2022;
Dettmers et al., 2023; Lin et al., 2024; Sheng et al., 2023).
By partitioning the tensor into smaller blocks and quantizing
each block separately, this method effectively mitigates the
influence of outliers within localized areas.

While smaller blocks encapsulate outliers better, they in-
troduce overhead in managing high-precision scaling fac-
tors (Rouhani et al., 2023a). To balance this, recent advance-
ments have focused on hardware support for fine-grained
block-wise quantization (e.g., block size 32) (Rouhani et al.,
2023a; Dai et al., 2021; Rouhani et al., 2023b). In line
with this progress, Open Compute Project, backed by lead-
ing tech companies, has established the Microscaling (MX)
format specification !. This format enhances performance
and hardware efficiency via fine-grained blocks and power-
of-two scaling factors, and has been adopted by recent Al

"https://www.opencompute.org/documents/ocp-microscaling-
formats-mx-v1-0-spec-final-pdf
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accelerators like NVIDIA’s Blackwell 2.

In addition to advancements in block-wise quantization, re-
search has progressed to sub-8-bit quantization, reaching
even 2-bit precision (Egiazarian et al., 2024; Chee et al.,
2024). However, most methods focus on weight-only quan-
tization due to challenges in quantizing activations which
are: (1) the need for real-time quantization, (2) a wider dy-
namic range, and (3) channel-wise variances that misalign
with matrix multiplication dimensions (Xiao et al., 2023).
As a result, activations remain high-precision, requiring
dequantization of weights and high-precision arithmetic op-
erations (Dotzel et al., 2024), which reduces gains in energy
efficiency and inference throughput. Moreover, increasing
sequence lengths in modern LL.Ms exacerbate these inef-
ficiencies due to quadratic computational growth (Shyam
et al., 2024). Thus, addressing activation quantization is
critical for realizing energy-efficient LLM inference.

Our work stems from the insight: “If a group of numbers
deserves its own scaling factor, why not a number format?”
Existing research primarily focuses on “how to scale” ac-
tivations to make them quantization-friendly, often by mi-
grating quantization difficulty to weights (Xiao et al., 2023)
or utilizing Hadamard matrices to reduce outliers (Ashk-
boos et al., 2024). In contrast, we take a novel perspective
by exploring “how to represent” each block. Leveraging
hardware-supported fine-grained block-wise quantization,
we propose BlockDialect, which enables 4-bit weight and ac-
tivation post-training quantization with each block assigned
an optimal number format from the formatbook.

Additionally, we present DialectFP4: a formatbook of FP4
variants tailored to diverse block-wise data distributions. To
leverage this efficiently, we propose a two-stage approach
for online optimal format selection, achieving zero-shot
performance comparable to the mean squared error (MSE)-
based approach. Importantly, DialectFP4 ensures compat-
ibility with low-precision integer arithmetic by selecting
representable values as scaled integers (i.e., multiples of
0.5), enabling the proposed MAC units to achieve the area
and energy efficiency of FP4 MAC units. To further en-
hance energy efficiency, our approach extends to full-path
matrix multiplication, including not only activation-weight
multiplications in linear layers but also activation-activation
multiplications in attention blocks.

BlockDialect demonstrates significant improvements over
the MXFP4 format, achieving 10.78 % (7.48 %) higher zero-
shot accuracy with lower bit usage per data, while showing
only 5.45% (2.69 %) lower accuracy than full precision on
the LLaMA3-8B (LLaMAZ2-7B) for full-path quantization.
When quantizing only linear layers, BlockDialect achieves
a marginal 1.76% (1.20%) accuracy drop compared to full

“https://www.nvidia.com/en-us/data-center/tensor-cores/

precision. Our contributions can be summarized as follows:

¢ We introduce BlockDialect, a novel block-wise fine-
grained mixed format technique that assigns an optimal
number format to each block, enabling accurate repre-
sentation of data distribution in LLMs.

* We propose DialectFP4, a set of FP4 variants tailored
for diverse block-level distributions, and achieve online
DialectFP4 activation quantization through a practical
two-stage approach, yielding accuracy comparable to
an MSE-based approach.

* We demonstrate that our approach outperforms existing
methods across multiple LLMs while leveraging low-
precision, energy-efficient MAC units.

2. Related Work

2.1. Block-wise Quantization

Block-wise (or group-wise) quantization is a widely adopted
technique that assigns scaling factors on a per-block ba-
sis, constraining the impact of outliers within each block.
To determine these scaling factors, two methods can be
employed: software-supported and hardware-supported.
Software-supported methods (Frantar et al., 2022; Dettmers
etal.,2023; Lin et al., 2024; Sheng et al., 2023) typically rely
on high-precision scaling factors, enhancing accuracy but of-
ten require larger blocks due to the overhead of storing and
applying scaling factors. In contrast, hardware-supported
techniques allow smaller blocks using hardware-friendly
scaling factors, such as power-of-two shared exponents. VS-
Quant (Dai et al., 2021) and Micro-exponents (Rouhani
et al., 2023a) demonstrated the effectiveness of this ap-
proach, further enhanced by multi-level scaling factors
through dedicated hardware. Open Compute Project re-
cently introduced the microscaling (MX) format (Rouhani
et al., 2023b), which uses shared exponents across low-
precision formats like FP4 and FP6. Its adoption in recent
accelerators 2 highlights ongoing industry efforts to enhance
hardware support for fine-grained scaling. Building on these
advancements, our work introduces a novel approach that
assigns number formats to each fine-grained block.

2.2. Non-Uniform Quantization

Non-uniform quantization has been extensively explored as
alternatives to integer formats, aiming to better capture data
distributions in LLMs. Floating-point formats have proven
effective for handling wide value ranges encountered in
deep learning models. FP8-Quantization (Kuzmin et al.,
2022) highlights how FP8 outperforms INTS by effectively
addressing outliers through its flexible exponent represen-
tation. ZeroQuant-FP (Wu et al., 2023) demonstrates that
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floating-point formats strike a better balance between dy-
namic range and precision compared to integer formats.

To improve the flexibility of representable values, lookup-
based formats have been studied. NF4 (Dettmers et al.,
2024) and SF4 (Dotzel et al., 2024) leverage statistical dis-
tribution quantile functions (normal and Student’s t distribu-
tion, respectively) to better align with LLM profiles. Vec-
tor quantization extends this concept by performing vector-
level matching with codebooks, with AQLM (Egiazarian
et al., 2024) introducing additive codebook quantization
and QulP# (Tseng et al., 2024) proposing cache-efficient
compressed codebook. Recently, NxFP (Lo et al., 2024)
introduced an enhanced MX format, appending mantissa
bits to the shared exponent to address similar observations
to ours, such as inaccurate largest magnitude representation
(detailed comparison in Appendix D). However, these meth-
ods are typically limited to weight-only quantization and
depend on high-precision operations, incurring significant
compute and energy overhead. Our work uses FP4 vari-
ants that capture block-level distributions while ensuring
compatibility with low-precision integer arithmetic.

2.3. Activation Quantization

Addressing challenges of activation quantization such as
real-time execution, large dynamic ranges, and channel-
wise outliers, researchers have proposed several approaches:
1) LLM.int8() (Dettmers et al., 2022) and Atom (Zhao
et al., 2024) employ mixed precision subgrouping, retaining
outliers in high precision. However, this approach incurs
non-negligible overhead from handling mixed precision.
2) SmoothQuant (Xiao et al., 2023) migrates the quantiza-
tion difficulty to weights, enabling low-precision weight
and activation quantization, thereby avoiding high-precision
operations. 3) Recent advancements using Hadamard ma-
trices reduce outliers while maintaining computational in-
variance. This enables effective 4-bit weight, activation, and
KV cache quantization (Ashkboos et al., 2024; Liu et al.,
2024b). However, it incurs overhead from online Hadamard
transformation and retains some high-precision components
(e.g., queries). 4) Mixed format quantization selects optimal
number formats for predefined granularities. For example,
LLM-FP4 (Liu et al., 2023) adjusts matrix-wise formats and
exponent biases, while MoFQ (Zhang et al., 2024) applies
layer-wise format selection between floating point and inte-
ger. Yet, they lack adaptability to varying data distributions
due to relatively coarse and limited customization strategies.

Our work refines mixed format quantization by introduc-
ing FP4 variants with minimal differences in representable
values, assigning the optimal variant to fine-grained blocks.
To emphasize the use of variants over entirely distinct for-
mats, we use the term dialect throughout the paper instead
of variants.
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Figure 2. LLaMA3-8B block-level profiling results: (a) matrix-
wise accumulated magnitude distribution, (b) block’s maximum
magnitude distribution. Each bar represents the average across
layers 0, 10, 20, and 30, with consistent trends across layers.

Additionally, unlike prior methods that rely on calibration or
pre-training to reduce online activation processing overhead,
BlockDialect supports efficient online processing via two-
stage format selection and logical operation-based quantiza-
tion. It can also capture unstructured outliers through fine-
grained block-wise localization, beyond easily calibrated
structured outliers (e.g., channel-wise magnitude mean).

3. BlockDialect: Block-wise Fine-grained
Mixed Format Quantization

To achieve block-wise fine-grained mixed format quanti-
zation, we address three key questions: 1) Which dialects
should be used? 2) How should the per-block dialect be
selected? 3) How should online quantization and MAC
operations be performed?

3.1. Which Dialects Should be Used?

Block-Level Profiling. To provide a guideline for deter-
mining dialects for the formatbook, we conduct profiling
of Llama3-8B (Dubey et al., 2024), Llama2-7B (Touvron
et al., 2023), Mistral-7B (Jiang et al., 2023), and OPT-
6.7B (Zhang et al., 2022) models using WikiText2 (Merity
et al., 2016) (Figure 2 shows results for LLaMA3, with
results for other models in Appendix A). We split each ma-
trix into blocks of size 32, scale each block by the shared
exponent |log, (block’s maximum magnitude) | — 2, and ac-
cumulate magnitude distribution histograms for each block.
Normalization by the maximum exponent yields values in
[0, 2), while FP4 E2M1 spans [0, 6]. Subtracting 2 from
the shared exponent shifts the range to [0, 8), enabling di-
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Figure 3. Core observations shaping the formatbook design: (a)
wasted or underestimated ranges, (b) block-specific distributions
deviating from the matrix-wise pattern.

rect comparison with FP4 E2M1. Note that we leverage
hardware-supported scaling with a power-of-two scaling
factor, resulting in a power-of-two dynamic range.

Our matrix-wise analysis revealed that FP4 E2M1 closely
aligns with the observed distribution. Specifically, the values
are dense in the 0-2 range, sparser between 2—4, and highly
sparse between 48, patterns that mirror the distribution of
representable values in FP4 E2M1 (Figure 2a). Based on
this, we select FP4 E2M1 (hereafter referred to as FP4) as
the base format for our dialects.

However, upon examination of individual block magnitude
distributions, we identified two important trends. First, the
maximum magnitude of each block is relatively evenly dis-
tributed (Figure 2b). Second, some blocks deviate from the
overall matrix-wise distribution, which shows more sparsity
at the outer bound of the range. For instance, some blocks
have multiple values around 7.5 but none in the [4, 7] range.
These observations emphasize the importance of aligning
with each block’s specific distribution, leading to three core
principles for our formatbook: 1) minimizing wasted or
underestimated ranges, 2) prioritizing the representation of
larger magnitudes, and 3) ensuring hardware efficiency.

Minimizing Wasted or Underestimated Ranges. Each
block has its own dynamic range, but the use of power-
of-two shared exponents results in power-of-two dynamic
ranges. This mismatch leads to wasted or underestimated
range for certain blocks. As illustrated in Figure 3a, blocks
with maximum magnitudes smaller than 6 (the maximum
representable value of FP4) waste the range beyond their
maximum magnitude, as no data points can be mapped to
this unused range. For instance, if a block’s maximum
magnitude is 4.5, the maximum representable value of FP4
(6) could be more effectively utilized by scaling the range to
lie between 0 and 4.5. Conversely, data points larger than 6
cannot be represented and are thus underestimated by FP4.
This leads to our first criterion: including FP4 dialects with
different maximum magnitudes.

Prioritizing the Representation of Larger Magnitudes.

E () Different large magnitude distributions

Dialect0 || 75|55 /3 2 1.5 1 0.5 0
Dialect1 || 7.5] | 4.5 3 2 1.5 1 0.5 0
Dialect 2 7 5.5 3 2 1.5 1 0.5 0
Dialect3 || 7 4.5 3 2 1.5 1 0.5 0
Dialect4 || 6.5 5 3 2 1.5 1 0.5 0
Dialect 5 || 6.5 4 3 2 1.5 1 0.5 0
Dialect6 || 6 5 3 2 13 1 0.5 0
Dialect7 || 6 4 3 2 1.5 1 0.5 0
Dialect8 || 5.5 4.5 3 2 1.5 1 0.5 0
Dialect9 || 5.5]]3.5 3 2 1.5 1 0.5 0
Dialect 10|| 5 4.5 3 2 1.5 1 0.5 0
Dialect 11|] 5 eb 3 2 1.5 1 0.5 0
Dialect 12|| 4.5 4 3 2 1.5 1 0.5 0
Dialect 13| 4.5] | 3.5 3 2 1.5 1 0.5 0
Dialect 14|| 4 &B 3 2 {55 1 0.5 0
Dialect 15| 4 3 |\25 2 1.5 1 0.5 0
— <

@ Various dynamic ranges I_. (3 Granularity of 0.5 & common values

Figure 4. 16-dialect DialectFP4 example.

Large magnitudes, especially outliers, are more likely to
yield higher values after multiplication, indicating their
greater importance, as similarly noted by other works (Lin
et al., 2024; Dettmers et al., 2022). Likewise, we assume
that larger magnitudes in each block are also of relatively
greater importance. Given the constraints of 4-bit repre-
sentation, with only 8 distinct representable magnitudes,
our approach prioritizes accurately expressing larger mag-
nitudes over smaller ones. Our profiling reveals that each
block’s scaled data distribution does not always follow the
matrix-wise trend, which becomes sparser at the outer bound
(Figure 3b). Therefore, simply adjusting the exponent bias
is insufficient as it fails to capture the nuanced distributions
within specific blocks. Consequently, we establish our sec-
ond criterion: generating dialects capable of representing a
diverse range of large-magnitude distributions.

Ensuring Hardware Efficiency. To achieve hardware-
efficient quantization, our dialects must support low-
precision arithmetic. Hence, we maintain a minimum granu-
larity of 0.5. This approach limits the bit width per value and
avoids floating-point operations, enabling a more hardware-
efficient implementation (detailed in Section 3.3). Also,
using multiple dialects requires real-time activation quanti-
zation for each selected dialect. This process cannot rely on
conventional shift and round logic due to dialect variability,
necessitating distinct quantization logic for each. However,
implementing separate logic for each value across all di-
alects would be inefficient. These considerations inform our
third criterion: aligning to 0.5 granularity and preserving
most FP4 values across dialects. This strategy balances
representational flexibility with hardware efficiency.

16-Dialect DialectFP4 Example. Figure 4 illustrates 16-
dialect formatbook, DialectFP4, that meets our three key
requirements: (I) The dialects cover all possible maximum
magnitudes. @) Each pair of dialects shares the maximum
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magnitude while differing in one large magnitude value,
capturing various large magnitude distributions. (3) The unit
of these dialects is 0.5, aligning with FP4, while most of the
six smallest magnitude values remain consistent with FP4.
Based on this DialectFP4, each data point is stored using 4
bits: 1-bit sign and 3-bit index indicating the value of the
selected dialect. Additionally, a 4-bit dialect identifier (for
16 dialects) is assigned to each block.

3.2. How Should the Per-Block Dialect be Selected?

While the optimal per-block dialect for preknown weights
can be determined by calculating the exact mean square
error (MSE) for each dialect, this approach is infeasible for
activations due to their dynamic nature. In particular, Block-
Dialect focuses on fine-grained activation blocks, where the
selection of the dialect has a direct and significant impact
on quantization outcomes. This heightened sensitivity de-
mands a more precise and adaptive method. To address this,
we adopt a sample dataset-agnostic strategy that performs
on-the-fly dialect selection. Specifically, we propose an
efficient two-stage selection process that operates after an
initial preprocessing step, as shown in Figure 5.

Preprocessing Stage. In the preprocessing stage, we com-
pute a 5-bit shared exponent (FP16 exponent bit width)
based on the block’s maximum magnitude, adjusting it to
ensure the expression range, [0,8), fully encompasses FP4’s
range, [0,6]. Each element’s exponent is then adjusted by
subtracting the shared exponent, enabling a compact 2-bit
exponent per element. For cases where the shared exponent
exceeds an element’s exponent, a compensatory mantissa
shift is applied. The mantissa is then shifted by the adjusted
exponent, and the lower bits are truncated to form a 5-bit
representation: 3-bit integer part and 2-bit fractional part
(Figure 5a). This representation covers DialectFP4’s range
of 0.0 to 7.5 with 0.5 granularity, requiring 3 integer bits
and at least 1 fractional bit. However, to enable accurate
rounding during quantization, an additional fractional bit is
included, resulting in a 5-bit intermediate format. To clar-
ify, this does not indicate 5-bit quantization; rather, it is an
intermediate value used internally during dialect selection
and quantization.

Two-Stage Dialect Selection Process. Comparing every
dialect to find the best dialect for each block is computation-
ally expensive and inefficient. Instead, we adopt a two-stage
approach. In the first stage, we narrow down the options
by selecting a pair of dialects whose largest magnitudes
match the block’s maximum (Figure 5b). Recall that each
pair of dialects share the maximum magnitude. The block’s
maximum magnitude can be easily determined by round-
ing from the second fractional bit (Block,qzTrunc)- This
step not only streamlines the selection process but also en-
sures that the chosen dynamic range aligns with the block’s

characteristics, avoiding wasted or underestimated ranges.

In the second stage (Figure 5¢), we determine the optimal di-
alect from the chosen pair by evaluating which one has more
block elements within its beneficial range. Since the two
dialects differ by only one large magnitude value, the benefi-
cial range is defined as the interval where incorporating this
different value reduces quantization error. This range can
be calculated as the midpoint between the differing value,
its adjacent value, and the paired dialect’s differing value.
For example, the beneficial range for dialect 4 is [4.5, 5.75),
where 4.5 is the midpoint between the differing values of
dialect 4 and 5 ((5.0 + 4.0)/2), and 5.75 is the midpoint
between dialect 4 and its adjacent value ((5.0 + 6.5)/2).

A naive approach to count elements within beneficial ranges
requires four comparisons (two per each beneficial range)
per element, which introduces compute and latency over-
head. To optimize this, we convert range checks into effi-
cient logical operations as illustrated in Figure 5c. If we
represent each beneficial range as a 5-bit binary represen-
tation and enumerate all possible cases, we can compress
them into simple logical operations. In Figure 5c, we use
5'610110 to represent the upper limit of dialect 4’s beneficial
range, excluding 5.75 (5'b10111). It encompasses all values
smaller than 5.75, as we truncate after the second fractional
bit. Finally, if the four most significant bits are 4’61001, the
element falls within dialect 4’s beneficial range.

This logic can be pre-designed as we use a fixed DialectFP4.
With these simple logical operations, we can efficiently
count the number of elements falling within each dialect’s
beneficial range in parallel. Given that we use fine-grained
blocks with sizes up to 64 elements, the counting process
can be further optimized using a reduction tree structure.

3.3. How Should Online Quantization and MAC
Operations be Performed?

DialectFP4 uses a 0.5 granularity for representable values,
expressing values from O to 7.5 as 4-bit unsigned integers
from 0 to 15 (0.5 * [0—15]). Consequently, multiplications
can be efficiently performed with 4-bit unsigned integer
arithmetic, followed by a 2-bit right shift to account for the
0.5 factor of each number. Our quantization target is thus
4-bit (1-bit sign, 3-bit index), dequantized to 5-bit (previous
1-bit sign, 4-bit unsigned integer) before multiplication.

For weights, the optimal dialect for each block is precom-
puted, with pre-quantization performed prior to inference.
During inference, the 3-bit index is converted to 4-bit inte-
gers by indexing a pre-stored table of representable values
(Figure 6). Most values are shared across dialects, minimiz-
ing storage requirements. In contrast, activations require
real-time quantization to the nearest representable value of
the optimal dialect. For example, consider preprocessed data
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Figure 5. Per-block dialect selection process: a) overall process, b) 1st stage, and c) 2nd stage.

Optimal dialect index: 4'd4

Quantized 4-bit data: 401 110 [Dialect 4|Dialect 5|Dialect 6
sign idx 6.5 6.0
4.0 5.0
05--10=-5.0 ﬁ Common
T 5 3.0
Integer arithmetic 4 2.0
operation 3 1.5
2 1.0
Apply to 1 0.5
accumulated result 0 0

Figure 6. Overview of dequantization process.

(M ag¢rune in Figure 5) as 5610001, representing 8.5 with a
0.5 scaling factor. If the optimal dialect’s representable val-
ues are 0.5 * [13, 10, 6, 4, 3,2, 1, 0], the value 8.5 would be
quantized to 10. Note that this operation cannot be achieved
using simple shift and rounding logic. After applying the
0.5 scaling, the final representation is 5.

We can also accelerate this efficiently with a method similar
to our dialect selection process. Each representable value
is linked to simple checking logic derived from its binary
form. For example, data k is quantized to 10 if it falls within
[8.0, 11.5), expressed as [5'610000, 5'510110]. This can be
verified by k[4] & k[3] & !(&k[2:0]), which holds true for
the previous example, 5'610001. The final 4-bit quantized
value includes a sign bit and 3’6110 (the index for 10). The
overall quantization logic can be optimized by eliminating
redundant logical operations, such as the repeated use of
k[4] & 'k[3] across different values. Additionally, since most
representable values are shared among dialects, the logic
can be further simplified.

While multiplications are performed using 4-bit unsigned
integers, all pairwise products between two blocks share
the same exponent sum, enabling accumulation with integer
operations and resulting in power- and area-efficient hard-
ware (detailed in Section 4.3). Only when all elements in
a block are processed, partial sums are converted to FP16

and accumulated, right-shifted by 2 bits to apply the 0.5
scaling factor, and then requantized into 4-bit DialectFP4
format for the next matrix multiplication. Other specialized
operations, such as softmax, are performed in high precision.
Importantly, the optimal dialect selection, quantization, and
MAC operations can be pipelined to further accelerate the
overall inference speed.

4. Experiments
4.1. Experimental Setup

Models and dataset. We evaluate BlockDialect on three
LLMs: LLaMA-2-7B (Touvron et al., 2023), LLaMA-
3-8B (Dubey et al., 2024), and Mistral-7B (Jiang et al.,
2023). The evaluation includes seven zero-shot common-
sense reasoning tasks: LAMBADA (Paperno et al., 2016),
HellaSwag (Zellers et al., 2019), BoolQ (Clark et al., 2019),
PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al.,
2021), ARC-easy, and ARC-challenge (Clark et al., 2018).
We leverage the Im-eval-harness (Gao et al., 2023) frame-
work, with 0-shot notation representing the average accuracy
across seven tasks. Additionally, we report perplexity scores
on WikiText2 (Merity et al., 2016) with a chunk of 2048.

Baseline. We compare BlockDialect with the MXFP4
format (Rouhani et al., 2023b), which employs hardware-
supported scaling. Additionally, we compare two recent
methods employing software-supported scaling: LLM-
FP4 (Liu et al., 2023), and Quarot (Ashkboos et al., 2024).
Quarot reduces outliers via Hadamard matrix, while LLM-
FP4 adopts a matrix-wise mixed format. We run baselines
using their open-source code®. To demonstrate BlockDi-
alect’s applicability for full-path matrix multiplications, we
evaluate two scopes: linear (quantizing linear layers) and all
(extends to attention block operations Q K, Attn_scoreV).

3We set (search_interval, search_round) to (60, 2) in LLM-FP4
to avoid excessive calibration time, observing negligible LLaMA-
7B accuracy loss compared to the original paper.
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Table 1. Perplexity on Wikitext2 and average zero-shot accuracy across seven common-sense reasoning tasks. dn: down_proj, Q: query, K:
key, V: value. {: Quarot keeps query and attention scores in FP16 and performs the associated operations in FP16.

Block size LLaMA3-8B LLaMA2-7B Mistral- 7B
Scope Method (exception) | Eff. bit |Wiki] AVG.T| Eff. bit |Wiki} AVG.T| Eff. bit |Wiki] AVG.T
- FP16 - 16 | 614 7445| 16 | 547 7094| 16 |532 74.92
LLM-FP4 Atensor, Wich.| 4 |48.71 4192 | 4 |15.61 58.15| 4 |17.47 5847
Quarot (W4A4) | A:token, W:ch. 4 8.02 66.92 4 6.04 68.00 4 5.74 7249
Linear MXEP4 16 431 | 820 6853 | 431 | 707 6686| 431 | 649 7033
32 416 | 823 6831 | 4.16 |7.04 6594 | 4.16 | 642 70.72
A-w) 32 428 | 7.05 7224| 428 |584 69.74| 428 | 5.65 73.46
BlockDialect 64 W:4.25 W:4.23 W:4.25
D leotd) (dn16) Aasp | 712 7269 | 571588 6951 | 4,50 | 568 7330
64 414 | 730 7151| 414 | 596 6895| 4.14 |575 72.76
Quarot (W4A4KV4)| Aitokem Wieh g o 411 8 17 66.01 (WK, V:4| 610 67.50 |W,K,V:4| 580 71.72
(K, V:128) ALVET) S : A : ALV S :
MXEP4 16 431 |18.84 5822 | 431 |11.22 60.77 | 431 | 927 66.03
All 32 416 |16.69 58.84 | 4.16 |11.14 59.76 | 4.16 | 8.98 66.01
(AW, A-A) gi V\?fgs 787 6857 vﬁ% 633 67.68 v:fl?fgs 5.87 72.15
BlockDialect 4. 4. 4.
(w/ DialootFb4) | @nQ.K:16) | A21 777 69.00 | 4,57 | 635 6825 (75590 7171
64 414 | 855 6660 | 414 | 663 67.15| 414 | 607 7026

All operands are quantized along their respective multipli-
cation dimensions, as detailed in Appendix C. We denote
Effective bitwidth (Eff. bit) as the average bit width required
per data, accounting for overhead from scaling factors or
dialect identifiers as explained in Appendix I. In the linear
scope, this metric covers linear layers; in the all scope, it
includes all matrix multiplications. Block size is 32 unless
otherwise specified. For simplicity, we denote each method
by its block size, e.g., [method]-32 (block size of 32).

Implementation. For performance evaluation, we imple-
ment the BlockDialect emulation framework* on top of
HuggingFace Transformers using PyTorch. All experiments
were conducted on a single NVIDIA H100 GPU. For hard-
ware comparison, we model multiply-accumulate (MAC)
units for various precision levels using SystemVerilog and
synthesize them with Synopsys Design Compiler. The syn-
thesis is performed at 0.5 GHz using the Nangate 45nm
OpenCell Library to estimate area and power. Each MAC
unit is sized to iteratively add 64 terms from a dot product.
For additional prototype hardware cost analysis, we syn-
thesize the design using the SkyWater 130nm standard cell
library, targeting a clock frequency of 100 MHz.

4.2. Experiment Results

Main Results. As shown in Table 1, BlockDialect consis-
tently outperforms MXFP4 across all models in the linear
scope, even at a lower effective bitwidth. For instance,
BlockDialect-64 achieves a 0.93-point lower perplexity and
3.20 % higher accuracy than MXFP4-32 on the LLaMA3
model. Additionally, BlockDialect-64 surpasses both LLM-

*nttps://code.stanford.edu/tambe-1lab/
blockdialect

FP4 and Quarot, with 41.41/ 0.72-point lower perplexity,
and 29.59 % / 4.59 % higher accuracy, respectively. Com-
pared to full-precision results, BlockDialect-32 exhibits
marginal accuracy drops of 2.21 % / 1.20% / 1.46 % on
the LLaMA3, LLaMA?2, and Mistral models, respectively.

BlockDialect achieves full-path quantization (all) with min-
imal performance loss. While MXFP4-16 suffers a signifi-
cant accuracy drop (~16.23 %), BlockDialect-32 shows re-
silience, with 5.88% / 3.26% / 2.77 % accuracy degradation
compared to full precision on the LLaMA3, LLaMA2, and
Mistral models, respectively. BlockDialect-32 also outper-
forms Quarot (W4A4KV4), which quantizes the linear layer,
key, and value to 4-bit, demonstrating BlockDialect’s supe-
riority. Note that the comparison with W4A4KV4 is conser-
vative, as it retains high-precision components and performs
high-precision activation-activation multiplications.

Finally, BlockDialect’s performance improves further with
smaller blocks in quantization-sensitive sublayers, as de-
tailed in the following block size ablation study. This leads
to accuracy drops of only 1.76 % in the LLaMA3 linear
scope, with 5.45% / 2.69% in the all scope for the LLaMA3
and LLaMA?2 models, respectively, compared to full preci-
sion. Additionally, it outperforms MXFP4-16 by 10.78 % /
7.48 % with lower effective bitwidth for these models.

Comparison with MSE-based Dialect Selection. We pro-
posed an efficient two-stage approach to eliminate real-time
MSE calculation for activation quantization. Table 2 com-
pares our method with the MSE-based approach, where both
weight and activation dialects are selected based on MSE.
Despite the absence of MSE computations, our approach
in linear scope results in only a minor perplexity increase
(~0.04) and a slight accuracy drop (~0.61 %) across mod-
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Table 2. Comparison of dialect selection methods.

LLaMA3-8B

Scope | Method

Wiki| O-shotf

LLaMA2-7B

Wiki| 0-shot|Wiki] 0-shotf

Mistral-7B

Table 4. Comparison across dialect numbers. For the 8-dialect
case, two configurations are tested: prioritizing large magnitude
distribution (dist.) and dynamic range (max. magnitude) (range).

Linear MSE | 7.01 72.85 | 5.83 69.66 | 5.64 73.80
Ours | 7.05 72.24 | 5.84 69.74 | 5.65 73.46

All MSE | 7.72 69.19 | 6.25 68.31 | 585 72.12
Ours | 7.87 68.57 | 633 67.68 | 5.87 72.15

Table 3. Impact of block size: dn: down_proj o: output_proj, g:
q-proj, k: k_proj, v: v_proj, Q: query, K: key.

Block size | LLaMA3-8B | LLaMA2-7B Mistral-7B

Scope | (exception) |Wikil. 0-shot|Wikil O-shot? |Wiki). O-shott

16 6.82 7298 | 5.76 6991 | 555 73.39

32 705 7224 | 584 69.74 | 5.65 73.46

Linear 64 730 7151 | 5.96 6895|575 72.76

64 (dn:16) | 7.12 72.69 | 5.88 69.51 | 5.68 73.30

64 (0:16) | 7.24 71.68 | 5.94 69.60 | 5.73 72.64

64 (q.k1:16)| 7.19 71.66 | 591 69.28 | 5.68 7330

16 732 70.64 | 6.08 68.66 | 5.71 72.53

32 7.87 6857 | 633 67.68 | 5.87 72.15

All 64 8.55 66.60 | 6.63 67.15 | 6.07 70.26
64

(dnoK:16)| 77 6900|635 6825|590 7171

els, even when evaluated on the all scope (~0.15, ~0.63 %),
highlighting its effectiveness. This marginal gap also stems
from the limitations of the MSE method, which overlooks
the magnitude of data elements. This oversight can lead to
suboptimal quantization, with inaccuracies for large magni-
tude values while accurately quantizing smaller ones. By
focusing on large magnitudes, our method achieves more
efficient and balanced quantization.

Impact of Block Size. We explore the impact of block
size in Table 3. Overall, smaller sizes improve performance
by constraining outliers within smaller blocks and making
it easier to represent all block data more effectively with
dialects. However, this advantage comes with a higher effec-
tive bitwidth, making it a trade-off between performance and
memory footprint. We further investigate dynamic block
size assignment by applying small blocks to specific projec-
tion layers to assess block size sensitivity across sublayers.
As in Table 3, down projection has higher sensitivity, which
aligns with the observation from prior works (Li et al., 2023;
Ashkboos et al., 2023). Based on these findings, we ob-
tain comparable or superior results with block size of 64
by applying smaller blocks only to sublayers prone to out-
liers (Hooper et al., 2024; Liu et al., 2024a), compared to a
uniform block size of 32 in the all scope.

Impact of Number of Dialects. Table 4 compares
the performance across different numbers of dialects in all
scope. Eight dialects are insufficient to cover both maximum
magnitudes and large magnitude distribution, while the 24-
dialect formatbook struggles to identify the optimal dialect

. LLaMA3-8B | LLaMA2-7B | Mistral-7B
Dialect #| i1 0-shott| Wiki). O-shott | Wiki 0-shott
8 (dist) | 829 67.96 | 651 6675 | 6.01 71.88
8 (range) | 8.20 68.06 | 645 6751 | 5.94 71.42

16 | 7.87 6857 | 633 67.68 | 587 72.15
| 24 [ 884 6757|697 67.30 | 605 71.69

accurately, leading to reduced performance. The results
demonstrate that the 16-dialect formatbook strikes the best
balance, effectively addressing both maximum magnitudes
and large magnitude distribution. Interestingly, prioritizing
maximum magnitude (range) results in better performance
than prioritizing distribution (dist.) overall, aligning with
our two-stage approach: select a pair of dialects based on
dynamic range first, then choose the better one based on its
distribution.

Additional Exploratory Studies. To explore various as-
pects of BlockDialect, we further analyze the dialect selec-
tion ratio for each model (Appendix B), confirming that
all dialects are meaningful, with no extremely dominant
or meaningless dialects. We also evaluate the performance
of BlockDialect across various models and workloads (Ap-
pendix E, F), demonstrating its generality for LLMs with
diverse architectures, sizes, and tasks. In particular, we
compare against another baseline format, NVFP4>, a block
scaling format with floating-point scaling factors introduced
by NVIDIA. Additionally, we investigate the impact of
block shape (Appendix G) and examine the synergy with
different activation quantization approaches (Appendix H).

4.3. Hardware Cost Analysis

MAC Unit Comparison. DialectFP4 is compatible with
5-bit integer arithmetic operations, enabling two implemen-
tations: 1) leveraging the general INT4 MAC with simple
logic (e.g., shifter) to handle residual bits for 5-bit multipli-
cation (Ours-INT4), and 2) designing optimized MACs with
4-bit unsigned integer multiplier and additional XOR gate
for sign bit (Ours). Although the first option requires more
power and area (still efficient than high-precision MACs), it
could be a practical option since many commercial accelera-
tors already adopt INT4 MACs. The second option’s MAC
design achieves area and power efficiency comparable to
FP4 (Table 5), providing significantly higher efficiency com-
pared to higher precision MACs. Specifically, it is 1.58x
(1.54x) more power (area) efficient than FP6 MACs, which
are required to achieve better accuracy levels using the MX

5https ://docs.nvidia.com/deeplearning/
cudnn/frontend/latest/operations/
BlockScaling.html
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Table 5. Comparison of MAC units with different number formats
(0.5GHz, 45nm process). Ours-INT4 refers to the implementation
that leverages the widely adopted INT4 MAC, with supportive
logic. Area and power are in um? and uWW, respectively.

T Multiplier Accumulator Total

ype Area [ Power | Area | Power | Area | Power
INT4 62.51 | 20.59 | 138.59 | 80.16 |207.48 | 104.18
INTS 101.88 | 34.35 | 171.04 | 106.80 | 275.04 | 142.18
INTS8 301.91 | 162.93 | 244.72 | 162.79 | 554.34 | 331.17
FP4 71.55 | 30.04 | 171.04 | 96.92 |246.85|129.44
FP6 158.54 | 73.88 |223.17|139.80 | 381.71 |213.68
Ours 63.31 | 16.02 | 184.87 | 118.91 | 248.18 | 134.92

Ours-INT4 | 120.76 | 41.58 | 168.11 | 103.09 | 299.52 | 149.22

Table 6. Overhead of on-the-fly quantization and dequantization
(100MHz, 130nm process).

Latency Power | Area
Module (clk cycle) | (mW)| (um?)
Quantization
(incl. format selection) 5 0.7 428336
Dequantization 1 0.2 | 6319.8
32 MACs (Ours) 1 2.2 |41319.6
32 MACs (INT8) 1 6.1 |85482.0

format (Rouhani et al., 2023b) and 2.45 x (2.23 X) more
power (area) efficient than INT8 MACs.

Overhead of On-the-fly Quantization and Dequantiza-
tion. Since the latency and energy benefits - improved
computation efficiency through low-precision MACs and re-
duced data movement via 4-bit quantization - are clear (Yuan
et al., 2024; Argerich & Patifio-Martinez, 2024), assess-
ing whether the overhead offsets these gains is crucial. To
show this, we synthesize and evaluate an implementation
of BlockDialect modules for 32-element processing in Sys-
temVerilog. Since we share six values across dialects, we
keep the number of cases manageable, enabling a compact
combinational logic implementation. Even with a register
file, the overhead remains minimal at 600B for 32-element
parallel processing.

As shown in Table 6, quantization and dequantization logic
takes only a few clock cycles, which can be further over-
lapped with pipelining. Their power and area are compara-
ble to or lower than that of our 32 MAC units, indicating
minimal overhead. The overhead of on-the-fly activation
quantization can also be amortized as the quantized activa-
tion block is reused across a large number of weight blocks.
Compared to the resources required for INT8 MACs, the
practicality of BlockDialect becomes more evident.

Resource Overhead of Real-time MSE Calculation. To
evaluate the efficiency of our two-stage approach, we com-
pare its resource overhead against that of an MSE-based

Table 7. Resource overhead comparison between two format selec-
tion methods: two-stage and MSE-based (mean square error).

Syn. frequency | Latency Power | Area

Method (MHz) (clk cycle) | (mW)| (um?)
2-stage 100 5 0.7 | 42833.6
MSE 83.3 8 6.9 ]399409.3

method. Qualitatively, MSE-based method requires 16
rounds (per dialect) of quantization, each involving FP16
square mean error accumulations for every block element,
whereas our 2-stage selection efficiently operates in a single
pass using 5-bit fixed-point values, logical operations, and
simple counting.

Quantitatively, we design in SystemVerilog and synthesize
quantization logic implementations with a 130nm process.
For a fair comparison, we aim to match the latencies as
closely as possible while evaluating area and power. Ad-
ditionally, since FP16 operations in the exact MSE-based
approach incur significant overhead, we convert into fixed-
point representation and truncate the lower bits to reduce
the complexity. Nevertheless, as shown in table 7, MSE-
based logic is 9.32x larger and consumes 9.86x more power.
Notably, MSE-based logic fails to meet timing at I00MHz
(synthesized at 83.3MHz), whereas our logic meets timing
constraints even at 250MHz, underscoring the efficiency of
our approach and the impracticality of online MSE-based
selection.

5. Conclusion

We introduce BlockDialect, a post-training quantization
technique that assigns an optimal number format to fine-
grained blocks. This approach allows the capture of nuanced
data distributions often overlooked by existing methods.
Complementing this, we develop DialectFP4, a set of FP4
variants, which ensure compatibility with an energy- and
area-efficient integer MAC unit. To leverage this efficiently,
we propose a two-stage approach for online DialectFP4
activation quantization. Our 4-bit quantization results on
the LLaMA3-8B (LLaMA2-7B) model show only 5.45 %
(2.69 %) accuracy gap compared to full precision for full-
path quantization. By shifting the focus to how each block
should be optimally represented in hardware-efficient man-
ner, rather than solely scaling values, BlockDialect sets a
foundation for energy-efficient LLM inference.
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Impact Statement

This paper introduces advancements in quantization tech-
niques for large language models, focusing on improving
memory usage and computational efficiency which, as a so-
cietal consequence, could help reduce the significant energy
consumption associated with running LL.Ms, potentially
making Al systems more environmentally sustainable and
accessible.
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A. Block-Level Profiling Results
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Figure 7. LLaMA2-7B (a,b), Mistral-7B (c,d), and OPT-6.7B (e,f) Block-level profiling results: (a), (c), (¢) matrix-wise accumulated
magnitude distribution, (b), (d), (f) block’s maximum magnitude distribution.

Figure 7 presents the block-level profiling results for the LLaMA2-7B, Mistral-7B, and OPT-6.7B models. Each matrix is
divided into blocks of size 32, with each block scaled by the shared exponent, |log,(block’s maximum magnitude) | — 2.
Magnitude distribution histograms are then accumulated for each block. Figure 7 shows the average results for layers 0, 10,
20, and 30, showing a similar trend to LLLaMA3 as discussed in Section 3.1: the matrix-wise accumulated distribution aligns
with FP4 E2M1’s representable value distribution, while each block’s maximum magnitude is relatively evenly distributed
across the possible range.

B. Dialect Selection Ratio

Figure 8 illustrates the selection ratio of each dialect across four models. While the Mistral model shows a slightly higher
concentration in selecting specific dialects, all dialects are effectively utilized, with no dialect being overwhelmingly
dominant or insignificant. Interestingly, the weights of the Mistral model are more likely to select dialects with larger values
(even-number dialects) compared to other models. Unlike weights, activations of all models tend to favor dialects skewed
towards smaller values (odd-numbered dialects). It is worth mentioning that a low selection ratio does not necessarily
imply low importance for the corresponding dialect. For instance, even if a dialect has a low selection ratio, it can still
be valuable if it effectively represents the large magnitudes of certain blocks with high shared exponents, indicating high
original magnitudes.
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Figure 8. Selection ratio of each dialect for (a) LLaMA3-8B, (b) LLaMA2-7B, (c) Mistral-7B, and (d) OPT-6.7B. Experiments were
conducted on Wikitext2 with a block size of 32. Each bar represents the average across layers 0, 10, 20, and 30.

C. Quantization Dimension
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Figure 9. Proposed KV cache structure: (a) challenge of sub-channel-wise value quantization, (b) proposed cache structure.

BlockDialect quantizes matrices and vectors along their respective multiplication dimensions. For example, in activation-
weight multiplication, activations are quantized at the sub-token level, while weights are quantized at the sub-channel
level. Existing KV cache quantization approaches, such as per-token quantization (Sheng et al., 2023), per-channel key
quantization with non-uniform representation (Hooper et al., 2024) or group-wise quantization (Ashkboos et al., 2024),
primarily focus on compressing and reducing I/O costs during the decode phase. These approaches often dequantize data to
FP16 before performing multiplications, which limits computational efficiency. In contrast, BlockDialect addresses the full
computational path, achieving both memory savings and hardware-efficient computation without FP16 multiplications. Note
that BlockDialect’s full-path low-precision matrix multiplication is significantly more efficient during the prefill phase.

To achieve this, BlockDialect employs sub-token-wise quantization for keys and sub-channel-wise quantization for values,
aligning with the respective multiplication dimensions. However, this design introduces a challenge: repeated quantization
overhead and numerical inconsistencies when updating the KV cache. Specifically, while sub-token-wise key quantization is
straightforward, as new key vectors can be quantized before multiplication and appended to the KV cache, sub-channel-wise
value quantization is more complex. When a new value vector is added, the values of each sub-channel must be requantized
(Figure 9a). However, BlockDialect discards the FP16 value and directly dequantizes to 5-bit integers with a shared exponent
to leverage integer arithmetic operations. As a result, requantizing from the 5-bit integer quantized form risks quantization
errors when integrating new value vectors.

To address this, we can leverage fine-grained block structure with a default size of 32. Values are stored in 4-bit chunks of
block _size token count, with only the most recent chunk (size of N mod block_size) maintained in high precision. Instead
of requantizing all blocks of the most recent chunk for every new value vector, once this chunk’s token count reaches the
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block size, then the chunk is stored in 4-bit form® (Figure 9b). This strategy avoids excessive quantization and ensures
accurate updates while keeping the small number of high precision tokens (low portion relative to the total sequence length),
resulting in minimal additional storage cost. Similar to Section 4.2, smaller blocks can be used for KV cache quantization,
further reducing the overhead and enhancing model performance.

D. Comparison with NxFP

Concurrent with our work, NxFP (Lo et al., 2024) introduces the Nanoscaling format (NxFP), which improves the limitations
of the Microscaling format (MX) (Rouhani et al., 2023b). While NxFP applies to weight-only quantization, requiring
high-precision operations, BlockDialect utilizes energy-efficient low-precision integer operations for both weight and
activation quantization. However, NxFP and our work originate from the similar observations on the limitations of the MX
format and both employ mixed formats, we clearly distinguish our solutions from NxFP’s in this section.

NxFP identifies three limitations of the MX format: 1) inaccurate tracking of the largest value, 2) vacant quantization levels
inherent to floating point representation, and 3) redundant O-representations. To address the first issue, NxFP appends a
2-bit mantissa to the shared exponent to improve accuracy of the quantized largest value. The second issue is addressed by
selecting the better option between BFP and MxFP. However, these approaches reduce the hardware efficiency of the MX
format in scaling factor handling. Also, NxFP proposes techniques similar to other mixed-format quantization strategies,
such as choosing between two distinct formats, like integer and floating-point representations (akin to BFP vs. MX after
dividing by the shared scaling factor) and adjusting exponent biases to indirectly better represent the distribution (akin to
additional 2-bit mantissa for shared exponent). While these strategies demonstrate effectiveness, they do not fully account
for the fine-grained block-level data distributions that we have observed in our profiling.

In contrast, BlockDialect takes a more tailored approach by selecting multiple (e.g., 16) dialects capable of expressing
diverse block-level distributions, while still maintaining a hardware-efficient power-of-two shared exponent. Moreover,
BlockDialect dynamically selects dialects that align with block-specific data characteristics, offering a more direct and
precise approach compared to adjusting exponent biases. Additionally, unlike NxFP, which only proposes MSE-based
format selection, we present a practical two-stage approach to enable online activation quantization.

Finally, NxFP and prior works (Dotzel et al., 2024) have proposed remapping redundant O-representations to other
quantization values to improve utilization. While this is also applicable to our work, BlockDialect emphasizes hardware
simplicity and minimal dequantization overhead.

8Similar architecture to the residual cache in https://huggingface.co/blog/kv-cache-quantization, which targets to reduce repeated
quantization and preserve accuracy for recent keys and values.
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E. Experimental Results on a OPT-6.7B Model

Table 8. Results on OPT-6.7B model. Perplexity on Wikitext2 and zero-shot accuracy across seven common-sense reasoning tasks:
LAMBADA (LA), WinoGrande (WG), BoolQ (BQ), PIQA (PQ), ARC-easy (A-e), ARC-challenge (A-c), and HellaSwag (HS).

Scope Method Block size Feature Eff. bit|Wiki.| LAT WGT BQT PQt A-et A-ct HST |AVG.T
- FP16 - Full precision 16 |10.86| 67.63 6543 66.12 76.55 60.14 34.81 67.19 | 62.55
MXFP4 16 HW-supported scaling 431 [19.17| 49.78 5241 50.06 69.31 4739 28.92 56.64 | 50.64
32 4.16 [19.22| 49.89 5493 49.54 69.10 46.89 29.44 56.04 | 50.83
Linear . 16 456 [11.26| 66.89 64.48 62.57 76.55 58.71 3490 65.20 | 61.33
BlockDialect
. 32 1D block 428 [11.31| 6573 64.40 62.11 75.68 57.58 32.17 64.69 | 60.34
(w/ DialectFP4)
64 4.14 |11.73| 63.21 61.33 63.43 74.81 58.12 33.02 63.16 | 59.58
1 431 [22.94| 44. .67 48. 34 4545 28. . 49.
MXEP4 6 g sefi 3 9 93 53.6 8.65 68.3 5.45 28.33 53.99 | 49.05
32 4.16 [22.12| 44.11 5043 4554 63.49 44.15 29.35 53.81 | 47.27
All . 16 456 [11.45| 64.87 63.54 60.70 75.19 58.71 33.11 64.71 | 60.12
BlockDialect
. 32 1D block 428 |11.63| 64.62 62.19 59.66 7541 58.29 32.85 63.82 | 59.55
(w/ DialectFP4)
64 4.14 [12.14| 59.42 60.85 60.43 74.10 57.28 32.34 62.86 | 58.18

We further evaluate BlockDialect on an LLM with a different architecture, OPT-6.7B (Zhang et al., 2022) in Table 8.
Note that the effective bitwidth of BlockDialect-32 (64) is lower than that of MXFP4-16 (32). BlockDialect-32 (64)
achieves significant gains over MXFP4-16 (32), showing 7.86 (7.49) and 11.31 (9.98) lower perplexity points, along
with 9.70% (8.75%) and 10.50% (10.91%) zero-shot accuracy improvements in linear and all scopes, respectively. Also,
BlockDialect-16 is only 1.22% and 2.43% behind full precision in linear and all scopes, respectively.

F. Experimental Results across Architectures, Model Sizes, and Workloads

So far, our evaluation has focused on models with approximately 7-8 billion parameters. To evaluate the general applicability
of BlockDialect, we compare performance across a range of architectures, model sizes, and workloads. Specifically, we
test LLaMA3-1B, Phi-2.7B (Javaheripi et al., 2023), MobileLLM-125M (Liu et al., 2024¢), and GPT2-1.5B (Solaiman
et al., 2019). Perplexity (PL) and accuracy of common reasoning (CR) tasks follow the same evaluation setup as in previous
experiments. For GLUE (Wang et al., 2018) (GL), we report the average accuracy over six tasks: MRPC, SST-2, RTE, QQP,
MNLI, and QNLI. For MMLU (Hendrycks et al., 2020) (ML), we use representative accuracy scores from the Im-eval-
harness framework. We evaluate both 16- and 32-block configurations for a comprehensive comparison. Additionally, we
include NVFP4 as a baseline - a block scaling format introduced by NVIDIA, which uses FP§ E4M3 floating-point scaling
factors and FP4 E2M1 data elements.

Overall, BlockDialect outperforms both data types, demonstrating its versatility, with NVFP4 falling between MXFP4 and

Table 9. Performance comparison of BlockDialect (BDFP4), NVFP4, and MXFP4 across various model architectures, sizes, and workloads.
Full indicates full-path quantization; if unspecified, only linear layers are quantized. MMLU results for GPT2 and MobileLLLM are
omitted as they are too low to be compared. Bold highlights the best result among comparable effective bitwidths (NVFP4-32, MXFP4-16,
BDFP4-32).

Blk

size

Eff.
bit

Format

LLaMA3-1B
PL| CRt ML{ GLt

Phi-2.7B
PL| CRt ML{ GLt

MobileLLM-125M
PL| CRt? GLt

GPT2-1.5B
PL, CR} GLt

LLaMA3-1B (Full)
PL], CRt MLt GL?T

GPT2-1.5B (Full)
PL, CR} GLt

FP16 | -

9.75 60.38 37.58 52.62

9.71 72.43 54.50 64.32

12.53 46.31 51.20

17.41 53.15 48.66

9.75 60.38 37.58 52.62

17.41 53.15 48.66

4.5
4.25

NVFP4

12.40 55.18 31.96 52.72
12.82 54.12 29.06 53.14

11.28 68.76 52.09 64.88
11.62 68.28 50.96 64.93

14.91 44.18 49.63
15.39 43.57 50.53

18.60 50.88 47.65
18.54 50.42 47.22

17.46 49.16 27.15 50.81
19.99 48.53 26.11 49.89

18.81 50.42 47.76
18.77 49.80 47.20

4.31
4.16

MXFP4

15.71 51.40 27.08 50.66
15.91 50.60 26.26 50.55

12.59 69.41 50.04 61.39
12.83 69.09 50.01 61.09

18.33 42.22 49.75
18.16 42.18 49.24

19.11 51.28 48.25
19.00 51.28 48.03

53.75 41.84 24.16 49.30
60.04 40.04 24.05 48.91

20.32 49.21 47.74
20.07 50.00 47.53

4.56
4.28

BDFP4

11.47 56.32 31.35 52.74
12.09 55.54 30.17 53.43

11.12 70.58 52.13 62.87
11.79 69.91 52.11 64.70

14.33 44.51 50.38
15.06 43.59 50.38

17.85 51.82 48.08
18.07 51.92 47.32

14.83 52.24 27.89 51.35
17.42 49.46 25.87 51.15

18.02 51.37 47.59
18.36 51.11 46.79
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BlockDialect. Also, in the full-path results, the accuracy gap widens, solidifying BlockDialect’s superiority. Note that
unlike BDFP4 and MXFP4, which use a power-of-two shared exponent, NVFP4’s floating-point scale factor requires costly
floating-point operations (e.g., normalization, scale factor multiplication), with overhead increasing as block size decreases.

G. Impact of Block Shape

Table 10. Impact of block shape: 2D block shapes of sizes 16, 32, and 64 have dimensions of (4,4), A(4,8) or W(8,4), and (8,8),
respectively.

Scope Block size| LLaMA3-8B | LLaMA2-7B | Mistral-7B
(shape) |Wiki| O-shotf|Wiki] 0-shot?|Wiki| 0-shotf
16 (1D) | 6.82 7298 | 5.76 6991 | 555 73.39
16 (2D) | 6.88 73.16 | 5.82 69.43 | 558 73.31
Linear 32(1D) | 7.05 7224 | 584 69.74 | 5.65 73.46
32(2D) | 7.09 7197 | 592 69.09 | 5.65 73.15
64 (1D) | 7.30 71.51 | 596 6895 | 575 72.76
64 (2D) | 7.34 71.19 | 6.06 69.21 | 5.78 72.05
16 (1D) | 7.32 70.64 | 6.08 68.66 | 5.71 72.53
16 2D) | 7.47 7095 | 6.22 69.09 | 5.84 72.89
All 32(1D) | 7.87 68.57 | 6.33 67.68 | 5.87 72.15
32(2D) | 7.89 68.58 | 6.51 67.55 | 5.95 72.39
64 (1D) | 8.55 66.60 | 6.63 67.15 | 6.07 70.26
64 2D) | 8.50 67.57 | 6.87 67.47 | 6.13 70.75

So far, we have experimented exclusively with 1D linear-shaped blocks. However, 2D square-shaped blocks may prove
advantageous, as they can better capture channel-wise activation variance compared to sub-token-wise linear-shaped blocks.
We compare perplexity and zero-shot common-sense reasoning task accuracy between linear and square-shaped blocks in
Table 10. While the 2D block shows slightly better accuracy for all scope, there is no clear superiority between 1D and 2D
blocks in terms of accuracy. However, 2D block quantization generally results in higher perplexity. We infer that, due to the
significant channel-wise variance of the key (Liu et al., 2024a), 2D block quantization for the key in all scope results in
marginally better accuracy than sub-token-wise 1D block key quantization, while 2D block quantization for the linear layer
has minimal impact with small block size.

It is important to note the Im-eval-harness framework processes multiple tokens in parallel, akin to the prefill phase. As a
result, the reported numbers may not fully capture the impact of block shape during the decode phase. In the decode phase,
operations typically involve GEMV or flat GEMM, which require zero padding for the square shape quantization. This
results in an increased effective bitwidth for square-shaped blocks, as the scaling factor is calculated over fewer non-padding
elements compared to the full block size. At the same time, it could be beneficial for accuracy, as the effective block size for
scaling becomes smaller for padded blocks.

H. Combination with Other Approach

To explore potential synergy with other approaches, we combine BlockDialect with SmoothQuant (Xiao et al., 2023), which
shifts the challenge of activation quantization to the weights. We experiment with various migration strengths (), controlling
the aggressiveness of this shift with a granularity of 0.05, and select the most effective one with the lowest perplexity. For
a block size of 64, applying SmoothQuant results in 0.09, 0.07, 0.09, and 0.48 points of perplexity improvement, along
with 0.03%, 0.13%, 0.26%, and 1.69% accuracy gain in the LLaMA3-8B, LLaMA2-7B, Mistral-7B, and OPT-6.7B models,
respectively. This demonstrates an overall improvement from the combination, though the gains are limited in some models.

We hypothesize that, despite the distinct perspectives of BlockDialect and SmoothQuant, they are not entirely orthogonal.
Specifically, methods that flatten the distribution (like SmoothQuant or other techniques using a rotation matrix) may
influence the performance of our approach, which focuses on selecting the best dialect for each distinct fluctuating
distribution. We believe an optimal balance exists between both approaches. For example, extreme-magnitude outliers could
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Table 11. Synergistic Effects of combining SmoothQuant with different LLMs.

Method Wikil 0-shot?
LLaMA3-8B w/o SmoothQuant| 7.30 71.51
LLaMA3-8B w/ SmoothQuant | 7.21 71.54
LLaMA2-7B w/o SmoothQuant | 5.96 68.95
LLaMA?2-7B w/ SmoothQuant | 5.89 69.08

Mistral-7B w/o SmoothQuant | 5.75 72.76
Mistral-7B w/ SmoothQuant | 5.66 73.02
OPT-6.7B w/o SmoothQuant |11.73 59.58
OPT-6.7B w/ SmoothQuant | 11.25 61.27

be handled by flattening them using SmoothQuant (or other methods), while moderate outliers could be addressed with
BlockDialect. We leave this as an area for future investigation.

1. Effective Bitwidth Calculation

Effective bitwidth is defined as the average bitwidth required per data element, incorporating overhead from scaling factors
and dialect identifiers. Based on FP16 for full precision, a 5-bit shared exponent is used per block for the MX format,
contributing an overhead of 5/block _size. In BlockDialect, an additional 4-bit overhead per block is required to encode the
optimal dialect index (with 16 dialects in the formatbook by default), resulting in a total overhead of 9/block _size.

For mixed block sizes, we individually calculate the effective bitwidth for weights and activations to offer a clearer and
more precise understanding. The weight calculation is straightforward, but activation quantization considers two possible
approaches due to shared activations across multiple projections: 1) weighted summation for shared activations, and 2)
counting shared activations only once. The first approach captures computational overhead more accurately, while the
second is suited for memory-centric analyses. Since activations are more relevant to computational context, we adopt the
first approach. Additionally, for activation-activation multiplications in the attention mechanism, the sequence length affects
the effective bitwidth. For example, the attention score involves two dimensions of sequence length, whereas other operands
use only one. We base our calculations on a sequence length of 2048. Finally, for per-token or per-channel quantization with
software supported high precision scaling factor, we omit overhead calculations as they are negligible.

J. Full Results
The following tables present the complete experimental results for LLaMA3-8B, LLaMA-7B, and Mistral-7B models.
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Table 12. Full results on LLaMA3-8B model. Perplexity on Wikitext2 and zero-shot accuracy across seven common-sense reasoning
tasks: LAMBADA (LA), WinoGrande (WG), BoolQ (BQ), PIQA (PQ), ARC-easy (A-e), ARC-challenge (A-c), and HellaSwag (HS).
dn: down_proj o: output_proj, g: q-proj, k: k_proj, v: v_proj, Q: query, K: key, and V: value. 2D block shapes of sizes 16, 32, and 64
have dimensions of (4,4), A(4,8) or W(8,4), and (8,8), respectively. {: Quarot keeps query and attention scores in FP16 and performs the
associated operations in FP16.

Scope Method Block size Feature Eff. bit |Wiki}| LAT WGT BQT PQT A-et A-ct HST |AVG.T
- FP16 - Full precision 16 6.14 | 76.05 72.77 81.38 80.79 77.74 5324 79.17 | 74.45
LLM-FP4 A:tensor, W:ch. Mixed format 4 48.71| 22.45 52.88 60.31 5822 39.31 22.10 38.14 | 41.92

Quarot (W4A4) | A:token, W:ch. Rotation matrix 4 8.02 | 67.65 67.09 72.84 75.73 70.45 41.89 72.78 | 66.92

16 431 820 | 69.18 69.77 7291 76.93 71.21 4599 73.72 | 68.53

MXFP4 32 HW-supported scaling| 4.16 823 | 68.14 67.01 72.66 77.15 7273 46.93 73.57 | 68.31

64 4.08 834 | 67.03 67.09 73.06 77.09 71.63 45.56 73.27 | 67.82

16 1D block 4.56 6.82 | 75.10 71.74 80.76 80.41 74.75 50.77 77.35 | 72.98

2D block 4.56 6.88 | 74.40 7143 81.13 79.22 76.26 5222 77.46 |73.16

1D block 4.28 7.05 | 73.96 72.14 78.62 78.40 7492 5094 76.69 |72.24

Linear 32 2D block 4.28 7.09 | 73.80 70.96 80.15 79.33 74.83 48.12 76.57 | 71.97
Exact MSE 4.28 7.01 | 74.09 71.03 79.57 79.92 76.60 51.71 77.02 |72.85

1D block 4.14 7.30 | 72.54 70.80 77.89 7835 75.17 4991 7590 |71.51

BlockDialect 2D block 4.14 7.34 | 73.92 70.17 77.40 78.78 73.95 48.63 76.07 | 71.19

(w/ DialectFP4) w/ SmoothQuant 4.14 7.21 | 73.04 70.24 78.17 78.89 75.13 49.57 7574 | 71.54

dn block size:16 W:4.25 7.12 | 7322 71.59 78.81 7933 77.53 51.45 7691 |72.69

64 A:4.30

o block size:16 \;‘\/:1197 724 | 7297 68.98 78.35 7829 76.05 50.68 76.47 |71.68

q,k,v block size:16 \122179 7.19 | 7337 70.48 77.19 79.11 7597 49.23 76.24 | 71.66

Quarot (W4A4KV4)| A:token, W:ch. | K,V block size:128 |W,K,V:4t| 8.17 | 67.15 67.17 71.41 75.08 67.55 40.78 72.96 | 66.01
MXFP4 16 HW-supported scaling 4.31 18.84| 53.00 62.51 65.14 71.55 60.73 35.58 59.01 | 58.22

32 416 |16.69| 58.49 61.25 64.74 71.22 58.04 36.18 61.99 | 58.84

16 1D block 4.56 732 | 7324 69.69 77.71 77.69 73.11 47.01 76.06 | 70.64

2D block 4.56 747 | 7336 70.17 77.19 77.53 7492 47.44 76.06 | 70.95

1D block 4.28 7.87 | 71.76 66.54 74.89 7633 71.25 44.62 74.62 | 68.57

2D block 4.28 7.89 | 72.04 67.01 77.13 75.68 69.23 44.03 74.96 | 68.58

All 0 Exact MSE 4.28 7.72 | 73.03 67.17 7627 75.68 71.30 4599 7491 | 69.19
BlockDialect 8-dialect (dist.) 4.25 829 | 70.97 66.85 74.86 75.73 69.87 4437 73.04 | 67.96

(w/ DialectFP4) 8-dialect (range) 4.25 820 | 70.10 66.22 75.47 75.14 70.37 44.88 74.23 | 68.06
24-dialect 4.31 8.84 | 70.75 66.46 74.10 75.19 68.39 44.88 73.21 | 67.57

1D block 4.14 8.55 | 68.02 63.54 74.13 7492 69.32 44.54 71.70 | 66.60

64 2D block 4.14 8.50 | 70.52 66.38 74.50 75.41 6898 43.77 7342 | 67.57

dn,Q,K block size:16 j:]:zzls 7.77 | 71.08 66.38 77.37 7524 71.63 47.18 74.12 | 69.00
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Table 13. Full results on LLaMA2-7B model. Perplexity on Wikitext2 and zero-shot accuracy across seven common-sense reasoning
tasks: LAMBADA (LA), WinoGrande (WG), BoolQ (BQ), PIQA (PQ), ARC-easy (A-e), ARC-challenge (A-c), and HellaSwag (HS).
dn: down_proj o: output_proj, g: q-proj, k: k_proj, v: v_proj, Q: query, K: key, and V: value. 2D block shapes of sizes 16, 32, and 64
have dimensions of (4,4), A(4,8) or W(8,4), and (8,8), respectively. {: Quarot keeps query and attention scores in FP16 and performs the
associated operations in FP16.

Scope Method Block size Feature Eff. bit |Wiki}| LAT WGT BQT PQT A-et A-ct HST |AVG.T
- FP16 - Full precision 16 547 | 73.88 69.06 77.77 79.05 74.58 46.25 76.00 | 70.94
LLM-FP4 A:tensor, W:ch. Mixed format 4 15.61| 57.97 61.80 66.45 69.48 57.07 32.76 61.55 | 58.15

Quarot (W4A4) | A:token, W:ch. Rotation matrix 4 6.04 | 71.01 66.06 75.11 77.80 69.91 43.00 73.09 | 68.00

16 4.31 7.07 | 69.84 68.11 72.14 7731 68.35 41.38 70.86 | 66.86

MXFP4 32 HW-supported scaling| 4.16 7.04 | 69.73 65.51 70.89 76.61 67.59 40.36 7091 | 65.94

64 4.08 7.05 | 70.58 65.11 71.25 76.50 68.35 40.70 70.81 | 66.19

16 1D block 4.56 576 | 73.92 68.67 76.54 77.64 73.74 44.03 74.82 | 69.91

2D block 4.56 5.82 | 7293 66.69 7694 78.02 72.77 44.28 74.37 | 69.43

1D block 4.28 5.84 | 73770 69.46 76.02 78.13 72.81 43.60 74.47 | 69.74

32 2D block 4.28 592 | 7227 66.30 76.85 77.80 72.73 43.43 74.24 | 69.09

Linear Exact MSE 4.28 5.83 | 73.24 68.27 76.88 78.13 72.39 44.28 74.44 | 69.66
1D block 4.14 596 | 72.83 67.32 76.64 77.31 7231 4241 73.81 | 68.95

BlockDialect 2D block 4.14 6.06 | 72.58 67.56 77.61 77.58 71.76 43.94 73.46 | 69.21

(w/ DialectFP4) w/ SmoothQuant 4.14 5.89 | 7227 67.17 75.87 77.48 72.64 43.60 74.54 | 69.08

dn block size:16 W:4.23 5.88 | 72.40 68.90 76.88 78.62 72.26 43.69 73.82 | 69.51

64 A:4.27
. W:4.18

o block size:16 A:4.19 594 | 73.82 68.51 76.27 77.64 72.69 4437 73.88 | 69.60

q,k,v block size:16 \122295 591 | 73.26 67.88 76.82 77.58 7243 42.66 74.35 | 69.28

Quarot (W4A4KV4)| A:token, W:ch. | K,V block size:128 |W,K,V:4t| 6.10 | 70.79 64.33 7440 77.20 70.12 42.92 72.72 | 67.50
MXFP4 16 HW-supported scaling 4.31 11.22| 60.95 61.01 6630 74.59 61.74 35.84 64.94 | 60.77

32 416 |11.14| 60.06 60.06 6544 73.01 59.39 3558 64.77 | 59.76

16 1D block 4.56 6.08 | 72.23 64.72 76.61 76.82 71.38 44.45 74.44 | 68.66

2D block 4.56 6.22 | 72.06 67.40 76.27 77.48 72.52 4334 74.55 | 69.09

1D block 4.28 6.33 | 70.66 64.48 74.68 7535 70.92 44.03 73.66 | 67.68

2D block 4.28 6.51 | 70.75 67.40 73.58 76.50 69.32 41.55 73.77 | 67.55

All 0 Exact MSE 4.28 6.25 | 71.16 66.38 75.35 77.64 71.17 42.83 73.65 | 68.31
BlockDialect 8-dialect (dist.) 4.25 6.51 | 6930 62.98 73.52 76.66 69.74 4232 72.73 | 66.75

(w/ DialectFP4) 8-dialect (range) 4.25 6.45 | 70.75 63.22 7437 7726 70.20 43.34 7341 | 67.51
24-dialect 4.31 6.97 | 69.84 66.38 72.84 7573 71.00 42.58 72.74 | 67.30

1D block 4.14 6.63 | 70.39 65.19 73.52 7535 69.99 43.09 72.55 | 67.15

64 2D block 4.14 6.87 | 70.60 65.67 7391 76.71 69.57 4292 7294 | 67.47

dn,Q,K block size:16 1\112213 6.35 | 70.81 67.17 7544 7584 70.96 44.28 73.28 | 68.25
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Table 14. Full results on Mistral-7B-v0.3 model. Perplexity on Wikitext2 and zero-shot accuracy across seven common-sense reasoning
tasks: LAMBADA (LA), WinoGrande (WG), BoolQ (BQ), PIQA (PQ), ARC-easy (A-e), ARC-challenge (A-c), and HellaSwag (HS).
dn: down_proj o: output_proj, g: q-proj, k: k_proj, v: v_proj, Q: query, K: key, and V: value. 2D block shapes of sizes 16, 32, and 64
have dimensions of (4,4), A(4,8) or W(8,4), and (8,8), respectively. {: Quarot keeps query and attention scores in FP16 and performs the
associated operations in FP16.

Scope Method Block size Feature Eff. bit |Wiki}| LAT WGT BQT PQT A-et A-ct HST |AVG.T
- FP16 - - 16 532 | 7532 73.88 82.11 8226 78.24 5222 80.42 |74.92
LLM-FP4 A:tensor, W:ch. Mixed format 4 17.47| 56.92 56.27 69.24 69.64 58.42 36.26 62.55 | 58.47

Quarot (W4A4) | A:token, W:ch. Rotation matrix 4 574 | 72775 70.24 78.87 80.58 77.44 49.57 77.99 |72.49

16 4.31 6.49 | 71.43 68.43 7538 79.33 7424 4727 76.24 |70.33

MXFP4 32 HW-supported scaling| 4.16 642 | 71.80 70.80 7547 79.71 74.54 46.59 76.16 | 70.72

64 4.08 6.46 | 70.89 67.96 75.11 79.27 7437 46.67 7595 |70.03

16 1D block 4.56 5.55 | 73.80 70.56 80.43 81.45 77.36 50.60 79.54 |73.39

2D block 4.56 5.58 | 72.68 70.64 80.86 81.39 77.36 50.77 79.49 | 73.31

1D block 4.28 5.65 | 7345 71.11 81.13 81.83 77.31 50.17 79.20 | 73.46

Linear 32 2D block 4.28 5.65 | 73.41 70.64 80.00 80.90 77.65 50.43 79.00 |73.15
Exact MSE 4.28 5.64 | 7440 71.35 81.38 80.85 77.99 51.28 79.38 | 73.80

1D block 4.14 575 | 73.08 69.85 79.63 80.69 77.19 49.83 79.04 | 72.76

BlockDialect 2D block 4.14 578 | 71.18 66.69 80.64 80.69 76.52 50.68 77.95 |72.05

(w/ DialectFP4) w/ SmoothQuant 4.14 5.66 | 73.06 71.59 80.98 80.09 77.06 49.49 78.84 |73.02

dn block size:16 W:4-25 5.68 | 73.20 70.17 80.28 81.34 77.74 51.02 79.37 | 73.30

64 A:4.30

o block size:16 \;‘\/:1197 573 | 72779 69.69 78.38 80.52 77.40 5043 79.27 | 72.64

q.k,v block size:16 \122179 5.68 | 7336 72.14 79.51 80.69 77.95 5034 79.11 | 73.30

Quarot (W4A4KV4)| A:token, W:ch. | K,V block size:128 |W,K,V:4t| 580 | 73.10 68.35 79.30 79.16 76.94 47.35 77.81 |71.72

16 . 4.31 9.27 | 64.64 6440 70.89 77.15 69.99 4292 72.23 | 66.03

HW-supported scaling

MXFP4 32 4.16 898 | 63.90 6590 71.41 7639 69.57 43.09 71.81 | 66.01

16 1D block 4.56 571 | 7250 69.69 79.60 80.36 76.56 4991 79.07 |72.53

2D block 4.56 5.84 | 72.81 69.38 80.46 80.90 76.85 S5I1.11 78.74 | 72.89

1D block 4.28 5.87 | 71.69 69.85 80.28 80.36 75.93 4855 78.37 |72.15

2D block 4.28 595 | 71.86 69.30 79.54 81.28 77.57 48.98 78.23 | 72.39

All 0 Exact MSE 4.28 5.85 | 71.63 69.06 80.40 80.41 75.72 49.06 78.57 |72.12
BlockDialect 8-dialect (dist.) 4.25 6.01 | 72.06 68.82 81.22 80.03 75.25 48.12 77.64 | 71.88

(w/ DialectFP4) 8-dialect (range) 4.25 594 | 71.51 68.19 79.69 79.87 75.67 4693 78.10 | 71.42
24-dialect 4.31 6.05 | 71.01 69.38 79.14 80.58 75.04 48.89 77.82 | 71.69

1D block 4.14 6.07 | 70.00 67.48 76.73 79.22 7445 46.84 77.08 |70.26

64 2D block 4.14 6.13 | 69.49 66.30 78.84 79.71 75.29 48.63 77.02 | 70.75

dn,Q,K block size:16 j:]:zzls 590 | 71.20 69.93 78.44 79.43 75.55 49.49 7796 |71.71
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