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ABSTRACT

Ad hoc teamwork (AHT) is a cutting-edge problem in the multi-agent systems
community, in which our task is to control an agent (‘learner’) which is required
to cooperate with new teammates without prior coordination. Prior works for-
mulated AHT as a stochastic Bayesian game (SBG), standing by the view of
non-cooperative game theory. Follow-up work extended SBG to open team set-
tings and proposed an empirical implementation framework based on GNNs called
Graph-based Policy Learning (GPL) to tackle variant team sizes. Although the
performance of GPL is convincing, its global Q-value representation is difficult
to interpret and, therefore, impedes the potential application to real-world prob-
lems. In this work, we introduce a game model called coalitional affinity game
(CAG) in cooperative game theory and establish a novel theoretical model named
open stochastic Bayesian CAG to describe the process of AHT with open team
settings. Based on the theoretical model, we derive the new solution concept
that guides the representation of the global Q-value with theoretical guarantees
for this setting. We further design a practical algorithm which can easily imple-
ment the theoretical results. In experiments, we demonstrate the performance
improvement the proposed algorithm over GPL and verify the effectiveness and
reasonableness of our theoretical model. The demo of the experiments is available
at https://sites.google.com/view/cagpl/.

1 INTRODUCTION

Ad hoc teamwork (AHT) is a cutting-edge problem in the multi-agent system community (Stone
et al., 2010) to investigate how an agent could be trained to cooperate on the fly with other teammates
without prior coordination methods (e.g., via centralized training and shared tasks) (Mirsky et al.,
2022). Such scenarios often appear in real-world problems. In search and rescue, a robot must
collaborate with other unknown robots (e.g., manufactured by various companies without a common
coordination protocol (Barrett & Stone, 2015)) or humans to rescue survivors. Similar situations
may occur in AI that helps trading markets (Albrecht & Ramamoorthy, 2013), as well as in the
human-machine / machine-machine collaboration emerging from the prevailing embodied AI (Smith
& Gasser, 2005; Duan et al., 2022) and applications of large language models (LLMs) (Brown et al.,
2020; Zhao et al., 2023).

Unlike traditional multi-agent reinforcement learning (MARL), AHT only allows controlling one
agent, the learner, to adapt to its ad hoc teammates to complete a task with a common goal. Prior work
formulated AHT as a stochastic Bayesian game (SBG) (Albrecht & Ramamoorthy, 2013) from the
perspective of non-cooperative game theory, considering the uncertainty of teammates by introducing
the Bayesian game (Harsanyi, 1967) and long-term collaboration by introducing a stochastic game
(a.k.a. Markov game) (Shapley, 1953). The uncertainty of agents in a Bayesian game is characterized
by types (i.e., each agent is assumed to belong to an instance of a set of types), which is usually called
the type-based method in the context of AHT (Mirsky et al., 2022). Rahman et al. (2021) extended
the SBG to the open team setting (i.e., team size would vary over time) named open stochastic
Bayesian game (OSBG). The open team setting is usually called open ad hoc teamwork (OAHT).
To implement OAHT, a framework called Graph-based Policy Learning (GPL) was proposed with a
specific representation of the global Q-value and graph neural networks (GNNs) to address the open
team setting. Albeit the effectiveness in experiments (almost state-of-the-art), GPL lacks a theoretical
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interpretation to show its reliability. This impedes potential deployment to real-world problems,
which necessarily requires reliability and interpretability of algorithms (Wang et al., 2021).

To address the above issue, we introduce cooperative game theory to establish a novel theoretical
model to describe OAHT and design an algorithm with theoretical guarantees. The contributions of
this work can be summarized as follows. We first introduce a game model from cooperative game
theory called coalitional affinity games (CAG) (Brânzei & Larson, 2009) and incorporate it into
OSBG with detailed specifications that are lacking in the previous work (Rahman et al., 2021) to
form a new game model named open stochastic Bayesian coalitional affinity games (OSB-CAG).
Different from the non-cooperative game theory, we treat the achievement of a common goal as
the problem how an open ad hoc team can be formed to collaborate in a stable manner (i.e., no
agents would have incentives to leave) under the learner’s influence on teammates through decision
making. To formalize the learner’s influence on ad hoc teammates, we define the relationship between
them as a star affinity graph, where the learner is the internal node and teammates are leaves, in
light of the definition of AHT that teammates have no prior coordination and therefore no explicit
relationship. The number of leaves at each timestep varies depending on the size of the open ad hoc
team. As per the OSB-CAG theory, each agent’s preference Q-value (depicting its incentive to leave)
is naturally defined as the sum of pairwise and weighted individual utility terms. The solution concept
named ad hoc Bayesian strict core (AH-BSC) describing the stability of ad hoc teams is proved to
be reached when the sum of agents’ preference Q-values as the global Q-value is maximized. This
deepens understanding of the significance of value representation utilized in GPL for encouraging
ad hoc teamwork. Additionally, the OSB-CAG theory suggests an inductive bias of the components
constituting the global Q-value (i.e. the pairwise and individual utility terms) to facilitate learning.

To solve AH-BSC, we transform it to the open ad hoc Bellman optimality equation and propose the
corresponding Bellman operator named open ad hoc Bellman operator, which is further transformed
to Q-learning training loss. Thanks to the OSB-CAG theory, we propose an empirical method
implemented based on GPL named as coalitional affinity GPL (CA-GPL). In experiments, we mainly
compare CA-GPL with GPL and some variants of CA-GPL on Level-based foraging (LBF) and
Wolfpack with open team settings (in both previously unseen compositions and team sizes) (Rahman
et al., 2021; 2022), to validate the reasonableness and effectiveness of our theoretical model. Due to
the page limits, we move related works to Appendix A.

2 BACKGROUND

In this paper, let ∆(Ω) indicate the set of probability distributions over the random variable on a
sample space Ω and let P denote the power set. To simplify the notation, let i denote the learner,
and −i indicates the joint set of its teammates at timestep t. P (X ) indicates the generic probability
distribution over a random variable X . ∣X ∣ indicates the cardinality of a set X in this work.

2.1 COALITIONAL AFFINITY GAMES

As a subclass of non-transferable utility (NTU) games, hedonic game (Chalkiadakis et al., 2022) is
defined as a tuple ⟨N ,⪰⟩ in this paper, where N = [n] is a finite set of agents; and ⪰= (⪰1, ...,⪰n) is
a list of agents’ preferences over corresponding subsets of N called coalitions. C ⪰j C′ means the
preference of agent j over coalition C is no less preferred than coalition C′. For each agent j ∈ N ,
⪰j depicts a complete and transitive preference relation over a collection of all feasible coalitions
N (j) = {C ⊆ N ∣j ∈ C}. The outcome of a hedonic game is a coalition structure CS, i.e., a partition
of N into disjoint coalitions. We denote CS(j) as the coalition including agent j. The ordinal
preferences are represented as the cardinal form as preference values (Sliwinski & Zick, 2017) to
ease learning. More specifically, each agent j has a preference value function vj ∶ N (j) → R≥0.
vj(C) ≥ vj(C′) if C ⪰j C′ that implies that agent j weakly prefers C to C′; vj(C) > vj(C′) if
C ≻j C′ that implies that agent j strictly prefers C to C′; and vj(C) = 0 if C = ∅. To concisely
represent the preference values, a hedonic game is equipped with an affinity graph G = ⟨N ,E⟩,
where each edge (j, j′) ∈ E describes an affinity relation between agent j and j′; for each edge
(j, j′), it defines a weight w(j, j′) ∈ R indicating the value that agent j can receive from agent j′,
while if (j, j′) ∉ E , w(j, j′) = 0. Thereby, for any C ⊆ Nj , vj(C) = ∑(j,j′)∈E,j′∈C w(j, j′) if C ≠ {j},
otherwise, vj(C) = vj({j}) ≥ 0 is a constant value. We are interested in the coalitions with individual
rationality for each agent j such that vj(C) ≥ vj({j}), otherwise, agents would have no incentives to
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form coalitions. An affinity graph is symmetric if w(j, j′) = w(j′, j) for all (j, j′), (j′, j) ∈ E . The
hedonic game with an affinity graph is called a coalitional affinity game (CAG) (Brânzei & Larson,
2009). Strict core stability and inner stability are two fundamental solution concepts in the CAG,
whose definition is described in Definition 1.
Definition 1. We say that a blocking coalition C weakly blocks a coalition structure CS if every agent
j ∈ C weekly prefers C to CS(j) and there exists at least one agent j′ ∈ C who strictly prefers C to
CS(j). A coalition structure admitting no weakly blocking coalition C ⊆ N , exhibits the strict core
stability. On the other hand, if a coalition structure CS = {C1, ...,Cm} admitting no weakly blocking
coalition C ⊂ Ck, for some 1 ≤ k ≤m, exhibits the inner stability.

2.2 GENERAL AD HOC TEAMWORK FRAMEWORK

We now summarize and refine the general open ad hoc teamwork (OAHT) framework used in the
past work (Rahman et al., 2021) called open stochastic Bayesian game (OSBG) which is defined as
the tuple ⟨N ,S,A,Θ,R, T, γ⟩. N is a set of all possible agents; S is a set of states; A = ×j∈NAj

is a set of all possible joint actions where Aj is agent j’s action set; Θ is a set of all possible agent
types. Let ANt = ×j∈NtAj be defined as the joint action set under a variable agent set Nt ⊆ N
which describes the characteristic of open team. The joint action space under the variable number of
agents is defined as AN = ⋃Nt∈P(N ){a∣a ∈ ANt}, while similarly the joint agent-type space under
the variable number of agents is defined as ΘN = ⋃Nt∈P(N ){θ∣θ ∈ Θ∣Nt ∣}. R ∶ S ×AN → R is the
learner’s reward. T ∶ S ×ΘN ×AN → S ×ΘN is transition function to describe the evolution of
agents with variable types. The learner’s action value function Qπi(s, ai) is shown as follows:

Qπi(s, ai) = Eat,−i∼πt,−i [Qπ(s, ai, at,−i)] = Eat,−i∼πt,−i,
at,i∼πi,T

[
∞
∑
t=0

γtR(st, at)∣s0 = s, a0,i = ai], (1)

where γ ∈ [0,1) is a discount factor; st is a state, at,−i is a joint teammates’ action and at,i
is the ad hoc agent’s action; πi is the learner’s stationary policy and πt,−i is ad hoc teammates’
joint stationary policy; Qπ(s, ai, at,−i) is a global Q-value. The learner’s policy π∗i is optimal,
if and only if Qπ∗i (s, ai) ≥ Qπi(s, ai) for all πi, s, ai. Teammates’ joint policy is represented as
πt,−i ∶ S ×ΘN → ∆(AN). The learner is unable to observe their teammates’ types and policies,
which are inferred through history states and actions. The learner’s decision making can be conducted
by selecting actions that maximize Qπi(s, ai).

3 OPEN STOCHASTIC BAYESIAN COALITIONAL AFFINITY GAMES

This section extends OSBG by considering coalitional affinity games to formalize the OAHT problem
with an affinity graph and detail the representation of the global Q-value. Thereby, it is natural to
model the ad hoc teamwork process as a process where the learner influences ad hoc teammates to
prevent them from leaving the ad hoc team. For conciseness, we only consider the fully observable
scenarios in this work, which can be further generalized to partial observation.

3.1 PROBLEM FORMULATION

Suppose there is an environment where the learner i interacts with other uncontrollable ad hoc
teammates −i to achieve a shared goal, and the state of the environment evolves as per a transition
function. To model such a situation, we propose Open Stochastic Bayesian Coalitional Affinity
Games (OSB-CAG) that are described as a tuple ⟨N ,S,A,Θ, (Rj)j∈N , PT , PI , PA,E , γ⟩. N , S , A,
Θ, γ, πt,−i and πi are defined in the same way as OSBG. There exist an affinity graph G = ⟨N ,E⟩,
where E = {(j, j′)∣j, j′ ∈ N}. We define three preliminary probability distributions such that
PT ∶ P(N )×S×AN →∆(P(N )×S), PI ∶ P(N )×S → [0,1] and PA ∶ N ×S →∆(Θ). These prob-
ability functions describe the dynamics of the environment: (1) At the initial timestep 0, PI(N0, s0)
generates an initial set of agents N0 and an initial state s0; (2) PA(θj ∣{j}, st) is a type assignment
function which randomly assigns types to the generated agent set; (3) PT (Nt, st∣Nt−1, st−1, at−1)
generates the agent set Nt and st for the next timestep t; (4) Step 2 and 3 are continually re-
peated. To concisely represent the above process, we derive a composite transition function
T (θt, st,Nt∣θt−1, st−1, at−1) (see Proposition 1), which can be decomposed as follows:

T (st, θt,Nt∣st−1, at−1, θt−1) = PE(θt∣st,Nt)PO(st,Nt∣st−1, at−1, θt−1), (2)
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where PO(st,Nt∣st−1, at−1, θt−1) describes a transition function generating a variable agent set Nt

and a state st that can be observed by each agent; the samples θt generated from PE(θt∣st,Nt) =
∏∣Nt∣

j=1 PA(θt,j ∣{j}, st) are unobserved by agents, however, it is critical to making decision, which
motivates us to estimate this term in practice. An illustrative example to explain PO and PE is shown
in Figure 4 in Appendix. T in Eq. 2 overwrites the transition function in OSBG. Rj ∶ S ×AN → R≥0
extends agent j’s preference value of the stateless coalitional affinity games to state space and
action space, named as agent j’s preference reward. In more details, Rj(st, at,C) implies agent
j’s preference reward of an arbitrary coalition C ⊆ Nt with the corresponding coalitional action
decided by πt,C = ×j∈Cπj . The affinity graph weight between agent j and j′ is extended as wjj′ ∶
S ×Aj ×Aj′ → R. Thereby, we can represent agent j’s preference reward for an arbitrary coalition
C as Rj(st, at,C) = ∑(j,j′)∈E,j′∈C wjj′(st, at,j , at,j′).
Proposition 1. The transition function T (θt, st,Nt∣θt−1, st−1, at−1) exists for t ≥ 1 given that the
following conditions hold: PT (Nt, st∣Nt−1, st−1, at−1) is well defined for t ≥ 1; PI(N0∣s0) is well
defined; and PA(θt,j ∣{j}, st) is well defined for t ≥ 0.

3.2 AD HOC TEAMWORK SETTING

In this subsection, we adapt OSB-CAG for the AHT setting in order to design algorithms for
solving this problem. Under this setting, we can only control the learner i to cooperate with other
uncontrollable ad hoc teammates −i with no prior coordination (Stone et al., 2010).

Affinity Graph for Ad Hoc Teamwork. We first discuss the affinity graph structure for the setting
of ad hoc teamwork. Although the ad hoc teammates are assumed to have a common objective,
they have no prior coordination, which motivates us to presume that there exists no relationship
among these teammates (i.e., no edges needed when constructing an affinity graph). 1 On the other
hand, the learner’s goal is to establish collaboration (relationship) with the variable number of ad
hoc teammates. To fulfil the above requirements we design the affinity graph as a star graph in
Definition 2. Thereby, the preference reward of any teammate j under the star graph is written as
Rj(st, at) = wji(st, at,j , at,i) since it is only related to the learner i, while the learner’s preference
reward is written as Ri(st, at) = ∑j∈−iwij(st, at,i, at,j).
Definition 2. In the OSB-CAG with the ad hoc teamwork setting, the affinity graph is defined as a
star graph where the learner is the internal node and the ad hoc teammates are leaves.

Ad Hoc Bayesian Strict Core. To prevent the ad hoc teammates from leaving the grand coalition,
we now extend strict core to AHT as a solution concept. Unlike the traditional CAG that focuses on
finding a stable coalition structure given the preference values composed of predetermined affinity
graph weights, OSB-CAG aims to maximize affinity graph weights via the learner’s actions to
stabilize the grand coalition Nt at every timestep t. To fit the setting of OSB-CAG, we replace vj by
Rj , which naturally extends the strict core to OSB-CAG for any timestep t with state st, agent setNt

and joint agent type θt. Unfortunately, it is usually impossible to find the optimal weights fitting a
task, without any relevant knowledge.
Theorem 1. If a CAG is symmetric, then maximizing the social welfare under the grand coalition
results in strict core stability.

Corollary 1. If the affinity graph in OSB-CAG is symmetric, then finding a joint policy πt that
maximizes the social welfare ∑j∈Nt

Rj(st, at) for an arbitrary timestep t with state st, agent set Nt

and joint agent-type θt reaches strict core stability.

For tractablility, we first prove a general result for CAG that the strict core stability can be reached by
maximizing the social welfare as shown in Theorem 1. The realization of Theorem 1 for OSB-CAG
at an arbitrary timestep t is described in Corollary 1. Relaxing Corollary 1 to the long-term control
with a stationary policy, we define ad hoc Bayesian strict core (AH-BSC) focusing on finding the
learner’s optimal stationary policy to maximize the social welfare under any grand coalition Nt ⊆ N
at any timestep t in the long term such that

AH-BSC ∶= { π∗i ∣ ∀s0 ∈ S,∀πi, Eπ∗i [
∞
∑
t=0

γt ∑
j∈Nt

Rj(st, at)] ≥ Eπi[
∞
∑
t=0

γt ∑
j∈Nt

Rj(st, at)] }, (3)

1Note that we do not consider the cases where ad hoc teammates are adaptive to establish connection with
others like the learner, which would lead to the problem more complicated, even with no solution.
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where E[⋅] denotes the expectation over θt ∼ PE , Nt, st ∼ PO, at,−i ∼ πt,−i and at,i ∼ πi.

4 COALITIONAL AFFINITY GPL

a1t

a2t

a3t a4t

<latexit sha1_base64="vcQEVkfCYEJjUhbW6pC60ZOGoMw=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI9BLx4UIpiHJEuYnXSSITO7y8ysEJZ8hRcPinj1c7z5N06SPWhiQUNR1U13VxALro3rfju5ldW19Y38ZmFre2d3r7h/0NBRohjWWSQi1QqoRsFDrBtuBLZihVQGApvB6HrqN59QaR6FD2Ycoy/pIOR9zqix0uPdba3bCdDQbrHklt0ZyDLxMlKCDLVu8avTi1giMTRMUK3bnhsbP6XKcCZwUugkGmPKRnSAbUtDKlH76ezgCTmxSo/0I2UrNGSm/p5IqdR6LAPbKakZ6kVvKv7ntRPTv/RTHsaJwZDNF/UTQUxEpt+THlfIjBhbQpni9lbChlRRZmxGBRuCt/jyMmmclb3zcuW+UqpeZXHk4QiO4RQ8uIAq3EAN6sBAwjO8wpujnBfn3fmYt+acbOYQ/sD5/AFUBJAd</latexit>

MLP�

MLP�

Learner

Teammate 1

Teammate 2

Teammate 3

<latexit sha1_base64="P4WNBuggd5bVfVYJbkBDNrkjvv8=">AAAB83icbVBNSwMxEM3Wr1q/qh69BItQQcquFPVY9OKxgv2Adl2yadqGZrNLMhHL0r/hxYMiXv0z3vw3pu0etPXBwOO9GWbmhYngGlz328mtrK6tb+Q3C1vbO7t7xf2Dpo6NoqxBYxGrdkg0E1yyBnAQrJ0oRqJQsFY4upn6rUemNI/lPYwT5kdkIHmfUwJW6pafAnjwzrAJ4DQoltyKOwNeJl5GSihDPSh+dXsxNRGTQAXRuuO5CfgpUcCpYJNC12iWEDoiA9axVJKIaT+d3TzBJ1bp4X6sbEnAM/X3REoircdRaDsjAkO96E3F/7yOgf6Vn3KZGGCSzhf1jcAQ42kAuMcVoyDGlhCquL0V0yFRhIKNqWBD8BZfXibN84p3UaneVUu16yyOPDpCx6iMPHSJaugW1VEDUZSgZ/SK3hzjvDjvzse8NedkM4foD5zPH4xqkLo=</latexit>

(x1
t , ut)

<latexit sha1_base64="vD37isxC7C/RQ+13zPdWz0jL4x4=">AAAB83icbVBNSwMxEM36WetX1aOXYBEqSNktRT0WvXisYD+gXZdsmm1Ds9klmYil9G948aCIV/+MN/+NabsHbX0w8Hhvhpl5YSq4Btf9dlZW19Y3NnNb+e2d3b39wsFhUydGUdagiUhUOySaCS5ZAzgI1k4VI3EoWCsc3kz91iNTmifyHkYp82PSlzzilICVuqWnAB4q59gEcBYUim7ZnQEvEy8jRZShHhS+ur2EmphJoIJo3fHcFPwxUcCpYJN812iWEjokfdaxVJKYaX88u3mCT63Sw1GibEnAM/X3xJjEWo/i0HbGBAZ60ZuK/3kdA9GVP+YyNcAknS+KjMCQ4GkAuMcVoyBGlhCquL0V0wFRhIKNKW9D8BZfXibNStm7KFfvqsXadRZHDh2jE1RCHrpENXSL6qiBKErRM3pFb45xXpx352PeuuJkM0foD5zPH430kLs=</latexit>

(x2
t , ut)

<latexit sha1_base64="fX1uj70MZPNDNESuEETsZOj70LQ=">AAAB83icbVBNSwMxEM36WetX1aOXYBEqSNnVoh6LXjxWsB/QriWbZtvQbHZJJmJZ+je8eFDEq3/Gm//GtN2Dtj4YeLw3w8y8IBFcg+t+O0vLK6tr67mN/ObW9s5uYW+/oWOjKKvTWMSqFRDNBJesDhwEayWKkSgQrBkMbyZ+85EpzWN5D6OE+RHpSx5ySsBKndJTFx7OT7Hpwkm3UHTL7hR4kXgZKaIMtW7hq9OLqYmYBCqI1m3PTcBPiQJOBRvnO0azhNAh6bO2pZJETPvp9OYxPrZKD4exsiUBT9XfEymJtB5Fge2MCAz0vDcR//PaBsIrP+UyMcAknS0KjcAQ40kAuMcVoyBGlhCquL0V0wFRhIKNKW9D8OZfXiSNs7J3Ua7cVYrV6yyOHDpER6iEPHSJqugW1VAdUZSgZ/SK3hzjvDjvzsesdcnJZg7QHzifP49+kLw=</latexit>

(x3
t , ut)

<latexit sha1_base64="aXmDwzgJCZpVxAGZSfmuvn6ZyKA=">AAAB83icbVBNSwMxEM3Wr1q/qh69BItQQcquFPVY9OKxgv2Adl2yadqGZrNLMhHL0r/hxYMiXv0z3vw3pu0etPXBwOO9GWbmhYngGlz328mtrK6tb+Q3C1vbO7t7xf2Dpo6NoqxBYxGrdkg0E1yyBnAQrJ0oRqJQsFY4upn6rUemNI/lPYwT5kdkIHmfUwJW6pafAnionmETwGlQLLkVdwa8TLyMlFCGelD86vZiaiImgQqidcdzE/BTooBTwSaFrtEsIXREBqxjqSQR0346u3mCT6zSw/1Y2ZKAZ+rviZREWo+j0HZGBIZ60ZuK/3kdA/0rP+UyMcAknS/qG4EhxtMAcI8rRkGMLSFUcXsrpkOiCAUbU8GG4C2+vEya5xXvolK9q5Zq11kceXSEjlEZeegS1dAtqqMGoihBz+gVvTnGeXHenY95a87JZg7RHzifP5EIkL0=</latexit>

(x4
t , ut)

<latexit sha1_base64="9EZ0Kz3cS0XXeygNeajwZxw7p4s=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEInkoiRT0WvXhQaLFf0Iaw2W7bpZtN2N0INfSXePGgiFd/ijf/jds2B219MPB4b4aZeUHMmdKO823l1tY3Nrfy24Wd3b39on1w2FJRIgltkohHshNgRTkTtKmZ5rQTS4rDgNN2ML6Z+e1HKhWLRENPYuqFeCjYgBGsjeTbxbuHxr2f9jCPR9ivT3275JSdOdAqcTNSggw13/7q9SOShFRowrFSXdeJtZdiqRnhdFroJYrGmIzxkHYNFTikykvnh0/RqVH6aBBJU0Kjufp7IsWhUpMwMJ0h1iO17M3E/7xuogdXXspEnGgqyGLRIOFIR2iWAuozSYnmE0MwkczcisgIS0y0yapgQnCXX14lrfOye1Gu1Cul6nUWRx6O4QTOwIVLqMIt1KAJBBJ4hld4s56sF+vd+li05qxs5gj+wPr8AWqrkvM=</latexit>

LSTM↵Q

<latexit sha1_base64="7ahCUAXxQuGO3whOt2NfEZinE0M=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkoiRT0WvXhQqNgvaEOYbLft0s0m7m6EGvpLvHhQxKs/xZv/xm2bg7Y+GHi8N8PMvCDmTGnH+bZyK6tr6xv5zcLW9s5u0d7bb6ookYQ2SMQj2Q5AUc4EbWimOW3HkkIYcNoKRldTv/VIpWKRqOtxTL0QBoL1GQFtJN8u3tzXb/20Czwegv8w8e2SU3ZmwMvEzUgJZaj59le3F5EkpEITDkp1XCfWXgpSM8LppNBNFI2BjGBAO4YKCKny0tnhE3xslB7uR9KU0Him/p5IIVRqHAamMwQ9VIveVPzP6yS6f+GlTMSJpoLMF/UTjnWEpyngHpOUaD42BIhk5lZMhiCBaJNVwYTgLr68TJqnZfesXLmrlKqXWRx5dIiO0Aly0TmqomtUQw1EUIKe0St6s56sF+vd+pi35qxs5gD9gfX5A5tLkxM=</latexit>

LSTM↵q

<latexit sha1_base64="tNowCoQkrbPWmdmoxZRXkJ+YMVg=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBg5REinosevHYgrWFJpTNdtsu3WzC7kQooX/DiwdFvPpnvPlv3LY5aOuDgcd7M8zMCxMpDLrut1NYW9/Y3Cpul3Z29/YPyodHjyZONeMtFstYd0JquBSKt1Cg5J1EcxqFkrfD8d3Mbz9xbUSsHnCS8CCiQyUGglG0ku/jiCPtZXjRnPbKFbfqzkFWiZeTCuRo9Mpffj9macQVMkmN6XpugkFGNQom+bTkp4YnlI3pkHctVTTiJsjmN0/JmVX6ZBBrWwrJXP09kdHImEkU2s6I4sgsezPxP6+b4uAmyIRKUuSKLRYNUkkwJrMASF9ozlBOLKFMC3srYSOqKUMbU8mG4C2/vEoeL6veVbXWrFXqt3kcRTiBUzgHD66hDvfQgBYwSOAZXuHNSZ0X5935WLQWnHzmGP7A+fwBDnqRtQ==</latexit>

✓t,Q

<latexit sha1_base64="kqNS3pSqe8H75Cc5qxyoPl78N58=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4kJJIUY9FLx4r2A9oQtlst+3SzSbuToQS+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8MJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6SGS6F4AwVK3k40p1EoeSsc3U791hPXRsTqAccJDyI6UKIvGEUr+T4OOdJuhuePk26p7FbcGcgy8XJShhz1bunL78UsjbhCJqkxHc9NMMioRsEknxT91PCEshEd8I6likbcBNns5gk5tUqP9GNtSyGZqb8nMhoZM45C2xlRHJpFbyr+53VS7F8HmVBJilyx+aJ+KgnGZBoA6QnNGcqxJZRpYW8lbEg1ZWhjKtoQvMWXl0nzouJdVqr31XLtJo+jAMdwAmfgwRXU4A7q0AAGCTzDK7w5qfPivDsf89YVJ585gj9wPn8APxqR1Q==</latexit>

✓t,q
<latexit sha1_base64="IH/JYS4khJEWirtHlcm1TTDAryY=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoPgQcKuBPUY9OIxgnlAsgmzk9lkyOzDmV4lLPkPLx4U8eq/ePNvnCR70MSChqKqm+4uL5ZCo21/W7mV1bX1jfxmYWt7Z3evuH/Q0FGiGK+zSEaq5VHNpQh5HQVK3ooVp4EnedMb3Uz95iNXWkThPY5j7gZ0EApfMIpG6nZwyJH2Ujx7mHSdXrFkl+0ZyDJxMlKCDLVe8avTj1gS8BCZpFq3HTtGN6UKBZN8UugkmseUjeiAtw0NacC1m86unpATo/SJHylTIZKZ+nsipYHW48AznQHFoV70puJ/XjtB/8pNRRgnyEM2X+QnkmBEphGQvlCcoRwbQpkS5lbChlRRhiaoggnBWXx5mTTOy85FuXJXKVWvszjycATHcAoOXEIVbqEGdWCg4Ble4c16sl6sd+tj3pqzsplD+APr8wdr7ZJ4</latexit>

✓1t,q

<latexit sha1_base64="5r4+EPyKvQZHNtRj2tUwclM0Wrs=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBE8SElKUY9FLx4r2A9o07LZbtqlm03cnSgl9H948aCIV/+LN/+N2zYHbX0w8Hhvhpl5fiy4Rsf5tlZW19Y3NnNb+e2d3b39wsFhQ0eJoqxOIxGplk80E1yyOnIUrBUrRkJfsKY/upn6zUemNI/kPY5j5oVkIHnAKUEjdTs4ZEh6KZ4/TLrlXqHolJwZ7GXiZqQIGWq9wlenH9EkZBKpIFq3XSdGLyUKORVsku8kmsWEjsiAtQ2VJGTaS2dXT+xTo/TtIFKmJNoz9fdESkKtx6FvOkOCQ73oTcX/vHaCwZWXchknyCSdLwoSYWNkTyOw+1wximJsCKGKm1ttOiSKUDRB5U0I7uLLy6RRLrkXpcpdpVi9zuLIwTGcwBm4cAlVuIUa1IGCgmd4hTfryXqx3q2PeeuKlc0cwR9Ynz9tcZJ5</latexit>

✓2t,q

<latexit sha1_base64="7oJ0YHte/n10ZlLXcjVMKrJuNZo=">AAAB9XicbVBNS8NAEN34WetX1aOXYBE8SEm0qMeiF48V7Ae0adlsJ+3SzSbuTpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8w8PxZco+N8W0vLK6tr67mN/ObW9s5uYW+/rqNEMaixSESq6VMNgkuoIUcBzVgBDX0BDX94M/Ebj6A0j+Q9jmLwQtqXPOCMopE6bRwA0m6Kpw/jznm3UHRKzhT2InEzUiQZqt3CV7sXsSQEiUxQrVuuE6OXUoWcCRjn24mGmLIh7UPLUElD0F46vXpsHxulZweRMiXRnqq/J1Iaaj0KfdMZUhzoeW8i/ue1EgyuvJTLOEGQbLYoSISNkT2JwO5xBQzFyBDKFDe32mxAFWVogsqbENz5lxdJ/azkXpTKd+Vi5TqLI0cOyRE5IS65JBVyS6qkRhhR5Jm8kjfryXqx3q2PWeuSlc0ckD+wPn8AbvWSeg==</latexit>

✓3t,q
<latexit sha1_base64="TruZYvOk0DxZBtxgyA9jukmBTsE=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgQUoiRT0WvXisYD+gTctmu2mXbjZxd6KU0P/hxYMiXv0v3vw3btsctPXBwOO9GWbm+bHgGh3n28qtrK6tb+Q3C1vbO7t7xf2Dho4SRVmdRiJSLZ9oJrhkdeQoWCtWjIS+YE1/dDP1m49MaR7JexzHzAvJQPKAU4JG6nZwyJD0Ujx7mHQrvWLJKTsz2MvEzUgJMtR6xa9OP6JJyCRSQbRuu06MXkoUcirYpNBJNIsJHZEBaxsqSci0l86untgnRunbQaRMSbRn6u+JlIRaj0PfdIYEh3rRm4r/ee0Egysv5TJOkEk6XxQkwsbInkZg97liFMXYEEIVN7fadEgUoWiCKpgQ3MWXl0njvOxelCt3lVL1OosjD0dwDKfgwiVU4RZqUAcKCp7hFd6sJ+vFerc+5q05K5s5hD+wPn8AcHmSew==</latexit>

✓4t,q n̄4
t,qn̄3

t,q

n̄2
t,q

n̄1
t,q

<latexit sha1_base64="zq88/vZgtnVfXhAZpdrO253WxL4=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqeyKqMeiBz2VCvYDtkvJptk2NJssyaxQl/4MLx4U8eqv8ea/MW33oK0PBh7vzTAzL0wEN+C6305hZXVtfaO4Wdra3tndK+8ftIxKNWVNqoTSnZAYJrhkTeAgWCfRjMShYO1wdDP1249MG67kA4wTFsRkIHnEKQEr+bf1ei/rPjEgk1654lbdGfAy8XJSQTkavfJXt69oGjMJVBBjfM9NIMiIBk4Fm5S6qWEJoSMyYL6lksTMBNns5Ak+sUofR0rbkoBn6u+JjMTGjOPQdsYEhmbRm4r/eX4K0VWQcZmkwCSdL4pSgUHh6f+4zzWjIMaWEKq5vRXTIdGEgk2pZEPwFl9eJq2zqndRPb8/r9Su8ziK6Agdo1PkoUtUQ3eogZqIIoWe0St6c8B5cd6dj3lrwclnDtEfOJ8/OMSROw==</latexit>

GNN⇣
<latexit sha1_base64="rc9Td3EzVx2bN08DZPdNbWkVLLY=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI9BLx4UIpgHJkuYnUySIbOzy0yvEJb8hRcPinj1b7z5N06SPWhiQUNR1U13VxBLYdB1v53cyura+kZ+s7C1vbO7V9w/aJgo0YzXWSQj3Qqo4VIoXkeBkrdizWkYSN4MRtdTv/nEtRGResBxzP2QDpToC0bRSo93t7Vu2uFIJ91iyS27M5Bl4mWkBBlq3eJXpxexJOQKmaTGtD03Rj+lGgWTfFLoJIbHlI3ogLctVTTkxk9nF0/IiVV6pB9pWwrJTP09kdLQmHEY2M6Q4tAselPxP6+dYP/ST4WKE+SKzRf1E0kwItP3SU9ozlCOLaFMC3srYUOqKUMbUsGG4C2+vEwaZ2XvvFy5r5SqV1kceTiCYzgFDy6gCjdQgzowUPAMr/DmGOfFeXc+5q05J5s5hD9wPn8AYCKQvQ==</latexit>

MLP⌘

<latexit sha1_base64="I636PdOEqv8Jnv/zhsVbSJG3tLE=">AAAB83icbVDLSgNBEOz1GeMr6tHLYBAiSNiVoB6DXjwmYB6QLMvsZDYZMvtgplcIS37DiwdFvPoz3vwbJ8keNLGgoajqprvLT6TQaNvf1tr6xubWdmGnuLu3f3BYOjpu6zhVjLdYLGPV9anmUkS8hQIl7yaK09CXvOOP72d+54krLeLoEScJd0M6jEQgGEUj9ZueqGgPL6mHF16pbFftOcgqcXJShhwNr/TVH8QsDXmETFKte46doJtRhYJJPi32U80TysZ0yHuGRjTk2s3mN0/JuVEGJIiVqQjJXP09kdFQ60nom86Q4kgvezPxP6+XYnDrZiJKUuQRWywKUkkwJrMAyEAozlBODKFMCXMrYSOqKEMTU9GE4Cy/vEraV1Xnulpr1sr1uzyOApzCGVTAgRuowwM0oAUMEniGV3izUuvFerc+Fq1rVj5zAn9gff4ACQORCw==</latexit>

Qi(st, at)

<latexit sha1_base64="zL1X5xftTKdXYigDTiLZZBw5b/A=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSxCBSmJFHVZdOOyBfuANobJdNIOnUzCzI1QQ/FX3LhQxK3/4c6/cfpYaPXAhcM593LvPUEiuAbH+bJyS8srq2v59cLG5tb2jr2719Rxqihr0FjEqh0QzQSXrAEcBGsnipEoEKwVDK8nfuueKc1jeQujhHkR6UseckrASL590A2Iyupjn5e0D6fEhzt+4ttFp+xMgf8Sd06KaI6ab392ezFNIyaBCqJ1x3US8DKigFPBxoVuqllC6JD0WcdQSSKmvWx6/RgfG6WHw1iZkoCn6s+JjERaj6LAdEYEBnrRm4j/eZ0Uwksv4zJJgUk6WxSmAkOMJ1HgHleMghgZQqji5lZMB0QRCiawggnBXXz5L2meld3zcqVeKVav5nHk0SE6QiXkogtURTeohhqIogf0hF7Qq/VoPVtv1vusNWfNZ/bRL1gf3+EQlNw=</latexit>

Q̄i(st, a
i
t)

<latexit sha1_base64="J8suFqrQ0RvRzgn4QXbdiNPG5vE=">AAACWnicfZHJSwMxFMYz49LNpS43L8EiVJAyU4t6LHrxWMEu0KlDJk3b0MzS5I1Qx/6TXkTwXxFMl4O2pQ8SPr7feyT54kWCK7CsL8Pc2t7ZTaUz2dze/sFh/ui4ocJYUlanoQhlyyOKCR6wOnAQrBVJRnxPsKY3fJjy5iuTiofBM4wj1vFJP+A9Tgloy82PRm7ivDEgV9jR+6RIXHix35ULl46TXQfLm+D1JliZQTdfsErWrPCqsBeigBZVc/MfTjeksc8CoIIo1batCDoJkcCpYJOsEysWETokfdbWMiA+U51kFs0EX2ini3uh1CsAPHP/TiTEV2rse7rTJzBQy2xqrmPtGHp3nYQHUQwsoPODerHAEOJpzrjLJaMgxloQKrm+K6YDIgkF/RtZHYK9/ORV0SiX7JtS5alSqN4v4kijM3SOishGt6iKHlEN1RFFn+jH2DVSxrdpmhkzN281jcXMCfpX5ukvsmCzsA==</latexit>

q⇣,⌘(a
1
t |st)

q⇣,⌘(a
2
t |st)

q⇣,⌘(a
3
t |st)

q⇣,⌘(a
4
t |st)

Type Inference Model
See Prop. 3 Agent Model

Joint Action Value Model

Loss 
See Eq. 8

<latexit sha1_base64="epKUW9OB1F9U/LkRxkyOWycAtqI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRoh6LXjxWsB/QhrLZbtqlm03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38389hPXRsTqEScJ9yM6VCIUjKKV2qaf4YU37ZcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/d0rOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4Y2fCZWkyBVbLApTSTAms9/JQGjOUE4soUwLeythI6opQ5tQyYbgLb+8SlqXVe+qWnuoVeq3eRxFOIFTOAcPrqEO99CAJjAYwzO8wpuTOC/Ou/OxaC04+cwx/IHz+QMN2I9l</latexit>st�1

<latexit sha1_base64="/oWVKNQYXJCZFD5ShZQ/zeO5/lY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRoh6LXjxWsB/QhrLZbtqlm03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38389hPXRsTqEScJ9yM6VCIUjKKV2rSf4YU37ZcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/d0rOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4Y2fCZWkyBVbLApTSTAms9/JQGjOUE4soUwLeythI6opQ5tQyYbgLb+8SlqXVe+qWnuoVeq3eRxFOIFTOAcPrqEO99CAJjAYwzO8wpuTOC/Ou/OxaC04+cwx/IHz+QPyFY9T</latexit>at�1
<latexit sha1_base64="/+iLKzJc7+Tkf4/n2m5Bi7fT8No=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBiyWRoh6LXjxWsB/QhLLZTtulm03YnQgl9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5YSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUc2jyWMa6EzIDUihookAJnUQDi0IJ7XB8N/PbT6CNiNUjThIIIjZUYiA4Qyv5Po4AWS/DC2/aK1fcqjsHXSVeTiokR6NX/vL7MU8jUMglM6bruQkGGdMouIRpyU8NJIyP2RC6lioWgQmy+c1TemaVPh3E2pZCOld/T2QsMmYShbYzYjgyy95M/M/rpji4CTKhkhRB8cWiQSopxnQWAO0LDRzlxBLGtbC3Uj5imnG0MZVsCN7yy6ukdVn1rqq1h1qlfpvHUSQn5JScE49ckzq5Jw3SJJwk5Jm8kjcndV6cd+dj0Vpw8plj8gfO5w/fUZGW</latexit>

✓t�1 Nt

<latexit sha1_base64="LqPuN1ZRCGIuQfgnlMhy/hwF0zM=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae2oWy2m3bpZhN2J0IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilxx6OONJ+htN+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn84un5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+5lQSYpcscWiMJUEYzJ7nwyE5gzlxBLKtLC3EjaimjK0IZVsCN7yy6ukdVH1Lqu1+1qlfpPHUYQTOIVz8OAK6nAHDWgCAwXP8ApvjnFenHfnY9FacPKZY/gD5/MH/tGRJA==</latexit>

✓t

Transition 
See Eq. 2 

PO

PE

<latexit sha1_base64="uIk7l4ZCYVPwxd3laM9aKyoOFm8=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4kJJIUY9FLx4r2A9oQ9lsN+3azSbsToQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3U791hPXRsTqAccJ9yM6UCIUjKKVmqaX4eS8Vyq7FXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezaCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimG134mVJIiV2y+KEwlwZhMXyd9oTlDObaEMi3srYQNqaYMbUBFG4K3+PIyaV5UvMtK9b5art3kcRTgGE7gDDy4ghrcQR0awOARnuEV3pzYeXHenY9564qTzxzBHzifP5tEjyk=</latexit>st,

(Unknow)

<latexit sha1_base64="YvR22MZ+gPVwzrcM2/9gqvH2gHI=">AAAB+HicbVBNT8JAEJ3iF+IHVY9eNhITvJDWEPVI9OIREvlIoDbbZQsbttu6uzVBwi/x4kFjvPpTvPlvXKAHBV8yyct7M5mZFyScKe0431ZubX1jcyu/XdjZ3dsv2geHLRWnktAmiXksOwFWlDNBm5ppTjuJpDgKOG0Ho5uZ336kUrFY3OlxQr0IDwQLGcHaSL5dbJSxr++rZ6g3oA/I8e2SU3HmQKvEzUgJMtR9+6vXj0kaUaEJx0p1XSfR3gRLzQin00IvVTTBZIQHtGuowBFV3mR++BSdGqWPwliaEhrN1d8TExwpNY4C0xlhPVTL3kz8z+umOrzyJkwkqaaCLBaFKUc6RrMUUJ9JSjQfG4KJZOZWRIZYYqJNVgUTgrv88ippnVfci0q1US3VrrM48nAMJ1AGFy6hBrdQhyYQSOEZXuHNerJerHfrY9Gas7KZI/gD6/MHi/qRuw==</latexit>

Q(a4t ) � 0
<latexit sha1_base64="P+swsEso0/4zOx9pT71Zbo297CM=">AAAB+HicbVBNT8JAEN36ifhB1aOXjcQEL6RVoh6JXjxCIh8J1Ga7TGHDdlt3tyZI+CVePGiMV3+KN/+NC/Sg4EsmeXlvJjPzgoQzpR3n21pZXVvf2Mxt5bd3dvcK9v5BU8WppNCgMY9lOyAKOBPQ0ExzaCcSSBRwaAXDm6nfegSpWCzu9CgBLyJ9wUJGiTaSbxfqJeLr+/NT3O3DA3Z8u+iUnRnwMnEzUkQZar791e3FNI1AaMqJUh3XSbQ3JlIzymGS76YKEkKHpA8dQwWJQHnj2eETfGKUHg5jaUpoPFN/T4xJpNQoCkxnRPRALXpT8T+vk+rwyhszkaQaBJ0vClOOdYynKeAek0A1HxlCqGTmVkwHRBKqTVZ5E4K7+PIyaZ6V3YtypV4pVq+zOHLoCB2jEnLRJaqiW1RDDURRip7RK3qznqwX6936mLeuWNnMIfoD6/MHim6Rug==</latexit>

Q(a3t ) � 0

<latexit sha1_base64="madDdoQczGtNHSNFhI/vvYzoa0I=">AAAB+HicbVBNT8JAEN36ifhB1aOXjcQEL6QlRD0SvXiERD4SqM12GWDDdlt3tybY8Eu8eNAYr/4Ub/4bF+hBwZdM8vLeTGbmBTFnSjvOt7W2vrG5tZ3bye/u7R8U7MOjlooSSaFJIx7JTkAUcCagqZnm0IklkDDg0A7GNzO//QhSsUjc6UkMXkiGgg0YJdpIvl1olIiv7yvnuDeEB+z4dtEpO3PgVeJmpIgy1H37q9ePaBKC0JQTpbquE2svJVIzymGa7yUKYkLHZAhdQwUJQXnp/PApPjNKHw8iaUpoPFd/T6QkVGoSBqYzJHqklr2Z+J/XTfTgykuZiBMNgi4WDRKOdYRnKeA+k0A1nxhCqGTmVkxHRBKqTVZ5E4K7/PIqaVXK7kW52qgWa9dZHDl0gk5RCbnoEtXQLaqjJqIoQc/oFb1ZT9aL9W59LFrXrGzmGP2B9fkDiOKRuQ==</latexit>

Q(a2t ) � 0

<latexit sha1_base64="u6sF9K/O6KtUfeYSNaeVsU2lePk=">AAAB+HicbVBNT8JAEJ3iF+IHVY9eNhITvJDWEPVI9OIREvlIoDbbZQsbttu6uzVBwi/x4kFjvPpTvPlvXKAHBV8yyct7M5mZFyScKe0431ZubX1jcyu/XdjZ3dsv2geHLRWnktAmiXksOwFWlDNBm5ppTjuJpDgKOG0Ho5uZ336kUrFY3OlxQr0IDwQLGcHaSL5dbJSxr+/dM9Qb0Afk+HbJqThzoFXiZqQEGeq+/dXrxySNqNCEY6W6rpNob4KlZoTTaaGXKppgMsID2jVU4IgqbzI/fIpOjdJHYSxNCY3m6u+JCY6UGkeB6YywHqplbyb+53VTHV55EyaSVFNBFovClCMdo1kKqM8kJZqPDcFEMnMrIkMsMdEmq4IJwV1+eZW0zivuRaXaqJZq11kceTiGEyiDC5dQg1uoQxMIpPAMr/BmPVkv1rv1sWjNWdnMEfyB9fkDh1aRuA==</latexit>

Q(a1t ) � 0
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Figure 1: Illustration of the proposed algorithm named as CA-GPL, where Proposition 3 is shown in
Appendix C due to the page limit.

In this section, we investigate how AH-BSC can be formulated as an RL problem (see Section 4.1),
how the preference Q-values indicating each agent’s long-term preference can be represented (see
Section 4.2), and how the RL problem can be solved in theory (see Section 4.3) and in practice (see
Section 4.4). Combining all above results, we propose an algorithm named as coalitional affinity
GPL (CA-GPL), whose procedure is summarized in Figure 1.

4.1 SOLVING AD HOC BAYESIAN STRICT CORE AS A REINFORCEMENT LEARNING PROBLEM

At the beginning, let us presume that a global reward that the learner aims to maximize in the long
term to encourage collaboration can be equivalently defined as the social welfare concerning a
coalition structure CSt such that R(st, at) = ∑C∈CSt ∑j∈C Rj(st, at,C). Note that this interpretation
is without loss of generality because it considers all agents dedicated to the environment. In this work,
we aim at finding a deterministic optimal policy for the learner, so that Eq. 3 agrees with the condition
of optimal learner’s policy for OSBG, but from a completely different view. As a result, we can
maximize the cumulative global rewards under the grand coalition (i.e. CSt = {Nt}) to implement
the AH-BSC via the learner’s policy πi such that

max
πi

Eθt∼PE , at,−i∼πt,−i, at,i∼πi, Nt,st∼PO[
∞
∑
t=0

γtR(st, at)]. (4)

4.2 REPRESENTATION OF PREFERENCE Q-VALUES

Each agent j’s preference Q-value is the expectation of its discounted cumulative preference rewards
such that Qj(st, at) = E[∑∞t=0 γtRj(st, at)]. For a teammate j, its preference reward of the grand
coalition is defined as Rj(st, at) = wji(st, at,j , at,i), while for a learner i, its preference reward of
the grand coalition is defined as Ri(st, at) = ∑j∈−iwij(st, at,i, at,j). Next, we prove that wjj′ ≥ 0
for every agent j promises the strict core stability of the grand coalition as Theorem 2 shows. This
condition can be seen as an inductive bias to be considered in representation of the value function, so
that the search space of strict core stability following Eq. 4 would be well confined.
Theorem 2. In an OSB-CAG for ad hoc teamwork, if for all (j, j′) ∈ E , all states s ∈ S and all action
pairs (aj , aj′) ∈ Aj ×Aj′ , wjj′(s, aj , aj′) ≥ 0, then the grand coalition exhibits strict core stability.

On the other hand, the individual rationality following the convention of the CAG (see Section 2.1)
needs to be guaranteed such that for an agent j′, Rj′(st, at) ≥ Rj′(st, at,j′), where Rj′(st, at,j′) is
defined as the preference reward when only an agent j′ itself forms a singleton coalition. Besides, the
symmetry of affinity graph weights mentioned in Theorem 1 under the star affinity graph also needs to
be guaranteed. Without loss of generality, we define the affinity graph weights in Definition 3, based
on αij , αji, Rj(st, at,j) and Ri(st, at,i), whose designs will be discussed in the next paragraph.
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Definition 3. Given the definition of αij , αji, Rj(st, at,j) and Ri(st, at,i), the affinity graph weights
are defined as follows: wji(st, at,j , at,i) = αji(st, at,j , at,i) + 1

2
⋅Rj(st, at,j) + 1

2∣−i∣ ⋅Ri(st, at,i)
and wij(st, at,i, at,j) = αij(st, at,i, at,j) + 1

2∣−i∣ ⋅Ri(st, at,i) + 1
2
⋅Rj(st, at,j).

Suppose that Rj(st, at,j) = 1
∣−i∣ ⋅ Ri(st, at,i) at timestep t, we prove in Proposition 2 that if

αij(st, at,i, at,j) = αji(st, at,j , at,i) ≥ 0, Rj(st, at,j) ≥ 0 and Ri(st, at,i) ≥ 0, then the individ-
ual rationality, the symmetric affinity graph weights and the grand coalition exhibiting strict core
stability would be simultaneously satisfied.
Proposition 2. For the learner i and any teammate j at timestep t, suppose that Rj(st, at,j) =
1
∣−i∣ ⋅Ri(st, at,i) and the affinity graph weights of a star graph are defined as Definition 3 shows,
αij = αji ≥ 0, Rj ≥ 0 and Ri ≥ 0 would lead to symmetry of affinity weights, individual rationality
and the grand coalition exhibiting strict core stability.

Considering the long-term goal and symmetry, we obtain the following two terms by Lemma 1 2

such that Qji(st, at,j , at,i) = Qij(st, at,i, at,j) = E[∑∞t=0 γtαij(s, at,i, at,j)] for any teammate j
and Qj′(st, at,j′) = E[∑∞t=0 γtRj′(st, at,j′)] for any agent j′. Due to the linearity of expectation and
the definition of preference Q-values, a teammate’s preference Q-value is defined as that Qj(st, at) =
Qji(st, at,j , at,i) + 1

2
⋅Qj(st, at,j) + 1

2∣−i∣ ⋅Qi(st, at,i), whereas the learner’s preference Q-value
is defined as that Qi(st, at) = ∑j∈−iQij(st, at,i, at,j) + 1

2
⋅∑j∈−iQj(st, at,j) + 1

2
⋅Qi(st, at,i). A

necessary condition to satisfy the condition in Proposition 2 is that Qij = Qji ≥ 0, Qi ≥ 0 and Qj ≥ 0.
Lemma 1. Suppose that αjj′(st, at,j , at,j′) = 0 for t ≥ T if agent j or j′ leaves the environment
at timestep T and Rj(st, at,j) = 0 for t ≥ T if agent j leaves the environment at timestep T , then
Qjj′(st, at,j , at,j′) = E[∑∞t=0 γtαjj′(s, at,j , at,j′)] and Qj(st, at,j) = E[∑∞t=0 γtRj(st, at,j)].

4.3 OPEN AD HOC BELLMAN OPTIMALITY EQUATION

Akin to the Bellman optimality equation in RL, by Theorem 3 (i.e., proved based on Lemma 1) we
propose the open ad hoc Bellman optimality equation (OAH-BOE) to describe the condition of the
learner’s optimal policy such that

Q∗(st, at) = R(st, at)+γENt+1,st+1∼PO
[max

a′i
E θt+1∼PE ,
at+1,−i∼πt+1,−i

[Q∗(st+1, at+1,−i, a′i)]+b(st+1)], (5)

where Q∗(st, at) = ∑j∈Nt
Q∗j (st, at) and b(st+1) ≥ 0. It is undefined when Nt ⊂ Nt+1, since it is

unreasonable to consider an agent j ∈ Nt+1 but ∉ Nt at timestep t in deriving Bellman optimality
equation, which is problematic.
Theorem 3. Suppose that αjj′(st, at,j , at,j′) = 0 for t ≥ T if agent j or j′ leaves the environment at
timestep T and Rj(st, at,j) = 0 for t ≥ T if agent j leaves the environment at timestep T , then the
open ad hoc Bellman optimality equation is defined as Eq. 5.

To solve the OAH-BOE, we further propose the following operator Γ ∶ Q ↦ ΓQ analogous to the
Bellman operator named as open ad hoc Bellman operator (OAH-BO) such that

ΓQ (st+1, at+1,−i, a′i) = R(st, at) + γEPO
[max

a′i
EPE , πt+1,−i[Q(st+1, at+1,−i, a′i)] + b(st+1)]. (6)

Similar to OAH-BOE, it is undefined when Nt ⊂ Nt+1. If we define a new global reward function
such that R̂(st, at) = R(st, at) + γEPO

[b(st+1)], then the OAH-BO is in the same form as the
normal Bellman operator if PE and πt+1,−i are known in prior. Therefore, recursively running Eq. 6
converges to the OAH-BOE, following the well-known value iteration convergence results (Sutton &
Barto, 2018). By stochastic approximation, we can derive the relevant Q-learning algorithm (Watkins
& Dayan, 1992) and its fitted Q-learning (Ernst et al., 2005) objective function to deal with continuous
or very large discrete states and/or action spaces in practice as follows:

min
β

E[1
2
(R(st, at)+ γ(max

a′i
EPE ,πt+1,−i[Q−(st+1, at+1,−i, a′i)]+ b(st+1))−Q(st, at,−i, ai;β))

2

],
(7)

where Q− is the target global Q-value and Q is assumed to be parameterised by β.
2The insight behind Lemma 1 is shown in Remark 2 in Appendix D.
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4.4 PRACTICAL IMPLEMENTATION

As our theoretical model defines, a global reward needs to be greater than or equal to zero, while the
global reward of an actual environment R(st, at) could be less than zero. This can be adjusted by
adding the maximum difference among all states and joint actions between these two global reward
functions denoted as ∆R to R(st, at) to construct a surrogate global reward function R̂(st, at)
without changing the original goal such that R̂(st, at) = R(st, at)+∆R. Since δ = E[∆R+γb(st+1)]
is a constant term, it can be seen as a bias which results in the minimum of the objective function in
Eq. 7 changing from 0 to 0.5δ2, but with the same optimal solution. For this reason, we can ignore
the bias term δ, and therefore the objective function becomes:

min
β

E[1
2
(R(st, at) + γmax

a′i
EPE ,πt+1,−i[Q−(st+1, at+1,−i, a′i)] −Q(st, at,−i, a′i;β))

2

]. (8)

Eq. 8 is further solved by the deep Q-learning framework (DQN) (Mnih et al., 2013) in practice. As
for the architecture, our method can be easily implemented based on GPL framework (Rahman et al.,
2021), whose details are mentioned in Appendix F. More specifically, the coordination graph in GPL
is configured to be a star graph. To satisfy the conditions discussed in Proposition 2, we need only
to learn Qij rather than both Qij and Qji to satisfy symmetry, as well as regulate Qi ≥ 0, Qj ≥ 0
and Qij ≥ 0 for any teammate j by adding the abs function to the outputs. For this reason, we name
our algorithm coalitional affinity GPL (CA-GPL) to credit the introduction of CAG. Please refer to
Appendix C for more details about the deeper understanding of the GPL framework using our theory.
Remark 1. In practice, we implement CA-GPL following the GPL framework where it does not
ignore the transitions of Nt ⊂ Nt+1 during training (violating the condition of Eq. 6 and 7, and
therefore Eq. 8). Nevertheless, this only emerges at the timestep when a new member joins the
team, which is a small fraction of data among all. In other words, there is only a small fraction of
pathological updates, which would not affect validity of the learning progress too much.

5 EXPERIMENTS
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(a) LBF up to 2 teammates.
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(b) LBF up to 4 teammates.
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(c) LBF up to 8 teammates.
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(d) Wolfpack up to 2 teammates.
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(e) Wolfpack up to 4 teammates.
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(f) Wolfpack up to 8 teammates.

Figure 2: Evaluation on different environments with variant upper limit numbers of teammates. All
figures share one legend in Fig. 2a. Our proposed method, CA-GPL, surpasses the state-of-the-art
GPL and our variants (CA-GPL-×) in every scenario, except for LBF with up to 2 teammates, where
the performance of all methods is almost the same.

We evaluate the proposed CA-GPL in two existing environments, LBF and Wolfpack, with open team
settings (Rahman et al., 2021; 2022), where teammates are randomly selected to enter the environment
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and stay for a certain number of time steps. In experiments, we train the learner in an environment
where at most 2 teammates exist at each timestep, while we test the learner in environments where at
most 2, 4, and 8 teammates exist at each timestep respectively to show the ability to tackle both unseen
compositions and team sizes. All experiments are carried out with five random seeds, and the results
are demonstrated as the mean performance with a 95% confidence interval. We design experiments
to mainly verify the following statements such that (1) the GPL settings (to form CA-GPL) derived
from the theoretical model are effective in improving the performance; (2) the theoretical model is
reasonable so that the affinity graph weights can be aligned with the cooperative behaviors. The
details of experimental setups are described in Appendix G.

Baselines. The baselines we use in this experiment are GPL-Q (shortened as GPL) (Rahman et al.,
2021) and variants of the proposed CA-GPL to validate the effectiveness of the theoretical model:
CA-GPL-NI and CA-GPL-NP are variants that enforce negative individual utility terms and pairwise
utility terms, i.e., Rj′ < 0 and Rij < 0, respectively; CA-GPL-NPQ refers to enforcing negative both
individual utility terms and pairwise utility terms; CA-GPL-ZI is a variant with zero as individual
utility terms implying the complete ignorance of individual rationality; CA-GPL-FCG replaces
the star graph with a fully connected graph with other settings that are still valid to guarantee our
theoretical claims (see Proposition 4 in Appendix E).
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Figure 3: Fig. 3a and Fig. 3b: Stability of performance comparison in two different sets of teammate
type. The suffix "w/o A2C" denotes the "teammate type set without pre-trained A2C agent". Fig. 3a
shows the results on the maximum teammate size of 4, and Fig. 3b for up to 8 on LBF. Fig. 3c and
Fig. 3d: Comparison between different graph structures for GNNs to aggregate observations for
teammates’ policies in LBF (Fig. 3c) and Wolfpack (Fig. 3d) environments with up to 4 teammates.

5.1 MAIN RESULTS

We first show the main results of three test environments where up to 2, 4 and 8 ad hoc teammates
exist for LBF and Wolfpack, respectively. As Fig. 2 shows, CA-GPL performs generally best among
all variants, especially exceeding GPL with a large margin in most scenarios. The better performance
compared to each CA-GPL variant in most scenarios shows the effectiveness of every component
mentioned in the proposed theoretical model. Among all these CA-GPL variants, it is noticeable
that CA-GPL-NI and CA-GPL-FCG also generally perform well. The most probable reason for the
comparatively good performance of CA-GPL-NI is that Rj′ ≥ 0 is only a sufficient condition to
satisfy the strict core stability and individual rationality, which implies that there may exist some
other feasible conditions. Due to the lack of exact constraints, it is not easy to reach these conditions
during the learning. The comparatively good performance of CA-GPL-FCG could be due to that
there still exists relationship among ad hoc teammates in some environments, but not strong enough,
so its performance is still worse than CA-GPL.

5.2 EVALUATION ON DIFFERENT TEAMMATE SETS AND GRAPH STRUCTURES

Sensitivity to Different Teammates. We observe from experimental results (see Fig. 3a and 3b) as
well as previous results (Rahman et al., 2021) that the learner’s performance is highly dependent on
different teammate types. For this reason, we introduce a novel case study to investigate the stability
of performance for different sets of teammate types between CA-GPL and GPL. For simplicity, we
construct two teammate type sets such that one is with a pretrained A2C agent and another is without.
Each teammate type set is used for training and evaluation, rather than training with a teammate type
set but testing with another one in previous works (Rahman et al., 2021). As depicted in Fig. 3a and
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Fig. 3b, a comparative analysis was conducted on the average return in two distinct sets of teammates,
i.e., w/ and w/o A2C agent pre-trained. In both LBF settings, adapting to up to 4 teammates (Fig. 3a)
and extending up to 8 teammates (Fig. 3b), the discrepancy of performances between the two type
sets by our CA-GPL method is considerably less pronounced in comparison with GPL. Furthermore,
we conducted a qualitative analysis to assess performance stability, as shown in Table. 1. We first
employ a metric such that (∣Rw/ −Rw/o∣)/Rw/o × 100 to quantify the variance of performances
between two distinct sets of teammate type, whereR is defined as the average episodic return. The
lower the value, the more is the stability. The results of the latter half of the training phase on LBF
with two team configurations substantiate that CA-GPL exhibits superior stability in terms of both
the period value and the average value.

Table 1: Qualitative stability assessment during the latter half of the training phase across varied
teammate type sets within the LBF environment. The lower is the value, the more stable is the result.

Team Size Method Training Interval Avg.50%-60% 60%-70% 70%-80% 80%-90% 90%-100%

Up to 4 Teammates GPL 37.46 38.99 25.33 31.12 26.30 31.84 ± 5.59
CA-GPL 7.33 8.41 8.08 21.90 19.37 13.02 ± 6.28

Up to 8 Teammates GPL 32.32 22.76 29.46 26.07 38.58 29.84 ± 5.42
CA-GPL 14.79 4.05 5.09 22.48 8.92 11.07 ± 6.84

Graph Structure to Aggregate Observations for Teammates’ Policies. In GPL, the graph structure
for GNNs to aggregate others’ observations for each teammate’s policy is defined as a fully connected
graph (see Appendix F). In other words, each teammate’s policy model receives observations from all
other agents. Although our theoretical model is irrelevant to teammates’ policies, we employ the star
graph for GNNs to aggregate observations for teammates’ policies to preserve the consistency of the
affinity graph in the CA-GPL. Under this scheme, each teammate’s policy model only receives the
learner’s observation. To verify whether the above scheme is enough to model teammates’ policies,
we compare CA-GPL with its variant with a fully connected graph for aggregating observations for
teammates’ policies named CA-GPL-FCPG. As Fig. 3c and 3d show, CA-GPL and CA-GPL-FCPG
possess similar performances on Wolfpack and LBF with up to 4 teammates. The same phenomenon
also appears in environments with up to 8 teammates (see Appendix H). The probable reason could
be that the relationships among teammates are weak so that information from the agents other than
the learner is unable to influence a teammate’s decision-making, which verifies and consolidates
modeling the coordination graph as a star graph.

6 CONCLUSION

Summary. This work proposes a theoretical model from the perspective of cooperative game theory
to address a challenging problem called open ad hoc teamwork. In comparison with prior works on
modelling this problem as a non-cooperative game theoretical model Our theoretical model can better
establish the learner’s influence on ad hoc teammates so that the open ad hoc teamwork process is well
described. Based on the theoretical model, we also propose a novel algorithm named CA-GPL, which
can be easily implemented based on the SOTA algorithm GPL with some theoretically guaranteed
settings from this work. To this end, it also provides an interpretation of the heuristic implementation
of GPL. In experiments, we demonstrate and verify the effectiveness and reasonableness of our
theoretical model through delicate experimental designs and visualizations.

Future Work. This work is the first work establishing a theoretical model and a practical algorithm
standing by the view of cooperative game theory, which sheds light on incorporating cooperative
game theory into ad hoc teamwork. Multiple future directions can be taken after this work. First, to
simplify the problem, we have ignored the relationship among teammates. However, in some realistic
scenarios, we believe this relationship is critical to the learner’s decision. One can refer to the concept
of top responsiveness (Alcalde & Revilla, 2004) to gain more insight into this direction. Another
possible direction is how our theoretical model can be generalized to the scenarios with teammates
and enemies. Regarding this direction, one can refer to the concept of friends and enemies (Dimitrov
et al., 2006) as well as B- and W-preferences (Cechlárová & Romero-Medina, 2001; Cechlárová &
Hajduková, 2003) in hedonic games.
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ETHICS STATEMENT

Our method and algorithm do not involve any adversarial attack, and will not endanger human
security. All our experiments are performed in the simulation environment, which does not involve
ethical and fair issues.

REPRODUCIBILITY STATEMENT

The source code of this paper will be published later. We specify all the experiment implementation
details, the experiment setup, and the additional results in Appendix G, Appendix H, and our project
website https://sites.google.com/view/cagpl/.
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A RELATED WORK

Theoretical Models for Ad Hoc Teamwork. We first discuss the previous works on the theoretical
models used to describe the AHT. Brafman & Tennenholtz (1996) was the first to investigate ad hoc
teamwork in theory by studying the repeated matrix game with a single teammate. Agmon & Stone
(2012) extended this thread to multiple teammates, while Agmon et al. (2014) further relaxed the
known teammates’ policies to the policies drawn from a known set. Stone & Kraus (2010) proposed
collaborative multi-armed bandits, which initially formalized the AHT but with strong assumptions
(e.g. teammates’ policies and environments were known to the ad hoc agent). The first work proposed
as a complete theoretical model to solve dynamic environments and unknown teammates in the
AHT by combining Markov and Bayesian games is a stochastic Bayesian game (SBG) (Albrecht &
Ramamoorthy, 2013). Extended from the SBG, a theoretical model called open stochastic Bayesian
game (OSBG) (Rahman et al., 2021) was proposed to address the OAHT. Zintgraf et al. (2021)
modelled the AHT as interactive Bayesian reinforcement learning (IBRL) in Markov games, whose
purpose was to solve non-stationary teammates’ policies during one episode but not across episodes.
Distinguished from the above purpose, Xie et al. (2021) proposed to use a hidden parameter Markov
decision process (HiP-MDP) to solve the situation where teammates’ policies vary across episodes
but maintain stationary during each episode. In this paper, we formalize the AHT by the CAG (a.k.a.
additively separable games) from the view of cooperative game theory as well as propose a theoretical
model named OSB-CAG and the solution concept AH-BSC to characterize better the interactive
process of ad hoc teamwork (i.e., the influences between the learner and the ad hoc teammates to
encourage collaboration).

Algorithms for Ad Hoc Teamwork. We now look into AHT from the algorithmic perspective. The
best response algorithm was proposed to solve the problem under assumptions of a matrix game and
the well-known teammates’ policies (Stone et al., 2009). Extending this line of research, REACT
(Agmon et al., 2014) was proposed that works well on many matrices where teammates’ policies
are drawn from a known set. Wu et al. (2011) used biased adaptive play to estimate teammates’
actions based on their history actions and Monte Carlo tree search to plan the ad hoc agent’s actions.
HBA (Albrecht & Ramamoorthy, 2013) was proposed to solve the problems beyond matrix games,
which maintain a probability distribution of predetermined agent types and maximize the long-term
payoffs by an extended Bellman operator. PLASTIC-Policy (Barrett et al., 2017) was proposed to
solve more realistic scenarios like RoboCup (Kalyanakrishnan et al., 2007) that trains teammates’
policies by behaviour cloning and the ad hoc agent’s policy w.r.t. the state and teammates’ types
by FQI (Ernst et al., 2005). During the test, the belief of agent types is updated via the pretrained
teammates’ policies and the observed teammates’ reactions, which is used to estimate teammates’
types and their actions to select the ad hoc agent’s action. AATEAM (Chen et al., 2020) extended
PLASTIC-Policy with the attention network (Bahdanau et al., 2014) for improving the estimation
of unseen agent types. Rahman et al. (2021) extended HBA with modern deep learning techniques
such as GNNs and RL algorithms to solve the OAHT and proposed GPL. Gu et al. (2022) proposed
ODITS to tackle teammates with rapidly changing behaviors under partial observability. In this paper,
we define the affinity graph as a star graph and derive the representation of the global Q-value. As per
the theoretical model and the derived settings, we propose an interpretable algorithm named CA-GPL
that can be easily implemented based on GPL.

Relationship to Cooperative Multi-Agent Reinforcement Learning. Cooperative MARL primarily
aims at training and controlling agents altogether to optimally complete a common-goal task. The
popular research topics are value decomposition/credit assignment (Foerster et al., 2018; Sunehag
et al., 2018; Rashid et al., 2018), reward shaping (Du et al., 2019; Mguni et al., 2022), communication
(Foerster et al., 2016; Sukhbaatar et al., 2016; Jiang & Lu, 2018; Kim et al., 2019), and etc.. In this
paper, only one agent is trained to interact with an unknown set of uncontrollable agents to complete
a common-goal task. For this reason, the joint policy in the AHT could be sub-optimal in comparison
with that in the MARL. To solve value decomposition/credit assignment, the transferable utility games
in cooperative game theory was introduced and extended to MARL for the application of Shapley
value (Wang et al., 2020; 2022). In this paper, we introduce the CAG that belongs to non-transferable
utility games (i.e. a broader class involving transferable utility games) to solve the OAHT. Recently,
some works start to utilize causal analysis to analyze multi-agent systems (Hammond et al., 2023)
and improve training MARL (Li et al., 2022). Correspondingly, we apply causal inference in this
paper to derive a Bayesian filter to approximate and estimate the joint type assignment function.
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B ASSUMPTIONS

Assumption 1. There exists an underlying agent type set to generate ad hoc teammates in an
environment which is unknown to the learner.

Assumption 2. The ad hoc teammates can be influenced by the learner through its decision making.

Assumption 3. The agents stay in the environment at least for a period of timesteps.

Assumption 4. Each teammate of an arbitrary agent type is equipped with a fixed policy.

Assumption 1 is a natural way to describe agent types of teammates. If the agent type set is large
enough, it is impossible to encounter all agent types or the compositions of agent types. For this
reason, this assumption would not corrupt the generalizability of the open ad hoc teamwork.

Assumption 2 is a fundamental and common property to rationalize the ad hoc teamwork problem.
It is usually described as the reactivity of teammates (Barrett et al., 2017). If all ad hoc teammates
cannot react to or be influenced by the learner, then the problem would be degraded to a single agent
problem with teammates as moving “obstables”. To avoid such a pathological situation, we would
maintain this assumption as a boundary of ad hoc teamwork.

Assumption 3 is a condition to guarantee the possibility to complete an arbitrary task. If an agent
joins at some timestep and leaves instantaneously at the next timestep, there is almost no chance for
any team of agents to react to and influence each other.

Assumption 4 is a condition to simplify the analysis of convergence to the optimal policy of the
learner. More specifically, to the learner, the condition of teammates’ fixed policies enables the
Markov process stationary.

C FURTHER DETAILS OF IMPLEMENTATION

Since PE and πt,−i are unknown to the learner, we need to discuss how to estimate these two terms
to enable convergence of Eq. 6. A Bayesian filter P̂E(θt∣st, θ−t−1, θ+t−1) =∏

∣Nt∣
j=1 P̂A(θt,j ∣θt−1,j , st) is

derived by Proposition 3 for the learner to generate its belief in the types of teammates. If agent j is a
newly joined agent at timestep t, θt−1,j would be zeros for P̂A(θt,j ∣θt−1,j , st), otherwise, it would be
the estimate for timestep t − 1. On the other hand, a Bayesian filter is also used to infer the belief of
states via the agents’ joint observation history (Oliehoek & Amato, 2016), which is assumed to be
factorized in agents like P̂A. In other words, such an aggregated Bayesian filter for each agent takes
as input its local observation and its belief of the aggregation its types and locally inferred state for
the last timestep and generates its belief for the current timestep as output. As a result, we use an
LSTM (Hochreiter & Schmidhuber, 1997) to approximate the aggregated Bayesian filter.

Proposition 3. PE(θt∣Nt, st) can be approximated as the expression P̂E(θt∣st, θ−t−1, θ+t−1), where
θ−t−1 indicates the types of remaining agents of Nt−1 and θ+t−1 indicates the unknown types of newly
joined agents at timestep t (set to zeros as default).

Furthermore, π̂t,−i = ×j∈−iπ̂t,j is fitted by supervised learning through the behavior of the teammates
during the interactions. The architecture of π̂t,j is a shared graph neural network (GNN) aggregating
each agent’s belief for the current timestep, connected by the exclusive multilayer perceptrons (MLPs)
to output teammate j’s actions. All Qi, Qj and Qij are approximated by MLPs, whose inputs are
also generated by the approximate aggregated Bayesian filter as an LSTM.

D PROOFS

Proposition 1. The transition function T (θt, st,Nt∣θt−1, st−1, at−1) exists for t ≥ 1 given that the
following conditions hold: PT (Nt, st∣Nt−1, st−1, at−1) is well defined for t ≥ 1; PI(N0∣s0) is well
defined; and PA(θt,j ∣{j}, st) is well defined for t ≥ 0.
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Proof. To ease the analysis and description, we assume that st and at are discrete with no loss of
generality. We prove the existence of T (θt, st,Nt∣θt−1, st−1, at−1) as follows:

T (θt, st,Nt∣θt−1, st−1, at−1)
= P (θt∣Nt, st, θt−1, st−1, at−1)PO(Nt, st∣θt−1, st−1, at−1)
= PE(θt∣Nt, st)PO(Nt, st∣θt−1, st−1, at−1) (By conditional independence)

= PE(θt∣Nt, st) ∑
Nt−1

P (Nt, st,Nt−1∣θt−1, st−1, at−1)

= PE(θt∣Nt, st) ∑
Nt−1

PT (Nt, st∣θt−1,Nt−1, st−1, at−1)P (Nt−1∣θt−1, st−1, at−1)

= PE(θt∣Nt, st) ∑
Nt−1

PT (Nt, st∣Nt−1, st−1, at−1)P (Nt−1∣θt−1, st−1)

=
∣Nt∣

∏
j=1

PA(θt,j ∣{j}, st) ∑
Nt−1

PT (Nt, st∣Nt−1, st−1, at−1)P (Nt−1∣θt−1, st−1)

(By conditional independence).

We next show the existence of P (Nt∣θt, st) as follows:

P (Nt∣θt, st) =
∑st PE(θt∣Nt, st)P (Nt, st)
∑Nt
∑st PE(θt∣Nt, st)P (Nt, st)

.

We now start to prove the existence of P (Nt, st) using mathematical induction as follows:

Base case: As per the definition, PI(N0, s0) exists for t = 0.

Induction case: Assume the induction hypothesis that P (Nt, st) exists for any t ≥ 0. Next, we prove
the existence of P (Nt+1, st+1) based on the induction hypothesis such that

P (Nt+1, st+1) =∑
Nt

∑
st

∑
at

P (Nt+1, st+1,Nt, st, at).

Since
P (Nt+1, st+1,Nt, st, at) = P (Nt+1, st+1∣Nt, st, at)P (Nt, st)π(at∣st),

we have proved the existence of P (Nt+1, st+1).
Conclusion: P (Nt, st) exists for any t ≥ 0.

Lemma 2 (Brânzei & Larson (2009)). If a CAG is symmetric, then the social-welfare maximizing
partition exhibits inner stability.
Theorem 1. If a CAG is symmetric and the grand coalition is assumed to be strict core stable, then
maximizing the social welfare under the grand coalition results in strict core stability.

Proof. It is not difficult to observe that if the grand coalition is assumed to be strict core stable, then it
also equivalently exhibits the inner stability. Additionally, if the affinity graph weights are symmetric,
by Lemma 2 we can directly obtain the result.

Theorem 2. In a OSB-CAG for ad hoc teamwork, if for all (j, j′) ∈ E , all states s ∈ S and all action
pairs (aj , aj′) ∈ Aj ×Aj′ , wjj′(s, aj , aj′) ≥ 0, then the grand coalition exhibits strict core stability.

Proof. Since the affinity graph is defined as a star graph with the learner as the internal node, for
all states s ∈ S and all action pairs (aj , aj′) ∈ Aj × Aj′ , under the grand coalition, the learner’s
preference reward is defined as Ri(s, a) = ∑j∈−iwij(s, ai, aj), while each ad hoc teammate j’s
preference reward is defined as Rj(s, a) = wji(s, ai, aj).
For the sake of contradiction, for all states s ∈ S and all action pairs (aj , aj′) ∈ Aj × Aj′ , we
assume that when wjj′(s, aj , aj′) ≥ 0, there exists some other coalition C ⊂ N leading to that
∃jm ∈ C,Rj(s, aC) > Rj(s, a). We will discuss problem in the following two cases.

Case 1: If i ∉ C, then Rj(s, aC) > wji(s, ai, aj), which leads to a contradiction to individual
rationality.
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Case 2: Now, let us discuss the case when i ∈ C. If the learner i is the jm, then Ri(s, aC) =
∑j∈C wij(s, ai, aj) > Ri(s, a) = ∑j∈−iwij(s, ai, aj). The above relation leads to the following
relation such that 0 > ∑j∈−i/C wij(s, ai, aj), which contradicts the condition that wjj′(s, aj , aj′) ≥
0. On the other hand, if a teammate j is the jm, then Rj(s, aC) = wji(s, aj , ai) > Rj(s, a) =
wji(s, aj , ai), which is obviously a contradiction.

Following the discussion above, we can conclude that there exists no other coalition C ⊂ N leading
to that ∃jm ∈ C,Rj(s, aC) > Rj(s, a), which results in that there exists no weakly blocking coalition
C as Section 2.1 defines, and therefore the grand coalition exhibits strict core stability.

Proposition 2. For the learner i and any teammate j at timestep t, suppose that Rj(st, at,j) =
1
∣−i∣ ⋅Ri(st, at,i) and the affinity graph weights of a star graph are defined as Definition 3 shows,
αij = αji ≥ 0, Rj ≥ 0 and Ri ≥ 0 would lead to symmetry of affinity weights, individual rationality
and the grand coalition exhibiting strict core stability.

Proof. First, we represent affinity graph weights for all edges in the star affinity graph such that
wij(st, at,i, at,j) and wji(st, at,j , at,i) for all teammates j as follows:

wij(st, at,i, at,j) = αij(st, at,i, at,j) +
1

2∣ − i∣ ⋅Ri(st, at,i) +
1

2
⋅Rj(st, at,j),

wji(st, at,j , at,i) = αji(st, at,j , at,i) +
1

2
⋅Rj(st, at,j) +

1

2∣ − i∣ ⋅Ri(st, at,i).

It is obvious that if αij(st, at,i, at,j) = αji(st, at,j , at,i), then wij(st, at,i, at,j) = wji(st, at,j , at,i)
for all teammates j ∈ −i. As a result, the affinity graph weights would be symmetric.

Next, let us discuss how the representations of wij and wji above lead to the individual rationality.
Recall that for any agent j′, the individual rationality is satisfied if its preference reward Rj′(st, at) ≥
Rj′(st, at,j′) holds. For any teammate j, its preference reward for the ad hoc team Rj(st, at) can be
expressed as follows:

Rj(s, a) = wji(s, aj , ai) = αji(s, aj , ai) +
1

2
⋅Rj(s, aj) +

1

2∣ − i∣ ⋅Ri(s, ai).

If αji(st, at,j , at,i) ≥ 0 and Rj(st, at,j) = 1
∣−i∣ ⋅Ri(st, at,i), then Rj(st, at) ≥ Rj(st, at,j).

For the learner i, its preference reward for the ad hoc team Ri(st, at) can be expressed as follows:

Ri(st, at) = ∑
j∈−i

wij(st, at,i, at,j)

= ∑
j∈−i
{αij(st, at,i, at,j) +

1

2∣ − i∣ ⋅Ri(st, at,i) +
1

2
⋅Rj(st, at,j)}

= ∑
j∈−i

αij(st, at,i, at,j) +
1

2
⋅Ri(st, at,i) +

1

2
⋅ ∑
j∈−i

Rj(st, at,j).

If αji(st, at,j , at,i) ≥ 0 and Rj(st, at,j) = 1
∣−i∣ ⋅Ri(st, at,i), then Ri(st, at) ≥ Ri(st, at,i).

Finally, it is not difficult to observe that αij(st, at,i, at,j) = αji(st, at,j , at,i) ≥ 0, Rj(st, at,j) ≥ 0
and Ri(st, at,i) ≥ 0 result in that wjj′(st, at,j , at,j′) ≥ 0. As a result, it would lead to the grand
coalition exhibiting strict core stability as Theorem 2 states.

Lemma 1. Suppose that αjj′(st, at,j , at,j′) = 0 for t ≥ T if agent j or j′ leaves the environment
at timestep T and Rj(st, at,j) = 0 for t ≥ T if agent j leaves the environment at timestep T , then
Qjj′(st, at,j , at,j′) = E[∑∞t=0 γtαjj′(s, at,j , at,j′)] and Qj(st, at,j) = E[∑∞t=0 γtRj(st, at,j)].

Proof. Suppose that agent j or j′ leaves the environment at timestep T . Then, we can have the
following expression that Qjj′(st, at,j , at,j′) = E[∑∞t=0 γtαjj′(st, at,j , at,j′)] by the conditions such
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that αjj′(st, at,j , at,j′) = 0 if agent j leaves the environment at timestep t:

Qjj′(st, at,j , at,j′) = E[
T

∑
t=0

γtαjj′(st, at,j , at,j′)]

= E[
T

∑
t=0

γtαjj′(st, at,j , at,j′) +
∞
∑
t=T

γtαjj′(st, at,j , at,j′)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

]

= E[
∞
∑
t=0

γtαjj′(st, at,j , at,j′)].

Similarly, by the condition that Rj(st, at,j) = 0 for t ≥ T if agent j leaves the environment at timestep
T , we can derive the result that Qj(st, at,j) = E[∑∞t=0 γtRj(st, at,j)].
Theorem 3. Suppose that αjj′(st, at,j , at,j′) = 0 for t ≥ T if agent j or j′ leaves the environment at
timestep T and Rj(st, at,j) = 0 for t ≥ T if agent j leaves the environment at timestep T , then the
open ad hoc Bellman optimality equation is defined as Eq. 5.

Proof. We derive Eq. 5 as follows. By the results of Lemma 1, we can represent the optimal global
Q-value Q∗(st, at) as follows:

Q∗(st, at)

= E[
∞
∑
t=0

γtR(st, at)∣st, at, π∗] = E[
∞
∑
t=0

γt ∑
j∈Nt

Rj(st, at)∣st, at, π∗]

= ∑
j∈Nt

E[
∞
∑
t=0

γtRj(st, at)∣st, at, π∗]

= ∑
j∈Nt

E[
∞
∑
t=0

γt( ∑
j′∈Nt(j)

αjj′(s, at,j , at,j′) +Rj(st, at,j))∣st, at, π∗]

= ∑
j∈Nt

{ ∑
j′∈Nt(j)

E[
∞
∑
t=0

γtαjj′(s, at,j , at,j′)∣st, at, π∗] +E[
∞
∑
t=0

γtRj(st, at,j)∣st, at, π∗]}

= ∑
j∈Nt

{ ∑
j′∈Nt(j)

Q∗jj′(st, at,j , at,j′) +Q∗j (st, at,j)} = ∑
j∈Nt

Q∗j (st, at),

(9)

where at ∈ ×j∈NAj , π∗ = ×j∈Nt
π∗j and Nt(j) indicates the neighbours of agent j at timestep t. Due

to the convexity of the max operator, we can get the following relation such that

max
a′i

E[Q∗(st+1, at+1,−i, a′i)] =max
a′i

E[ ∑
j∈Nt+1

Q∗j (st+1, at+1,−i, a′i)]

≤ ∑
j∈Nt+1

max
a′i

E[Q∗j (st+1, at+1,−i, a′i)].
(10)

There exists b(st+1) ≥ 0 for all st+1 ∈ S enabling the above result to be equivalently written as that

max
a′i

E[Q∗(st+1, at+1,−i, a′i)] + b(st+1) = ∑
j∈Nt+1

max
a′i

E[Q∗j (st+1, at+1,−i, a′i)]. (11)

According to Assumption 2 that the learner is able to influence the ad hoc teammates (expressed as
preference rewards), we can expand the optimal preference Q-value of each agent j ∈ Nt as per the
fashion of the Bellman optimality equation such that

Q∗j (st, at) = Rj(st, at) + γE[max
a′i

E[Q∗j (st+1, at+1,−i, a′i)]], (12)

where Q∗j (st+1, at+1,−i, a′i) = 0 if agent j leaves at timestep t + 1 by Lemma 1.

Based on Eq. 12, we can sum up all possible agents and get a condition necessary for achieving the
optimality of all surviving agents belonging to Nt such that

∑
j∈Nt

Q∗j (st, at) = ∑
j∈Nt

Rj(st, at) + γE[ ∑
j∈Nt+1

max
a′i

E[Q∗j (st+1, at+1,−i, a′i)]]. (13)
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Note that Eq. 13 does not hold if Nt ⊂ Nt+1, since it is unreasonable to consider an agent j ∈ Nt+1
but ∉ Nt at timestep t, which can be seen as a singularity of this Bellman optimality equation. In
other words, Eq. 13 is undefined over PT (Nt+1, st+1∣Nt, st, at) when Nt ⊂ Nt+1.

Substituting Eq. 9 and Eq. 11 into Eq. 13, by the relation that R(st, at) = ∑j∈Nt
Rj(st, at) we can

obtain Eq. 5.

Remark 2. The open team setting in Lemma 1 and Theorem 3 can be understood as that the timesteps
at which all relevant agents join the environment are scheduled at the beginning. Thereby, we can
regard the composition of an agent label and its timestep to join the environment as an index to
differentiate all possible such compositions. Note that if an agent joins the environment twice, it
would be two different indices to describe these two events. The length of an episode can be assumed
to a very large number that is almost infinite but still finite such as 1012, so that the number of
compositions must be finite. All compositions are set to the inactive status. If a composition is
activated at some timestep, then it would receive its normal preference reward until it leaves the
environment and becomes inactive again. Otherwise, its preference reward would be zero. Owing
to that the switch of preference rewards can be seen as part of the environmental operations, the
common Bellman optimality equation and Bellman operator can be used to describe and solve this
problem. About the relevent Bellman optimality equation, we can well define a finite number of
optimal preference Q-values indexed by the compositions defined above at any timestep and state.
The optimal global Q-value at each timestep only takes the active compositions into consideration
without loss of generality to describe the optimality of all compositions as a necessary condition.
One can check that the relevant Bellman operator (dynamic programming) can be defined as the
similar manner to reach the Bellman optimality equation defined above.

Learner: a

Teammate: b

Teammate: c

Teammate: d

Type 1

Type 3

Type 4

Type 5

Type 2

Type 1

 Timestep 0  1  2  3  4  5  6  7  8
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Figure 4: Illustration of open ad hoc teamwork with up to 3 teammates existing in the environment.
Each row represents the placeholder for the corresponding roles, where the white interval indicates
the period when the teammate is absent. The colored interval represents the survival of a teammate
played by an agent with an assigned agent type (noted by the text “Type #") sampled from the agent
set formed at the beginning of the whole process. Below the horizontal axis, we present two examples
to justify PO and PE that form the transition function T . The example on the left shows the transition
of the team from timestep 1 to timestep 2. At timestep 1, the agent-type set θ1 is {0,1,3,4}, which
is assigned to learner a and three teammates denoted by b, c, and d respectively. As per Eq. 2,
s2,N2 = PO(s1, a1, θ1), where N2 includes the members a, b, c. PE then assigns the agent types
θ2 = {0,1,3} in terms of s2,N2, such that θ2 = PE(s2,N2). Similarly, the example on the right
illustrates the team’s expansion with the addition of two new members. At timestep 4, the team only
consists of the learner. Then, adding three teammates a, b and d at timestep 5.

Proposition 3. PE(θt∣Nt, st) can be approximated as the expression P̂E(θt∣st, θ−t−1, θ+t−1), where
θ−t−1 indicates the types of remaining agents of Nt−1 and θ+t−1 indicates the unknown types of newly
joined agents at timestep t (set to zeros as default).
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Figure 5: Causal diagram encoding the conditional independence existing in the problem.

Proof. At the beginning, we construct a causal diagram in Fig.5 that represents all probability
distributions establishing the OSBHG such that

PE(θt∣Nt, st),
PT (Nt, st∣Nt−1, st−1, at−1),

P (Nt−1∣θt−1, st−1).
The above probability distributions are the most compact representation which cannot be simplified
by the d-Separation criterion Pearl (2009). We can say that the causal diagram is an instance to
preserve the information in our problem and therefore it is faithful to use this causal diagram for
approximating PE(θt∣Nt, st).
Now, we begin the approximation. First, let the set of agents at timestep t be factorized to two
parts ∆Nt and Nt−1 such that Nt =∆N +t ∪ (Nt−1 −∆N −t ), where ∆N +t = Nt −Nt−1 indicates the
new agents appears at timestep t; ∆N −t = Nt−1 −Nt indicates the agents exist at timestep t − 1 but
leave at timestep t and Nt−1 −∆N −t indicates the remaining agents of Nt−1 at timestep t. From the
causal diagram, it is apparent that θt−1 is a descendent variable (child) of Nt−1 with close correlation.
Referring to the common proxy variable selection strategy in the causal inference community (Wang
& Blei, 2021) that an observed child can be used as a proxy of an unobserved variable, θt−1 can be
used as a proxy ofNt−1 to reflect the information that is sufficient to represent agents, i.e. agent types.
Using θt−1, it is easy to express the information of Nt−1 −∆N −t by removing the θt−1,k,∀k ∈∆N −t
from θt−1, denoted as θ−t−1. Since there is no observation or evidence to support and reflect ∆N +t , it
is expressed as a default value, e.g., each agent belonging to ∆N +t is equipped with a zero vector,
denoted as θ+t−1. Replacing Nt by its proxy (θ−t−1, θ+t−1), we obtain a new probability distribution
P̂E(θt∣st, θ−t−1, θ+t−1).

E ADDITIONAL THEORETICAL RESULTS

Proposition 4. For any agent j at timestep t, if the affinity graph is a fully connected graph and
agents’ individual preference rewards are identical, there exists a representation of wjj′ , for which
αjj′ = αj′j ≥ 0 and Rj ≥ 0 would lead to symmetry of affinity weights, individual rationality and the
grand coalition exhibiting strict core stability.

Proof. First, we represent affinity graph weights in the fully connected affinity graph such as
wjj′(st, at,j , at,j′) for all agents j and its neighbours j′ as follows:

wjj′(st, at,j , at,j′) = αjj′(st, at,j , at,j′) +
1

2∣ − j∣ ⋅Rj(st, at,j) +
1

2∣ − j∣ ⋅Rj′(st, at,j′),

where −j denotes the agent set excluding j at timestep t. It is not difficult to observe that if
αjj′(st, at,j , at,j′) = αj′j(st, at,j′ , at,j), then wjj′(st, at,j , at,j′) = wj′j(st, at,j , at,i) for all agents
j ∈ −i and its neighbours j′. As a result, the affinity graph weights would be symmetric.

Next, let us discuss how the representations of wjj′ and wj′j above lead to the individual rationality.
Recall that for any agent j, the individual rationality is satisfied if its preference reward Rj(st, at) ≥
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Rj(st, at,j) holds. For any agent j, its preference reward for the ad hoc team Rj(st, at) can be
expressed as follows:

Rj(st, at) = ∑
j′∈−j

wjj′(st, at,j , at,j′)

= ∑
j′∈−j

αjj′(st, at,j , at,j′) +
1

2
⋅Rj(st, at,j) +

1

2∣ − j∣ ⋅ ∑j′∈−j
Rj′(st, at,j′).

If αji(st, at,j , at,i) ≥ 0 and Rj(st, at,j) = Rj′(st, at,j′), then Rj(st, at) ≥ Rj(st, at,j).
Finally, it is not difficult to observe that αjj′(st, at,j , at,j′) = αj′j(st, at,j′ , at,j) ≥ 0 for any agent j
and its neighbour j′ and Rj(st, at,j) ≥ 0 for any agent j result in that wjj′(st, at,j , at,j′) ≥ 0. As a
result, it would lead to the grand coalition exhibiting strict core stability as Theorem 2 states.

F THE GPL FRAMEWORK

We now review the GPL framework (Rahman et al., 2021). GPL consists of the following modules:
type inference model, joint action value model and agent model. We only summarize the model
specifications. About other details, please refer to the original paper of GPL.

Type Inference Model. This is modelled as a LSTM (Hochreiter & Schmidhuber, 1997) to infer
agent types of a team at timestep t given that of a team at timestep t − 1. The agent type is modelled
as a fixed-length hidden-state vector of LSTM, named as agent type embedding. As each timestep
t, the state information of an emergent team Nt is reproduced to a batch of agents’ information
Bt = [⟨ut, xt,1⟩, ..., ⟨ut, xt,∣Nt ∣⟩]⊺, where each agent is preserved a vector composing ut and xt,i

which are observations and agent specific information extracted from state st. Along with additional
information such as the agent type embedding of Nt−1 and the cell state, LSTM estimates the agent
type embedding of Nt. To address the situation of changing team size, at each timestep the type
embedding of the agents who leave a team would be removed, while the new added agents’ type
embedding would be set to a zero vector.

Joint Action Value Model. The joint action value Qβ,δ(st, at) is approximated as the sum of
individual utility terms Qj

β(at,j ∣st) and pairwise utility terms Qj,k
δ (at,j , at,k ∣st) such that

Qβ,δ(st, at) = ∑
j∈Nt

Qj
β(at,j ∣st) + ∑

j,k∈Nt

j≠k

Qj,k
δ (at,j , at,k ∣st). (14)

Both Qj
β(at,j ∣st) and Qj,k

δ (at,j , at,k ∣st) are implemented as multilayer perceptrons (MLPs) parame-
terised by β and δ, denoted as MLPβ and MLPδ. The input of MLPβ is the concatenation of the ad
hoc agent’s type embedding θt,i and the target agent’s type embedding θt,j , and its output is a vector
with the length of ∣Aj ∣ estimating Qj,k

δ (at,j , at,k ∣st) such that

Qj
β(at,j ∣st) =MLPβ(θt,j , θt,i)(at,j). (15)

Qj,k
δ (at,j , at,k ∣st) is approximated by low-rank factorization such that

Qj,k
δ (at,j , at,k ∣st) = (MLPδ(θt,j , θt,i)⊺MLPδ(θt,k, θt,i))(at,j , at,k), (16)

where the input of MLPδ is the same as MLPβ ; the output of MLPδ(θt,j , θt,i) is a matrix with the
shape K × ∣Aj ∣ and K ≪ ∣Aj ∣.
Agent Model. It is assumed that all other agents would affect an agent’s actions. To model this
situation, GNNs are applied to process the agent type embedding of an ad hoc team θt, where each
agent is seen as a node. More specifically, a GNN model called relational forward model (RFM)
(Tacchetti et al., 2019) parameterised by η is applied to transform θt as initial node representation to n̄t

as new node representation considering other agents’ effects. Then, n̄t is used to infer qζ,η(at,−i∣st)
as the approximation of teammates’ joint policy πt,−i(at,−i∣st, θt,−i) such that

qζ,η(at,−i∣st) = ∏
j∈−i

qζ,η(at,j ∣st),

qζ,η(at,j ∣st) = Softmax(MLPη(n̄t,j))(at,j).
(17)
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Learner’s Action Value. Substituting the agent model and the joint action value model defined
above into Eq. 1, the ad hoc agent’s action value can be approximated as follows:

Qπi(st, at,i) = Qi
β(at,j ∣st) + ∑

aj∈Aj ,j≠i
(Qj

β(at,j ∣st) +Q
i,j
β (at,i, at,j ∣st))qζ,η(at,j ∣st)

+ ∑
at,j∈Aj ,at,k∈Ak,

j,k≠i

Qj,k
δ (at,j , at,k ∣st)qζ,η(at,j ∣st)qζ,η(at,j ∣st).

(18)

G EXPERIMENTAL SETUPS

We evaluate the proposed CA-GPL in two existing environments LBF and Wolfpack with open team
settings (Rahman et al., 2021; 2022), where teammates are randomly selected to enter the environment
and stay for a certain number of timesteps. If a teammate has stayed for longer timesteps than its
allocated lifetime, it would be removed from the environment and re-allocated to a re-entry queue
with a random waiting time. The randomized re-entry queue directly leads to different compositions
of teammates in an ad hoc team. If the number of agents existing in the environment does not reach
the upper limit, the agents in the re-entry queue would be pushed into the environment. Specifically,
within the Wolfpack environment, we uniformly determine the active duration, selecting a value
between 25 and 35 timesteps, while the dead duration is uniformly sampled between 15 and 25
timesteps. Conversely, the durations for LBF are somewhat shorter, with the active duration uniformly
sampled between 15 and 25 timesteps, and the dead duration between 10 and 20 timesteps.

The teammate policies follow the setting of GPL Rahman et al. (2021), which implement a set of
heuristic policies as teammates. Specifically, in Wolfpack environment, the teammate set consists
of Random agent, Greedy agent, Greedy probabilistic agent, Teammate aware agents, GNN-Based
teammate aware agents, Graph DQN agents, Greedy waiting agents, Greedy probabilistic waiting
agents, Greedy team-ware waiting agents. With LBF, a mixture of heuristics and A2C agent are used
as the teammate policy set. Detailed information about teammate set could be found in Appendix B.4
of Rahman et al. (2021). Since the provided A2C agent from GPL only supports the scenarios with
up to 4 teammates, we additionally train an A2C agent for the scenarios with up to 8 teammates.

The detailed common training parameters of CA-GPL related algorithms are provided as follows.

• lr: 0.00025

• gamma: 0.99

• max_num_steps: 400000

• eps_length: 200 for LBF / 2000 for Wolfpack

• update_frequency: 4

• saving_frequency: 50

• num_envs: 16

• tau: 0.001

• eval_eps: 5

• weight_predict: 1.0

• num_players_train: 3

• num_players_test: 5 for scenarios with up to 4 teammates /
9 for scenarios with up to 8 teammates

• seed: 0

• eval_init_seed: 2500

• close_penalty: 0.5 for Wolfpack / None for LBF

Then, we report the exclusive parameters of CA-GPL and its variants as follows.

• CA-GPL: star_graph=True, pos_pair=True, pos_indiv=True

• CA-GPL-NI: star_graph=True, pos_pair=True, neg_indiv=True
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• CA-GPL-NP: star_graph=True, neg_pair=True, pos_indiv=True

• CA-GPL-NPQ: star_graph=True, neg_pair=True, neg_indiv=True

• CA-GPL-ZI: star_graph=True, pos_pair=True, zero_indiv=True

• CA-GPL-FCG: pos_pair=True, neg_indiv=True

The parameters not mentioned for a method above are set to False as default.

All experiments are run on Xeon Gold 6230 with 20 CPU cores. An experiment on Wolfpack takes
around 8 hours, while an experiment on LBF takes around 5 hours.

H ADDITIONAL EXPERIMENTAL RESULTS

H.1 ADDITIONAL EVALUATION ON GRAPH STRUCTURES

Fig. 6 compares the distinct graph structures for GNNs - the star graph and the fully connected
graph, used to aggregate observations for teammates’ policies in both LBF and Wolfpack, with
settings allowing for up to 8 teammates. As depicted in the figure, the CA-GPL employing a star
graph surpasses the fully connected graph CA-GPL (CA-GPL-FCPG). This not only verifies but also
reinforces our approach of modeling the affinity graph (coordination graph) as a star graph.
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(a) LBF up to 8 teammates.
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(b) Wolfpack up to 8 teammates.

Figure 6: Additional comparison between different graph structures for GNNs to aggregate observa-
tions for teammates’ policies in LBF and Wolfpack environments with up to 8 teammates.

H.2 CASE STUDY: COOPERATIVE BEHAVIORS AND PREFERENCE Q-VALUE ANALYSIS

Fig. 7 depicts the trajectories and associated agents’ preference Q-values (shortened as Pref-Q). The
trajectories are sampled from the LBF setting with up to 2 teammates. In the depicted keyframes,
arrows indicate the current movement. The numbers on the apple icon and arrows denote the level;
players can collect (marked with a star symbol) the apple if the sum of the players’ levels is no less
than the level of the apple. Besides, small circles represent stationary actions. Below the time axis,
the heat maps display Pref-Q, with the x-axis representing the actions. The last row of each heatmap
indicates the learner’s preference Q-value, while the previous rows depict teammates’ Pref-Q, given
teammates’ actual actions. The ‘tri_up’ marker signifies the current action of the learner. As illustrated
in Fig. 7, the learner successfully cooperates with variable teammates. Initially, two teammates are
randomly generated; however, Teammate 1 is removed as seen in Frame ii. In the final phase,
the learner strategically remains stationary, allowing collaborative apple collection with Teammate
2, as depicted in Frames iii and iv. Furthermore, the heatmaps showcase the alignment between
Pref-Q and cooperative behaviors, even within a variable team setting. Nevertheless, the preference
Q-value cannot always perfectly align with the learner’s actions due to the learner’s inaccurate
estimation of teammates’ policies. The most successful alignments between trajectories and Pref-Q
justify the efficacy of Pref-Q to encourage collaboration in open ad hoc teamwork and, thus, verify
the reasonableness of our theoretical model. Additional demos supporting these conclusions and
high-resolution Fig. 7 can be found on our homepage, shown in Abstract.
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Figure 7: Visualization of cooperative behaviors and preference Q-values on LBF. The four frames
above the time-axis correspond to the four sets of preference Q-values shown below the axis. In the
depicted keyframes of trajectory visualization, arrows indicate the current movement. The numbers
on the apple icon and arrows denote the level; players can collect (marked with a star symbol) the
apple if the sum of the players’ levels is no less than the level of the apple. Besides, small circles
represent stationary actions. In heat maps, the redder the color, the greater the Q value. It is observable
that the learner’s actions, marked by “tri_up", are consistently aligned with the areas of highest Q
values. The most successful alignments between trajectories and Pref-Q justify the efficacy of Pref-Q
to encourage collaboration in open ad hoc teamwork and, thus, verify the reasonableness of our
theoretical model.
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