
LaMAGIC2: Advanced Circuit Formulations
for Language Model-Based Analog Topology Generation

Chen-Chia Chang 1 Wan-Hsuan Lin 2 Yikang Shen 3 Yiran Chen 1 Xin Zhang 3 4

Abstract
Automation of analog topology design is crucial
due to customized requirements of modern appli-
cations with heavily manual engineering efforts.
The state-of-the-art work applies a sequence-to-
sequence approach and supervised finetuning on
language models to generate topologies given user
specifications. However, its circuit formulation
is inefficient due to O(|V |2) token length and
suffers from low precision sensitivity to numeric
inputs. In this work, we introduce LaMAGIC2,
a succinct float-input canonical formulation with
identifier (SFCI) for language model-based ana-
log topology generation. SFCI addresses these
challenges by improving component-type recog-
nition through identifier-based representations, re-
ducing token length complexity to O(|V |), and
enhancing numeric precision sensitivity for bet-
ter performance under tight tolerances. Our ex-
periments demonstrate that LaMAGIC2 achieves
34% higher success rates under a tight tolerance
of 0.01 and 10X lower MSEs compared to a prior
method. LaMAGIC2 also exhibits better transfer-
ability for circuits with more vertices with up to
58.5% improvement. These advancements estab-
lish LaMAGIC2 as a robust framework for analog
topology generation.

1. Introduction
With the rise of diverse electronic systems, the need for
different analog circuit functionalities increases. Thus, the
demand for analog topology customization has largely in-
creased. For example, the power converter application with
different power supply requirements, e.g., voltage conver-

1Duke University 2University of California, Los Angeles 3MIT-
IBM Watson AI Lab 4IBM T. J. Watson Research Center. Corre-
spondence to: Chen-Chia Chang <chenchia.chang@duke.edu>,
Xin Zhang <xzhang@us.ibm.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Finetune with 120k 3, 4, 5-comp circuits: PM FM
Then finetune with 1k 6-comp circuits: PM FM

Adjacency-matrix circuit formulation:
Duty cycle: … Connections: VIN <no_edge> <no_edge> …
VOUT … GND … Sa … Sb … C … L … <sep>

Token lengths with complexity 𝑂(𝑉 !)

Input with float embeddings:
Duty cycle options 0.1 0.3 0.5 0.7 0.9 voltage … 0.9554

Embedding (E) Linear layer (L) E L
Low success rates in strict tolerances

Specifications
Available devices:
two switches, a capacitor, …
Voltage conversion ratio: 0.18887
Efficiency: 0.95544

Power converter

Duty cycle: 0.5

Analog topology generation

LaMAGIC’s analysis

LM VIN

VOUT

Figure 1. Analog topology generation and the analysis of a state-
of-the-art work LaMAGIC (Chang et al., 2024).

sion ratio and power efficiency, often requires varied topolo-
gies. However, traditional topology design relies heavily
on manual processes, which demand large engineering ef-
forts and prolong the time-to-market period for new designs.
Thus, automating analog topology design has become cru-
cial to accelerate circuit development.

Early efforts (Fan et al., 2021; Zhao & Zhang, 2022; Lu et al.,
2023) have focused on search-based approaches, which
explore vast design spaces guided by simulation rewards.
However, they are inefficient and are not suitable to gener-
ate circuits for diverse specifications. The work (Fan et al.,
2021) designs a upper-confidence-bound-tree-based rein-

1

LaMAGIC2: Advanced Circuit Formulations for Language Model-Based Analog Topology Generation

Table 1. Average token lengths of LM outputs from: SFCI in LaM-
AGIC2 and FM in LaMAGIC (Chang et al., 2024).

Average token length 3, 4, 5-comp circuits 6-comp circuits

LaMAGIC2-SFCI 36.40 41.41

LaMAGIC-FM 84.79 105.00

forcement learning (RL) method for power converter design,
which requires hundreds of simulation queries to generate a
new topology. The other work (Zhao & Zhang, 2022) also
develops an RL algorithm for operational amplifiers, which
takes 73 simulation iterations for 4 hours per specification.
Finally, the work (Lu et al., 2023) uses Bayesian optimiza-
tion for topology search. However, 50 iterations are needed
for one specification.

Recent advances in generative modeling and large language
models (LLMs) (Radford et al., 2019; Raffel et al., 2020;
Chung et al., 2022; Nijkamp et al., 2023) offer an alterna-
tive paradigm. Instead of exhaustively exploring the design
space, generative models can learn direct mappings from
performance requirements to circuit topologies. One such
approach is LaMAGIC (Chang et al., 2024), which frames
circuit generation as a sequence-to-sequence problem for
transformer-based autoregressive language models. LaM-
AGIC proposes several circuit formulations to perform su-
pervised finetuning (SFT) (Chung et al., 2022; Taori et al.,
2023). The trained models can generate a topology via
one model inference, as shown in Figure 1, significantly ac-
celerating the generation process compared to prior search
methods.

While LaMAGIC demonstrates great potential for analog
topology generation, its circuit formulations pose notable
limitations, as shown in Figure 1. First, its formulation re-
duces the model’s sensitivity to low precision difference of
numeric inputs, resulting in low success rates under strict
tolerance evaluations. Second, the token length of its for-
mulations scales quadratically with the number of nodes
O(|V |2). The long output sequences pose significant chal-
lenges to accuracy due to error accumulation and context
window limitation for transformer-based topology genera-
tion. As generation progresses autoregressively, early errors
propagate, compounding inaccuracies and reducing the reli-
ability of generated circuit structures. Additionally, when
output exceeds the model’s fixed context window, critical
early design elements may fall out of scope, leading to in-
consistencies or infeasible circuit configurations. These lim-
itations are particularly problematic in topology generation,
where precise structural relationships must be maintained.

In this work, we propose LaMAGIC2, an advanced circuit
formulation designed for LM-based topology generation.
LaMAGIC2 improves low-precision sensitivity to numeric
inputs by shrinking the LM inputs. In addition, we address

the long token length problem by reducing the complexity
from O(|V |2) to O(|V |) while incorporating component-
type tokens. This reduction is particularly impactful for
real-world circuits, whose node numbers are large. Thus,
LaMAGIC2 can shorten the token length, as shown in Ta-
ble 1, to mitigate the long sequence challenge faced by
transformer models.

Our contributions are summarized as follows.

• We propose succinct float-input canonical formulation
with identifier (SFCI): A sparse and canonical represen-
tation that uses identifiers to enhance learning of com-
ponent types while maintaining linear token growth
relative to circuit size.

• LaMAGIC2 achieves a 122% and 34% higher success
rate under a low tolerance 0.01 compared to an RL
search method (Fan et al., 2021) and LaMAGIC, re-
spectively.

• Models trained with SFCI demonstrate superior per-
formance in limited data scenarios for more complex
circuits, achieving the highest success rates to outper-
form other formulations.

Furthermore, our step-by-step analysis of formulations pro-
vides valuable insights into graph generation with trans-
former models, advancing the field of topology generation
and beyond.

2. Preliminaries
2.1. Analog Topology Design

In this work, following LaMAGIC (Chang et al., 2024),
we target on power converter topology generation, which
aims to produce customized power converters that achieve
specific design specifications, i.e., the voltage conversion
ratio and the power conversion efficiency. The voltage con-
version ratio is the ratio of output to input voltages. The
power conversion efficiency is the ratio of output power to
input power. Another design choice for power converter is
the duty cycle with a range of 0 to 1, which controls the
ON times of switches, influencing the output voltage and
efficiency. In our framework, we consider five duty cycle
options: {0.1, 0.3, 0.5, 0.7, 0.9}.

We view the circuit topology as a hypergraph G with ver-
tices V and hyperedges E. For each topology, the vertices
V contain three terminal ports and several analog compo-
nents. The three terminal ports are: a voltage input VIN ,
a voltage output VOUT , and a ground GND , each with
an edge to connect to other vertices. User can pick four
types of components: capacitors C, inductors L, phase-I
switches Sa , and phase-II switches Sb, each with two edges.
Each hyperedge e ∈ E is a set of vertices that represents
connections between devices and ports. An example of the

2

LaMAGIC2: Advanced Circuit Formulations for Language Model-Based Analog Topology Generation

Sa Sb

CVOUT

L GND

VIN
VIN

GND

Capacitor

Switches

Inductor

VOUT

(a) (b)

Phase-IIPhase-I

Figure 2. (a) An example power converter circuit and (b) its cor-
responding hypergraph representation. Note that here we use the
same example in LaMAGIC (Chang et al., 2024).

power converter and its hypergraph representation is shown
in Figure 2.

We utilize the same dataset in LaMAGIC (Chang et al.,
2024). It contains 3, 4, 5-component circuits with 120k
data points for training and 12k for evaluation. To assess
the transferability of models to more complex circuits, the
dataset has 76k unique 6-component circuits and split 9k
data points for evaluation. In our experiments, we ran-
domly select subsets of 500, 1k, and 2k 6-component cir-
cuits to fine-tune models initially trained on the 120k 3, 4,
5-component circuits.

Generating complex circuits is a critical challenge for hu-
man designers. Also, LaMAGIC does not perform well for
transferability to larger circuits. Thus, our work focuses on
improving this capability by leveraging input specifications
that have performance targets and component requirements.

Based on these considerations, we define our problem:
Problem. Given vertices V , a voltage conversion ratio r,
and an efficiency η, the model generates connections E
and determine the duty cycle s ∈ {0.1, 0.3, 0.5, 0.7, 0.9} to
build a circuit such that its simulation performance satisfies
both r and η.

2.2. Autoregressive Language Modeling

Autoregressive language models (LMs) (Radford et al.,
2019; Raffel et al., 2020; Chung et al., 2022; Nijkamp et al.,
2023; Zhao et al., 2023) are widely used in sequence model-
ing tasks. They predict the next token in a sequence based
on preceding tokens, optimizing the autoregressive loss:
ℓ = −

∑n
i=1 logP (xi|x1, x2, ..., xi−1). Building on LaM-

AGIC (Chang et al., 2024), this work also employs autore-
gressive LMs to address analog topology generation. These
models are well-suited for this task as they can sequentially
generate the next component and connection in a circuit
based on the evolving subgraph.

2.3. Related Works on Topology Generation

Search-based methods (Fan et al., 2021; Zhao & Zhang,
2022; Lu et al., 2023) explore design spaces using simu-
lation feedback but require significant computational re-

sources. AnalogCoder (Lai et al., 2024) leverages prompt
engineering in general-purpose LLMs to iteratively refine
circuit designs based on simulation feedback. However,
its methodology is fundamentally different from our work,
as it does not involve SFT and tailor formulations for di-
rect specification-to-topology mapping. Our work builds
upon LaMAGIC (Chang et al., 2024), which introduced cus-
tom circuit formulations to enable precise specification-to-
topology generation. Given the drawbacks of LaMAGIC’s
formulations provided in our analysis in Section 3, we pro-
pose novel formulations to address these limitations.

3. Analysis of Formulations in LaMAGIC
LaMAGIC (Chang et al., 2024) introduces three formula-
tions for circuit generation: (1) canonical formulation (CF),
(2) pure-text adjacency-matrix formulation (PM), and (3)
float-input adjacency-matrix formulation (FM), as shown
in Figure 3. In this section, we analyze advantages and
disadvantages of each formulation.

3.1. Canonical Formulation (CF)

CF encodes circuit information with a canonical representa-
tion with output edges sorted based on a predefined input
vertex order.

Advantage:
(1) Compact circuit encoding: Since each edge is repre-
sented by a set of nodes, the length of CF is O(|V |).

Disadvantage:
(1) Limited component type awareness: LaMAGIC’s tok-
enizer for CF encodes node-specific tokens (e.g., Sa0, Sa1)
into separate single embeddings (e.g., <Sa0>, <Sa1>).
This method make models difficult to learn relations be-
tween different component types because models cannot
easily recognize the component type of each node, e.g., Sa0
and Sa1 represent the same node type Sa. This drawback
can be the reason of the bad generalizability of CF.

(2) Numeric tokenization: When numeric values (e.g.,
0.95544) are fed into the tokenizer, they are split into
multiple subword tokens (e.g., “0”, “.”, “9”, “5”, ...), di-
luting their semantic meaning and making it harder for the
model to learn numeric relationships.

3.2. Pure-Text Adjacency-Matrix Formulation (PM)

PM represents circuit connections as an adjacency matrix
for hypergraph, where rows and columns are indexed based
on the vertex order given in the input.

Advantage:
(1) Component type recognition: Because the matrix in-
dexes are inherently ordered by the input vertex sequence,
PM eliminates the need to assign identifiers to distinguish

3

LaMAGIC2: Advanced Circuit Formulations for Language Model-Based Analog Topology Generation

LM input:
Duty cycle options 0.1 0.3 0.5 0.7 0.9 <sep> voltage conversion ratio 0.85973 <sep> efficiency 0.93273 <sep> Vertex order: <VIN> <VOUT> <GND> <Sa>
<Sa> <C> <L> <sep>
LM output:
Duty cycle: <unselect> <unselect> <select> <unselect> <unselect> <sep> Connections:
<VIN> <no_edge> <no_edge> <no_edge> <edge_1> <no_edge> <no_edge> <no_edge>
<VOUT> <no_edge> <no_edge> <no_edge> <no_edge> <no_edge> <edge1> <edge_1>
<GND> <no_edge> <no_edge> <no_edge> <no_edge> <edge_1> <edge_1> <no_edge>
<Sa> <edge_1> <no_edge> <no_edge> <no_edge> <edge_2> <edge_2> <no_edge>
<Sa> <no_edge> <no_edge> <edge_1> <edge_2> <no_edge> <edge_1> <edge_2>
<C> <no_edge> <edge_1> <edge_2> <no_edge> <edge_2> <no_edge> <edge_1>
<L> <no_edge> <edge_1> <no_edge> <no_edge> <edge_2> <edge_1> <sep>

LM input:
Duty cycle options 0.1 0.3 0.5 0.7 0.9, voltage conversion ratio 0.85973, efficiency 0.93273, vertex order: <VIN> <VOUT> <GND> <Sa0> <Sa1> <C0> <L0>
LM output:
Connections: (<VIN>, <Sa0>), (<VOUT>, <C0>, <L0>), (<GND> <Sa1>, <C0>), (<Sa0>, <Sa1>, <L0>). The duty cycle is set to 0.3.

Canonical formulation (CF)

Pure-text adjacency-matrix-based formulation (PM) Explore a tabular formulation

Input numbers as float to transformer
Duty cycle options 0.1 0.3 0.5 0.7 0.9 <sep> voltage conversion ratio 0.85973 <sep> efficiency 0.93273 <sep>

Embedding (E) ELinear layer (L) L L

Float-input adjacency-matrix-based formulation (FM)

E E

LaMAGIC

LaMAGIC2

LM input:
0.1 0.3 0.5 0.7 0.9 0.85973 0.93273 <sep> <VIN> <VOUT> <GND> <Sa> <Sa> <C> <L> <sep>
LM output:
<duty_0.3> <sep>
<VIN> <no_edge> <no_edge> <no_edge> <edge_1> <no_edge> <no_edge> <no_edge>
<VOUT> <no_edge> <no_edge> <no_edge> <no_edge> <no_edge> <edge1> <edge_1>
<GND> <no_edge> <no_edge> <no_edge> <no_edge> <edge_1> <edge_1> <no_edge>
<Sa> <edge_1> <no_edge> <no_edge> <no_edge> <edge_2> <edge_2> <no_edge>
<Sa> <no_edge> <no_edge> <edge_1> <edge_2> <no_edge> <edge_1> <edge_2>
<C> <no_edge> <edge_1> <edge_2> <no_edge> <edge_2> <no_edge> <edge_1>
<L> <no_edge> <edge_1> <no_edge> <no_edge> <edge_2> <edge_1> <sep>

Succinct float-input adjacency-matrix-based formulation (SFM)

LM input:
0.1 0.3 0.5 0.7 0.9 0.85973 0.93273 <sep> <VIN> <VOUT> <GND> <Sa> 0 <Sa> 1 <C> 2 <L> 3 <sep>
LM output:
<duty_0.1> <sep> <VIN> <Sa> 0 , <VOUT> <C> 2 <L> 3 , <GND> <Sa> 1 <C> 2 , <Sa> 0 <Sa> 1 <L> 3 <sep>

Succinct float-input canonical formulation with identifier (SFCI)

Shrink redundant words in natural language

Figure 3. The circuit formulations proposed by LaMAGIC (Chang et al., 2024) and our work LaMAGIC2. Tokens enclosed within < and
> denote those added to the tokenizer’s dictionary, enabling distinct embeddings for each token.

nodes of the same component type. For example, instead
of using <Sa0> and <Sa1>, PM can simply use <Sa> to
represent multiple nodes of the same type. Therefore, PM
enhances the model’s ability to recognize relationships be-
tween nodes of the same type, improving its understanding
of circuit structures and generalizability.

(2) Graph difference detection: This tabular formulation
excels at graph difference detection during training because
errors are localized to specific matrix entries. For example,
a missing or incorrect edge affects only the corresponding
matrix entry, making it easier for the model to identify and
correct isolated errors.

Disadvantage:
(1) Long token length O(|V |2): Longer sequences increase

attention complexity, which leads to ineffectiveness in trans-
former models.

(2) Numeric tokenization, the same as in CF.

3.3. Float-Input Adjacency-Matrix Formulation (FM)

FM addresses PM’s numeric tokenization issues by incorpo-
rating a shared linear layer to encode numeric inputs directly
into the transformer’s embedding space.

Advantage:
(1) Float-input numerical encoding: This method strength-
ens the model’s capacity to learn the relationship between
input specifications and circuit structure. As a result, FM
demonstrates strong transferability, particularly when gener-
ating circuits with six components.

4

LaMAGIC2: Advanced Circuit Formulations for Language Model-Based Analog Topology Generation

Disadvantage:
(1) Low sensitivity to numeric precision: FM exhibits low
success rates for 345-component circuits under strict tol-
erance conditions, achieving only 0.67 compared to PM’s
0.93 at a tolerance level of 0.01, as illustrated in Figure 1.
This limitation could arise from FM’s input formulation,
which includes redundant natural language descriptions
(e.g., duty cycle and voltage) that dilute the model’s fo-
cus on numeric inputs. This reduces the model ability to
capture fine-grained differences between numeric inputs.

3.4. Summary of Insights and Challenges

The formulations in LaMAGIC (Chang et al., 2024) high-
light key insights: (1) the component-type token representa-
tion is crucial for learning circuit structures, and (2) integrat-
ing numerical inputs with a shared linear layer enhances gen-
eralization for complex circuits. However, these approaches
face challenges: (1) matrix-based formulations suffer from
inefficient token lengths O(|V |2), and (2) the float-input
setting has low sensitivity to numeric input precision.

To address these issues, our proposed formulations combine
the strengths of FM and PM by enhancing numeric atten-
tion, reducing token length to scale linearly with |V |, and
improving component type representation for better graph
structure learning. These improvements enable more robust
circuit generation.

4. Our Proposed Formulations
This work introduces two novel circuit representations: (1)
succinct float-input adjacency-matrix-based formulation and
(2) succinct float-input canonical formulation with identifier,
as illustrated in Figure 3.

4.1. Succinct Float-Input Adjacency-Matrix
Formulation (SFM)

SFM improves upon the matrix-based and float-input set-
tings of FM, by reducing unnecessary details in the represen-
tation to better handle numeric inputs. Its key components
are as follows:

1. Succinct input: Because matrix formulation is deviated
from natural language, the natural language descriptions,
e.g., “Duty cycle” and “voltage”, cannot provide effective
signal for topology generation. SFM removes these descrip-
tions from the input, creating a representation that focuses
on the essential numerical inputs. This representation re-
duces attention dilution, enabling the model to concentrate
on learning a direct mapping between numeric inputs and the
adjacency matrix. As a result, SFM enhances the model’s
precision sensitivity and the performance under strict toler-
ance conditions.

2. Simplified representation for duty cycle selection:
SFM simplifies duty cycle selection by replacing the
five-token representation <unselect> <unselect> <select>
<unselect> <unselect> in FM and PM with a single token
<duty 0.3>.This change better aligns with the classification
nature of duty cycle selection, where the task involves choos-
ing one option from five predefined choices <duty 0.1>,
<duty 0.3>, <duty 0.5>, <duty 0.7>, or <duty 0.9>. Since
autoregressive LMs inherently operate at the token level,
treating this decision as a single-token classification task
simplifies learning and prediction. We add these five to-
kens into the dictionary of the tokenizer to let each one
represented by a distinct embedding, ensuring clarity in the
model’s understanding. This formulation not only reduces
sequence length but also leverages the natural behavior of
LMs to enhance generation effectiveness.

4.2. Succinct Float-Input Canonical Formulation with
Identifier (SFCI)

As SFM shrinks the input and output by removing natural
language descriptions and simplifying duty cycle representa-
tion, matrix-related formulations still face challenges due to
their long token length, O(|V |2). Additionally, real circuits
are often sparse, meaning that most entries in the adjacency
matrix are <no edge> tokens. This results in an inefficient
representation, as the model expends capacity processing
numerous tokens that carry minimal informational value.
As |V | increases, matrix-related formulations could struggle
to handle large circuit generation effectively.

We observe that CF performs well for circuits with 3, 4, 5
components but lacks component-type tokens, which are
important for distinguishing node types. We believe this
limitation contributes to its lower performance in generating
circuits with six components. In contrast, the matrix-based
formulations (PM, FM), who has better transferability, all
utilize node-type tokens (e.g., <Sa> and <Sb> as single to-
kens). To address these limitations, we propose the succinct
float-input canonical formulation with identifier (SFCI).

SFCI adopts the sparse graph representation of CF, where
edges are represented as sets of nodes, and introduces the
following design choices:

1. Identifiers for device nodes: SFCI separates each node
token like Sa0 into two tokens: the device type (<Sa>) and
an identifier (0). Identifiers are used only for device tokens,
as circuits often contain similar devices. The identifiers
are incremented from 0 to |V − 3|, where |V − 3| is the
number of devices in the circuit. Three port nodes (<VIN>,
<VOUT>, <GND>) do not use identifiers, as each port occurs
only once in a circuit. This approach allows SFCI to improve
the component type recognition.

2. Simplified output format: SFCI removes bracket tokens

5

LaMAGIC2: Advanced Circuit Formulations for Language Model-Based Analog Topology Generation

LM input:
0.85973 0.93273 <sep> <VIN> <VOUT> <GND> <Sa> 0 <Sa> 1 <C>
2 <L> 3 <sep>
LM output:
(Same as SFCI)

SFCI without Duty-Cycle Prefix (SFCI-NDP)

LM input:
(Same as SFCI)
LM output:
<duty_0.1> <sep> <VIN> 0 , <VOUT> 2 3 , <GND> 1 2 , 0 1 3 <sep>

SFCI without Component-Type Tokens in Output (SFCI-NCT)

Figure 4. Two variants of SFCI: (1) without component-type token
in output (SFCI-NCT) and (2) without a common feature duty-
cycle prefix (SFCI-NDP).

() and uses commas , to separate the node set for each
edge. For example, an edge is represented as <VIN> <Sa>
0 rather than a verbose bracketed format. This reduces the
token count to simplify the learning process.

3. Component-type tokens in the output: If we would like
to ultimately shrink SFCI, we can eliminate the component-
type tokens in the output to be SFCI-NCT in Figure 4. Al-
though this method can reduce output lengths by nearly
half, we retain component-type tokens (e.g., <Sa>, <Sb>,
<C>, <L>) in the output of SFCI. Because SFCI’s outputs
are self-contained without relying on input-output fusion
to understand the circuit, these tokens can provide explicit
patterns that map identifiers to their component types in the
circuit to facilitate model learning. The effectiveness of this
design choice is validated in Section 6.2.

Token length complexity of SFCI: SFCI reduces the token
length of the output to O(|V |). Each hyperedge ei has
ki vertices. Thus, the total token length, representing the
sum of vertex incidences across all e, is

∑|E|
i=0 ki. For our

power converter devices, each vertex appears in at most
two hyperedges: d(v) < 2. Thus, the total number of
vertex incidences, which equals to the number of edges of
all nodes, is

∑|E|
i=0 ki =

∑
v∈V d(v) ≤ 2|V |. This upper

bound implies the total token length is at most 2|V |, which
simplifies to O(|V |).

This result indicates that the token length complexity of
SFCI is independent of the number of edges |E|. The
O(|V |) token length of SFCI demonstrates its compactness
compared to O(|V |2) lengths of matrix formulations. We
compute the average token length of outputs from SFCI
and FM in Table 1. Token length of SFCI only increases
five when the dataset grows to 6-component circuits, while
token length of FM grows quadratically from 73 to 105.
By combining the strengths of CF’s sparse representation
with the use of component-type tokens and identifiers, SFCI
balances compactness and expressiveness, enabling robust
generation of large circuits while addressing the limitations
of canonical and matrix-based formulations.

We observe that all formulations include a duty-cycle prefix
ranging from 0.1 to 0.9, a common feature across all input-
output pairs. To make formulations succinct, one might
consider removing this redundancy, as shown in SFCI-NDP
(Figure 4). However, this duty-cycle prefix has the following
two benefits. First, the duty-cycle prefix serves as implicit
regularization, helping the model stabilize its representa-
tions. Second, it provides guidance for decision-making by
acting as a valid set of duty cycle options the model can ref-
erence throughout training. Without this prefix, the model
must infer these duty-cycle values purely from other inputs.
The effectiveness of the prefix is established in Section 6.1.

5. Experimental Results
5.1. Experiment Setup

Baselines. To evaluate the performance of our proposed
formulations SFM and SFCI, we compare them with three
baseline formulations introduced in LaMAGIC (Chang et al.,
2024): canonical formulation (CF), pure-text adjacency-
matrix-based formulation (PM), and float-input adjacency-
matrix-based formulation (FM), as introduced in Section 3.

In addition to SFT methods that directly generate the cir-
cuit in one-shot, we compare with a prior work (Fan et al.,
2021) that uses an RL search algorithm for power converter
generation. They need to run simulator each query to give
feedback to the RL engine. We set the total query budget
to 100 per input specification. We also compare with an
advanced reasoning model o1 (Jaech et al., 2024) using a
few-shot setup with 100 example circuits as context.

Training details. We follow LaMAGIC (Chang et al.,
2024), adopting the Flan-T5-base encoder-decoder trans-
former (Chung et al., 2022) initialized with pretrained
weights. To handle numeric inputs, the standard word
embedding layer is replaced by a shared linear projec-
tion. Training employs conditional generation to map
input-output pairs, with random vertex order permuta-
tions applied as data augmentation (Chang et al., 2024).
Customized tokens are added to tokenizer’s dictionary
to represent component types and duty cycle options.
For SFM, we add <sep>, <duty 0.1>, <duty 0.3>,
<duty 0.5>, <duty 0.7>, <duty 0.9>, VIN, VOUT,
GND, Sa, Sb, C, L, <no edge>, <edge 1>, <edge 2>,
<both edges>. For SFCI, we further add identifier to-
kens 0 to 12.

Flan-T5-base contains 248M parameters with 12 layers each
in encoder and decoder, 64-dimensional key/value projec-
tions, 2048-dimensional feed-forward layers, and 12 atten-
tion heads. Training runs on one NVIDIA V100 GPU using
AdamW with the following hyperparameter: learning rate
3× 10−4, cosine scheduler with 300 warm-up steps, batch
size 128, L2 regularization 10−5, dropout 0.1, and epochs

6

LaMAGIC2: Advanced Circuit Formulations for Language Model-Based Analog Topology Generation

0.02 0.04 0.06 0.08 0.10
Tolerance

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Su
cc

es
s

ra
te o1

RL
Ours-SFM
Ours-SFCI

Figure 5. Success rates of an RL-search method (Fan et al., 2021)
and models trained with our circuit formulations SFM and SFCI
using 3, 4, 5-component circuits.

Table 2. MSEs of an RL-search method (Fan et al., 2021), o1 with
few-shot prompting, and models trained with our circuit formula-
tions SFM and SFCI using 3, 4, 5-component circuits.

MSE RL o1 SFM SFCI

Voltage 0.313 0.602 0.0001 0.00008

120.

Evaluation metrics. Our primary metrics for evaluation
are (1) the success rate of the generated circuits within var-
ied tolerances t ranging from 0.01 to 0.1 and (2) the mean
squared error (MSE) between the input specifications and
the simulated performance of the generated circuits. We run
simulator NGSPICE (Nenzi P, 2011) on each generated cir-
cuit to get its actual voltage conversion ratio and efficiency
for real-world applications.

The success rate is the proportion of generated circuits
whose simulated voltage conversion ratio v and efficiency e
fell within a tolerance t of the target input specifications v′

and e′, i.e. v and e are both within the range v′±t and e′±t.
If a generated circuit is unsimulable (invalid), we mark it as
an unsuccessful one when calculating success rates. MSEs
for voltage conversion ratio and efficiency are computed sep-
arately. In addition, the invalid generated circuit is viewed
as error 1 in MSE calculation.

5.2. Generation Results on 3, 4, 5-Component Circuit

Comparison with RL-search method and o1. We run
RL-search method (Fan et al., 2021) for 5 days to complete
the generation of 350 specifications from our testing set.
Thus, we will compare this work (named RL) and o1with
our formulations under the same 350 specifications. Since
RL only constrains voltage conversion ratio in topology
generation, we evaluate the performance on success rates
and MSE calculated only on voltage conversion ratios. As
shown in Figure 5 and Table 2, our SFT methods under SFM
and SFCI largely outperform RL (Fan et al., 2021), with
success rates 0.41 (RL) and 0.91 (SFM and SFCI) on a tight

0.02 0.04 0.06 0.08 0.10
Tolerance

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Su
cc

es
s

ra
te

LaMAGIC-CF
LaMAGIC-PM
LaMAGIC-FM
Ours-SFM
Ours-SFCI

Figure 6. Success rates of models trained with different circuit
formulations using 3, 4, 5-component circuits.

Table 3. MSEs of models trained with different circuit formulations
using 3, 4, 5-component circuits.

MSE Voltage Efficiency

CF 0.0160 0.0040

PM 0.0065 0.0023

FM 0.0061 0.0128

SFM 0.0013 0.0003

SFCI 0.0006 0.0002

tolerance 0.01. In addition, o1 does not perform well with
few-shot prompting, indicating the need of SFT for analog
tolopogy generation.

Comparison between different formulations. We per-
form SFT under CF, PM, FM, SFM, and SFCI for 3,4,5-
component circuits and evaluate them using the testing set
containing 12k data points.

From LaMAGIC (Chang et al., 2024), FM does not per-
forms well on 3,4,5-component circuits due to its float-input
setting but it has better generalizability to more complex
circuits. As shown in Figure 6, our SFM and SFCI success-
fully improve the success rates under tight tolerance ranges
compared to FM (from rates 0.67 to 0.9 under a tolerance of
0.01). In addition, both SFM and SFCI become comparable
to PM that uses the all-text-input setting. Specifically, our
success rates are 0.99 when tolerances are larger than 0.04
and 1.00 when the tolerance is 0.1.

Under MSE in Table 3, SFM and SFCI significantly out-
perform all baseline formulations, especially for SFCI that
shows 10X lower MSE compared to FM and PM. SFM’s
result shows that our succinct formulation benefits the float
input setting to let models better learn the mapping between
numerical numbers and edges. Additionally, comparison
between SFCI and CF shows that component-type tokens
can improve CF’s sparse formulation in circuit generation.

7

LaMAGIC2: Advanced Circuit Formulations for Language Model-Based Analog Topology Generation

Figure 7. Success rates of models finetuned with different circuit formulations using 500, 1000, and 2000 6-component circuits.

Table 4. MSEs of voltage conversion ratio and efficiency evaluated
on models finetuned with 500, 1k, and 2k 6-component circuits.

500 1000 2000

MSE Voltage Eff Voltage Eff Voltage Eff

CF 0.1843 0.1970 0.1684 0.1844 0.1459 0.1661

PM 0.1661 0.1705 0.1494 0.1565 0.1334 0.1315

FM 0.1324 0.1156 0.1341 0.1325 0.1014 0.0865

SFM 0.1570 0.1543 0.1188 0.1109 0.0941 0.1009

SFCI 0.1102 0.0899 0.0475 0.0719 0.0580 0.0418

5.3. Transferability Evaluation on 6-Component Circuit

In real world scenario, large amount of data for circuits
with a large node number could be hard to collect. A six-
component circuit requires 30 seconds of simulation to ob-
tain the voltage and efficiency. Similar to LaMAGIC, we
extend models trained with 3, 4, 5-components circuits to
be finetuned with only 500, 1k, and 2k 6-component circuits
randomly selected from our dataset. Then, we evaluate each
model on the testing set (9k data points) and run simulation
on each generated circuit to get its real performance.

The results are shown in Figure 7 and Table 4. Similar to the
results of 3, 4, 5-component circuits, SFM has higher suc-
cess rates in low tolerance ranges (0.01 to 0.03) compared to
FM. This shows that our succinct formulation also enhances
low precision sensitivity in transferability evaluation.

Models trained with SFCI demonstrate best transferability.
Notably, the success rate of the model finetund with 2000
6-component circuits improves to 0.84 compared to FM’s
0.76 under tolerance 0.1. In MSE, SFCI also performs the
best compared to all other formulations with up to 58.5%
improvement. This result shows that the sparse graph rep-
resentation is more suitable for complex circuits due to its
short token length. Additionally, our component-type tokens
let model to better learn different component’s representa-
tions to boost the generalizability. In summary, these results
suggest that our proposed SFCI is the best formulation to
perform the topology generation.

0.02 0.04 0.06 0.08 0.10
Tolerance

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Su
cc

es
s

ra
te

SFCI-NDP
SFCI-NCT
SFCI

Figure 8. Success rates of models trained with SFCI and its two
variants using 3, 4, 5-component circuits: (1) SFCI-NDP and (2)
SFCI-NCT, as in Figure 4.

Table 5. MSEs of voltage conversion ratio and efficiency evaluated
on SFCI and its two variants using 3, 4, 5-component circuits: (1)
SFCI-NDP and (2) SFCI-NCT, as in Figure 4.

MSE Voltage Eff

SFCI-NDP 0.0033 0.0028

SFCI-NCT 0.0012 0.0022

SFCI 0.0006 0.0002

6. Ablation Study & Discussion
6.1. SFCI without Duty-Cycle Prefix

When shrinking formulations, the prefix containing five
duty cycle numbers is a common feature across data points
and might be removed, as stated at the end of Section 4.2.
Thus, we evaluate how omitting this prefix affects model
performance by training a variant SFCI-NDP without the
duty-cycle prefix, as in Figure 4. The results in Figure 8
and Table 5 show that SFCI-NDP suffers a performance
drop compared to SFCI, showing that this prefix provides
an effective guidance for model’s decision making.

6.2. SFCI without Component-Type Tokens in Output

To validate the design choice of keeping component-type
tokens in the output of SFCI, we compare SFCI against a
variant SFCI-NCT that removes them from the output as

8

LaMAGIC2: Advanced Circuit Formulations for Language Model-Based Analog Topology Generation

VIN

GND

VOUT

SG

D

D

S
G

B

B

VDD
PMOS

NMOS

LM input:

{Performance specification} <sep> <VDD> <VIN> <GND> <PMOS> 0 S <PMOS> 0 G <PMOS> 0 D

<PMOS> 0 B <NMOS> 1 S <NMOS> 1 G <NMOS> 1 D <NMOS> 1 B <sep>

LM output:

{parameters to be set} <sep> <VDD> <PMOS> 0 S <PMOS> 0 B , <VIN> <PMOS> 0 G <NMOS> 1

G , <GND> <NMOS> 1 S <NMOS> 1 B , <VOUT> <PMOS> 0 D <NMOS> 1 D <sep>

Figure 9. The example of extending SFCI into a transistor-based inverter that contains an NMOS device and a PMOS device, each has
four distinct device pins: drain (D), gate (G), source (S), and body (B). We view an NMOS with the identifier 0 as four nodes: <NMOS> 0
D, <NMOS> 0 G, <NMOS> 0 S and <NMOS> 0 B. In addition, a PMOS device with the identifier 1 is viewed as four nodes: <PMOS>
0 D, <PMOS> 0 G, <PMOS> 0 S and <PMOS> 0 B. Then, we base on all nodes to construct our inverter.

shown in Figure 4. SFCI-NCT yields worse performance
according to both Figure 8 and Table 5. These results con-
firm that including component-type tokens helps the model
better capture the circuit structure, leading to more accurate
generation despite a slightly longer output.

6.3. Computation Efficiency Analysis

We analyze the computational efficiency of our SFCI by
comparing it with the SFM. Specifically, the training for
SFM saturates at 8,943 steps, whereas SFCI converges sig-
nificantly faster at 6,886 steps, representing a 23.0% re-
duction in required training steps. Moreover, as the token
length complexity decreases to O(|V |), SFCI also achieves
shorter inference times compared to SFM. These results
demonstrate that SFCI substantially enhances computational
efficiency in both training and inference phases.

6.4. Extend SFCI into Transistor-based Circuits

Future developments can extend SCFI to handle transistor-
based circuits, enabling support for a wider range of applica-
tions. In this context, transistors, e.g., NMOS devices (ND),
have four distinct pins: drain (D), gate (G), source (S), and
body (B). To represent these circuits, nodes need to be de-
fined at the pin level. Thus, we can view an NMOS with the
identifier 0 as four nodes: <NMOS> 0 D, <NMOS> 0 G,
<NMOS> 0 S, <NMOS> 0 B. We construct an example
of transistor-based inverter in the Figure 9.

7. Conclusion
In this paper, we introduced LaMAGIC2, an advanced cir-
cuit formulation designed to enhance language model-based
topology generation for analog circuit design. LaMAGIC2
addresses key limitations of prior approach by introduc-
ing the Succinct Float-input Canonical Formulation with
Identifiers (SCFI). SCFI improves component-type recogni-
tion through the use of unique identifiers, simplifies input
specifications to enhance numeric precision sensitivity, and
reduces circuit representation length to O(|V |). Experimen-

tal results show that SCFI achieves a 34% higher success
rate under a stringent tolerance condition 0.01 compared to
LaMAGIC’s FM formulation, along with 10X lower MSEs.
Moreover, SCFI excels in transferability evaluations, achiev-
ing up to 37.5% higher success rates and 58.5% lower MSEs
when finetuned on limited datasets of more complex circuits.
LaMAGIC2 paves the way for more efficient and scalable
automated analog design methodologies.

For future works, first, we can integrate search-based decod-
ing methods with our models to generate optimized circuits
for even larger and more diverse design spaces. This inte-
gration can balance the strengths of generative and search-
based approaches, enhancing the quality and practicality of
automated analog circuit design solutions. Second, we can
extend our formulations to transistor-based circuits to sup-
port wide range semiconductor circuit design applications
that has precise numeric specifications from users. LaM-
AGIC2 presents great potential for complex circuit designs.

Acknowledgment
This work is partially supported by SRC 3104.001 and NSF
2106828. Special thanks to Prof. Jason Cong from UCLA
for paper writing suggestion.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Chang, C.-C., Shen, Y., Fan, S., Li, J., Zhang, S., Cao, N.,

Chen, Y., and Zhang, X. LaMAGIC: Language-model-
based topology generation for analog integrated circuits.
In Proceedings of the 41st International Conference on
Machine Learning, pp. 6253–6262. PMLR, 21–27 Jul
2024.

9

LaMAGIC2: Advanced Circuit Formulations for Language Model-Based Analog Topology Generation

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y.,
Fedus, W., Li, Y., Wang, X., Dehghani, M., Brahma,
S., et al. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416, 2022.

Fan, S., Cao, N., Zhang, S., Li, J., Guo, X., and Zhang,
X. From specification to topology: Automatic power
converter design via reinforcement learning. In 2021
IEEE/ACM International Conference On Computer Aided
Design (ICCAD), pp. 1–9. IEEE, 2021.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky,
A., Low, A., Helyar, A., Madry, A., Beutel, A., Car-
ney, A., et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Lai, Y., Lee, S., Chen, G., Poddar, S., Hu, M., Pan, D. Z., and
Luo, P. Analogcoder: Analog circuit design via training-
free code generation. arXiv preprint arXiv:2405.14918,
2024.

Lu, J., Lei, L., Huang, J., Yang, F., Shang, L., and Zeng,
X. Automatic op-amp generation from specification to
layout. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2023.

Nenzi P, V. H. Ngspice users manual version 23., 2011.
URL https://pkgs.fedoraproject.org/
repo/extras/ngspice/ngspice23-manual.
pdf/eb0d68eb463a41a0571757a00a5b9f9d/
ngspice23-manual.pdf.

Nijkamp, E., Hayashi, H., Xiong, C., Savarese, S., and Zhou,
Y. Codegen2: Lessons for training llms on programming
and natural languages. arXiv preprint arXiv:2305.02309,
2023.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research,
21(1):5485–5551, 2020.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li,
X., Guestrin, C., Liang, P., and Hashimoto, T. B.
Stanford alpaca: An instruction-following llama
model. https://github.com/tatsu-lab/
stanford_alpaca, 2023.

Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y.,
Min, Y., Zhang, B., Zhang, J., Dong, Z., et al. A survey of
large language models. arXiv preprint arXiv:2303.18223,
2023.

Zhao, Z. and Zhang, L. Analog integrated circuit topology
synthesis with deep reinforcement learning. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits
and Systems, 41(12):5138–5151, 2022.

10

https://pkgs.fedoraproject.org/ repo/extras/ngspice/ngspice23-manual.pdf/eb0d68eb463a41a0571757a00a5b9f9d/ngspice23- manual.pdf
https://pkgs.fedoraproject.org/ repo/extras/ngspice/ngspice23-manual.pdf/eb0d68eb463a41a0571757a00a5b9f9d/ngspice23- manual.pdf
https://pkgs.fedoraproject.org/ repo/extras/ngspice/ngspice23-manual.pdf/eb0d68eb463a41a0571757a00a5b9f9d/ngspice23- manual.pdf
https://pkgs.fedoraproject.org/ repo/extras/ngspice/ngspice23-manual.pdf/eb0d68eb463a41a0571757a00a5b9f9d/ngspice23- manual.pdf
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

