Published as a conference paper at COLM 2025

SpecDec++: Boosting Speculative Decoding via Adaptive Can-
didate Lengths

Kaixuan Huang Xudong Guo

Princeton University Tsinghua University
kaixuanh@princeton.edu gxd20@mails.tsinghua.edu.cn
Mengdi Wang

Princeton University
mengdiw@princeton.edu

Abstract

Speculative decoding reduces the inference latency of a target large lan-
guage model via utilizing a smaller and faster draft model. Its performance
depends on a hyperparameter K — the candidate length, i.e., the number
of candidate tokens for the target model to verify in each round. However,
previous methods often use simple heuristics to choose K, which may result
in sub-optimal performance. We study the choice of the candidate length K
and formulate it as a Markov Decision Process. We theoretically show that
the optimal policy of this Markov decision process takes the form of a thresh-
old policy, i.e., the current speculation should stop and be verified when the
probability of getting a rejection exceeds a threshold value. Motivated by
this theory, we propose SpecDec++, an enhanced version of speculative de-
coding that adaptively determines the candidate length on the fly. We aug-
ment the draft model with a trained acceptance prediction head to predict
the conditional acceptance probability of the candidate tokens. SpecDec++
will stop the current speculation when the predicted probability that at
least one token gets rejected exceeds a threshold. We implement SpecDec++
and apply it to the llama-2-chat 7B & 70B model pair. Our adaptive
method achieves a 2.04x speedup on the Alpaca dataset (7.2% improvement
over the baseline speculative decoding). On the GSM8K and HumanEval
datasets, our method achieves a 2.26x speedup (9.4% improvement) and
2.23x speedup (11.1% improvement), respectively. The code of this paper is
available at https://github.com/Kaffaljidhmah2/SpecDec_pp.

1 Introduction

Current state-of-the-art Large Language Models (LLMs) have demonstrated extraordinary
capabilities in various language tasks and have shown early signs of artificial general intelli-
gence (Achiam et al., 2023; Anil et al., 2023; Team et al., 2023; Touvron et al., 2023a;b). As the
top-performing LLMs often have hundreds of billions of parameters and extremely long
context windows, there is an increasing demand for serving such huge models efficiently.

To decrease the inference latency, motivated by speculative execution techniques in proces-
sors, speculative decoding (Chen et al., 2023a; Leviathan et al., 2023) incorporates a draft
model, which is smaller and faster, as the speculator for the target model, which is the
large language model we want to accelerate. Given the current prefix, the draft model
first auto-regressively generates K tokens, taking substantially less time than it would take
the target model. The target model computes their log probabilities in parallel and then
sequentially determines whether each token is accepted or not. Following the first rejected
token (if any), the algorithm discards the remaining tokens and corrects the rejected token
with a fresh sample from a modified distribution. If all tokens are accepted, a new token is
sampled from the next-token probability given by the target model and appended to the

https://github.com/Kaffaljidhmah2/SpecDec_pp

Published as a conference paper at COLM 2025

25 :
- 11.1% improvement ~ 9-4% improvement ____ N5 speculative Decoding
§20 7.2% improvement 2.23x 2.26x B SpecDec
3 1.90x 2.04x mmm SpecDec++
o)
Q15
[2]
C
0}
x
I | e | e -

Alpaca HumanEval GSM8K

Figure 1: The performance of SpecDec++. Compared with the baseline speculative decoding
(SpecDec) with fixed candidate lengths, by adaptively determining the candidate lengths
via a trained acceptance prediction head, SpecDec++ achieves a relative 7.2%, 11.1%, and
9.4% improvement over the baseline methods on the Alpaca, HumanEval, and GSM8K
dataset, respectively. The experiments are conducted with llama-2-chat 7B & 70B model pair
on 2 NVIDIA A100-80G GPUs.

sequence of accepted tokens, and then the process moves forward. Such draft-verify-correct
loops continue until the desired output is fully generated.

The speedup effect of speculative decoding depends on two crucial aspects: (1) how well the
draft model aligns with the target model, and (2) how fast the draft model gets compared to
the target model. The two aspects influence the choice of the hyperparameter K: the number
of candidate tokens generated by the draft model in each loop. When the draft model aligns
well and/or runs fast, we can choose a larger K, which potentially allows more tokens to be
accepted in each loop. However, a larger K also increases the chances of rejection so that
more tokens get discarded.

Leviathan et al. (2023) studied the problem of choosing the hyperparameter K under the
assumption that the acceptance rates of all the candidate tokens are constant. The authors
showed that there exists one constant K that can maximize the speedup. However, such
an assumption is unrealistic and does not approximate real-world cases well. Whether the
draft model and the target model align well depends on the hardness of predicting the next
token. Intuitively, when the next token is unambiguous from the prefix, the draft model
and the target model align well, which means the acceptance probability of the current
candidate token is large compared to other cases.

In this work, we aim to boost the performance of any speculative decoding algorithm by
adaptively choosing the candidate length K for each round. We first formalize the adaptive
decision-making of K for speculative decoding as a Markov Decision Process (MDP). The
decision to make at each timestep is whether or not to stop the current speculation round and
submit the candidate tokens to the target model for verification and correction. The objective
is to minimize the total inference time taken to generate a full response. Theoretically, we
show that the optimal policy takes the form of a threshold policy, i.e., it is optimal to stop
the speculation round whenever the probability of existing at least one rejected token in the
candidates exceeds a threshold.

Inspired by the theory, we propose SpecDec++, an enhanced version of speculative decoding
that adaptively determines the candidate length on the fly. First, we train an acceptance
prediction head on top of the draft model to predict the acceptance probability of the
candidate token. Training such an acceptance prediction head has two challenges: (1) there
will be a severe class imbalance problem, e.g., most tokens generated by the draft model
will have a high probability of acceptance, depending on how well the two models align; (2)
the input sequence to the model contains mostly tokens from the target model and only a
fraction of tokens generated by the draft model, so the training signal is sparse. To overcome
the two challenges, we adopt a weighted Binary Cross-Entropy loss to address the class
imbalance problem, and we develop a token mixing approach by randomly mixing tokens
from the target model and the draft model to increase training efficiency.

Published as a conference paper at COLM 2025

At inference time, we opt to stop the current speculation round when the predicted probabil-
ity of the existence of a rejected token exceeds a constant stopping threshold. The procedure
is illustrated in Figure 2. To validate the effectiveness of our proposed improvement tech-
nique, we choose the simplest implementation of speculative decoding as the baseline and
augment it with SpecDect++. When evaluating on llama-2-chat 7B & 70B model pair, our
adaptive method achieves a 2.04x speedup compared with the 1.90x speedup of the baseline
speculative decoding method on the Alpaca dataset. On the easier GSM8K and HumanEval
datasets, our method boosts the baseline from 2.07x to 2.26x speedup and from 2.00x to
2.23x speedup , respectively.

We summarize the contributions below.

* We formalize the dynamic choice of candidate length in speculative decoding as a Markov
Decision Process (MDP) and conduct a rigorous study on the inference time. We theoreti-
cally show that when the probability that at least one token gets rejected exceeds a threshold,
the optimal action is to stop the speculation and submit it for verification.

* We propose SpecDec++, an enhanced version of speculative decoding that adaptively
determines the candidate length on the fly. We develop a weighted binary cross-entropy
loss and a token mixing method to efficiently train the prediction head and use it for
dynamic decision-making in the decoding process.

¢ We validate the effectiveness of SpecDec++ with a simple baseline implementation. Our
method achieves an additional 7.2%, 9.4%, and 11.1% improvement over the baseline
speculative decoding on the Alpaca, HumanEval, and GSMS8K datasets, respectively.

2 Related Work

Improvements on Speculative Decoding. Since the proposal of speculative decoding,
people have been improving the algorithm from different perspectives, for example, (1)
making the draft model align better with the target model (Zhou et al., 2024; Agarwal et al.,
2024; Liu et al., 2023), (2) building smaller draft models or merging draft models into the
target model (e.g. early-exiting) (Miao et al., 2023; Liu et al., 2024; Yang et al., 2023b; Bae
et al., 2023; Zhang et al., 2024; Monea et al., 2023; Chen et al., 2023b), and (3) building a
heirachical system of speculative decoding (Spector & Re, 2023; Sun et al., 2024a).

In contrast, our work focuses on the theoretical properties of the candidate length selection,
and our improvement is achieved through algorithmic improvements that are independent
of system-level and hardware-level configurations and orthogonal to architectural or system-
level improvements. This means SpecDec++ can be plugged into any implementation of
speculative decoding as long as it adopts a form of draft models, e.g., EAGLE (Li et al., 2024b).
Furthermore, it can be readily combined with other system and hardware improvements.

Medusa-like Methods. Several studies improve speculative decoding by abandoning the
auto-regressive draft model, including blockwise parallel sampling (Stern et al., 2018) and
the popular Medusa (Cai et al., 2024). However, these approaches typically adopt a different
method for verifying the candidate tokens, and the generated tokens may deviate from the
target model’s distribution under the general stochastic sampling setting. Therefore, we
choose not to compare against this line of methods in our paper.

Heuristic Candidate Length Selection Methods. Leviathan et al. (2023) make the i.i.d.
assumption on the acceptance probabilities of the candidate tokens and theoretically derive
the optimal choice of K. Besides, Liu et al. (2024) and Kim et al. (2024) adopt a simple
heuristic that ends the speculation if the confidence of the current draft token distribution
falls below a threshold. Xu et al. (2023) uses the cumulative product of the confidences and
extends to token trees. We include a discussion on why simple heuristics like confidence or
entropy may lead to sub-optimal performance in Appendix B.1.

In comparison, our work systematically studies the candidate length selection within the
theoretical MDP framework and uses the cumulative product of our trained prediction head
to determine the end of the speculation. Due to space limit, please see Appendix B for an
extended related work section.

Published as a conference paper at COLM 2025

3 Inference Time Analysis of Speculative Decoding

3.1 Background of Speculative Decoding

To auto-regressively generate a sequence from p(- | Xprefix) Using speculative decoding, we
first generate K candidate tokens (y1,¥2, ..., yk) from q(- [Xprefix)

]/ZNQ(Yz |xprefiX/y1/-~/]/ifl)/ i:172/"'/K1

We refer to K as the candidate length, i.e., the number of candidate tokens for this round.
Next, we sequentially check if each y; is accepted or not. If there is any rejection, we replace
the first rejected token with a fresh sample from the corresponding modified probability dis-
tribution and discard the subsequent tokens. For completeness, the details of the speculative
decoding algorithm are stated in Appendix C.

The key practical consideration is that the probabilities of the candidate tokens p(y; |
Xprefixs Y1/ - - .,Yi_1) can be calculated in parallel by the target model with no additional

overhead, as the forward time is bottlenecked by the memory operations (Pope et al., 2023).

3.2 Inference Time Decomposition of Speculative Decoding

Our objective is to minimize the total inference time, which satisfies

Tiotal = tdraftNdraft + ttargetNtarget/ (3.1)

where tyr,¢ and trarget are the time needed for one forward pass and Ngyag and Niarget are
the total number of forward passes of the draft model and the target model, respectively.
Equation (3.1) holds under the implicit assumption that the forward passes of each of the
models take constant time, which is true when we have enough computational resources to
support the increased concurrency when the length of the input sequence grows (Leviathan
et al., 2023). We empirically verify that Equation (3.1) holds in our setting; see Section 5.2.

Let N be the number of the final generated tokens. Note that N is a random variable
inherent to the target model and the initial prompt, independent of the draft model and
the number of candidate tokens K of each round we choose. Let Nyjscardeq b€ the number
of total discarded tokens. By the fact that Nyrage + Niarget = N + Ngiscarded, We have the
following lemma.

Lemma 3.1. The total inference time of any speculative decoding algorithm Ty, can be
decomposed as

Tiotal = To + tdraft Ndiscarded + (ttarget - tdraft)Ntarget/ (3.2)

where Ty = tgmsN is the oracle inference time.

To minimize the total inference time, we are required to trade-off between two objectives:
minimizing the number of the discarded tokens Ngjscarded and minimizing the number of
forward passes of the target model Niarget- The two objectives conflict with each other, as
a larger candidate length K will incur more discarded tokens but less number of forward
passes of the target model. Equation (3.2) states that the total cost is the weighted sum of
the two and the weights are given by tgya¢ and (target — tdraft)-

4 SpecDec++: Theory and Algorithm

4.1 A Motivating Example: Oracle Performance of Greedy Speculative Decoding

Let us focus on a simplified deterministic setting of speculative decoding, where we use
greedy decoding for the draft model and the target model. In this setting, the draft model
deterministically generates a series of greedy tokens (Y7, ..., Yx), and the speculative de-
coding algorithm reduces to sequentially checking whether Y; is also the greedy token of
the target model. The first rejected token is replaced by the greedy token of the target model.
If all the tokens are accepted, an additional token is generated by the target model directly.

Published as a conference paper at COLM 2025

For a given prompt Xprompt, let (Xq, Xa,..., Xy) be the greedy tokens generated by the
target model. We ask the following question:

What is the oracle performance of the speculative decoding algorithm we can obtain by varying the
number of candidate tokens, if we have the knowledge of (X1, Xo, ..., Xn) in hindsight?

Let us consider the first speculation round. The draft model generates (Y3, Y, ...) greedily.
Let Y; be the first token such that Y; # X;. The optimal strategy is to stop the speculation at
time (i — 1), so the last candidate token Y;_; is accepted, and Y; will be generated directly
by the target model, because (1) if we stop the speculation earlier, then the shorter candidate
tokens will still be accepted, but this induces at least one unnecessary forward pass of the
target model; (2) if we stop the speculation later, then we waste at least one candidate token
Y;. By repeating the argument, we have the following.

Theorem 4.1. In the greedy decoding setting, for a given prompt Xprompt, let
(X1, X2, ..., XN) be the greedy tokens generated by the target model. We define Y; =
argmaxq(- | Xprompt, X1, X2, ..., Xj_1) to be the greedy token of the draft model q condi-
tioned on the partial generation of the target model. Let S be the set of disagreement
between the draft model and the target model: S = {1 < i < N | Y; # X;}. Then, by
optimally stopping at time (i — 1) for every i € S, we obtain the oracle performance with
Niscarded = 0 and Ntarget = ‘S‘ +1.

Empirical implication. We perform a preliminary study where we use all the prompts in
the Alpaca dataset and calculate the set of disagreement S for each prompt with the llama-
2-chat-7B/llama-2-chat-70B model pair. The results show that the average Ntarget/ N =
0.164 £ 0.078 and the corresponding oracle throughput is 27.06 + 4.13 tokens/second (2.92x
speedup) in the setting of Section 5. In comparison, the average throughput for the target
model without speculative decoding is 9.26 tokens/second, while speculative decoding
with the best fixed K gives 17.58 tokens/second (1.90x speedup) (Section 5). We can see a
huge potential in adaptively tuning the candidate lengths, which motivates our subsequent
study on stochastic settings and the development of SpecDec++.

4.2 Speculative Decoding as Markov Decision Processes

We formulate speculative decoding into the following Markov Decision Process (MDP)
framework.

States. We define the tuple s = (Xprefix, (Y1,.--,Yx)) as the current state of the MDP.
Specifically, Xprefix is the concatenation of the prompt and the partial response containing all

the accepted tokens. (Y7, ..., Yy) is the current candidate tokens, which are auto-regressively
sampled from the draft distribution g:

Yz”ﬂ(|xprefier1/-~/Yi71)/ l:1/2/
The initial state of the MDP is (Xprompt, @)-

Actions. Given the current state (Xprefix, (Y1, -, Yx)), the decision to make is whether or
not to end the current speculation round and submit the candidate tokens to the target
model for verification. We denote the current action by a € {stop, continue} as the choice
of stopping or continuing the current speculation round. !

Transitions. First, we draw a random sample Yj.,1 ~ g1 and append Yj 1 to the current
list of the candidate tokens.

* When a = continue, the next state s is simply (Xprefix, (Y1, -+, Y, Yiy1))-

e When a = stop, the candidate tokens (Y3, ..., Y1) are verified via speculative decoding
(Algorithm 2). Let n be the number of the accepted tokens. Let i’ be the replaced
token when n < k + 1 or the fresh token from the next-token distribution given by
the target model when n = k 4 1. The next state s’ = (x/ @) with the new prefix

prefix”

'n practice, when Y}, 1 is EOS (the special token denoting the end of sequence) or when the total
length hits the maximal generation length, we manually set a = stop.

Published as a conference paper at COLM 2025

P = @(Yl is accepted | Y7,...,Y;_; are accepted, Zprefix)
(SN (ZD (S multiplication
(B,) (By) (B . J
_/ J O/

Acceptance Prediction Head ‘ Pace = P(Y3,.. ., Y; are accepted | i) ‘

[Y:) | YCJ Y;J Yk:J ‘
§ ! Yes / = D
(h 1—Paec > h?
~ —
‘ Draft Model ‘

I B I I stop) (CONTINUE

‘ Tprefix ‘ () (Y2) (Y) - o

Figure 2: SpecDec++ uses a trained acceptance prediction head to predict the conditional
acceptance probability of the candidate tokens. When the predicted probability of the
existence of at least one rejected token exceeds the stopping threshold /, the current
speculation round ends and the candidate tokens go through the target model for verification
and correction.

x/
prefix
newly generated tokens.

= (Xprefix Y1, - - -, Yn, y') being the concatenation of the previous prefix and the

Our next theorem provides a simple way to set the immediate cost so that the cumulative
cost of the MDP matches the total inference time of Speculative Decoding.

Theorem 4.2 (Immediate Cost of the MDP). Define ¢; = tgra and c2 = (target — tdraft)- If
we set the immediate cost of the MDP to be
c(s,continue,s’) =T(J1 <i < k+1,Y;is rejected) - cq,

c(s,stop,s') =1(I1 <i <k+1,Y;isrejected) - c1 + o,

then the cumulative cost of the entire trajectory equals the total inference time Ty, defined
in Equation (3.1).

The theorem can be proved by invoking Lemma 3.1. For both continue and stop, we suffer
aloss cy if the current candidate token Yy, is discarded, which happens if there exists any
candidate token Y; (1 < i < k + 1) that is rejected. If we stop at the current step, we suffer
an additional cost ¢y corresponding to the extra inference time of the target model.

Our next theorem 4.3 provides a sufficient condition for us to stop the current round of
speculation and call the target model to verify the candidate tokens.

Theorem 4.3. For any time-homogeneous policy 7t that has an upper bound for the number
of candidate tokens, at the current state s = (Xprefix, (Y1, - -+, Yx)), when

.)) Cz‘l'A
P31 <i<kY, ted ix) 2 T A
(31 < i < k,Y;is rejecte |xpref1X)—Cl+C2+A

the expected total cost of stop is smaller than the expected total cost of continue, where
A= A(m, Xprompt, P, 4, C1, cp) is a problem-specific constant.

We defer the proof of Theorem 4.3 to Appendix E.

4.3 SpecDec++ Algorithm

Motivated by Theorem 4.3, we propose SpecDec++, an adaptive speculative decoding algo-
rithm that utilizes an additional prediction head to determine whether or not to stop the
current speculation round. The additional prediction head fy is built on top of the draft

Published as a conference paper at COLM 2025

model to predict the conditional probability

. . p(Yi|xprefix1 Yy, .. ~/Yi—1)
IP(Y; is accepted | Y7, ..., Y;_1 are accepted , X, ofix) = min (1, .
(i P | 1 i—1 P Preflx) (q(Yl |xpreﬁX/ Yl/ ., Yi—l))

We opt to implement a small prediction head such that the computational overhead is
negligible compared to a forward pass of the draft model. During inference time, we feed
the input (xprefix, Y1, - - -, ;) to the draft model and obtain the final embedding e; of the last
token Y;. The predicted acceptance probability is given by

~

IP(Y; is accepted | Y1,...,Y; 1 are accepted , Xprefix) = sigmoid(fy(e;)). (4.1)

If we have such a head fy, we propose to end the current round of speculation when the

predicted probability that there exists one rejected token exceeds a predefined threshold h
t(sg) = stop < P(31 < i < k, such that Y; is rejected | Xprefix) > 11,

which can be computed by chain rule

P(31 < i < k, such that Y; is rejected | Xprefix)

k
=1—] | P(Y;is accepted | Y1,...,Y; 1 are accepted , Xprefix)-
i=1

We summarize the proposed algorithm in Algorithm 1 and illustrate it in Figure 2.

Algorithm 1 SpecDec++

Require: draft model g, target model p, prefix xprefix, acceptance prediction head fo, thresh-
old h.

Initialize the cumulative acceptance probability p = 1

fori =1do
if i > 1 then
Compute the final hidden embedding e;_; of the token y;_1.
end if
Compute g; = q(- | Xprefixs Y1, - - - ryi—l)-
Sample y; ~ g;.

Update p < p - sigmoid(fy(ej_1)).
if 1 — p > h then
Break
end if
end for

Let K be the number of candidate tokens in the previous for-loop.
Compute in parallel p; = p(- | Xprefix, Y1, - -, Yi—1) fori=1,..., K+ 1.
Sample rq, ..., rg with r; ~ Unif[0,1],i =1,...,K.

Compute the number of accepted tokens n = min ({z —1|r>pilyi)/qi(yi)} U K)

if n < K then
Sample i’ from the modified distribution Norm[(py+1 — qn+1)+]
else
Sample ' from pgq
end if
Return Xprefixs Y17+ -1 Yns y/

4.4 Training Dataset Construction and Learning Objective

In this subsection, we focus on how to efficiently train an acceptance prediction head
for SpecDec++. For each Xprompt in the prompt set Dprompt, we first generate a target re-

sponse (Xj, ..., Xy) using the target model. Next, we feed the prompt and the response

Published as a conference paper at COLM 2025

into the draft model to get (- | Xprompt, X1, ..., X;_1) for every i. We sample a draft

candidate Y; from the distribution and calculate the conditional acceptance probability

P; = min (1, p(yf ‘xpmmpt’xl’“”xffl)) for each token, which will be the training target for the
q(Yz|xpromphxlr---rxz—l>

acceptance prediction head.

Token Mixing. Ideally, the input to the acceptance prediction head should be
(xprompt, Xj,...,X;_1,Y;). However, this naive construction is training-inefficient as only
the final token Y; receives a training signal. To overcome this, we propose a token mixing
strategy, borrowing the random masking idea from BERT (Devlin et al., 2019): we randomly
take r% tokens from (X, ..., Xy) and the remaining tokens from (Y7, ..., Yy) to construct
the response sequence, denoted by (Zy, ..., Zy). The losses are only computed for the to-
kens from (Y3,...,Yy). In this way, we trade the quality of the input sequences for training
efficiency, as more tokens will receive training signals per forward pass of the model.

Weighted Binary Cross-Entropy (BCE) Loss. In the typical setting of speculative decoding
where the draft model and the target model align reasonably well, there will be class
imbalance issues in the training dataset, where most of the training examples will have IP;
close to 1. To accommodate the issues above, we train the prediction head using a weighted
binary cross-entropy (BCE) loss, taken over the tokens Z;’s stemming from Y;’s. In summary,
our final loss function is

Z Z (— Wace - IP; log]lA’i — Wrej - (1—-1;)log(1— llA’i)),

X €D 1<i<N:
prompt prompt . >
Z; is taken from Y;

where Wacc and wyj are the weights and]f’i = sigmoid(fy(e;(Xprompt, Z1, - - -, Zi-1,Y;)))-

5 Experiments

5.1 Experimental Setups

Datasets and Model Pairs. We adopt three datasets in our experiments: Alpaca (Taori
et al., 2023), HumanEval (Chen et al., 2021), GSM8K (Cobbe et al., 2021). We only use
prompts of the datasets and do not use responses. In the experiments, we solely focus
on llama-2-chat models (Touvron et al., 2023b), while in Appendix D.4, we also provide
additional experimental results on Gemma models (Team et al., 2024a;b). We choose to use
llama-2-chat 7B as the draft model and llama-2-chat 70B as the target model. To reduce
memory consumption, we use the bfloat16 format for the models.

Network Architecture, Weighted BCE Loss, and Stopping Criteria for SpecDec++. We
build a (D + 1)-layer ResNet with SiLU activation as the acceptance prediction head, and
we sweep D from 0 (linear layer) to 4 in the experiments. We adopt the weighted BCE
loss where set w,.c = 1 and choose Wrej from {1,3,6,12}. We tune the stopping threshold
hin {0.1,0.3,0.5,0.7,0.9}. To ensure the robustness of SpecDec++, we manually stop each
speculation round when the number of candidate tokens exceeds 20.

Baseline Method. We compare SpecDec++ with the simplest implementation of the spec-
ulative decoding algorithm where the number of the candidate tokens K is fixed as a
hyperparameter. We tune K in {2, 4,6,8,10,12,14}.

Metrics. To measure the benefit of a speculative decoding pipeline, we divide Equation (3.2)
by N and get
latency = Ttotal/N = tdraft + tdraft - Ndiscarded/N + (ttarget - tdraft) : Ntarget/N- (6.1)

We report two metrics: (1) discard rate Ngjscarded/ N, Which is the average number of
discarded tokens per one generated token, and (2) verification rate Ntarget /N, which is the
average number of the forward calls of the target model per one generated token.

Due to space limits, additional experimental setup is deferred to Appendix D.1.

Published as a conference paper at COLM 2025

Alpaca HumanEval GSM8K

SpecDec++ « SpecDec++ « SpecDec++
SpecDec SpecDec

5
5
]

&)

SpecDec

o4

*
T
oy

. e
Qe - i,

Discard Rate
=)

o
o
o
15

Discard Rate
o =
(% o

Discard Rate
o

~‘x_~' B
R4 Sy

Srar

. . .
Mgt~ e S,

0.15 0.20 0.25 0.30 0.15 0.20 0.25 0.30 0.15 0.20 0.25 0.30
Verification Rate Verification Rate Verification Rate

Figure 3: The average verification rates Niarget/ N and the average discard rates Ngiscarded / N
for SpecDec with different candidate lengths and SpecDec++ with different acceptance pre-
diction heads and stopping thresholds. SpecDec++ has better Pareto frontiers than SpecDec
on both the in-distribution dataset Alpaca and the two out-of-distribution datasets Hu-
manEval and GSMS8K.

5.2 Forward Time Analysis

First, we verify the correctness of Equation (3.1) and determine the forward time of the
draft model t4p, and the target model target under our specific setting. We collect all
the (Ngraft Ntarget, Trotal) tuples from generations using speculative decoding (either the
baseline version or SpecDec++) and perform a linear regression to determine the coefficients.
We also determine the standalone inference time when using only the draft model or the
target model with linear regression. The linear regressions fit well with all R? > 0.98 and
the results are summarized in Appendix D.2, Table 2.

The additional cost of the acceptance prediction head is negligible, as we find that the
average fyraf in SpecDect+ setting is smaller than the average tq.,¢ in baseline SpecDec setting
by 0.0004s, which is likely caused by random noise of the environment. Therefore, for both
the baseline speculative decoding setting and SpecDec++ setting, we choose (fqyaft, ttarget) =
(0.0234,0.112), which is the average between the two cases. For the stand-alone setting, we
have (f4raft target) = (0.0207,0.108), indicating that the average throughput for the target
model without speculative decoding is 9.26 tokens/second.

5.3 Performance

We test the performances of the baseline speculative decoding with different K and SpecDec++
with the different acceptance prediction heads and different thresholds h. We calculate the
discard rates Ngiscarded /N and the verification rates Niarget/ N (Equation (5.1)). The results
are plotted in Figure 3. We see that SpecDec++ has strictly better Pareto frontiers than the
baseline SpecDec on both the in-distribution test set Alpaca and the two out-of-distribution
datasets HumanEval and GSM8K. Our method with adaptive candidate lengths improves
upon the baseline method of fixed candidate lengths by reducing both the discard rate and
the verification rate. The two metrics are independent of the actual forward times (¢4, and
ttarget) and hence reusable for other hardware configurations, which indicates that SpecDec++
will still outperform the baseline under different sets of fy.f and ftarget. Finally, we plug
in the actual values of (fqraft, target) = (0.0234,0.112) as in Section 5.2. We summarize the
throughputs in Table 1 and visualize the improvements in Figure 1.

Table 1: The best throughputs achieved by SpecDec++ compared to the best throughputs
achieved by the speculative decoding baseline on Alpaca, HumanEval, and GSM8K datasets.
Dataset Alpaca HumanEval GSMSK
SpecDec++ 18.88 (tokens/s) 20.61 (tokens/s) 20.95 (tokens/s)
SpecDec (baseline) 17.62 (tokens/s) 18.55 (tokens/s) 19.14 (tokens/s)

Discussions. As the distribution shift of the OOD datasets will influence the accuracies and
the calibrations of the acceptance prediction heads, a natural question to ask is whether
the optimal performances for different datasets are achieved with different acceptance

Published as a conference paper at COLM 2025

prediction heads and stopping thresholds. Empirically, we confirm that this is indeed the
case. Nevertheless, we find that using the acceptance prediction trained with wj = 6 and
network depth D = 3 and the stopping threshold / = 0.7 achieves over 99.3% of the best
tokens per second across the three datasets (2.03x for Alpaca, 2.21x for HumanEval, and
2.26x for GSM8K). Additional ablation studies on how the hyperparameters (wej, D,)
influence the final tokens per second can be found in Appendix D.3.

6 Conclusion and Discussion

In this paper, we study the determination of the candidate lengths for speculative decoding.
We formulate the problem as a Markov Decision Process and provide a theorem that gives
a sufficient condition to stop the current speculation. Motivated by the theoretical result,
we propose SpecDec++ to adaptively select the candidate length with a trained acceptance
prediction head. We demonstrate significant algorithmic speedups over the naive SpecDec
baselines. Our paper focuses on the algorithmic aspects of speculative decoding with few
assumptions on the system/hardware level implementations. Therefore, our method can be
seamlessly integrated with other architectural or system-level improvements.

Theoretically, the acceleration achieved via SpecDec++ depends on the learnability of the
conditional acceptance probability (Eqn. 4.1), which, in turn, depends on the amount of
correlation between the degree of alignment between the draft distribution and the target
distribution and the existing context. While it is hard to develop intuition into when such
correlation is strong for a given pair of models, our empirical results demonstrate that
the correlation indeed exists and can be extracted by training the acceptance prediction
head, which ultimately leads to acceleration of speculative decoding. Meanwhile, the
effectivenesses of many heuristic methods (Liu et al., 2024; Kim et al., 2024; Xu et al., 2023;
Mamou et al., 2024) independently support the hypothesis that such correlation can be
adequate for many pairs of models.

Our final remark is on the efficacy of speculative decoding in high-throughput scenarios.
The conventional wisdom suggests that speculative decoding only improves latency and
may hurt throughput when batch sizes are large. However, as pointed out by Sadhukhan
et al. (2025), in the prevalent long-context settings, KV cache loading becomes the main
bottleneck of inference, and this memory bottleneck cannot be amortized by increasing
batch sizes. Speculative decoding becomes an effective method to achieve speedup in this
long-context scenario, even when the batch sizes are large. We leave for future work the
adaptation of our analysis and technique to the large-batchsize, long-context settings.

Acknowledgments

We acknowledge Tianle Cai, Kaifeng Lyu, Zhuoming Chen, and Beidi Chen for the helpful
feedback and discussion. Kaixuan Huang acknowledges the support of Google PhD Fellow-
ship. Mengdi Wang acknowledges support by NSF grants DMS-1953686, 11S-2107304, and
ONR grant 1006977. The research is also supported by Princeton Language and Intelligence
(PLI) Compute Cluster.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea,
Matthieu Geist, and Olivier Bachem. On-policy distillation of language models: Learning
from self-generated mistakes. In The Twelfth International Conference on Learning Represen-
tations, 2024.

10

Published as a conference paper at COLM 2025

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre
Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2
technical report. arXiv preprint arXiv:2305.10403, 2023.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg.
Structured denoising diffusion models in discrete state-spaces. Advances in Neural Infor-
mation Processing Systems, 34:17981-17993, 2021.

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-Young Yun. Fast and robust early-exiting
framework for autoregressive language models with synchronized parallel decoding. In
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp.
5910-5924, 2023.

Nikhil Bhendawade, Irina Belousova, Qichen Fu, Henry Mason, Mohammad Rastegari, and
Mahyar Najibi. Speculative streaming: Fast llm inference without auxiliary models. arXiv
preprint arXiv:2402.11131, 2024.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and
Tri Dao. Medusa: Simple llm inference acceleration framework with multiple decoding
heads. arXiv preprint arXiv: 2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre,
and John Jumper. Accelerating large language model decoding with speculative sampling.
arXiv preprint arXiv:2302.01318, 2023a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evalu-
ating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Zhuoming Chen, Avner May, Ruslan Svirschevski, Yuhsun Huang, Max Ryabinin, Zhihao
Jia, and Beidi Chen. Sequoia: Scalable, robust, and hardware-aware speculative decoding.
arXiv preprint arXiv:2402.12374, 2024.

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun, Jie Huang, and Kevin Chen-Chuan
Chang. Cascade speculative drafting for even faster llm inference. arXiv preprint
arXiv:2312.11462, 2023b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers
to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Jill Burstein, Christy
Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pp. 4171-4186, Minneapolis, Minnesota, June 2019. Association
for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.
org/N19-1423.

Cunxiao Du, Jing Jiang, Xu Yuanchen, Jiawei Wu, Sicheng Yu, Yonggqi Li, Shenggui Li, Kai
Xu, Ligiang Nie, Zhaopeng Tu, et al. Glide with a cape: A low-hassle method to accelerate
speculative decoding. arXiv preprint arXiv:2402.02082, 2024.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm
inference using lookahead decoding. arXiv preprint arXiv:2402.02057, 2024.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based
speculative decoding. arXiv preprint arXiv:2311.08252, 2023.

Wonseok Jeon, Mukul Gagrani, Raghavv Goel, Junyoung Park, Mingu Lee, and Christopher
Lott. Recursive speculative decoding: Accelerating llm inference via sampling without
replacement. arXiv preprint arXiv:2402.14160, 2024.

11

https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423

Published as a conference paper at COLM 2025

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W Mahoney,
Amir Gholami, and Kurt Keutzer. Speculative decoding with big little decoder. Advances
in Neural Information Processing Systems, 36, 2024.

Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and Hao Zhang. Cllms: Consistency large
language models. arXiv preprint arXiv:2403.00835, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large
language model serving with pagedattention. In Proceedings of the 29th Symposium on
Operating Systems Principles, pp. 611-626, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via
speculative decoding. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pp- 19274-19286. PMLR, 23-29 Jul 2023. URL https://proceedings.mlr.press/v202/
leviathan23a.html.

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto.
Diffusion-lm improves controllable text generation. Advances in Neural Information Pro-
cessing Systems, 35:4328-4343, 2022.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye,
Tianle Cai, Patrick Lewis, and Deming Chen. Snapkv: LIm knows what you are looking
for before generation. arXiv preprint arXiv:2404.14469, 2024a.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling
requires rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024b.

Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng Ni, Kai Han, and Yunhe Wang.
Kangaroo: Lossless self-speculative decoding via double early exiting. arXiv preprint
arXiv:2404.18911, 2024.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Stoica, Zhijie Deng, Alvin Cheung, and Hao
Zhang. Online speculative decoding. arXiv preprint arXiv:2310.07177, 2023.

Jonathan Mamou, Oren Pereg, Daniel Korat, Moshe Berchansky, Nadav Timor, Moshe
Wasserblat, and Roy Schwartz. Dynamic speculation lookahead accelerates speculative
decoding of large language models. arXiv preprint arXiv:2405.04304, 2024.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Rae Ying Yee
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chunan Shi, Zhuoming Chen, Daiyaan Arfeen,
Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating generative large language
model serving with speculative inference and token tree verification, 2023.

Giovanni Monea, Armand Joulin, and Edouard Grave. Pass: Parallel speculative sampling.
arXiv preprint arXiv:2311.13581, 2023.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury,
Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling trans-
former inference. Proceedings of Machine Learning and Systems, 5, 2023.

Ranajoy Sadhukhan, Jian Chen, Zhuoming Chen, Vashisth Tiwari, Ruihang Lai, Jinyuan
Shi, Ian En-Hsu Yen, Avner May, Tiangi Chen, and Beidi Chen. Magicdec: Breaking
the latency-throughput tradeoff for long context generation with speculative decoding.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=CS2JWaziYr.

Andrea Santilli, Silvio Severino, Emilian Postolache, Valentino Maiorca, Michele Man-
cusi, Riccardo Marin, and Emanuele Rodola. Accelerating transformer inference for
translation via parallel decoding. In Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Computational

12

https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://openreview.net/forum?id=CS2JWaziYr
https://openreview.net/forum?id=CS2JWaziYr

Published as a conference paper at COLM 2025

Linguistics (Volume 1: Long Papers), pp. 12336-12355, Toronto, Canada, July 2023. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.689. URL
https://aclanthology.org/2023.acl-1long.689.

Benjamin Frederick Spector and Christopher Re. Accelerating LLM inference with staged
speculative decoding. In Workshop on Efficient Systems for Foundation Models @ ICML2023,
2023. URL https://openreview.net/forum?id=RKHF3VYjLK.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep
autoregressive models. Advances in Neural Information Processing Systems, 31, 2018.

Qidong Su, Christina Giannoula, and Gennady Pekhimenko. The synergy of speculative
decoding and batching in serving large language models. arXiv preprint arXiv:2310.18813,
2023.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. Triforce:
Lossless acceleration of long sequence generation with hierarchical speculative decoding.
arXiv preprint arXiv:2404.11912, 2024a.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and
Felix Yu. Spectr: Fast speculative decoding via optimal transport. Advances in Neural
Information Processing Systems, 36, 2024b.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following
llama model. https://github.com/tatsu-lab/stanford_alpaca, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui
Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family
of highly capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju,
Shreya Pathak, Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, et al.
Gemma: Open models based on gemini research and technology. arXiv preprint
arXiv:2403.08295, 2024a.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé,
et al. Gemma 2: Improving open language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024b.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971,
2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2:
Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated
instructions. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 13484-13508, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.acl-long.754. URL https://aclanthology.org/2023.
acl-long.754.

13

https://aclanthology.org/2023.acl-long.689
https://openreview.net/forum?id=RKHF3VYjLK
https://github.com/tatsu-lab/stanford_alpaca
https://aclanthology.org/2023.acl-long.754
https://aclanthology.org/2023.acl-long.754

Published as a conference paper at COLM 2025

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yonggqi Li, Tao Ge, Tianyu Liu, Wenjie
Li, and Zhifang Sui. Unlocking efficiency in large language model inference: A compre-
hensive survey of speculative decoding. arXiv preprint arXiv:2401.07851, 2024.

Daliang Xu, Wangsong Yin, Xin Jin, Ying Zhang, Shiyun Wei, Mengwei Xu, and Xuanzhe
Liu. Llmcad: Fast and scalable on-device large language model inference. arXiv preprint
arXiv:2309.04255, 2023.

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin Jiang, Linjun Yang, Rangan Majumder,
and Furu Wei. Inference with reference: Lossless acceleration of large language models.
arXiv preprint arXiv:2304.04487, 2023a.

Sen Yang, Shujian Huang, Xinyu Dai, and Jiajun Chen. Multi-candidate speculative decod-
ing. arXiv preprint arXiv:2401.06706, 2024.

Seongjun Yang, Gibbeum Lee, Jaewoong Cho, Dimitris Papailiopoulos, and Kangwook Lee.
Predictive pipelined decoding: A compute-latency trade-off for exact llm decoding. arXiv
preprint arXiv:2307.05908, 2023b.

Aonan Zhang, Chong Wang, Yi Wang, Xuanyu Zhang, and Yunfei Cheng. Recurrent drafter
for fast speculative decoding in large language models. arXiv preprint arXiv:2403.09919,
2024.

Weilin Zhao, Yuxiang Huang, Xu Han, Chaojun Xiao, Zhiyuan Liu, and Maosong Sun.
Ouroboros: Speculative decoding with large model enhanced drafting. arXiv preprint
arXiv:2402.13720, 2024.

Shuzhang Zhong, Zebin Yang, Meng Li, Ruihao Gong, Runsheng Wang, and Ru Huang.
Propd: Dynamic token tree pruning and generation for llm parallel decoding. arXiv
preprint arXiv:2402.13485, 2024.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Ros-
tamizadeh, Sanjiv Kumar, Jean-Frangois Kagy, and Rishabh Agarwal. Distillspec: Improv-
ing speculative decoding via knowledge distillation. In The Twelfth International Conference
on Learning Representations, 2024. URL https://openreview.net/forum?id=rsY6J3ZaTF.

14

https://openreview.net/forum?id=rsY6J3ZaTF

Published as a conference paper at COLM 2025

A Limitations

Our theoretical result contains a problem-specific constant A which is hard to analyze
theoretically or estimate empirically. Nevertheless, the choice of the stopping threshold
h can be determined through hyperparameter search; see Appendix D.3. As is the case
with all speculative decoding algorithms, our method relies on the implicit assumption that
the draft model and the target model align well. For a weak draft model, the acceptance
prediction head may perform badly.

B Additional Related Work

Large language models are mostly based on Transformer architectures (Vaswani et al.,
2017) that auto-regressively predict the probability of the next token given its predecessors.
One bottleneck of the inference speed lies in the fact that auto-regressive decoding is an
inherently non-parallelizable sequential operation: the probabilities of future tokens depend
on the current token and there is no trivial way to skip the current token when predicting
future tokens. Therefore, the inference time of auto-regressive decoding scales linearly with
the number of the generated tokens.

However, the time of a forward pass to compute the log probabilities of the tokens through
transformers is nearly constant for batched sequences with different lengths within a proper
range, thanks to the increasingly powerful parallel computing units (Pope et al., 2023;
Vaswani et al., 2017; Chen et al., 2023a; Leviathan et al., 2023).

Therefore, to overcome the bottleneck of the auto-regressive decoding, one can find a fast
way to generate K tokens, which often increases FLOPs, and the ask the target model to
verify and correct the candidates (Stern et al., 2018; Chen et al., 2023a; Leviathan et al.,
2023); see a comprehensive survey (Xia et al., 2024). For those methods to work, we assume
that we have enough computational resources (e.g. CUDA memories) to support the
increased concurrency. Nevertheless, in the long-context generation regime, the memory
issue becomes prominent, which requires additional KV-cache management techniques
such as compression or retrieval (Li et al., 2024a; Sun et al., 2024a).

Improvements of Speculative Decoding Methods

The performance of speculative decoding depends on how well the draft model aligns with
the target model, and how fast the draft model is compared to the target model. People
have been improving speculative decoding in two aspects: (1) making the draft model align
better with the target model via distillation (Zhou et al., 2024; Agarwal et al., 2024) and
online learning (Liu et al., 2023); and (2) making the token generation faster and cheaper,
e.g. training multiple smaller draft models from stratch (Miao et al., 2023).

In addition, the candidate tokens can be generated without a separate draft model (Stern
et al., 2018; Li et al., 2024b; Du et al., 2024; Bhendawade et al., 2024), such as building
additional modules that predict the next k tokens (Medusa heads (Cai et al., 2024), RNN
heads (Zhang et al., 2024), soft tokens (Monea et al., 2023)), early-exiting methods that reuse
the intermediate representations of the target model (Liu et al., 2024; Yang et al., 2023b; Bae
et al., 2023), and retrieval-based methods that involve constructing an n-gram datastore and
using retrieval to generate candidates (He et al., 2023; Zhao et al., 2024; Yang et al., 2023a;
Fu et al., 2024).

Those techniques can be combined, resulting in a heirachical system (Spector & Re, 2023;
Zhao et al., 2024; Sun et al., 2024a).

Token Tree Generation, Verification and Pruning.

Paralleling across the batch dimension via token trees is another direction to increase
throughputs (Miao et al., 2023; Xu et al., 2023; Su et al., 2023). For greedy decoding, token
tree generation and verification are studied in (Cai et al., 2024). For the stochastic sampling
setting, REST (He et al., 2023) proposes a straightforward approach: keeping the token paths
that coincide with the stochastic tokens given by the target model. There are also researches
extending the stochastic speculative decoding to the token tree setting, which often needs to

15

Published as a conference paper at COLM 2025

adjust the drafting and verification probabilities to ensure unbiasedness, e.g. MCSD (Yang
et al., 2024), Recursive SD (Jeon et al., 2024), Sequoia (Chen et al., 2024), EAGLE (Li et al,,
2024b), SpecTR (Sun et al., 2024b).

One important problem to study is how to construct and prune the token tree to maximize
throughputs and avoid heavy communication overheads, which is studied in (Chen et al.,
2024; Zhong et al., 2024). Our work can serve as a starting point towards the problem, as the
candidate length K can be viewed as the depth of a token tree with only one branch.

Diffusion language models. Diffusion language models either in the discrete space (see
D3PM (Austin et al., 2021) and its follow-ups) or in the embedding space (see Diffusion-
LM (Li et al., 2022) and its follow-ups) are non-autoregressive language models, whose
generation time can scale sub-linearly with the sequence length. BERT-type encoder-only
models and auto-regressive decoder-only models can be also viewed as diffusion model,
with mask prediction and next-token prediction being the denoising operation (Austin et al.,
2021). Viewing next-token prediction as Jacobi iteration (Santilli et al., 2023) and denoising
operation is a powerful idea and it leads to subsequent work such as lookahead decoding (Fu
et al., 2024) and consistency LLMs (Kou et al., 2024).

B.1 Discussion: Sub-optimality of Heuristic Methods

In this section, we discuss the potential sub-optimality of several training-free heuristic
methods for determining the candidate lengths. For example, it may be tempting to use
the entropy of the draft model H(q(- | Xprefix, Y1, - - -, Yi—1)) or merely the likelihood of the
sampled draft candidate token q(Y; | Xprefix, Y1, - -, Yi—1)) as a surrogate for the acceptance
probability, and choose to stop the current round of speculation when these indicators fall
under a threshold. However, we point out that this type of training-free heuristics confuses
the inherent uncertainty of the draft distribution with the alignment between draft and
target distributions, which is fundamentally flawed.

p(l/i‘xpreﬁxrylwwyi—l)) .

(Y| Xprefix, Y1, Yi-1))7 which de
pends on the target distribution p. Therefore, heuristic methods that do not incorporate the
information of the target model will be sub-optimal.

First of all, the theoretical acceptance probability is min (1,

Furthermore, when the draft model and the target model align well, the acceptance prob-
ability will be high regardless of the entropy of the current draft candidate token or the
likelihood of the sampled Y;. For the extreme case when the draft model and the target
model aligns perfectly well i.e., p(Yi|Xprefix, Y1, - -+, Yi—1) = q(YilXprefix, Y1,---,Yi—1), by
the rejection sampling scheme of speculative decoding, the sampled candidate tokens are
guaranteed to be accepted, and the optimal candidate lengths will be infinite. Using either
entropy-based methods or likelihood-based methods will stop the speculation earlier and
results in sub-optimal performance.

C Additional Background on Speculative Decoding Algorithm

Rejection Sampling. The algorithmic foundation of the Speculative Decoding algorithm lies

in rejection sampling. Specifically, if we want to sample from a target discrete distribution

p(x), we first sample x from a draft distribution g(x). We accept the sample x with prob-
p(x)

ability min(1, F e); otherwise we replace it with a sample from the modified distribution
Norm[(p — q)+], where z; = max(z,0) is the positive part of z and Norm|[f] = Zf;()x)

normalizes a function f to make it a proper probability distribution. The proof of the
unbiasedness of rejection sampling can be found in Chen et al. (2023a).

Speculative Decoding. Speculative decoding extends to the auto-regressive generation
scenarios by chaining K rejection sampling procedures together. The full algorithm is
provided in Algorithm 2.

16

Published as a conference paper at COLM 2025

Algorithm 2 Speculative Decoding (Chen et al., 2023a; Leviathan et al., 2023)
Require: draft model g, target model p, prefix xprfix, number of candidate tokens K.
fori=1toK do
Compute q; = q(- | Xprefixs Y1, - -+, Yi-1)-
Sample y; ~ g;.
end for
Compute in parallel p; = p(- | Xprefix, Y1, -- -, Yi-1) fori=1,..., K+ 1.
Sample rq,...,rg with r; ~ Unif[0,1],i =1,...,K.

Compute the number of accepted tokens n = min ({z —1|r>pi(yi)/qi(yi)} U K)

if n < K then
Sample ¥’ from the modified distribution Norm[(p,+1 — §n1)+]
else
Sample i’ from pg1
end if
Return Xprefix Y17+ - -+ Y]//

D Additional Experimental Results

D.1 Experimental Setups

The subsection continues Section 5.1.

Datasets. We adopt three datasets in our experiments: (1) Alpaca (Taori et al., 2023), an
instruction-following dataset generated using Self-Instruct (Wang et al., 2023) from OpenAl’s
text-davinci-003 model; (2) HumanEval (Chen et al., 2021), a test dataset containing
Python code synthesis problems; and (3) GSM8K (Cobbe et al., 2021), a dataset of high-
school math problems. We only use prompts of the datasets and do not use responses.

Dataset splits. We split the Alpaca dataset into train/dev/test splits, containing 40k, 10k,
2k prompts, respectively. We use train split to train the prediction heads and evaluate
them on the dev split. We benchmark the performance of SpecDec++ on the test split.
For HumanEval and GSMS8K, we only use them for benchmarking the out-of-distribution
(OOD) performance of SpecDec++. For each test dataset, we subsample 150 examples for
benchmarking the performances.

Mixing probability. As in Section 4.4, we mix the response tokens from the generations from
the target model and the predicted next-tokens from the draft model. We set an aggressive
value 7% = 15% so only 15% of the tokens are from the target model, as we find empirically
that the draft model and the target model often align well. Setting a smaller r increases the
training efficiency as more supervision signals are used.

Training Details. We train all the acceptance prediction heads on the train split of the Alpaca
dataset for 3 epochs with batch size 32. We use Adam optimizer and a cosine learning rate
schedule with the initial learning rate 5e — 5.

Hardware configuration. We use 2 NVIDIA A100 GPUs with 80G memory for the experi-
ments. We shard the 70B model across the two devices and communication overhead occurs
when inferring with llama-2-chat 70B. When doing speculative decoding, the 7B model is
loaded only on one device.

Inference setting. We set the maximal sequence length to be 512. We use temperature
T = 1 and adopt top-k sampling with k = 50. We do not integrate KV cache management
techniques such as PagedAttention (Kwon et al., 2023) or KV cache pre-allocation.

Experiments Compute Resources. The required compute resources are estimated to be
500 hours on 2 NVIDIA A100-80G GPUs for the training dataset generation, 400 hours on
1 NVIDIA A100-80G GPU for training 20 acceptance prediction heads (sweeping D from
0to 4 and Wrej among 1,3, 6, 12), 500 hours on 2 NVIDIA A100-80G GPUs for the whole

17

Published as a conference paper at COLM 2025

evaluation set. The full research project would require at least 2x the reported compute, as
there were preliminary experiments that are not in the paper.

D.2 Forward Time Analysis

We report the full results of the linear regression in Section 5.2 in Table 2. We also visualize
taraft and trarget across the three settings in Figure 4.

Table 2: The forward time of the draft model (llama-2-chat-7B) and the target model (llama-
2-chat-70B) under different settings and different datasets. We perform linear regression to
calculate the forward times.

Setting Dataset tdraft ttarget R?
Alpaca 0.0206 0.108 0.9994 & 0.9998
stand-alone HumanEval 0.0207 0.107 0.9994 & 0.9998
GSMSK 0.0206 0.109 0.9990 & 0.9992
average 0.0207 4+ 0.0001 0.108 + 0.001
Alpaca 0.0232 0.114 0.9983
SpecDec HumanEval 0.0246 0.111 0.9965
GSMSK 0.0229 0.113 0.9926
average 0.0236 4+ 0.0007 0.112 + 0.001
Alpaca 0.0240 0.110 0.9982
SpecDec-+ HumanEval 0.0229 0.111 0.9880
GSMSK 0.0225 0.113 0.9925
average 0.0231 £0.0006 0.111 &+ 0.001
0.114
%0_024 $ draft model + - i target model
: +
C0.022 0.110
:
w = 0.108
0.020 Stand-alone SpecDec SpecDec++ Stand-alone SpecDec SpecDec++

Figure 4: The forward time of the draft model (llama-2-chat-7B) and the target model
(llama-2-chat-70B) under different settings. For each setting, we perform linear regression to
calculate the forward times and then average them across different datasets. The additional
cost of the acceptance prediction head is negligible compared to the systematic error and
the random noise of the environment. Full results are in Table 2.

From Figure 4, we see that the additional cost of the acceptance prediction head is negligible.
Besides, in the standalone setting where only the draft model or the target model is used,
both tgra and target decrease, which indicates that speculative decoding induces minor
overhead in forward passes.

After getting tyrafe and target, We use Equation (5.1) to calculate the theoretical throughputs
(tokens per second), which match the noisier empirical throughputs well with relative error
< 6.2% for all prompts.

D.3 Ablation Studies.

We fix wacc = 1 and study how the hyperparameters wyj, D, h influence the final through-
puts (tokens per second). First, we calculate the (unweighted) binary KL divergence between
the ground-truth probability and the predicted probability, i.e.,

I-p
1—¢q
As KL(p||g) = BCE(p||q) — H(p), the binary KL divergence is a metric for how well the
acceptance prediction head fits the ground-truth probabilities. Next, for each acceptance

KL(p|lq) = PIOgg + (1 —p)log

18

Published as a conference paper at COLM 2025

prediction head, we report the best throughput by varying the stopping threshold # among
{0.1,0.3,0.5,0.7,0.9}, and the corresponding & that achieves the best performance. The
results are summarized in Table 3.

From the table, we see that increasing wyj increases the unweighted eval KL. Most of the
prediction heads trained with wrj = 1 perform the best with 1 = 0.3 under all three
datasets, and similarly, most prediction heads trained with Wrej = 3,6,12 perform the best
with i = 0.5,0.7,0.9, respectively. This synergy between wj = 1 and is expected, since
increasing wyej = 1 forces the acceptance prediction head to focus more on the cases where
the candidate token is rejected and thus mitigates the over-confidence issue. In return,
the stopping threshold & can be set to a higher value to adjust for the increased predicted
probability of existing one rejection.

We bold the throughputs that are above 99% of the maximum throughput of the same
dataset. We see that there are two sets of hyperparameters that consistently achieve 99% of
the maximum throughputs across the three datasets: wyej =6, D = 3, h = 0.7 and wyej = 6,
D=4h=07.

Table 3: The performance of the acceptance prediction heads with different loss weights wr;
and network depths D. The train/eval KL refers to the binary KL divergence between the
ground-truth probability and the predicted probability. For the three datasets, we report the
best throughput and the corresponding stopping threshold /. The throughputs are bolded
if they are above 99% of the maximum throughput of the same dataset.

Wrej Depth D train/KL eval/KL Alpaca HumanEval GSMS8K

1 0 0.422 0.412 1848 (h=0.3) 1991 (h=0.5) 20.32 (h =0.3)
1 1 0.409 0.390 1839 (h=0.3) 2029 (h=0.3) 20.44(h=0.3)
1 2 0.391 0.387 18.87 (h =0.3) 20.26 (h =0.3) 20.87 (h =0.3)
1 3 0.387 0.384 18.82 (h =0.3) 20.10(h =0.3) 20.86 (h = 0.3)
1 4 0.384 0.383 1857 (h=0.3) 2051 (h=0.3) 20.73(h=0.3)
3 0 0.515 0.491 1831 (h=05) 20.12(h=0.7) 20.36 (h =0.5)
3 1 0.479 0.461 18.88 (h = 0.5) 20.32(h=10.5) 20.70 (h=0.5)
3 2 0.475 0.458 18.60 (h =0.5) 20.17 (h =0.5) 20.61 (h =0.3)
3 3 0.462 0.454 18.76 (h = 0.5) 20.32(h =0.5) 20.88 (h =0.5)
3 4 0.465 0.451 18.88 (. = 0.5) 20.50 (h =0.7) 20.82 (h =0.5)
6 0 0.657 0.637 18,67 (h=0.7) 1990 (h=09) 20.24(h=0.7)
6 1 0.620 0.596 18.75 (h = 0.7) 20.09 (h =0.9) 20.86 (h =0.7)
6 2 0.607 0.589 18.65(h =0.7) 2017 (h=09) 20.70(h =0.7)
6 3 0.617 0.582 18.80 (h = 0.7) 2047 (h=10.7) 20.95(h =0.7)
6 4 0.603 0.575 18.87 (h =0.7) 20.61 (h=0.7) 20.77 (h =0.7)
12 0 0.922 0.871 1855 (h=09) 1993 (h=09) 20.62(h=0.9)
12 1 0.830 0.805 18.71 (h =0.9) 20.25(h=0.9) 20.73(h=0.9)
12 2 0.834 0.794 1858 (h =0.9) 2039 (h=09) 20.77 (h=0.7)
12 3 0.801 0.781 18.76 (h = 0.9) 2029 (h =0.9) 20.67 (h=0.9)
12 4 0.799 0.773 18.82 (h =0.9) 20.19(h=0.9) 20.65(h=0.9)

D.4 New Experiments on Gemma

We further validate SpecDec++ by repeating all the experiments on a new pair of models:
Gemma-1.1-2B-it (Team et al., 2024a) and Gemma-2-27B-it (Team et al., 2024b). The Pareto
frontiers of verification rates versus discard rates are plotted in Figure 5, and the empirical
speedup is reported in Table 4. Specifically, we see that

® SpecDec++ has better Pareto frontiers in terms of discard rates v.s. verification rates
tradeoff than the baseline SpecDec algorithm on the Alpaca, GSM8K, and HumanEval
datasets. The Pareto improvement indicates that SpecDec++ will have better speedups
than SpecDec under arbitrary hardware configurations.

19

Published as a conference paper at COLM 2025

* When deployed on 1 Nvidia A100-80G GPU, SpecDec++ achieves a relative 1.4%, 12.4%,
and 7.7% improvement over the baseline methods on the Alpaca, HumanEval, and
GSMSK datasets, respectively.

Alpaca

HumanEval

GSM8K

3.0

n
s

Lieg
=)

« SpecDec++
« SpecDec

N
=)

o

e

« SpecDect++
+ SpecDec

w

o

« SpecDect++
+ SpecDec

Discard Rate
[=)

Discard Rate
N

N\
. L

>

A
2

Discard Rate

o
3

Y

o o o
¥

T i e a———

0.4 0.25 0.30 0.35 0.40 0.45
Verification Rate

i&

0.30 035 040 045 050 055 0.60 0.2 0.3
Verification Rate Verification Rate

Figure 5: The average verification rates Niarget/ N and the average discard rates Ngiscarded / N
for SpecDec with different candidate lengths and SpecDec++ with different acceptance pre-
diction heads and stopping thresholds. SpecDec++ has better Pareto frontiers than SpecDec
on both the in-distribution dataset Alpaca and the two out-of-distribution datasets Hu-
manEval and GSM8K. The model pair is Gemma-1.1-2B-it/ Gemma-2-27B-it.

Table 4: The speedup achieved by SpecDec++ compared to the best speedup achieved by the
speculative decoding baseline on Alpaca, HumanEval, and GSM8K datasets. The model
pair is Gemma-1.1-2B-it/ Gemma-2-27B-it.

Dataset Alpaca HumanEval GSMS8SK
SpecDec++ 1.35x 2.07x 1.58x
SpecDec (baseline) 1.33x 1.84x 1.47x
relative improvement +1.4% +12.4% +7.7%

We observe fewer improvements on the Alpaca dataset and the GSM8K dataset compared
to the llama-2-7b-chat/llama-2-70b-chat model pair. This phenomenon may be caused by
weaker alignment between the draft Gemma model and the target Gemma model. On
Alpaca, the baseline SpecDec achieves 1.33x speedup for the Gemma model pair but it
achieves 1.90x speedup for the Llama model pair; on GSM8K, the baseline SpecDec achieves
1.47x speedup for the Gemma model pair but it achieves 2.07x speedup for the Llama model
pair. We see our chosen Gemma model pair performs worse than the Llama model pair,
although the model size ratios are roughly the same for the two model families (27B/2B v.s.
70B/7B).

We suspect that for the Gemma-1.1-2B-it and Gemma-2-27B-it model pair on the Alpaca
dataset, our acceptance prediction head ends up suggesting an approximately fixed draft
length, therefore only achieving a small improvement over the baseline. For settings like
math (GSM8K) and coding (HumankEval), the generation involves a mixture of tokens of
verbal reasoning and tokens of math calculation/code writing, which naturally require an
adaptive draft length.

In summary, although the specific numbers of the improvement vary across different model
pairs and different prompt settings, the proposed SpecDec++ indeed achieves an adequate
amount of improvements over the baseline. Backed by the theoretical results, our proposed
method is a principled extension of the SpecDec method, and adaptively determining the
draft length naturally includes the baseline (a fixed draft length) as a special case.

20

Published as a conference paper at COLM 2025

E Theoretical Analysis

In the section, we present the proof of Theorem 4.3.

For any time-homogeneous policy 71, we define a random variable C™ (s, a) as the total
cost-to-go from the current state s = (Xprefix, (Y1, - -, Y¢)) when taking action a.

M
CTE(SIQ) = ZC(Si/ ailsi+1)/ with 51 =501 =4,
i=1

where the next state s;;1 given (s;,4;) follows the stochastic transition of the MDP, a; =
n(s;) fori > 2, and M is a random variable of the number of total steps. We make the
assumption that 7t has an upper bound for the number of candidate tokens, so we exclude
the cases where the policy 7 potentially leads to an infinite loop and hence M < oco. Let
C™(s) = C™(s, mt(s)).

proof of Theorem 4.3. We analyze the difference C™ (s, continue) — C™ (s, stop) for three cases.
Case 1. & = {31 <i < k+1, such that Y; is rejected }.

Let x;reﬁx

rejected token among (Y3, ..., Y1 1) is replaced by the token from the modified distribution.
We know that

be the next prefix given by the speculative decoding algorithm, where the first

Cn(S, StOD) =c+to+ Cn((x;reﬁxf @))

If we choose to continue at the current step, we know that no matter how many additional
steps we continue to generate draft tokens, we will eventually discard them and get the

same new prefix x;reﬁx. Let NZ, 1 inue (8) be the total number of extra continue’s induced by

the policy 7 given the current state s and action continue. We have
CH(S/ Continue) =0 tcr- (l + g)ntinue(s)) +e+ Cn((x;refix’ @))
In summary, we have

C”™(s,continue) — C”(s, stop) > ¢1, conditioned on &.

Case 2. & = {V1 <i <k+1,Y;is accepted, Y is rejected }.

If we stop the current round of speculation, then all the candidate tokens (Y, ..., Yi.1) will
be accepted and an additional X, , is sampled from p(- | Xprefixs Y1, - - - Yii1)-

C™ (s, stop) = c2 + C™ (((Xprefixs Y1, -+, Y1, Xk42), D))

Again, if we choose to continue at the current step, as Y, is rejected, future generated
tokens beyond Yy, will also be discarded. After the verification, Yy, will be replaced by
Wicya ~ Norm[(p(|xprefiX/ Yi..., Yk+1) - ‘7(|xprefix1 Yi..., Yk+l))+}' Let Ng)ntinue (S) be the
total number of extra continue’s induced by the policy 7t given the current state s and action
continue. We have

Cn(sl Continue) =01 (1 + Nétontinue(s)) +co+ Cﬂ(((xpreﬁw Yi,..., Yk-‘rl/ Wk+2)/ ®>)

Denote A = Cﬂ(((xprefixr Y1, Yt Xk+2)/ Q)) - Cn(((xprefiw Y1, Yt WkJrZ)r @))
In summary, we have

C™(s,continue) — C™(s, stop) > ¢; — A1, conditioned on &,.

Case 3. & = {V1 <i < k+2,Y; is accepted }.

Similar to Case 2, if we stop the current round of speculation, then all the candidate
tokens (Yj,..., Y 1) will be accepted, and an additional Xy, is sampled from p(- |

Xprefixs Yi,..., Yk-i—l)'

C™(s,stop) = ¢z + C™ (((Xprefixs Y1, - -+, Y1, Xks2), D))-

21

Published as a conference paper at COLM 2025

If we choose to continue at the current step, there is no immediate cost at the current step
and we transit to (Xprefix, (Y1, -+, Yey1))-

C™ (s, continue) = C™((xprefix, (Y1, -+, Yk+1)))-
Denote A, = Cn(((xpreﬁxr Yy, Yer, Xk+2)/ @)) - Cﬂ((xpreﬁX/ (Yll sy Yk+1)))' We have

C™(s,continue) — C™(s, stop) > —cp — Ay, conditioned on &;.

Summary. At the current state, the values of (Y1,...,Y}) are known. We calculate the
conditional expectation of C” (s, continue) — C™ (s, stop) given the current observation. For
simplicity of notation, we do not explicitly write out the condition on (Y3, ..., Yi).

E[C™ (s, continue) — C™(s, stop)]
ZIP(El)Cl +]P(Ez)(cl —]E[Al | 52}) +1P(53)(—C2 -]E[Az | 53})
When the right-hand side of the above inequality is larger than zero, the expected total

cost of continue is larger than the expected cost of stop. Therefore, we obtain a sufficient
condition to stop at the current step.

To continue the analysis, we assume that we have an almost-sure upper bound A on
E[A; | &] and E[A; | &]:

]E[A] | 82] < Aas. and]E[Az | 53] < Aas..
A naive bound for A is the upper bound of C, e.g., max Niarget * ttarget + Max Nraft * tdraft-

We assume that both the maximum generated tokens and the numbers of candidate tokens
per round have an upper limit, so the upper bound is finite.

Then
P(&1)er +P(E2)(c1 — E[A1 | &]) +P(&3)(—c2 — E[A2 [&5]) 2 0
= 1[’(51)61 +]P(52)C1 >]P(gg)Cz -‘r]P(gg,)]E[Az ‘ 53] —I—]P(gz)]E[Al | 82]
< P(&)aa+P (&) > P(E)er +P(E3)A+P(E)A
<= P(&)er 2 (P(&) +P(&))cr + (P(E3) + P(&))A
o PE) > 28
Tcto+A

)

&

Finally, we note that

P(&) =P[31 <i <k+1, such that Y; is rejected | Y7, ..., Y¢]
>P[31 <i <k, such that Y] is rejected | Y1,..., Y],

which concludes the proof. O

22

	Introduction
	Related Work
	Inference Time Analysis of Speculative Decoding
	Background of Speculative Decoding
	Inference Time Decomposition of Speculative Decoding

	SpecDec++: Theory and Algorithm
	A Motivating Example: Oracle Performance of Greedy Speculative Decoding
	Speculative Decoding as Markov Decision Processes
	SpecDec++ Algorithm
	Training Dataset Construction and Learning Objective

	Experiments
	Experimental Setups
	Forward Time Analysis
	Performance

	Conclusion and Discussion
	Limitations
	Additional Related Work
	Discussion: Sub-optimality of Heuristic Methods

	Additional Background on Speculative Decoding Algorithm
	Additional Experimental Results
	Experimental Setups
	Forward Time Analysis
	Ablation Studies.
	New Experiments on Gemma

	Theoretical Analysis

