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Abstract

Scale has become a main ingredient in obtaining strong machine learning models.
As a result, understanding a model’s scaling properties is key to effectively
designing both the right training setup as well as future generations of architectures.
In this work, we argue that scale and training research has been needlessly complex
due to reliance on the cosine schedule, which prevents training across different
lengths for the same model size. We investigate the training behavior of a direct
alternative — constant learning rate and cooldowns — and find that it scales pre-
dictably and reliably similar to cosine. Additionally, we show that stochastic weight
averaging yields improved performance along the training trajectory, without ad-
ditional training costs, across different scales. Importantly, with these findings we
demonstrate that scaling experiments can be performed with significantly reduced
compute and GPU hours by utilizing fewer but reusable training runs. Our code
is available at https://github.com/epfml/schedules-and-scaling/.

1 Introduction
Training large language models is expensive — in time, energy, and compute. Moreover, it requires
a complex algorithmic recipe of model architecture and training data to obtain high-quality models.
Therefore, the workflow of training large models consists of iterating over small experiments to
verify success before extrapolating to larger scales. This is then either done by computing specialized
scaling laws (OpenAI, 2023; Bi et al., 2024; Hu et al., 2024; Team et al., 2023), relying on established
laws (Hoffmann et al., 2022; Anil et al., 2023) or training past compute-optimality to save cost at
inference (Touvron et al., 2023a,b).

Despite large advances across data and training recipes, one aspect of large language model (LLM)
pretraining has remained surprisingly prevalent: the cosine learning rate schedule (Loshchilov &
Hutter, 2016; Radford et al., 2018; Rae et al., 2021). Importantly, the Chinchilla project (Hoffmann
et al., 2022) showed that the cosine schedule achieves optimal loss only when the cycle length matches
the training duration, but underestimates the model performance during training. This means that
when performing experiments — e.g., for architectural changes or data mixtures — one must train
multiple models for different lengths, from scratch, to have reliable estimates of the quality of training
and the scaling behavior. This is much more expensive than training a suite of models just once. Even
more, it is restrictive for the final model for which the training length must be decided in advance.

In this work, our goal is to revisit and question the necessity of the cosine learning rate schedule for
large model training. Through a multitude of training runs, we demonstrate how a simple alternative
of performing a cooldown after a constant learning rate — which was already suggested in the
literature (Zhai et al., 2022) and recently used by released models (Hu et al., 2024; Shen et al., 2024)
— matches the performance of cosine. We expand on this and provide and analyze different recipes
for the decay form and length, which scale as reliable as cosine, outperforming it for sufficiently long
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optimality

Figure 1: Revisiting cosine optimality for language models. We revisit the observation from Chin-
chilla (Hoffmann et al., 2022) that in order to achieve the best model after a certain training length (to-
kens), the cosine schedule must match the total duration of training. This comes at the cost of neither
being able to stop before or going beyond the cycle — an issue we show how to alleviate in Section 3.

cooldowns. Going beyond, we investigate stochastic weight averaging (Izmailov et al., 2018) and
a schedule-free optimizer (Defazio et al., 2024), which give strong (but not optimal) performance at
any point during training and can act as a replacement for the learning rate decay, if the performance
gap is acceptable and avoiding separate cooldowns is preferred.

These findings suggest that research on training recipes and scaling laws has been needlessly complex
due to the need to retrain models from scratch. We demonstrate this empirically by performing a
small-scale experiment of scaling laws which only uses a fraction of the compute and GPU hours
that were previously needed. Following, we discuss that this makes scaling research more accessible
and enables more frequent computation of laws for data mixtures (Bi et al., 2024; Goyal et al., 2024;
Aghajanyan et al., 2023) or novel architectures (Gu & Dao, 2023; De et al., 2024).

2 Background: Cosine Learning Rate Schedule for LLMs

Revisiting the optimality of the cosine schedule. We start our argument by revisiting the use of
the cosine schedule in large language model (LLM) training. For any machine learning model, the
learning rate value (LR) and schedule both are crucial choices for training. From optimization theory,
our understanding is that a slow annealing of the learning rate is essential to find good minima in
the loss landscape particularly for deep networks, whereas higher values help exploration (Smith
et al., 2017; Loshchilov & Hutter, 2016).

In the context of LLMs, the most commonly used cosine strategy presents a particular trade-off
by which the LR reaches its maximum early after the warm-up stage and then gradually decreases,
typically to 10% of the maximum LR (see Figure 1, right). Since the seminal works of GPT (Radford
et al., 2018, 2019; Brown et al., 2020) and large models like Gopher (Rae et al., 2021), PaLM2 (Anil
et al., 2023) or LLaMA (Touvron et al., 2023a,b), cosine has stayed the de-facto standard schedule.

Experimental setup. Our first goal is to understand the importance of the length of the schedule
for performance of the model. To this end, we implement the common decoder-only transformer
(Vaswani et al., 2017) identical to the LLaMa (Touvron et al., 2023a,b) or Noam architecture
(Ormazabal et al., 2024). Throughout this paper, we use the AdamW optimizer with weight decay
(Kingma & Ba, 2014; Loshchilov & Hutter, 2017) with common LLM training parameters. We
train on a subset of SlimPajama (Soboleva et al., 2023) with 6B tokens1, a cleaned and deduplicated
corpus for LLM pretraining, which we split into train and validation sequences and report validation
loss (perplexity). We provide all the details in Appendix A.1.

The pitfalls of cosine. In the results of Figure 1, we see that the key parameter for the cosine schedule
is the length of training: At specific step counts, the best perplexity is always achieved by the cosine
schedule that matches the length. This is the main observation of Hoffmann et al. (2022) — in order
to achieve the best model for a specific token count, the training duration must be known in advance
and match the cosine length. However, this brings particular issues. First, cosine is suboptimal during
training and underestimates the model’s performance for the same token count. At the same time,
cosine strongly complicates continuation of training. For example, one could easily be mistaken

1https://huggingface.co/datasets/DKYoon/SlimPajama-6B
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to extrapolate a loss curve of a cosine schedule beyond the end of the cycle. The improvement in loss
precisely happens because of the LR decay; afterwards, the final learning rate will generally be too
low to continue making large progress. In contrast, rewarming leads to spikes of which the training
only slowly recovers, similarly reported in the continual learning literature (Ibrahim et al., 2024).

3 A Different Route: Constant Learning Rate with Cooldown
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Figure 2: Illustration of schedules. Cosine
(red) follows a slow decrease in learning rate,
typically to 10% of the maximum for LLMs.
The alternative is characterized by an aggres-
sive decrease in learning rate, e.g., via a linear
(blue) or square root (yellow) cooldown.

Why does the cosine schedule with a single cycle
work well for LLM training? Arguably, it provides a
good trade-off between a high learning rate and cool-
ing down the model sufficiently, which is expanded
proportionally to the training steps.

The alternative — constant + cooldown. The trade-
off of cosine can also be achieved by a different sched-
ule. Here, the learning rate (LR) is kept constant
for the majority of the training and only decreases
in a short final phase, known as the cooldown (or
decay/annealing phase). This schedule has previ-
ously been referred to as a trapezoidal (Zhai et al.,
2022), and later as the warmup-stable-decay schedule
(WSD) (Hu et al., 2024). To avoid overloading of
terms (e.g., weight decay), we refer to this approach
as constant LR + cooldown.

The cooldown phase typically has the LR go to zero, mirroring the warmup phase, which gives rise
to an overall trapezoidal shape (see Figure 2). Formally, we can define it as

η(n) =


n

Nwarmup
· ηmax if n < Nwarmup

ηmax if Nwarmup < n ≤ N −Ndecay

f(n,N,Ndecay) · ηmax if n > N −Ndecay

(1)

with the peak learning rate ηmax, the total steps N with warmup and cooldown steps Nwarmup and
Ndecay, and a monotonically decreasing function f(n,N,Ndecay) that handles the cooldown.

3.1 The Advantages
The main advantage of the constant schedule is that it does not require one to specify the number
of training steps in advance. This is particularly convenient for large runs, as the cooldown can be
initiated at any time to observe model behavior and decide whether to stop. We want to highlight the
following in more detail.

Continual learning. The constant + cooldown schedule allows for continual learning by default.
Here, the natural approach is to use checkpoints before the cooldown to continue training with a
high LR; this avoids loss spikes and brittle training when rewarming the learning rate (cf. Figure
1 with cosine). Moreover, rewarming has been reported to hurt performance and introduce forgetting
compared to single annealing training (Ibrahim et al., 2024), though careful strategies can alleviate
such issues. It remains an interesting question if a single cooldown schedule is absolutely optimal
given a total compute budget for LLM training.

Data mixtures. During the cooling phase, the data mixture can be changed (Hu et al., 2024) as
a form of finetuning; beyond aiming for specific downstream tasks, this allows one to assess the
quality of specific mixes, e.g., as recently done for Llama 3 (Dubey et al., 2024). Although we focus
on the same mixture, understanding the curriculum aspect of the separate phases is explored in the
concurrent work of Blakeney et al. (2024) and remains open for further research.

Scaling studies. Since a cooldown can also be initiated retrospectively from a checkpoint, the
schedule allows to see the same model at different scales of compute. This enables much cheaper
scaling studies than commonly done; we show this in depth in Section 5.

3.2 Experimental Comparison
We follow our experimental setup from the previous section (details in A.1) and train a 210M
parameter model on SlimPajama with constant LR and the cooldown schedule defined in (1). That is,
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Figure 3: The difference in loss curves of cosine vs. constant learning rate with cooldown. The
cooldown phase initiates a sharp decrease in loss (left) to match cosine; the training perplexity follows
the same behavior (Fig. 15). We find the LR sensitivity (right) to be similar for both schedules, albeit
less for cooldown, where the optimum lies slightly below at half of the optimal cosine maximum LR.
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Figure 4: A different cooldown schedule can improve performance. Perhaps surprisingly, we
find that a different decay phase in the functional form of (1-sqrt) can consistently outperform the
standard linear decay, where both are better than the chosen (untuned) cosine for long lengths.

we compare the same length of warmup and training, but replace the cosine decay after warmup with
a constant LR and a cooldown for 20% of steps linearly going to zero. We additionally sweep the
maximum learning rate for both approaches. In the results shown in Figure 3, perhaps suprisingly, we
observe an almost perfect match between the performance of the best cosine and cooldown schedule
even for different training durations, all while exhibiting slightly less sensitivity to variations in the LR.

Different cooldown schedules. We investigate various functions describing the cooldown shape,
including cosine, square, and square root shapes in Appendix B.1. We identify a new function
(1-sqrt) that outperforms the linear cooldown. This improvement is maintained in a smaller number
of decay steps, different learning rates, and various timestamps (see Appendix B.1). In Figure 4,
we train a model for 200K steps (approximately 20B tokens), applying cooldown every 20K steps
for 20%. The results indicate that the longer the training duration, the more linear cooldown is
outperformed by the (1-sqrt) cooldown, which we define as:

f(n,N,Ndecay) =
(
1−

√
n−(N−Ndecay)

Ndecay

)
(1-sqrt)

Takeaway 1: The constant LR + cooldown schedule offers significant convenience by not requiring
the number of training steps to be specified in advance, and provides similar performance compared
to a well tuned cosine schedule.

Takeaway 2: We find a cooldown form (1-sqrt) that consistently performs better than linear decay.

How long do you need to cooldown? To effectively utilize the schedule, it is essential to determine
the optimal number of decay steps. Our study of the relative number of cooldown steps, as shown
in Fig. 5, reveals that the benefits of extended cooldown periods plateau at around 20%, which we
select for the remaining experiments. Additionally, in Fig. 6 we demonstrate that using only 5%
decay with the (1-sqrt) cooldown can nearly match the performance of the cosine schedule on a 20B
token run (much beyond Chinchilla optimal). This is practically important, as we ideally keep the
cooldown as short as possible but get strong performance.
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Figure 5: Longer cooldown helps to achieve lower loss. We investigate the effect of the cooldown
length as a fraction of the total steps for a 124M model. We find that the cooldown surpasses cosine
between 10-20% of steps (left), but largely stops improving when done over a majority of training.
This also holds when sweeping the LR (right). Additional ablations are provided in Appendix B.1.
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Figure 6: A long training run suggests that a small number of cooldown steps can match cosine
for long training. From Fig. 5 and Fig. 20, we find that the required duration of cooldown to match
the cosine loss decreases with longer training; we validate with a long training run (200k steps, same
LRs), and find that just 10k cooldown steps almost perfectly match cosine in performance.

Takeaway 3: The constant learning rate with a short cooldown (< 20% of total training steps) can
achieve the same final loss as cosine, and only outperforms for a longer fraction of cooldown steps.
For long training runs, our results suggest that the cooldown length can be less than 20% to match
cosine if it is enough in absolute steps — see Figure 6.

What happens during the cooldown? It is remarkable how the sudden drop in loss is consistent for
both train and validation loss and aligns closely with the decay in LR (Figure 15). Hu et al. (2024)
investigate the cooldown phase and find that the first-order directional derivative diminishes with
each step, whereas the curvature of the loss function increases; they attribute this to proximity to
a local optimum.

We expand upon these results and aim to understand the optimization landscape around the trajectory
of the cooldown. For that, we evaluate the loss along the straight line trajectory when moving
between a checkpoint before and after cooldown, i.e., a linear interpolation of the weights of the two
models. Perhaps surprisingly, we find that the smooth drop in loss also occurs for this interpolation,
as visualized in Figure 7. This aligns with the findings of Hu et al. (2024). These results suggest
that upon decaying the LR, the model immediately descends into a connected minimum of the loss.

Takeaway 4: The cooldown phase is a smooth transition to a basin in the loss landscape.

Decaying cosine to less than 10%. Throughout our experiments, we follow the common heuristic
of setting the final LR of cosine to 10% of the maximum. We also provide experiments in which
we ablate annealing to zero (or a very small value) in Fig. 22 in Appendix B.1. We find that, perhaps
unsurprisingly, the influence of the final LR is non-negligible: decaying to lower values improves
performance to match the best (1-sqrt) cooldown. However, when evaluating on downstream
benchmarks (see next Section 3.3), we see that annealing to zero can hurt metrics; we posit this
comes from too early saturation. Combining these two arguments implies that the maximum and
final LR should be set (and ideally swept over) independently.
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Figure 7: The smooth drop in loss also occurs when moving linearly in weight space between
checkpoints before and after the cooldown. This suggests that in the cooldown phase, the model
directly moves within a connected basin in the loss landscape.
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Figure 8: The performances of both schedules also match for downstream tasks. We run a realistic
setting of a 1B model trained for 100B tokens of FineWeb and establish matching performance of both
schedules for common LLM benchmarks. Interestingly, there is a similar boost in performance with
the cooldown. Detailed numbers over the course of training and 460B token runs are in Appx. B.5.

3.3 Scaling Up: 1B and 8B Models

We expand our ablations to realistic scenarios of 1B and 8B parameter models, with an additional focus
on model evaluations. Our goal in this section is therefore twofold: first, we validate the dynamics of
the schedule at practical scale; second, we establish the connection between the pure loss values and
downstream benchmarks. Although tasks often scale reliably with loss (Du et al., 2024; Gadre et al.,
2024), this connection is crucial, as downstream abilities are ultimately the main metric of interest.

1B with downstream evals. We train a 1B parameter model with cosine and a cooldown sched-
ule with the high-quality FineWeb corpus (Penedo et al., 2024). Following DeepSeek scaling
laws (Bi et al., 2024), we set an approximately optimal batch size and LR of 1.8M and 8e-4 for
100B and 460B token runs; evaluation is done throughout training on the most common bench-
marks like MMLU (Hendrycks et al., 2021). The setup is described in detail in Appx. A.2.

0 2 4 6 8 10 12

Tokens (B)

15

20

25

30

T
ra

in
in

g
 P

er
p
le

x
it
y

8B Model Run

Cosine

1-Sqrt (20%)

Figure 9: Results at 8B scale. We validate
the behavior with a much larger model
(architecture of Llama 3) for a single short
run (12B tokens of FineWeb-Edu), where the
cooldown matches the cosine schedule again.

With the aggregated results in Fig. 8, we find a clear
agreement of the downstream performance for both
schedules. Interestingly, there is an uptick for some
evaluations, similar to the drop in loss, with the start
of the LR cooldown; see Fig. 29. However, not all
benchmarks follow this trend, which requires further
research. The results for the much longer 460B
run, where performance also matches, and detailed
benchmark numbers are provided in Appx. B.5.

8B. While a full 8B training run is beyond our limits,
we provide a first investigation in Fig. 9: In line with
all our experiments, we see matching loss values
and, promisingly, no instability at such a large scale,
though the two runs are clearly short (20k steps).
Moreover, instabilities arising from a high LR for
longer training can be alleviated by methods like QK norm (Wortsman et al., 2024).
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Figure 10: SWA improves generalization and simulates decayed learning rates. Using SWA for
the constant LR phase (left) strongly boosts the loss, but a gap to the cooldown remains. SWA also
improves the generalization of a cosine schedule (right), where the intermediate checkpoints of SWA
largely overlap with optimal loss trajectory of shorter cosine runs.

4 Do We Even Need to Cooldown?

In Section 3, we show that a constant LR with a short cooldown phase can replace the cosine decay.
Ideally, however, we would not need a decay at all, but aim to obtain an optimal model at any point in
training, even when prolonged. This would save even more computational resources and time. In this
section, we investigate two potential approaches: weight averaging and a schedule-free optimizer.

4.1 Stochastic Weight Averaging (SWA)

Motivation. While slow annealing of the learning rate can be essential to find good minima (Smith
et al., 2017; Loshchilov & Hutter, 2016), Sandler et al. (2023) show theoretical and empirical
equivalence between stochastic weight averaging (SWA) and cooldowns in training vision models.
There, intuitively and naturally averaging reduces noise and thus improves generalization (Wortsman
et al., 2022). Motivated by these results, we aim to answer the same question in LLM training: Can
weight averaging replace the cooldown phase?

Method. We opt for a form of SWA (Izmailov et al., 2018) that splits the training in fixed windows
and averages within a window, allowing us to keep the average as a single additional copy of the
model parameters. In our experiments, we set the window to h = 500 steps and save the window
averages as checkpoints every h steps, which allows ad hoc evaluation of longer windows to see
potential improvements akin to latest weight averaging (LAWA, Kaddour, 2022; Sanyal et al., 2023).
For all our experiments, we find that windows below or at 2500 steps (256M tokens) are optimal.
We also experimented with an exponential moving average (EMA), which performed worse than
SWA, and therefore we do not report EMA.
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Figure 11: The cooldown schedule outper-
forms SFO even when tuning momentum
parameters. We find that SFO is sensitive to
the choice of (β1, β2) momentum parameters.
It gives strong performance for well-tuned
momentum, but falls short of cooldown.

Experimental results. We evaluate SWA with the
same 210M model and show the results in Fig. 10 for
both a constant LR (left) and cosine (right). Notably,
we find a significant performance boost for SWA
on top of a constant LR. Yet, it does not reach the
loss values of explicit cooldowns. On the other hand,
in line with previous work (Kaddour, 2022; Sanyal
et al., 2023; Andriushchenko et al., 2023), we see a
similar boost for SWA on top of cosine. This suggests
that, regardless of schedule, SWA is a compelling
approach to achieving strong models along the data-
scale axis that can serve as a replacement for models
trained with fewer steps, if the performance gap is ac-
ceptable and one wishes to avoid cooldowns. This is
particularly advantageous as it can arguably be done
for free on top of existing well-tuned optimizers.

Takeaway 5: Irrespective of the schedule and without additional overhead, SWA improves
performance along the training trajectory and provides better models during training. While it does
not match the cooldown, it reduces the gap without the need for a separate decay phase.
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4.2 Schedule-Free Optimizer (SFO)
Very recently, Defazio et al. (2024) introduced a schedule-free optimizer (SFO) which uses an
interpolation between standard averaging and Polyak-Ruppert averaging, inspired by Nesterov’s
accelerated method (Nesterov, 1983). As such, the optimizer does not require a decreasing learning
rate schedule, making it relevant for continual training. We seek to investigate if it can outperform
the presented cooldown schedule and provide a comparison in the same LLM setting.

Results. We compare the results of a long 210M model run with cooldown vs. SFO with AdamW in
Figure 11. Although the optimizer does not require a learning rate schedule, the authors point out that
training is more sensitive to the choice of the momentum parameters (β1, β2) (which are not identical
to the momentum in Adam). They note that the optimal parameters may depend on the length of
training, making it not fully schedule-free. We observe this sensitivity in our experiments, where
the choice of (0.9, 0.95) performs significantly worse and even increases the loss toward the end of
training. For (β1 = 0.95, β2 = 0.99), SFO performs remarkably well. Nevertheless, both settings
are matched or outperformed by the cooldown schedule, in particular when comparing the same
momentum configuration. We did not perform any further hyperparameter tuning for either method.

5 The Implications for Scaling Law Research
Our investigation shows the efficacy of a constant LR for flexible training of LLMs by introducing a
short cooldown phase at any point during training. In this section, we go beyond a single model, and
focus on the reliability of the alternative LR schedule compared to cosine across model sizes and
scales. Ultimately, we discuss the importance for the future of scaling law experiments.

Importance of scaling laws. At their core, scaling laws aim to establish a functional form of a
model’s performance, commonly modelled as the loss L, as a function of the parameters N or training
tokens D; for LLMs, this is usually expressed as the power law

L(N,D) =
A

Nα
+

B

Dβ
+ E ,

where {A,α,B, β,E} are variables to be estimated (Kaplan et al., 2020). Such scaling laws serve a
multitude of critical purposes — from optimally spending a fixed amount of compute (FLOPs) for
achieving the lowest loss, to trading off data-sources of different quality (Bi et al., 2024; Goyal et al.,
2024) or modalities (Aghajanyan et al., 2023), to comparing the efficiency of different architectures
(Gu & Dao, 2023; De et al., 2024).

Crucially, Hoffmann et al. (2022) demonstrated that it is necessary to vary the number of training
tokens for a fixed family of models and fully decay the LR (see also Kaddour et al., 2023). At the time,
their results suggested that LLMs were over-sized, leading to a substantial increase in data collection
and training for much longer, beyond the Chinchilla optimal point (N,D) (Touvron et al., 2023a,b).

Why do the presented results matter for scaling? Following the results of Chinchilla, scaling laws
require a family of models each trained from scratch with a cosine schedule that is fit to different
training lengths (cf. Section 2). In contrast, the cooldown schedule as well as weight averaging allow
a much cheaper alternative in two phases: first, a model sweep with a single sufficiently long training
run for each model size in the family; then, using the model checkpoints to perform a cooldown or
averaging. This reduces scaling law experiments to only the model scaling axis, effectively dividing
the number of necessary training runs by one order of magnitude. At the same time, it allows for
flexible continual training beyond any predetermined number of steps.

Experimental setup. We mimic a small-scale experimental setup for scaling laws: We train a range
of model sizes (33M-360M) across different token scales (0.3B-10B) on the same SlimPajama 6B
dataset. For each model, we choose exactly three token counts (around the Chinchilla optimal ratio
of D/N=20) in increments of 10, 20 and 30 tokens per parameter. With the cosine schedule, each
model is trained from scratch three times. In contrast, for averaging, we train each model just once
for the longest cycle and then use the averages at the same token count as cosine; for cooldown, we
similarly take checkpoints along the constant LR trajectory and perform three annealing periods to
match the token counts. We adjust the LR to be higher for smaller models. In line with the findings
of Sect. 3 and for a fair comparison, we set the constant LR to be half the maximum LR for cosine
and perform 20% (linear) cooldown steps. More details are given in Appendix A.1.

Results. We show the validation loss envelopes as a function of the training FLOPs in Fig. 12 (left)
and compare each obtained model (i.e., same parameter & tokens) with cosine and its alternatives
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Figure 13: Scaling laws for a fraction of the cost. The reliable behavior of both the cooldown
schedule and SWA allows scaling experiments with a drastic reduce in both compute and GPU hours;
in both our experiments (left) and the original Chinchilla (right) a factor of 1

2 or less. The more
training runs are performed per model size (e.g. 4 for Chinchilla), the larger the difference becomes.

(right). We find that the cooldown learning rate schedule scales reliably, much like cosine and SWA,
to achieve optimal losses with the recipe we establish in previous sections. This is particularly visible
in Fig. 12 (right), where each model’s performance lies almost perfectly on the diagonal, which
signals that cosine (y-axis) and cooldown (x-axis) reach the same loss after the same amount of
tokens. A similar result is visible for SWA, though the reciprocal (y-offset) is negative, which agrees
with our findings from Sect. 4.1 that the averaging does not fully close the gap to a LR cooldown.

Compute savings. Crucially, the alternatives enable scaling laws for just a fraction of the cost. In
Fig. 13a, we report FLOPs and GPU hours (real wall-clock time) for all model runs for both methods.
They substantially reduce both compute and GPU hours. In our experiments, where we space the
runs to use token ratios of 10, 20 and 30, it saves half the time and FLOPs, enabling scaling laws for
only a fraction of the previous cost. We report the detailed savings for all models in Appendix B.2.

Estimating savings for Chinchilla. We take our analysis further and estimate how much cheaper
the Chinchilla model suite would have been if performed with 10% cooldowns after a single run
for each model size using the model configurations as reported in Table A9 (Hoffmann et al., 2022).
Since the authors do not report exact training configurations, we consider a sequence length of 1024,
a batch size of 0.5M tokens and token ratios M = D/N ∈ {10, 15, 20, 25} for each model. With
this, we arrive at roughly 5.59 × 1023 total FLOPs originally vs. 2.36 × 1023 (Figure 13b). This
means that less than half the compute could have been used.

Takeaway 6: Scaling experiments can be done with significantly reduced compute and GPU hours
by utilizing fewer but reusable training runs with a constant learning rate and ad-hoc cooldowns.

Additional results. We plot the training curves of all models in Appx. B.3. In addition, we show the
same findings with experiments on OpenWebText2 in Appx. B.4.

6 Limitations
We conduct our experiments on models of up to 8B parameters, with long training runs of a 1B
model on multiple hundred tokens. The trends we find are consistent across all scales, but training
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behavior can be more brittle at modern scales and extremely long training (Wei et al., 2022; Tay
et al., 2021). However, instabilities arising from a high learning rate for a large part of training can
be alleviated (Wortsman et al., 2024).

7 Related work
Cosine Schedules and Alternatives for Transformers. The cosine decay was originally introduced
by Loshchilov & Hutter (2016) for cyclic schedules in vision tasks, where it is common practice to
have stepwise or cyclic LRs to escape bad minima when training multiple epochs (Smith et al., 2017).
For language models where data is more vast, the cosine schedule with a single cycle is currently the
de-facto standard for training, with few exceptions of T5 (Raffel et al., 2020) and PaLM1 (Chowdhery
et al., 2023) that used a form of inverse square root. In line with our work, recently released models opt
for alternatives such as stepwise schedules (Bi et al., 2024) or the presented constant + cooldown (Shen
et al., 2024; Hu et al., 2024). These alternatives were previously also explored for vision transformers
by Zhai et al. (2022), who find reciprocal square-root with cooldown to perform best, and in the
context of continual learning (Ibrahim et al., 2024; Gupta et al., 2023). Defazio et al. (2023) investigate
the gap between theory and practice of LR schedules and suggest that a linear decay is optimal, also
for LLM training. We similarly find that a long linear decay can slightly outperform cosine.

Weight Averaging. Weight averaging over past iterates (Polyak & Juditsky, 1992) has long been
known to be beneficial for convergence. Izmailov et al. (2018) introduce stochastic weight averaging
for better generalization in deep learning models. Similarly, the exponential moving average is
commonly used in vision (Morales-Brotons et al., 2024). Importantly, Sandler et al. (2023) show
the equivalence of WA with decaying learning rate schedules. In the context of LLM training, close
to our work is Sanyal et al. (2023) which showed that a form of latest averaging (Kaddour, 2022) can
be used to improve the performance of models early in training. However, they did not investigate
the relation of weight averaging to compute optimality and its implications for scaling experiments.

Scaling Law Experiments for Neural Language Models. Kaplan et al. (2020) were the first to estab-
lish scaling laws for language models. Important to our work, Hoffmann et al. (2022) revise these find-
ings and demonstrate specific methods to establish scaling laws, notably training a family of models
for different cosine lengths. The subsequent models like LLama1/2 (Touvron et al., 2023a,b) further
improve performance of smaller models by training beyond the Chinchilla optimal point, motivated
by lower inference costs (Gadre et al., 2024; De Vries, 2023; Sardana & Frankle, 2023). Recent works
(Muennighoff et al., 2023; Bi et al., 2024; Goyal et al., 2024) highlight how data repetition and quality
affect the scaling behavior, which suggests that scaling laws should be updated more frequently. How-
ever, these works do not consider efficient experiments for scaling laws, which is the focus of our work.

In concurrent work, Porian et al. (2024) and Pearce & Song (2024) find that the discrepancy between
the Kaplan and Chinchilla scaling laws is not attributed to the learning rate decay, but they establish
that the optimal token/parameter ratio can be obtained with a constant learning rate without any
cooldown; however, the actual performance is then suboptimal, and a cooldown schedule as suggested
in our work is needed to properly estimate model performance, in particular for downstream tasks.

8 Conclusion
We have demonstrated the reliability of an alternative learning rate schedule to replace cosine for
LLM training, which uses a constant rate with a cooldown phase. Across a multitude of experiments,
we analyze different recipes for the decay form and length. Importantly, we do not claim to have
established the best learning rate schedule — instead, we investigate and demonstrate how an arguably
simple recipe can match the performance of the current best practice of cosine, and discuss how it
provides compelling advantages such as continual training and a strong reduction in costs for scaling
law research. In addition, we find that SWA can give reliable (strong, but not optimal) estimates of
models during runs, without additional overhead or training.

We believe the results are of great importance to the present and future of LLM training: The
presented methods facilitate research for the current post-Chinchilla era, where models are trained
much beyond compute-optimal, by allowing more flexibility to continue training whenever needed.
At the same time, recent results that suggest data dependency in scaling (Bi et al., 2024; Goyal et al.,
2024; Aghajanyan et al., 2023; Pandey, 2024) imply the need to frequently update scaling laws, which
is economically more feasible with reduced costs. We therefore hope that our work will make scaling
research more accessible to researchers and practitioners alike.
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A Experimental Details

A.1 Overview

Architecture and training parameters. We implement the most commonly used decoder-only
architecture with SwiGLU activations (Shazeer, 2020), RoPE embeddings (Su et al., 2024), RM-
SNorm (Zhang & Sennrich, 2019) and alternating attention and MLP blocks. Unless otherwise noted,
we follow standard practices in LLM training and use the AdamW optimizer with beta parameters
(β1, β2) = (0.9, 0.95), decoupled weight decay of 0.1 (Kingma & Ba, 2014; Loshchilov & Hutter,
2017) and gradient clipping with 1.0. For warmup steps, we use a short warmup of 300 steps for
the majority of runs and 1000− 3000 for longer runs (above 100k total steps). The cosine schedule
decays the learning rate to 10% of the maximum learning rate. For most of our experiments, we use a
batch size of 200, i.e., roughly 0.1M tokens for a sequence length of 512. The vocabulary is based on
the GPT-2 tokenizer (Radford et al., 2019) and contains 50304 tokens.

Dataset and evaluation. Our main body focuses on results using SlimPajama (Soboleva et al., 2023),
a cleaned and deduplicated corpus that includes webcrawl, code, papers and other sources, which is
commonly used for pretraining LLMs. We use a subset of the full corpus that comprises roughly 6B
tokens and randomly sample a validation set of roughly 3M tokens. During training, we evaluate the
models with a fixed set of 32 batches of sequence length 512 (the same context length as training) to
establish validation loss curves. At the end of training, we compute the full validation set perplexity.
We perform further experiments that verify our main findings with OpenWebText2 (Gao et al., 2020)
in Appx. B.4.

Implementation and infrastructure. Our code is based on an extension of NanoGPT3 and uses
PyTorch (Paszke et al., 2017) as well as FlashAttention (Dao et al., 2022). We incorporate bfloat16
for memory and throughput, trained with mixed precision float32 parameters and bfloat16 activations
(Micikevicius et al., 2017). All experiments (aside from 1B and 8B, see A.2) were performed using a
cluster of A100 GPUs (both 40GB/80GB RAM) with 2 data-parallel (i.e. 2 GPUs per run). Some
selected runs used a single node of 8 H100s. We estimate that the full cost of all experiments for this
project (including prototyping) to amount to roughly 2500-3000 GPU hours.

Model configurations. We provide an overview of the model sizes and configurations in Table 1
and the parameters for training and length in Table 2. All models for the scaling law experiments are
trained with 300 warmup steps and a sequence length of 512.

Model Size d_model n_layers ffw_size kv_size n_heads
33M 384 8 1024 64 6
53M 512 8 1536 64 8
60M 512 10 1536 64 8
93M 640 12 1792 64 10

124M 768 12 2048 64 12
151M 768 16 2048 64 12
210M 768 24 2048 64 12
360M 1024 24 2816 64 16

Table 1: Model configurations for scaling law experiments. We provide an overview of the model
sizes and hyperparameters for the different models in the scaling experiments.

A.2 Setup for the 1B and 8B Runs

Setup. In order to efficiently scale to larger models, we use the nanotron library 4 that enables all
forms of training parallelism while being performant and flexible. The configuration and hyperpa-
rameters of the two models are described in Table 3. Similarly to our other experiments, we use
the most common setup of the AdamW optimizer with (β1, β2) = (0.9, 0.95), weight decay of 0.1,

3https://github.com/karpathy/nanoGPT
4https://github.com/huggingface/nanotron
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and gradient clipping with 1.0. For the 1B model, we use a custom BPE tokenizer5 (that is very
similar to GPT-2) because the FineWeb dataset (Penedo et al., 2024) was already pre-tokenized on
our cluster. Each run for the 1B model was performed on 4xH100s GPUs. For the 8B model, we
reuse the original Llama3 tokenizer (Dubey et al., 2024) for the similar reason that FineWeb-Edu was
pre-tokenized on our cluster; here, we use 12 nodes, each composed of 4xGH200 GPUs. The model
is split within one node with tensor parallel (TP) set to 4.

Evaluation. For evaluation, we use the lighteval library (Fourrier et al., 2023) that works directly
with nanotron checkpoints. We run the most common LLM benchmarks including MMLU (Hendrycks
et al., 2021), ARC (Clark et al., 2018), OpenBookQA (Mihaylov et al., 2018), PIQA (Bisk et al.,
2020), HellaSwag (Zellers et al., 2019), CommonSenseQA (Talmor et al., 2019), SIQA (Sap et al.,
2019), Winogrande (Sakaguchi et al., 2021), truncating large benchmarks to 1000 samples so that we
could efficiently evaluate over the course of training. This is a custom setup that is equal to that used
for FineWeb ablations; the setup to reproduce the eval is described here6 7. We report the accuracy
normalized by sequence length (acc_norm).

Model LR (Cos/Const) BS Steps Tokens Token/Params Ratio

33M (2e-3, 1e-3) 0.1M [3k, 7k, 10k] [0.3B, 0.7B, 1.0B] [9.2, 21.4, 30.6]
53M (2e-3, 1e-3) 0.1M [3.7K, 7.5K, 11.2K] [0.4B, 0.8B, 1.2B] [7.2, 14.5, 21.7]
60M (2e-3, 1e-3) 0.1M [7.5K, 12.5K, 17.5K] [0.8B, 1.3B, 1.8B] [12.8, 21.4, 30.0]
93M (2e-3, 1e-3) 0.1M [10K, 17.5K, 25K] [1.0B, 1.8B, 2.6B] [11.0, 19.2, 27.5]

124M (1e-3, 5e-4) 0.1M [15K, 25K, 35K] [1.5B, 2.6B, 3.6B] [12.4, 20.7, 29.0]
151M (1e-3, 5e-4) 0.1M [25K, 37.5K, 50K] [2.6B, 3.8B, 5.1B] [16.9, 25.3, 33.7]
210M (1e-3, 5e-4) 0.1M [37.5K, 50K, 62.5K] [3.8B, 5.1B, 6.4B] [18.4, 24.6, 30.7]
360M (1e-3, 5e-4) 0.2M [25K, 37.5K, 50K] [5.1B, 7.7B, 10.2B] [14.2, 21.3, 28.5]

Table 2: Training parameters for scaling experiments. We describe the learning rates, training
lengths and ratios for the different models in the scaling experiments.

Parameter 1B 8B
d_model 1792 4096
n_layers 24 32
ffw_size 4864 14336
kv_size 128 128

n_heads 14 32
n_kv_heads 14 8

vocab_size 49152 128256
seq_len 2048 4096

warmup_steps 2000 1000
batch_size (1.8M, 2M) 0.6M

Total Steps (55k, 220k) 20k
Peak LR 8e-4 3e-4

Table 3: Model configurations for larger runs. The batch size and learning rate for the 1B model
tokens were estimated using DeepSeek scaling laws for 100B tokens. The two values for BS and the
total steps of the 1B model distinguish the runs (100B,460B). For the 8B model, the architecture is
identical to Llama3 and the batch size was set according to the available GPU limits on our cluster at
the time of running experiments.

5https://hf.co/lvwerra/the-tokenizer-v1
6https://github.com/huggingface/cosmopedia/blob/d62abb8e13c567b999e33d0a1d795968bc052c6a/

evaluation/README.md
7https://hf.co/datasets/HuggingFaceFW/fineweb/blob/main/lighteval_tasks.py#L12
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A.3 FLOPs computation

We do not rely on the heuristic of 6=ND for computing the FLOPs of a Transformer model, but use a
more thorough computation that involves the embeddings, attention and MLP operations directly. For
reproducibility and other researchers to use, we provide our Python code in Figure 14.

1 def embedding(seq_len , vocab_size , d_model):
2 return 2 * seq_len * vocab_size * d_model
3

4 def attention(seq_len , d_model , key_size , num_heads):
5 projections = 2 * 3 * seq_len * d_model * (key_size * num_heads)
6 logits = 2 * seq_len * seq_len * (key_size * num_heads)
7 softmax = 3 * num_heads * seq_len * seq_len
8 softmax_query_reduction = 2 * seq_len * seq_len * (key_size *

num_heads)
9 final_layer = 2 * seq_len * (key_size * num_heads) * d_model

10 return projections + logits + softmax + softmax_query_reduction +
final_layer

11

12 def dense(seq_len , d_model , ffw_size , swiglu=False):
13 if swiglu:
14 return 2 * seq_len * (3 * d_model * ffw_size)
15 else:
16 return 2 * seq_len * (2 * d_model * ffw_size)
17

18 def final_logits(seq_len , d_model , vocab_size):
19 return 2 * seq_len * d_model * vocab_size
20

21 def flops(
22 n_layers ,
23 seq_len ,
24 vocab_size ,
25 d_model ,
26 key_size ,
27 num_heads ,
28 ffw_size ,
29 swiglu=True ,
30 ):
31 flops_single = (
32 embedding(seq_len , vocab_size , d_model)
33 + n_layers
34 * (
35 attention(seq_len , d_model , key_size , num_heads)
36 + dense(seq_len , d_model , ffw_size , swiglu=swiglu)
37 )
38 + final_logits(seq_len , d_model , vocab_size)
39 )
40 # assume backward pass has twice the FLOPs of the forward pass
41 return 3 * flops_single

Figure 14: FLOPs computation. Instead of the common approximation of 6=ND, we use more
detailed calculations for the FLOPs estimation based on the Transformer model configuration. We
provide the Python code above.

18



0 10000 20000 30000 40000
Steps

15

20

25

30

35

P
er

p
le

x
it
y

Train (210M)

Cos 22k

Cos 33k

Cos 44k

Cooldown to 22k

Cooldown to 33k

Cooldown to 44k

0 10000 20000 30000 40000
Steps

15

20

25

30

35

P
er

p
le

x
it
y

Validation (210M)

Cos 22k

Cos 33k

Cos 44k

Cooldown to 22k

Cooldown to 33k

Cooldown to 44k

Figure 15: The difference in loss curves of cosine vs. constant learning rate with cooldown. The
cooldown phase initiates a sharp decrease in loss for both training (left) and validation (right). The
training perplexity is averaged out over a window to achieve a smoother curve. For validation, we use
a fixed set of 32 validation batches to report the loss each step, which creates a smooth curve by design.

B Additional Results

B.1 More Results on Cooldown

Ablation of functional form of cooldown. We provide additional experiments to show that our
results are consistent and robust to different changes. For simplicity, we only cooldown to 50K steps
here, but we found these results hold regardless of the step at which we decay. In Fig. 16 and Fig. 17,
we test different functions for the cooldown phase:

• Linear: Classical linear decay.
• 1 - Sqrt: Defined in Eq. (1-sqrt).
• Cosine: Similar to the classical cosine decay, but applied only during the decay phase.
• Mirror Cosine: The symmetric counterpart of the cosine function with respect to the linear

decay.
• 1 - Square: The square root function in Eq. (1-sqrt) is replaced by a square function.

Note that the order might change for substantially different cooldown lengths; we focus on 10% and
20% because they are practically relevant.

In addition, we perform a comparison of different exponents for the square-root function: since the
(1-Sqrt) can be expressed as (1− xa) where a = 0.5, we sweep the parameter a < 0.5. The results
are shown in Figure 18. Apart from 0.1 and 0.2, which perform noticeably worse because the learning
rate is too low for many steps, the other exponents only show a marginal difference to a = 0.5, which
still comes out on top.

We aim to further investigate the impact of the functional form of the cooldown in future work.

Length of cooldown. We repeat our ablation from Sect. 3 with a 210M model in Figure 19 (fractional
x-axis) and with the absolute number of decay steps (not fractional) in Figure 20.

LR sensitivity. The optimal learning rate also transfers to different cooldown lengths in our experi-
ments, see the results in Figure 21.

Annealing cosine to less than 10%. We ablate the choice of the final learning rate for the cosine an-
nealing in Fig. 22, where we find that the final value should be set lower than simply 10% of the maxi-
mum. However, when evaluating on downstream benchmarks (see Section B.5), we see that annealing
to zero can hurt metrics; we posit this comes from too early saturation. Combining these two argu-
ments implies that the maximum and final LR should be set (and ideally swept over) independently.

B.2 Additional Results and Compute Savings

We give the savings for all models used in the scaling experiments in terms of FLOPs in Figure 24
and GPU hours in Figure 25.
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Figure 16: Different cooldown functions. We test various cooldown schedule functions and
consistently observe the same order of performance (left), with (1-sqrt) being the most effective.
Remarkably, the drop in loss closely follows the learning rate (right) even for different functions.
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Figure 17: The order and results of different cooldowns hold across settings. Left: We change
the learning rate to 5e−4 instead of 1e−3 as in previous experiments. Right: The performance for
10% cooldown steps instead of 20%. Note that the order might change for substantially different
cooldown lengths; we focus on 10% and 20% as they are practically relevant.
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Figure 18: Different exponents for functions. Since the negative square root performs remarkably
well, we experiment with varying the exponent of the functional form (1− xa) for a < 0.5. Besides
0.1 and 0.2 which perform noticeably worse, the other exponents only show marginal difference in
this experiment, with a = 0.5 (the square root) still coming out on top.
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Figure 19: Parabola shape of the relationship between cooldown length and final perplexity. We
repeat the experiment from Fig. 5 with a 210M parameter model and the zoomed-in view on the left.

0 5000 10000 15000
Number of Cooldown Steps

18

20

22

P
er

p
le

x
it
y

Cooldown (210M, Absolute Steps)

22k Steps

33k Steps

44k Steps

56k Steps

67k Steps

Cosine

0 10000 20000 30000 40000
Number of Cooldown Steps

18

20

22

P
er

p
le

x
it
y

Cooldown (210M, Absolute Steps)

22k Steps

33k Steps

44k Steps

56k Steps

67k Steps

Cosine

Figure 20: The effect of the cooldown length in terms of absolute steps. We repeat the plots from
Fig. 19 with the absolute number of steps on the x-axis.
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Figure 21: Learning rate sensitivity for cosine and cooldown with different lengths. The optimal
learning rate also transfers to different cooldown lengths.
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optimal LR shown), albeit the LR sensitivity remains (right; larger maximum LR led to divergence).
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Figure 23: Final validation perplexity of all models in scaling experiments across different runs.
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to be performed (compared to 3 per model in our experiments), the difference would be even more
significant.
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Figure 25: GPU hours savings for all models in scaling experiments across different runs. We
report the actual runtimes summed up over the sweeps for all models. The savings in terms of runtime
become especially more prominent for bigger models and longer training runs. Please note that the
hours for SWA of the 360M model are slightly off because of congestion in our cluster during the runs.
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Figure 26: Validation Loss Curves (Perplexity) of all Models in Scaling Experiments. We
visualize all training runs for the models used in the scaling experiments in Section 5.

B.3 Learning Curves for All Models of Scaling Experiments

We provide the learning curves for all models in the scaling experiments in Figure 26. The final
validation perplexity for all models and methods is given in Figure 23.

B.4 Additional Experiments on OpenWebText2

In addition to all results on SlimPajama, we perform experiments on the commonly used benchmark
of OpenWebText2 (Gao et al., 2020) with models of sizes 60M, 93M and 166M. As shown in
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Figure 27: Results Transfer to OpenWebText2. We see the same behavior for cooldown schedules
and SWA, verifying the reliability of our findings.
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Figure 28: Aggregate metrics throughout training of the 1B model on 100B and 460B tokens.
We train a 1B model on 100B (left) and 460B tokens (right) of FineWeb (Penedo et al., 2024), and
find that the performance of cosine and cooldown matches. Though cosine to zero improves the
loss (Figure 22), it leads to a saturation before the end of training, hurting overall performance.

Figure 27, our findings from previous experiments succesfully transfer, where the cooldown recipe
matches the performance of cosine and SWA boosts performance during training.

B.5 Full Results of Large Model Runs

In this section, we report the detailed results of the 1B runs with the downstream benchmarks.

In Figure 28, we compare the aggregate metrics throughout training for both the 100B (left) and
the 460B token run (right). We equally plot individual benchmark curves in Figure 29 for the 100B
run with a zoomed view after 80B tokens in Figure 30; interestingly, we observe a similar uptick in
performance for some metrics (e.g., MMLU, HellaSwag) with the cooldown, while others do not
benefit as clearly (e.g., OpenBookQA). This observation is an interesting direction for further research.

The final numbers are given in Table 4 (100B) and Table 5 (460B). Notably, longer cooldowns do not
necessarily improve the metrics (e.g. going from 5% to 20%).
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Figure 29: Detailed benchmarks throughout training of the 1B model on 100B tokens. For the
cooldown (starting at 80B tokens), we observe a similar uptick in performance for some metrics
(e.g., MMLU, HellaSwag) akin to the observed drop in loss. Other metrics do not benefit as clearly
from the cooldown (e.g., OpenBookQA).

80 90 100

Tokens (B)

0.45

0.46

S
co

re

Aggregated Score

Cosine to 10%

Cosine to 0

1-Sqrt Cooldown (20%)

Linear Cooldown (20%)

80 90 100

Tokens (B)

0.300

0.305

S
co

re

MMLU

Cosine to 10%

Cosine to 0

1-Sqrt Cooldown (20%)

Linear Cooldown (20%)

80 90 100

Tokens (B)

0.40

0.42

S
co

re

ARC

Cosine to 10%

Cosine to 0

1-Sqrt Cooldown (20%)

Linear Cooldown (20%)

80 90 100

Tokens (B)

0.34

0.36

S
co

re

OpenBookQA

Cosine to 10%

Cosine to 0

1-Sqrt Cooldown (20%)

Linear Cooldown (20%)

80 90 100

Tokens (B)

0.74

0.76

S
co

re

PIQA

Cosine to 10%

Cosine to 0

1-Sqrt Cooldown (20%)

Linear Cooldown (20%)

80 90 100

Tokens (B)

0.54

0.56

S
co

re

HellaSwag

Cosine to 10%

Cosine to 0

1-Sqrt Cooldown (20%)

Linear Cooldown (20%)

80 90 100

Tokens (B)

0.36

0.38

S
co

re

CommonSenseQA
Cosine to 10%

Cosine to 0

1-Sqrt Cooldown (20%)

Linear Cooldown (20%)

80 90 100

Tokens (B)

0.39

0.40

0.41

S
co

re

SIQA
Cosine to 10%

Cosine to 0

1-Sqrt Cooldown (20%)

Linear Cooldown (20%)

80 90 100

Tokens (B)

0.52

0.54

S
co

re

Winogrande
Cosine to 10%

Cosine to 0

1-Sqrt Cooldown (20%)

Linear Cooldown (20%)

Figure 30: Zoomed-in view of the 1B model benchmarks after 80B tokens. We repeat Figure
29 with a focus on the cooldown phase, which starts at 80B tokens.
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Metric Cosine to 10% Cosine to 0 1-Sqrt 20% Linear 20%
Aggregated Score 46.26 45.88 46.23 46.20

MMLU 30.21 30.70 30.84 30.71
ARC 41.25 42.35 41.80 41.25
OpenBookQA 35.40 33.80 36.00 35.80
PIQA 76.10 75.50 76.50 77.00
HellaSwag 56.30 55.60 55.80 55.90
CommonSenseQA 36.10 36.20 37.00 36.70
SIQA 40.70 40.20 39.60 39.50
Winogrande 54.00 52.70 52.30 52.70

Table 4: Final evaluation results after 100B tokens. Both cosine and the cooldown schedules have
comparable final numbers, with only slight differences for certain benchmarks.

Metric Cosine to 0 1-Sqrt 5% Linear 5% Linear 10% Linear 20%
Aggregated Score 48.03 47.91 47.84 47.98 47.92

MMLU 31.25 31.71 31.65 31.78 31.84
ARC 45.20 44.10 44.05 44.15 45.05
OpenBookQA 37.60 37.80 38.00 38.20 37.20
PIQA 78.10 77.40 77.40 77.30 77.80
HellaSwag 59.90 59.60 59.50 60.00 59.20
CommonSenseQA 37.70 37.30 36.70 36.90 36.90
SIQA 39.90 39.50 39.40 39.50 39.70
Winogrande 54.60 55.90 56.00 56.00 55.70

Table 5: Final evaluation results after 460B tokens. The findings of Table 4 transfer to much
longer training runs with 460B tokens, where the performances of cosine and cooldowns match well.
Notably, longer cooldowns do not necessarily improve the metrics (e.g. going from 5% to 20%).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide an in-depth analysis of the proposed methods across different
settings and the empirical results match the claims made.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explicitly discuss limitations in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We do not provide theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all experimental details to the best of our efforts both in the main
paper as well as the Appendix and have released our source code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The main dataset used in our experiments is publicly available on HuggingFace
with the specified link. We also released ur code repository https://github.com/epfml/
schedules-and-scaling.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all experimental details, including hyperparameters, optimizers
and data splits, to the best of our efforts both in the main paper as well as Appendix A.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Training LLMs requires extensive time and compute, thereby making it
generally impractical to do runs across different seeds. Nonetheless, our results are consistent
across runs and scales and are highly transferrable as shown by neural scaling laws.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the description of compute resources in Appendix A.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read and conform to the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is on fundamental machine learning research. There are many
potential societal consequences of our work, none which we feel must be specifically
highlighted here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release pretrained models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: To the best of our knowledge, we adequately cite and mention all used assets
in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not provide new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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