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 Protein diversity has been shaped by billions of years of evolu-
tionary pressure, filtering the potential design space for diverse 
biological functions. Understanding the connection between pro-
tein amino acid sequence and function is crucial for advancing bi-
ology and developing new therapeutics. Experimental 
approaches like deep mutational scanning (DMS) can directly 
measure functional effects of protein mutations (1–3) but are lim-
ited to exploring only a fraction of the possible protein sequence 
space. Computational approaches leveraging orthologous se-
quences can reduce the experimental data needed to map fitness 
landscapes and optimize proteins (4–6), but these methods re-
quire multiple sequence alignments, high ortholog abundance, 
and minimal sequence length variation. 

To overcome these challenges, fitness can be inferred by 
training broadly across evolutionary diversity. Protein language 
models (PLMs), such as ESM2 (7), are trained across comprehen-
sive protein sequence databases to fill in missing amino acids. 
PLMs learn informative biological representations (7–12) protein 
structure prediction (7) and functional annotation (13). PLMs 
have nominated protein mutants with improved activity (14, 15) 
and generative PLMs (16–18) have been used to design novel pro-
teins. However, zero-shot predicted mutants have limited success 
(14, 15) and de novo-designed proteins typically exhibit lower or 
comparable activity relative to natural wild-type (WT) sequences 
(16, 19). While zero-shot models can predict antibody mutations 

to increase binding affinity, they cannot improve other important 
antibody features, such as developability and immunogenicity 
(15, 20). These failures of PLMs to substantially improve protein 
activity in zero-shot settings are driven by their inability to gener-
alize to new contexts due to limited training data (21) and the dif-
ference between evolutionary fitness and protein function. 
Therefore, protein optimization and interpretation using PLM-
based approaches require additional experimental data to reach 
design-specific objectives. 

Iterative approaches for optimization, such as directed evolu-
tion (DE) (22), take advantage of the smoothness of protein fit-
ness landscapes to improve function. Although these methods 
are successful in contexts with suitable activity landscapes and 
screening methods, they can be labor intensive and fail on rugged 
landscapes, especially when trapped in local optima. Some im-
provements can be gained from combining DE with machine 
learning. Machine learning–directed evolution (MLDE) methods 
(23–28) leveraging active learning have effectively improved di-
verse proteins but at the cost of comprehensive experimental 
evaluation. Merging active learning with simpler protein repre-
sentation models, such as recurrent neural networks (29, 30), has 
simplified the evolution process, but previous attempts at active 
learning on protein models (30) have not generalized well beyond 
proof-of-concept demonstrations like fluorescent protein engi-
neering due to shortcomings in the protein representation space. 
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Directed protein evolution is central to biomedical applications but faces challenges like experimental complexity, inefficient 
multi-property optimization, and local maxima traps. While in silico methods using protein language models (PLMs) can provide 
modeled fitness landscape guidance, they struggle to generalize across diverse protein families and map to protein activity. We 
present EVOLVEpro, a few-shot active learning framework that combines PLMs and regression models to rapidly improve 
protein activity. EVOLVEpro surpasses current methods, yielding up to 100-fold improvements in desired properties. We 
demonstrate its effectiveness across six proteins in RNA production, genome editing, and antibody binding applications. These 
results highlight the advantages of few-shot active learning with minimal experimental data over zero-shot predictions. 
EVOLVEpro opens new possibilities for AI-guided protein engineering in biology and medicine. 
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Given the limited success of PLM-based methods to rank var-
iant effects in a zero-shot fashion (15) or to iteratively nominate 
protein mutations (30), we reasoned that active learning with 
high-performance PLMs and small sets of mutants would improve 
directed evolution performance. Here we present the protein 
evolution model EVOLVEpro (evolution via language model–
guided variance exploration for proteins) to solve these chal-
lenges with MLDE. EVOLVEpro nominates high-activity protein 
variants with active learning and minimal experimental testing, 
achieving rapid prediction of high-activity mutants. This perfor-
mance stems from a modular approach that marries an evolution-
ary-scale PLM with a top-layer regression model to learn a 
protein’s activity landscape and guide the directed evolution pro-
cess in silico. This top-layer model is trained over multiple rounds 
of evolution, with each round evaluating a small set of EVOLVE-
pro-predicted mutants using one or more experimental assays. 
These data are then used to update the model and predict the 
next round of mutation candidates. We hypothesize that combin-
ing the PLM and regressor enables the identification of multiple 
high-activity regions simultaneously, providing generalization 
across diverse protein classes with rugged activity landscapes and 
robustness to local optima due to detrimental or neutral mutants 
(28). Moreover, EVOLVEpro prompting only uses protein se-
quences and does not require structural information, expert 
knowledge, or prior data. We demonstrate EVOLVEpro’s ability to 
evolve multiple activities of a protein simultaneously, opening up 
vast possibilities for its use in biology and medicine. 

 
Development and benchmarking of the EVOLVEpro model 
We developed a deep learning-based directed evolution 

framework, EVOLVEpro, combining (i) a PLM to encode protein 
sequences into a continuous latent space to facilitate activity op-
timization and (ii) a top-layer regression model to learn the map-
ping between latent space and activity from a few number of data 
points (i.e., the low-N regime). EVOLVEpro actively learns the fit-
ness landscape across multiple rounds of evolution. In each 
round, the regression model ranks protein sequences according 
to their predicted activity, selecting top-ranked sequences for ex-
perimental validation. Cycles are performed iteratively to im-
prove defined protein activities until they reach desired levels 
(Fig. 1A). 

We first optimized EVOLVEpro’s computational framework in 
silico by curating 12 deep mutational scanning (DMS) datasets 
(31–43) (table S2 and data S2), allowing the selection of optimal 
architecture and parameters using simulated runs prior to any ex-
perimental testing. This simulation revealed ground truth activity 
data to EVOLVEpro for only the variants nominated by the model. 
The twelve DMS datasets selected for model benchmarking span 
diverse activities, including viral spike proteins, RNA-guided nu-
cleases, DNA-binding proteins, RNA-binding proteins, and ki-
nases, maximizing the generalizability of the model architecture, 

which would serve as the final EVOLVEpro model for experi-
mental applications throughout the rest of the study. 

We optimized the EVOLVEpro architecture across five param-
eters: (i) the strategy for first-round mutant selection, (ii) the top-
layer regression model that learns the activity landscape, (iii) the 
active learning policy for selecting mutants for the next round, (iv) 
the data processing for experimentally measured activities, and 
(v) the PLM embedding vector transformation (table S1 and data 
S1). We first selected ESM-2 as the base PLM because of its large 
training data and available model size of >200M proteins and 15B 
parameters, respectively. Using the ESM-2 15B parameter model, 
our grid search (see methods) found that the optimal strategy 
was (i) selecting a random set of first-round variants, (ii) using a 
random forest regressor discriminatory model to predict protein 
activities, (iii) using embeddings averaged across all amino acids, 
and (iv) using a top-N selection strategy in each round of evolu-
tion (fig. S1A). This model nominated high frequencies of gain-of-
function protein variants in only five rounds (fig. S1, A and B), and 
both median activity and activity of the nominated top mutant 
increased rapidly from round to round across all DMS datasets 
(fig. S1B). We calculated the top mutant’s improvement in activity 
by scaling the activity score of the best mutant in the last round 
relative to the first round across the 12 DMS datasets. In general, 
10 rounds of EVOLVEpro evolution with 16 mutants per round 
identified top mutants with up to 2.2-fold higher activity than the 
starting WT sequence (fig. S1B). To understand how the number 
of variants per round affected performance, we simulated 
EVOLVEpro evolution with 10 to 100 variants per round. We 
found that larger rounds increased prediction accuracy without 
saturation (fig. S1C), indicating that EVOLVEpro can be used for 
both extremely low-N evolution (<20 mutants per round) for 
rapid and cheap experimental characterization and medium-N 
(~100 mutants per round) for quicker and more efficient evolu-
tion with fewer rounds. 

After optimizing the top-layer model and learning strategies, 
we surveyed a panel of PLMs, Using the optimal parameters from 
the grid search, we compared ESM-2 15B with smaller versions of 
ESM-2 and ESM-1 (44), UniRep (29, 30), ProtT5 (45), ProteinBERT 
(10), Ankh (9), one-hot encoding, and integer-encoded protein 
representations for the ability to identify the highest activity can-
didates across the 12 datasets. The ESM-2 15B parameter model 
outperformed other models on all datasets except two and re-
turned the greatest fraction of high-activity mutants, confirming 
its final selection for the EVOLVEpro latent space model (Fig. 1B 
and data S3). Across our panel of embedding methods, only four 
PLMs had a significantly higher prediction accuracy than one-hot 
encoding, as determined by one-way analysis of variance 
(ANOVA), showing the critical importance of the base layer model 
for EVOLVEpro performance. Given the high dimension of ESM2-
15B and the small number of samples seen by the top layer re-
gression model, we explored if the full input dimension was 
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needed for our observed model performance. Reducing the input 
dimension of the protein embedding using PCA, we tested a range 
of input dimensions into the top layer regressor. The original full-
length embeddings performed best on 9 of the 12 datasets (fig. 
S1D), with full-length embeddings contributing more to model ac-
curacy in difficult engineering tasks where there exist fewer high-
activity mutants in the population, such as MAPK1 kinase and 
PafA. In contrast, for easier tasks such as infA and AsCas12f, all 
dimensionalities saturated activity. 

As MLDE methods require pre-training a discriminatory 
model, we compared augmented EVOLVEpro with various 
amounts of pre-training (Fig. 1C). Active learning drastically re-
duced the overall number of mutants required: EVOLVEpro with 
only 5 rounds of evolution (16 mutants per round) was equivalent 
in performance to EVOLVEpro pre-trained with 160 mutants, 
whereas 10 rounds of evolution (16 mutants per round) was 
equivalent to pre-training with 500 mutants. Moreover, EVOLVE-
pro outperformed zero-shot prediction methods (Fig. 1C) (15). 
This comparison confirms that the few-shot nature of EVOLVEpro 
allows for efficient directed evolution with minimal effort and 
low-N testing per round (Fig. 1C and data S4). To explore if 
EVOLVEpro benefited from base models that are better at extrap-
olation of complex landscapes, we compared the performance of 
a random forest regressor with a Gaussian process regressor and 
a k-nearest neighbor-based regressor, finding that the random 
forest regressor performed best in 10 out of 12 datasets (fig. S1E). 
This finding agrees with the utility of random forest regressors in 
the low-N regime in other prediction tasks (46, 47). 

Lastly, we analyzed the per-round activity improvement for 
EVOLVEpro compared to one-hot and integer encoding and zero-
shot prediction. With 16 mutations per round, EVOLVEpro found 
variants with significantly enhanced activity by round 5 across 
every dataset (Fig. 1D and fig. S2). Moreover, the one-hot and in-
teger encoding frameworks often saturated much earlier in the 
evolution process and never reached the activity levels achieved 
by EVOLVEpro. Interestingly, we observe a non-linear increase in 
protein activity after round 3 for some proteins, suggesting more 
substantial gains in mapping the protein activity landscape as 
EVOLVEpro evolution proceeds. 

 
Antibody optimization with EVOLVEpro 
We used EVOLVEpro to optimize two therapeutically relevant 

monoclonal antibodies: C143, an antibody against the SARS-CoV-
2 spike protein, and aCD71, an antibody against the human trans-
ferrin receptor used for delivery of drugs and siRNA to muscle and 
cardiac cells in vivo (15, 48, 49). aCD71 has more than 90% se-
quence homology to Delpacibart, a phase II clinical stage therapy 
for Myotonic dystrophy. Both antibodies have low nanomolar af-
finities against their cognate antigen, presenting a challenge for 
further improvement by EVOLVEpro. We designed a multi-objec-
tive optimization with EVOLVEpro on antibody expression levels 

and binding affinity to the target antigen. Optimization over mul-
tiple features shows that the model can jointly evolve antibody 
binding and yield, as antibody mutations often affect multiple an-
tibody features, including expression, stability, solubility, half-life, 
or immunogenicity. Critically, zero-shot developability optimiza-
tion is difficult with protein language or structure-based inverse 
folding models, as the relationship between sequence and devel-
opability or other non-binding features is not directly captured by 
evolutionary sequence or structure data (15, 20). In our multi-ob-
jective directed evolution scheme, we weighed the binding affin-
ity at four times the expression levels (i.e., developability score) 
to prioritize variants that bind with higher affinity (Fig. 2A). 

For C143 evolution, we quantified binding affinity with an en-
zyme-linked immunosorbent assay (ELISA) against the SP6 stabi-
lizing variants of the SARS-CoV-2 spike (Wuhan strain) protein 
(50). We saw improved binding after 3 rounds of EVOLVEpro evo-
lution, surpassing previous zero-shot approaches (15) (Fig. 2B and 
fig. S3A). At round 4, we found significant improvement with a 
light chain mutant (N28K), with an IC50 of 0.19 nM (Fig. 2C). Using 
our 4 rounds of single mutations, we had EVOLVEpro design 
multi-mutant combinations for a fifth round. The best multi-mu-
tant (light chain N28R/Q40K with heavy chain R39K) bound to the 
SP6 spike antigen with an IC50 of 60 pM (Fig. 2C), likely due to the 
synergistic interaction between N28R on the light chain and R39K 
on the heavy chain. We stopped at one round of multi-mutant 
evolution due to the substantial improvements we observed, but 
in practice, multiple rounds of multi-mutant testing are likely 
needed to reach convergence on desired properties. We found 
that many improved binders compromised yields (Fig. 2D), a 
tradeoff due to the bias toward binding during the multi-objective 
design. Despite this tradeoff, a subset of C143 mutants, such as 
R39K, had both an increase in affinity and protein expression, 
showing that developability can be co-optimized alongside bind-
ing affinity. 

We explored the likelihood of the top EVOLVEpro nominated 
mutations relative to training data and known antibody variants 
observed in nature. We analyzed the top 10 mutations for both 
occurrence in hotspot regions and deviation from the germline 
sequence. We found none of the top 10 mutations are mutated 
back to the germline unmutated common ancestor sequence 
(UCA). The UCA sequence at light chain N28 is a serine (S). How-
ever, the affinity-enhancing mutation recommended by EVOLVE-
pro is either a lysine or arginine, both with likelihoods less than 
0.05 when compared to the Uniprot training input, reinforcing the 
notion that EVOLVEpro mutations are rare and novel. Moreover, 
this observation highlights the utility of top layer regression 
model to explore rare mutations not seen in the training input of 
PLM by promoting exploration into unknown regions of the pro-
tein fitness landscape. Furthermore, we found the top single mu-
tant N28R (light chain) happens in the complementarity 
determining region (CDR), but the majority of the top affinity-
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enhancing mutations (7 out of the top 10 mutations) are located 
in the framework region. This highlights the de novo exploration 
of EVOLVEpro on the entire variable region of the antibody to find 
affinity-enhancing mutations that might not seem likely or intui-
tive in the framework region. To further understand EVOLVEpro’s 
mutational trajectory, we represented the model’s attention to 
particular residues as a cumulative frequency and found residues 
like K33, R39, and D58 on the heavy chain and S14 and N28 on the 
light chain are repeatedly explored (fig. S3B). 

For using EVOLVEpro to in silico evolve an anti-CD71 antibody, 
we measure the target binding affinity using enzyme-linked im-
munosorbent assay (ELISA) against the human TfR protein and 
measured antibody expression with an anti-IgG. We saw improve-
ment in binding after just rounds of evolution with EVOLVEpro 
(Fig. 2E and fig. S4A). We acquired 10 mutants using the efficient 
evolution algorithm to benchmark against EVOLVEpro and found 
that EVOLVEpro nominated mutants 35-fold better than WT 
whereas efficient evolution’s best mutant is only eight-fold better 
(15). At round 4, we found the best single mutant heavy chain 
S92A to bind to the antigen with an IC50 of 29 pM, significantly 
higher than that of the WT at 551 pM (Fig. 2F). We also asked the 
model to rank multi-mutants based on the single mutant data 
from the first four rounds and performed one round of multimu-
tant testing. We improved binding and expression in the multi-
mutant round 5 with heavy chain T70A/S92V mutant. The multi-
mutant binds to the hTfr protein with an IC50 of 19 pM (Fig. 2F). 
Interestingly, most of the mutants nominated after round 1 
showed a marked increase in expression profile and binding affin-
ity, showing that EVOLVEpro simultaneously engineered the de-
velopability and binding (Fig. 2G). This finding contrasts with the 
results from the C143 antibody, implying the Pareto frontier of 
binding and expression likely differs between the two antibodies, 
with anti-CD71’s WT sequence easier to engineer across multiple 
properties than C143’s WT sequence. Future work examining this 
trade-off between multiple properties for additional antibodies 
or proteins will enable EVOLVEpro to better traverse Pareto fron-
tiers more efficiently. 

Upon analyzing the novelty of the aCD71 antibody mutations, 
we found only one of the top 10 mutations is mutated back to the 
germline unmutated common ancestor sequence (UCA) at posi-
tion V73. The UCA sequence at the site of the best mutation in 
heavy chain S92 is a threonine (T). However, the affinity-enhanc-
ing mutation recommended by EVOLVEpro is either an alanine or 
valine. S92V mutation has a mutation likelihood of less than 0.05 
when compared to the Uniprot training input, highlighting its rar-
ity. This shows EVOLVEpro’s ability to insightfully choose novel 
mutations not seen in the training input of the PLM base layer. 
Furthermore, we found all top 10 affinity-enhancing mutations 
are located in the framework region rather than in the CDR that 
is commonly thought to determine binding affinity. Lastly, to un-
derstand EVOLVEpro’s mutational trajectory on anti-CD71, we 

represented the model’s attention to particular residues as the 
cumulative frequency of individual residues being explored by the 
model and found that multiple residues are repeatedly explored 
by the model including T70 and S92 on the heavy chain and Q38 
on the light chain (fig. S4B). 

We used AlphaFold 3 to model the structure of the anti-CD71 
and C143 antibodies (Fig. 2, H and I, and data S7). We found two 
major clusters of exploration by EVOLVEpro on C143 antibody in 
the framework region with light chain mutations S14, Q40, L50, 
and K45 co-located and R39, S63, and E89 in close proximity on 
the heavy chain. These mutations likely alter binding through 
structural changes in the variable region. Additionally, was a CDR 
mutation, N28, on the light chain located in the CDR-L1 region 
that likely directly alters the interaction between the C143 anti-
body and the antigen, which is not possible to model with AF3 
due to a low confidence score of the complex (Fig. 2H). For the 
anti-CD71 antibody, we found all the best mutations clustered 
around one region in the heavy chain domain. As they are all in 
the framework region, they likely alter the binding affinity indi-
rectly, a hypothesis supported by the increase in expression rela-
tive to the WT sequence (Fig. 2I). 

Lastly, we analyzed each mutant’s observed activity versus the 
PLM-predicted fitness landscape. We calculated the mutant fit-
ness as a predicted marginal masked score within the ESM2 em-
beddings (pMMS) and found that the activities of EVOLVEpro 
variants did not correlate with predicted ESM2 fitness (Fig. 2J and 
fig. S4C). To extrapolate this finding across the entire C143 and 
anti-CD71 mutational landscape, we projected the base layer PLM 
fitness score and top-layer random forest predicted fold improve-
ment (pFI) in the latent space for every possible single mutant 
variant, generating EVOLVEpro determined protein activity land-
scape (figs. S3C and S4E). There was relatively little overlap be-
tween the two distributions, with a negative correlation of -0.16 
for C143 antibody and 0.01 for anti-CD71 antibody between pre-
dicted fitness and predicted activity, further highlighting ESM2’s 
lack of understanding of protein activity (figs. S3C and S4E). We 
projected the individual mutants onto the PCA space of the ESM2 
embedding and found two opposing directions between higher 
fitness and higher function (Fig. 2K and fig. S4D). Analyzing the 
evolution trajectory from round 1 to the final round by calculating 
the geometric midpoint of each round revealed the top layer 
model directed the evolutionary process toward the higher side 
of PCA1 for C143 antibody and the higher side of PCA2 for anti-
CD7, which we observe to correlate with higher protein function 
(figs. S3D and S4F). 

 
Evolution of a miniature RNA-guided CRISPR nuclease with 

EVOLVEpro 
Programmable RNA-guided nucleases have diverse applica-

tions in basic biology, therapeutics, and diagnostics. However, 
commonly used nucleases, such as the Cas9 from Streptococcus 
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pyogenes (SpCas9) are too large to effectively be packaged in 
common adeno-assocated viral (AAV) vectors, and more compact 
high-efficiency nucleases, such as the Cas9 from Staphylococcus 
aureus (SaCas9) still preclude the use of larger regulatory ele-
ments or protein fusions. Miniature Cas12f nucleases have com-
pact sizes (<700 residues) but suffer from reduced efficiencies, 
requiring engineering for genome editing applications (51). Previ-
ous Cas12f engineering efforts relied on DMS or rationally de-
signed mutations to increase the in vitro cleavage activity (33, 52–
55), requiring extensive screening to find the optimal variant. We 
tested whether EVOLVEpro could rapidly develop highly active 
Cas12f variants to accelerate miniature nuclease engineering. 

We selected the Cas12f from Pseudomonas aeruginosa 
(PsaCas12f) for evolution with set indel formation at the endoge-
nous RNF2 locus target site as the optimization metric (Fig. 3A). 
After four rounds of evolution of 12 single mutants per round, 
EVOLVEpro yielded point-mutants of PsaCas12f with up to 4.9-
fold improvement in indel formation. This top variant, PsaCas12f 
K333V, had >40% indel efficiency at the RNF2 site (Fig. 3B and fig. 
S5A). To identify synergies between EVOLVEpro nominated mu-
tants, we combined the top-performing variants from previous 
rounds in a fifth round. We evaluated a set of these multi-mutants 
and found that PsaCas12f I178A/K333V/K454P generated ~ 50% indel ac-
tivity at the RNF2 locus (fig. S5A). Given its performance, we refer 
to the PsaCas12f I178A/K333V/K454P variant as EVOLVEpro PsaCas12f 
(epPsaCas12f). 

To generalize epPsaCas12f’s improved activity, we evaluated 
the enzyme at 10 different targets across five endogenous ge-
nomic loci, comparing to WT PsaCas12f and seven previously 
characterized Cas12 effectors, AsCas12a, Cas12Φ, UnCas12f1, 
enAsCas12f, OsCas12f, RhCas12f, and CasMINI (33, 53, 55–58). 
We observed consistently higher epPsaCas12f activity compared 
to WT PsaCas12f on 9 of 10 tested targets (Fig. 3C). Moreover, 
epPsaCas12f edited the 10 targets with a 23.3 ± 16.7% average 
indel rate, surpassing all tested miniature Cas12f effectors and As-
Cas12a with 2.2- to 44-fold improvement. Interestingly, 
epPsaCas12f generated an average deletion of 5-bp across the 10 
tested targets (fig. S5B). Together, these data demonstrate that 
epPsaCas12f is a highly active, compact effector for mammalian 
genome editing that outperforms other small effectors. 

We applied epPsaCas12f for in vivo genome editing applica-
tions, using its compact size for single-vector viral delivery in vivo. 
We designed guides targeting a sequence 5′ of exon 3 in the 
mouse PCSK9 gene (Fig. 3D). The PCSK9 protein regulates blood 
low-density lipoprotein (LDL) by binding to LDL receptors, making 
it a valuable therapeutic target (59). We first tested the efficacy 
of epPsaCas12f in a murine hepatocyte cell line (Hepa 1-6) by co-
transfecting murine codon-optimized epPsaCas12f and sgRNA 
targeting sequences 5′ of exon 3 in the PCSK9 gene. Analyses of 
epPsaCas12f, WT PsaCas12f, and Staphylococcus pyogenes Cas9 
(SpCas9) revealed that epPsaCas12f robustly edited PCSK9 in 

Hepa1-6 cells with ~40% indel formation (comparable levels to 
SpCas9 and 3-fold higher than the WT PsaCas12f) (Fig. 3D). 

After validation of epPsaCas12f in Hepa1-6 cells, we packaged 
both epPsaCas12f and its sgRNA targeting PCSK9 in a single 
AAV2/8 vector (Fig. 3E). AAV-epPsaCas12f was administered at a 
titer of 1.5✕1012 viral genome copies per mouse via retro-orbital 
injection into 3-month-old C57BL/6J mice. We tracked blood 
PCSK9 levels for 14 days post-injection of AAV and found a signif-
icant decrease to around 50% of the original levels after 14 days 
(Fig. 3F, fig. S5C). We then harvested the liver at day 15, isolated 
the genomic DNA, and performed next-generation sequencing to 
survey for indel formation at the PCSK9 target site (Fig. 5, D and 
E). We found around 7% on-target indel formation in the AAV-
epPsaCas12f injected mice (fig. S5D), demonstrating that 
epPsaCas12f can be used for single-vector AAV-mediated genome 
editing. To survey off-targets, we used Cas-OFFinder to predict 
the top four off-target cleavage sites generated by epPsaCas12f 
and analyzed the guide-dependent off-target cleavage in the liver 
(60). We only found detectable editing at one of the four sites 
with a maximum level of 0.27% indels, confirming minimal off-
target cleavage triggered by epPsaCas12f (fig. S5F). 

To understand the mechanisms of the beneficial mutations 
nominated by the EVOLVEpro, we used Alphafold3 to predict the 
structure of PsaCas12f (Fig. 3G and data S7). The predicted struc-
ture provides insights into how the PLM-nominated mutations, 
including I178A/K333V/K454P, contribute to enhancing the DNA 
cleavage activity (Fig. 3G). The K333V mutation is located in the 
WED domain, suggesting that it could increase the binding to its 
RNA guide. The I178A mutation is located in the middle of the 
long α-helix in the REC domain and forms a hydrophobic core with 
I245 and L248 in the adjacent α-helix. Given that alanine is a helix-
forming residue, the I178A mutation may stabilize the α-helix in 
the REC domain and thus augment the cleavage activity. The 
K454P mutation is located at the C terminus of an α-helix in the 
RuvC domain and forms hydrophobic interactions with A509 and 
V511 in the adjacent α-helix, suggesting that it also stabilizes the 
protein conformation. 

We then looked at the model’s attention to particular residues 
in the protein by calculating the cumulative frequency of individ-
ual residues explored by the model. Multiple residues were re-
peatedly nominated by the model, including G147 and E451 (Fig. 
3H), showing that the model honed attention to specific amino 
acids. We calculated the pMMS for each nominated mutant to 
understand the relationship between the base layer PLM’s fitness 
prediction and the actual measured protein activity (Fig. 3I). We 
found a weak negative correlation between fitness and activity in 
PsaCas12’s local context. We then further projected the base 
layer PLM’s fitness score and the top-layer random forest regres-
sor’s activity score in the EMS2 latent space to understand 
EVOLVEpro’s global mutational trajectory (Fig. 3, J to L, and fig. 
S5G). We found a weak positive correlation of 0.03 between 
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fitness and activity, further denoting the necessity of a top-layer 
discrimination model to properly distinguish between high fitness 
and high activity (Fig. 3l). 

 
Engineering improved prime editors with EVOLVEpro 
Many molecular tools, such as next-generation genome edit-

ing proteins, function as multiple enzymes acting in concert. 
Prime editing, which uses an RNA-templated reverse transcrip-
tase to programmably install diverse genome edits, is the fusion 
of a SpCas9 nicking mutant (nCas9) with an engineered Moloney 
Murine Leukemia Virus Reverse Transcriptase (M-MLV RT) 
[D200N, L603W, T306K, W313F, T330P] (termed PE2). We rea-
soned that EVOLVEpro could improve upon these rational muta-
tions, as optimizations were discovered on M-MLV RT by directed 
evolution approaches (61). As PE-based insertion has difficulty in-
stalling longer (>40 nt) edits, we focused on editing outcomes 
with longer (46 bp) insertions, which have particular utility for 
programmable gene insertion methods, such as PASTE (62). We 
set up the evolution policy with a previously described twinPE ap-
proach, where two overlapping pegRNAs are used in combination 
to install a 46bp attB site in the NOLC1 loci in murine hepatocyte 
cell line (Hepa1-6). Editing was quantified at NOLC1 loci using am-
plicon sequencing and NGS readout and the top-layer EVOLVEpro 
model was trained to predict the insertion efficiency. 

Over successive rounds of optimization, we found that 
EVOLVEpro progressively learned the activity landscape of the RT 
of PE2, yielding improved variants after the initial random selec-
tion round and substantially improving upon PE2-based editing by 
round 4 (Fig. 4A and fig. S6A). To check for bias toward this single 
locus in the genome that could have developed during the evolu-
tion campaign, we tested the top 4 performing variants (A660S, 
L670C, L670K, and L671R) at three additional genomic loci (hu-
man AAVS1, human ALB, and mouse Factor IX) in two cell lines. At 
all four sites tested, A660S had statistically significant improve-
ments (Fig. 4B). These results point to the general protein activity 
improvement by EVOLVEpro, delivering an additional set of RT 
mutations specifically for larger edits. 

Projecting the top mutations onto the AlphaFold3-predicted 
structure of the RT reveals that most of them are clustered in the 
C-terminal RNA polymerase H (RNase H) domain (Fig. 4C), which 
is a surprising result since most PE evolution focuses on RT muta-
genesis. We speculate that these mutations could alter the cleav-
age of the template DNA in the RNA-DNA heteroduplex by the 
RNaseH domain (63), facilitating the completion of the prime ed-
iting reaction, a route that has not been explored by traditional 
engineering of prime editors. Alternatively, they could inactive 
the RNase H domain, as truncations of this domain have been 
shown to slightly improve prime editing activity (64–66). We then 
further analyzed EVOLVEpro’s residue site preference during evo-
lution and observed attention to residues like L670, L671, and 
A660, suggesting it was learning that these positions could be 

quite beneficial for improving activity (Fig. 4D). Analysis of pre-
dicted fitness (pMMS) scored by the bottom layer PLM again 
showed a divergence between fitness and activity for the prime 
editor (Fig. 4E and fig. S6B), as we found almost no convergence 
between the two distributions with a negative correlation of 0.08 
(Fig. 4E). 

Lastly, we try to understand the global mutational trajectory 
by projecting the activity landscape learned by the random forest 
regressor and base layer ESM2’s protein fitness landscape onto 
the first two PCAs of the embedding (fig. S6, C and D). This analy-
sis points again to the divergence between the mutational land-
scape of a protein’s activity and the commonly used fitness 
landscape learned during a foundational model’s training on all 
protein sequences. When we charted the evolution trajectory, we 
also found a clear movement to the lower side of PCA2 protein 
embedding dimension, showing that the top layer is pushing the 
sequences to that region in the latent space (fig. S6E). 

 
Bxb1 integrase evolution with EVOLVEpro 
Large serine recombinases (LSRs) are enzymes that facilitate 

precise DNA rearrangements, making them crucial tools for ge-
nome editing. Their ability to recognize specific DNA sequences 
and catalyze targeted recombination events allows for efficient 
and accurate modifications of genetic material, which is essential 
for advanced gene therapy, synthetic biology, and genetic re-
search. We recently developed a gene insertion technology, 
PASTE, that leverages LSRs, specifically the Bxb1 integrase, for 
programmable gene insertion in eukaryotic cells (62). A limitation 
of Bxb1 integrase, however, is its activity saturates in the 20 to 
60% range in cells, limiting the overall integration efficiency that 
can be achieved. We sought to therefore evolve Bxb1 using 
EVOLVEpro to improve its activity and demonstrate improved 
gene integration applications with PASTE in cells. 

To evolve Bxb1, we designed a simple integration assay in 
HEK293FT cells that involved the insertion of an AttP-containing 
DNA plasmid into an AttB target-containing plasmid (Fig. 4F). In-
tegration can be measured by next-generation sequencing, and 
the evolution policy is designed to optimize this insertion effi-
ciency. We started evolution with a round of 11 random Bxb1 
point mutation variants and then over 9 rounds observed pro-
gressively increasing activity resulting in mutants with over 2.6-
fold higher activity than WT (Fig. 4G and fig. S7A). As Bxb1 is al-
ready fairly active, this fold improvement is expected as we reach 
near-saturating levels of insertion. To validate the top hits from 
the evolution campaign, we performed a Bxb1 plasmid titration 
experiment in a separate cell line (Hela cells) and observed up to 
fourfold improvement in recombination efficiency under low 
Bxb1 expression (Fig. 4H). We further validated the top hits by 
pre-installing attB sites into the genome of HEK293FT cells using 
lentivirus and then surveyed for integration efficiency of cargo in 
the genome. We found up to fourfold improvement by 
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EVOLVEpro’s mutants compared to WT (fig. S7B). We termed 
T166R variant as EVOLVEpro enhanced Bxb1 (epBxb1). 

To test whether the epBxb1 variant’s improved activity can 
improve the programmable insertion of cargo DNA into the chro-
mosome, we tested this variant in the context of PASTE and com-
pared it against the WT Bxb1 across five different genomic loci. 
We found up to ~fourfold improvement in the final large cargo 
insertion rate into the genome, which highlights the generalizable 
gain in activity (Fig. 4I and fig. S7C). 

An AlphaFold3-predicted model of Bxb1 bound to attachment 
site DNA indicates that the top beneficial EVOLVEpro mutations 
clustered in the Bxb1 DNA binding domains, likely increasing the 
affinity to its DNA targets (fig. S8A). Of these residues, V292S 
could directly interact with the phosphate backbone of the target 
DNA based on its positioning relative to the attachment site, 
whereas the others likely modulate DNA binding via indirect in-
teractions. Analysis of the residue exploration by the model re-
vealed that multiple positions, including F439, V375, and L275, 
are visited up to 15 times; the DNA-interacting residue V292 was 
also visited multiple times. Overall, this highlights EVOLVEpro's 
ability to recognize the functional importance of certain regions 
in the protein, much like structure-guided engineering ap-
proaches (fig. S8B). 

We then calculated the relationship between the fitness 
(pMMS) and activity (observed fold improvement) for Bxb1 inte-
grase and found a weakly positive correlation between the two 
metrics contrary to the other proteins reported evolves. This 
likely reflects a subset of protein families where protein stability 
and fitness as learned by the PLM can predict activity as previ-
ously reported (67) (fig. S8C). However, given that the relation-
ship is weak, a model like EVOLVEpro is still needed to efficiently 
and quickly reach high-performing variants without encountering 
many false positives. Lastly, we found that the global mutation 
landscape learned by EVOLVEpro was still divergent from the pre-
dicted fitness (pMMS) by ESM2 with an even weaker correlation, 
further highlighting the ability of EVOLVEpro to learn protein ac-
tivity at a global scale and how stability/fitness prediction is not 
sufficient for rapid and efficient protein evolution (fig. S8, D to G). 

 
Evolving T7 RNA polymerase for efficient and highly pure 

RNA production 
Multi-objective optimization with EVOLVEpro allows for the 

evolution of multiple complex activities. We chose to showcase 
multi-objective optimization on a common and broadly used en-
zyme with applications across basic biology and therapeutics. We 
selected the T7 RNA polymerase (RNAP) due to its critical role in 
RNA production for mRNA therapies, mRNA vaccines, cell engi-
neering, and basic scientific studies. As mRNA production has nu-
merous features characterizing its potency and quality, as 
opposed to genome editing where one feature matters the most, 
we designed a multi-objective optimization function to evolve a 

high-fidelity T7 RNAP for mRNA production with these three pa-
rameters: (i) RNA yield measured via UV-vis spectrophotometry, 
(ii) mRNA translation in a double-stranded RNA (dsRNA) sensitive 
cell line measured via luciferase translation, and (iii) RNA purity 
measured via immunogenicity in BJ fibroblast cells by interferon 
β (IFN-β) RNA production (Fig. 5A). We weighted these features 
in the EVOLVEpro objective function by 20, 40, and 40%, respec-
tively to prioritize the higher fidelity and lower immunogenicity 
aspects of this enzyme for clinical applications. To facilitate high 
throughput variant testing, we relied on SP6 in vitro transcription-
translation coupled reaction kits to generate mutant T7 RNAP in 
a one-pot reaction and subsequently use the produced T7 RNAP 
to produce co-transcriptionally capped Cypridina luciferase 
mRNA for downstream in vitro testing. 

During the initial two rounds of evolution, fold improvement 
of top mutants was two- to fourfold. By rounds 3 and 4, we 
started observing substantial improvements in all features, espe-
cially in translation and immunogenicity fold changes over the WT 
T7 RNAP (Fig. 5B-C, fig. S9A). By the end of round 4, one T7 RNAP 
mutant, E643G, generated luciferase mRNA that produced 34x 
more translated luciferase and ~98% less immunogenicity (Fig. 
5C). We sought to benchmark E643G against the previously engi-
neered state-of-the-art mutant T7 RNAP with G47A mutation and 
884G insertion(G47A/884insG) that has markedly reduced immu-
nogenic byproduct in our in vitro transcription/translation (IVTT) 
assay (68). We found that our E643G mutant produces sevenfold 
higher translation in cells and approximately twofold less IFNB1 
inflammation in BJ fibroblasts (fig. S9B). 

To leverage the suite of mutants generated in the first four 
rounds, we generated multi-mutants with EVOLVEpro, combining 
up to three previously tested mutations. We also included combi-
nations with the previously identified G47A mutation known to 
reduce dsRNA formation. In typical rational mutagenesis, single 
beneficial mutations are combined according to their spatial loca-
tion under the assumption of synergistic effects of these muta-
tions. Here, we relied on EVOLVEpro’s ability to learn the activity 
landscape to nominate multi-mutants. After two rounds of multi-
mutants corresponding to the sixth round of engineering, 
EVOLVEpro nominated variants with up to ~57x more translation 
from luciferase mRNA and ~515x less immunogenicity than the 
original WT T7 RNAP (Fig. 5C). The top variant, T7 
RNAPT3M/G47A/E643G, was substantially more effective at translation 
and less immunogenic than the G47A/884insG mutant. This multi-
mutant was chosen as the final EVOLVEpro evolution candidate 
and termed EVOLVEpro enhanced T7 RNAP, or epT7. The wide 
range of activities we see upon combining mutations points to 
complex epistatic interaction on the fitness landscape, and fur-
ther examination of these interactions is needed to understand 
the mechanism underlying the range of activities seen for differ-
ent combination mutants. 

Given the high throughput testing of mutant T7 RNAPs in the 
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IVTT reaction, we hypothesized that the unoptimized IVT buffer 
could change these mutant’s mRNA production (69) and sought 
to compare the performance of top mutants in clinically relevant 
IVT settings with NEB’s HiScribe transcription kit, followed by Vac-
cinia cap-1 capping and polyA tailing. We therefore purified the 
top performing single mutant (E643G), previously reported state-
of-the-art mutant (G47A/884insG) (68), and our epT7 
(T3M/G47A/E643G) along with WT to compare their perfor-
mance. We compared the production of six different mRNA se-
quences, ranging in size from 500 nt to 6500 nt, between epT7, 
T7E643G, and WT T7. Consistent with our IVTT-based experiment, 
we found that epT7 and E643G produced significantly higher 
mRNA in a 2-hour transcription scheme than both WT T7 RNAP 
and the G47A/884insG variant (fig. S9C). Analysis of the three dif-
ferent mRNA products by both E-gel EX and TapeStation gel elec-
trophoresis systems confirmed the presence of a single on-target 
product across all four enzymes (fig. S9, D to F). Looking at the 
translation and immunogenicity aspects of the mRNAs produced 
by these enzymes, we found that in all cases, epT7 produced 
mRNA had four- to 120-fold higher translation than wild type and 
four- to 256-fold lower immunogenicity (Fig. 5D and fig. S10A). 
Functional testing of SpCas9 mRNA also shows significantly higher 
editing from epT7’s produced mRNA in two separate cell lines (fig. 
S10B). These results validate that the EVOLVEpro derived epT7 
mutants are not buffer or template-specific and are genuinely im-
proving the quality of mRNA produced by the polymerase. We 
next investigated the mechanism of the epT7 performance en-
hancements by investigating the quality of the RNA. Using an es-
tablished ELISA for dsRNA, we found that the dsRNA in the epT7-
produced mRNA was fivefold lower than WT T7-produced RNA 
and it performed equally well as the RNA produced by the state-
of-the-art G47A/884insG mutant (68) (Fig. 5E). 

Previous efforts to reduce dsRNA production relied on adding 
a glycine residue at the C-terminal “foot” region of the enzyme 
(884G insertion) (68). Our model revealed the functional im-
portance of E643 in transcription and, surprisingly, mutating this 
residue rendered the same effect as 884G insertion (Fig. 5F and 
fig. S9B). Indeed, analysis of the T7 RNAP structure reveals that 
E643 is close to the DNA template, suggesting that E643G im-
proves template binding and RNA production (Fig. 5F). However, 
E643K/E643R did not improve the fidelity of transcription (fig. 
S9A), suggesting that these bulky residues sterically clash with the 
template DNA. 

To rationalize how EVOLVEpro is exploring the activity land-
scape it is useful to consider the progression of nominated resi-
dues through the first four rounds. E643 was found first in round 
3 with the most beneficial mutation being E643N (Fig. 5G). The 
model quickly zoomed into this region by exploring it 5 more 
times in round 4, yielding E643G the best single mutant. G47A has 
been previously reported to increase helix formation, and 
EVOLVEpro took advantage of this helix-favoring mutation in our 

multi-mutant generation. The third mutated residue in epT7 is in 
a disordered region (T3M), suggesting a role independent of DNA 
template binding. T3M might be involved in improving protein 
stability or other aspects that can modulate the polymerase ac-
tivities. These results suggest that EVOLVEpro can be used to 
identify and interrogate the effect of various mechanisms and de-
termine the right balance biochemically to mutagenize. 

We next calculated the relationship between the activity (ob-
served data) and fitness (pMMS) for T7 RNAP and found a nega-
tive correlation of 0.13, in this case denoting the lack of 
association between the two metrics. EVOLVEpro successfully 
navigated through this divergence by selecting mutants with 
higher activity but not fitness in later rounds (Fig. 5H). Lastly, we 
investigated the global evolutionary landscape of epT7 and 
EVOLVEpro’s mutational trajectory. At a high level, as with the 
previous proteins evolved, the activity map learned by EVOLVE-
pro diverged from the fitness map predicted by ESM-2, showing 
that fitness predictions would not be able to predict the mutants 
that were ultimately discovered to improve protein activity and 
other parameters (Fig. 5, I to K, and fig. S10C). 

 
Circular RNA production with epT7 
Circular RNA has emerged as a promising therapeutic modal-

ity for protein replacement therapy thanks to its enhanced stabil-
ity and prolonged expression of proteins (70). Since we observed 
significantly lower dsRNA production and higher fidelity of tran-
scription with epT7, we hypothesized that epT7 would enhance 
circular RNA production since the use of RNase R during post-IVT 
processing typically enriches for both circular RNA and dsRNA 
species that are immunogenic (Fig. 6A). We thus applied epT7 to 
the circularization of four different RNA sequences, finding that 
the translation obtained by circRNA from epT7 is 3 to 30 fold 
higher than RNA produced by WT T7 RNAP (Fig. 6B and fig. S11, A 
to D and J). We then used TapeStation gel electrophoresis to 
quantify the relative ratio of circular products post IVT and found 
reduced long concatemer formation in the circular RNA produced 
by epT7 (Fig. 6C). To better understand the mechanism behind 
better translation of circular RNA made by epT7, we performed 
gel electrophoresis using 2% E-gel EX as previously validated to 
check for the relative ratio of precursor, nicked, intermediate and 
full circular RNA both pre– and post–RNase R treatment (Fig. 6D). 
We noticed reduced intermediate and nicked byproducts in circu-
lar RNA produced by epT7, showing higher fidelity of transcrip-
tion. We used the gel electrophoresis results to quantify the ratio 
of circular RNA across three different templates and found signif-
icantly higher circular RNA production at around 25% efficiency, 
which was ~2 fold higher than the efficiency of WT T7 RNAP, 
higher circRNA purity, and lower concatemer production (Fig. 6E 
and fig. S11, G to I). Lastly, we used dsRNA ELISA to detect the 
amount of dsRNA left in the product after RNAse R cleanup. Con-
sistent with our hypothesis, there is a large increase in dsRNA 
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percentage at around 1.5% from WT T7’s produced dsRNA (Fig. 
6F). This dsRNA ratio is significantly reduced to 0.2% using epT7, 
highlighting the fidelity of this variant during long transcription 
that is needed to accommodate circular RNA production (Fig. 6F). 
To confirm the higher stability of circular-eGFP RNA, we trans-
fected both WT T7 and epT7’s produced circRNA in HEK293FT 
cells and imaged them 24 hours and 72 hours post-transfection 
(fig. S11, E to F). We observed higher GFP fluorescence from epT7 
than WT T7 RNAP and stable expression of GFP at 72 hours similar 
to previously reported (70). 

 
mRNA for in vivo bioluminescent imaging 
Given the high fidelity of epT7, we compared the performance 

of epT7 with WT T7 RNAP in producing 100% N1-methylpseudour-
idine-5′-triphosphate-modified firefly luciferase mRNA that is 
commonly used for in vivo deep tissue imaging (Fig. 6G). This pro-
duction process, including the modified bases, mimics the clinical 
production of therapeutic mRNAs, allowing for a translationally 
relevant evaluation of epT7. We packaged the produced mRNA 
with lipid nanoparticles (LNPs) that traffic to the liver for biolumi-
nescent imaging. At 24 hours post-injection of the mRNA-loaded 
LNPs, we observed ~10-fold higher luminescence for our epT7-
produced mRNA compared to mRNA produced by WT T7 RNAP 
(Fig. 6H). Moreover, we tracked the expression kinetics of both 
mRNAs for 96 hours and found consistently higher translation 
with the epT7-produced Fluc mRNA for a longer period of time 
(Fig. 6I and fig. S11K). 

 
Originality of mutations explored during EVOLVEpro evolu-

tion 
We analyzed the mutations proposed by EVOLVEpro on the 

six proteins evolved in this study by calculating the mutational 
likelihood of individual mutation compared to the training input 
(Uniprot). We found that the median mutational likelihood for 
each protein’s set of mutations ranges from 0.01 to 0.04 which is 
well below the 0.05 cutoff for rare mutations (Fig. 6J) (15). Most 
of the mutations explored by the model are uncommon muta-
tions not seen in nature as defined by a probability cutoff of less 
than 0.1, with 92% of PE2 MLV RT mutations and 77% of Bxb1 
integrase mutations below this threshold. Moreover, all the best 
activity-enhancing single mutants explored during the evolution 
of the six proteins in this study have a mutational likelihood of 
less than 0.1. This analysis reveals that the mutation landscape 
explored by EVOLVEpro is highly original compared to zero-shot-
based language models and reinforces the need to search outside 
naturally occurring mutations to find activity-enhancing mutants 
(fig. S12). 

 
Discussion 
We demonstrate EVOLVEpro as a model for in silico directed 

evolution of protein activities using few-shot active learning. Over 

consecutive rounds of improvement, EVOLVEpro yields variants 
with two- to 515-fold improvements in desired properties, includ-
ing binding, catalytic efficiency, and immunogenic byproducts. 
Using both evolutionary scale PLMs and a regression layer, 
EVOLVEpro learns general rules of protein activity, generating 
highly active mutants with only a few cycles of evolution. Moreo-
ver, because of the rich latent space generated by the PLM and 
powerful feature selections present in the top-layer module, 
EVOLVEpro evolution is a low-N learning approach that requires 
minimal wet lab experimentation. We benchmark EVOLVEpro 
across 12 different DMS datasets covering 8 protein classes, 
showing its superiority in the low-N evolution setting. In this 
benchmarking work, we evaluate all currently available embed-
ding-based PLMs and perform a grid search to optimize over top-
layer regression models, active learning selection strategies, and 
different normalization techniques toward the embeddings and 
activity measurements. We find that PLMs are essential and their 
representations of protein sequence outperform traditional en-
coding methods like one-hot encoding and integer encoding (Fig. 
1B). Interestingly, even in the extreme scarcity of data relative to 
the size of the input vector, dimensionality reduction of the em-
bedding space through PCA did not improve performance, rein-
forcing the importance of the PLM dimensions in guided in silico 
directed evolution (see methods and data S1). The modular de-
sign of EVOLVEpro allows for the integration of future improve-
ments in autoregressive PLMs or next-generation representation 
models. 

The success of EVOLVEpro speaks to the inherent limitations 
of PLMs, which are trained to learn a masked sequence recon-
struction task across evolutionary diversity. As natural sequences 
do not necessarily select for optimal protein activity, the PLM’s 
learned activity landscape will often not be correlated with a pro-
tein’s activity landscape (Fig. 6K). In scenarios of correlations be-
tween fitness and activity, such as antibodies, zero-shot PLM 
protein evolution may work with some success (15, 20), but en-
zyme optimization has proven more challenging. It has been 
shown that PLMs can scale with increasing parameters just like 
large language models, but recent analyses have shown saturat-
ing scaling effects of PLMs with limited input training datasets 
(Uniref) on larger models (71–74). Thus, it is likely that simply in-
creasing the parameters of these PLMs will not enable better pre-
diction of protein activities and other downstream tasks. 
Alternatively, generative PLMs have yielded functional de novo 
proteins, such as GFP and CRISPR nucleases (16, 19). These mod-
els explore a much larger search space than EVOLVEpro in the in-
itial design phase, but variant designs generated by these 
methods do not have improved activities relative to WT proteins 
yet, and the functional success rate of generated proteins is very 
low. As such, Rufollo et al. successfully designed OpenCRISPR, an 
AI-generated Cas9 protein that has cleavage efficiency compara-
ble with the WT SpCas9 (19). We expect generative PLMs to 
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design fairly active protein sequences in tasks where there 
doesn’t exist a good starting point (i.e., a binder against a previ-
ously unknown target) (75). These de novo designed sequences 
may be suitable for combination with EVOLVEpro to create an 
end-to-end de novo design and evolution framework where de 
novo generated sequences can be rapidly optimized for state-of-
the-art activity and thus real-world deployment. In addition, bio-
physical based models can also be integrated with the regressive 
top layer approach established here to further boost prediction 
accuracy and enable rapid identification of gain-of-function mu-
tants in silico (76). 

Using EVOLVEpro, we present the first comprehensive evalu-
ation of an AI directed evolution model across six therapeutically 
relevant proteins. These proteins demonstrate a low correlation 
between observed activity and the PLM-estimated fitness, requir-
ing EVOLVEpro to rapidly navigate the unseen activity landscape. 
In some cases, we leverage EVOVLEpro for multi-objective feature 
optimization, allowing evolution of multiple properties simulta-
neously. Critically, the assays used for measuring protein activity 
in this work are incompatible with pooled screening approaches, 
precluding typical directed evolution strategies. Across the multi-
mutant landscape of protein activity, EVOLVEpro is able to select 
highly active single mutants out of more than 16,000 possible se-
quences and multi-mutants from more than 780 billion possible 
sequences. We thoroughly validate the six proteins evolved by 
EVOLVEpro for genome editing, binding, and RNA generation 
tasks beyond the training set, finding state-of-the-art perfor-
mance. Structural analysis of top mutations reveals many distinct 
mechanisms of activity improvement, suggesting future direc-
tions for directed evolution of these enzymes. In the context of 
protein design, EVOLVEpro is a highly capable protein engineering 
model in that it (i) has high rates of success, (ii) requires no special 
knowledge about the protein, (iii) can be used for multi-objective 
function or property optimization, and (iv) is highly modular, al-
lowing for any protein property with a quantifiable assay to be 
used as an input without extensive finetuning. We anticipate 
EVOLVEpro will continue to improve with new foundation models 
and enhanced search strategies and will be broadly useful for pro-
tein engineering. 

 
Materials and Methods 
Use of ESM2 embeddings 
Let [ ]i 1 2 nx a ,a ,..., a=  denote the amino acid sequence of the 

i -th protein variant, where each ja  represents an individual 
amino acid and n  is the length of the protein. The protein lan-
guage model embedding transformation (ESM2-15B) maps ix  to 
a sequence of embeddings, one for each amino acid, where d  is 
the dimensionality of the embedding space (hidden dimension): 

( ) n d
i iE PLM x R ×= ∈  (1) 

This results in a per-token representation of size n d× . We 

use the final representation layer of the ESM2-15B model. To re-
duce the number of features in the low-N setting and obtain a 
fixed-size representation regardless of protein length, we com-
pute the average embedding vector by taking the mean across all 
amino acid positions: 

n
i ijj 1

1e E
n =

= ∑  (2) 

This results in a single d -dimensional vector d
ie R∈  repre-

senting the entire protein variant, which is then used as input for 
EVOLVEpro. 

 
EVOLVEpro Model 
EVOLVEpro utilizes a Random Forest regressor as its top-layer 

model to learn the functional grammar of variants with respect to 
their activity. This model operates on information-rich latent 
space mean embeddings ie  generated by a protein language 
model as described previously, in an active learning setting. The 
Random Forest regressor uses these embeddings ie  as input fea-
tures to predict the activity or fitness of each variant. 

A Random Forest Regressor was employed as the top-layer 
model in the EVOLVEpro framework. This ensemble learning 
method combines multiple decision trees to make predictions, of-
fering robustness against overfitting and the ability to capture 
complex, non-linear relationships in the data. 

The Random Forest model was configured with 100 estima-
tors (individual decision trees). The quality of splits was evaluated 
using the Friedman Mean Squared Error (MSE) criterion. 

Let ( ){ }N

i i
i 1

D e , y
=

=  be the training dataset, where d
ie R∈  

are the input features (reduced embeddings) and iy R∈  are the 
target values (protein fitness). 

Decision Trees: 
Each tree ( )t ih e  in the forest is trained on a bootstrap sample 

of the original dataset. At each node, the best split is determined 
by maximizing the reduction in impurity: 

( ) ( ) ( )rightleft NN
ΔI I parent I left I right

N N
= − −  (3) 

where I  is the Friedman MSE impurity measure, calculated as 
follows: 

left right 2
left right

left right

N N
diff I diff

N N
y y

⋅
= − = ⋅

+
 (4) 

Here, lefty  and righty  are the mean target values in the left and 

right child nodes, respectively, and leftN  and rightN  are the num-
ber of samples in each child node. 

Random Forest Prediction: 
The final prediction of the Random Forest for a new input ie  

is the average of the predictions from all trees: 
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( ) ( )T
i t it 1

1f e h e
T =

= ∑  (5) 

where T 100=  is the number of trees in the forest. 
Active Learning Approach: 
For each round of EVOLVEpro, after training the Random For-

est on the current dataset, we apply the model to predict fitness 
values for the remaining, untested protein variants. The active 
learning step then selects the most promising variants for experi-
mental testing in the next round. 

Given the nature of Random Forest regression, all predicted 
values for untested variants will fall within the range of y-values 
in the training set: 

( ) ( )train predict trainˆmin y max yy≤ ≤  (6) 

where trainy  are the fitness values in the training set and 

predictŷ  are the predicted fitness values for untested variants. 
While we explored various selection strategies, including 

choosing embeddings most distant from the training set in Euclid-
ean space and selecting a mix of top and bottom predictions, we 
hypothesize that for the objective of round-over-round optimiza-
tion of top fitness, the top-n strategy is most effective. 

The top-n strategy involves selecting the n variants with the 
highest predicted fitness values: 

Selected Variants = ( ){ }i nˆ: yie y ≥  (7) 

where ( )ny  is the nth highest predicted fitness value. 

This strategy aims to iteratively stretch the upper limit of the 
Random Forest’s prediction range: 

( ) ( )train trainround k round kmax y max y≤  (8) 
By focusing on the top predictions, we exploit the model’s cur-

rent understanding of high-fitness regions in the embedding 
space, while also encouraging exploration of nearby areas that 
may yield even better variants: While this greedy approach might 
risk overlooking some areas of the fitness landscape, we believe 
it aligns well with the goal of rapidly identifying and optimizing 
top-performing protein variants in a limited number of experi-
mental rounds. 

 
Benchmarking on 12 DMS datasets 
For model benchmarking, we took 9 existing deep mutational 

scanning (DMS) datasets which were employed in a previous 
zero-shot high fitness prediction approach (15). From this work, 
we leveraged a pre-determined cutoff for high-fitness variants for 
each dataset to select variants that were low and high fitness. To 
augment the use of these datasets, we also selected three addi-
tional DMS datasets: an AsCas12f compact genome editor (33), 
Cov2 viral spike receptor-binding domain (43), and Zika virus en-
velope protein (42). For these datasets, cutoff values were set 
based on the general distribution of high-activity variants. To fa-
cilitate downstream work, a tabular format CSV file and a fasta 
file of all available mutant sequences with activity measurements 

were generated from each dataset. 
 
EVOLVEpro Parameter Grid search 
We conducted an extensive grid search to evaluate various 

strategies for optimizing fitness in a low number of rounds. The 
grid search explored the following parameters: 

1. Fitness measurement: Raw fitness values from each dataset 
or min-max normalized fitness. 

2. First-round strategy: Random selection of variants or di-
verse selection using K-medoids clustering on protein language 
model embeddings. 

3. Learning strategies: We compared several strategies for se-
lecting variants in subsequent rounds, including: 

a. Random selection 
b. Top n predicted fitness variants 
c. Top n/2 and bottom n/2 predicted fitness variants 
d. Maximizing Euclidean embedding distance from previously 

selected variants 
4. Embedding types: We compared different embedding rep-

resentations, including raw embeddings, and PCA-reduced em-
beddings (from 10 to 1000) to account for the fact that this was a 
high p, low n paradigm. This was entirely done on the largest (15B 
parameter) ESM2 model. 

5. Regression types: We evaluated various regression models 
for fitness prediction, including ridge regression, lasso regression, 
elastic net, linear regression, neural networks with a linear last 
layer, random forest regression, KNN regression, Gaussian pro-
cesses and gradient boosting regression. These were largely used 
with default parameters. 

For each combination of parameters, we ran three simula-
tions (to vary the first round of selected variants) using 16 variants 
per round to account for stochastic variability. Performance was 
assessed using the proportion of high-fitness variants out of the 
top 16 variants that the updated model would predict. We quan-
tified the overall effectiveness of each parameter value by count-
ing the number of datasets for which it achieved the highest mean 
fitness binary percentage. This “winning strategy” count provided 
a simple yet informative summary of which approaches were 
most successful across diverse protein systems. The “winning 
strategy” was random first round, raw fitness, top-n selection, 
random forest regression, and raw embeddings. 
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Fig. 1. Developing and benchmarking EVOLVEpro for protein language model-guided engineering. (A) Schematic describing 
the EVOLVEpro method. Proteins of interest go through iterative rounds of low-N screening. A foundational PLM generates 
embeddings for all mutants of a protein and the average embedding by pooling across all residues is used as input for the top-
layer model. Each mutant’s activity is experimentally determined and used to train a domain expert top-layer model with PLM 
embedding as input. The top-layer model then nominates the top-N mutants for the next round of testing and the weights are 
updated iteratively in an active learning format. (B) Benchmarking of foundational models across a panel of 12 comprehensive 
deep mutational scanning (DMS) datasets. Each point is a unique protein and its DMS data. ESM2-15B has the highest average 
percent success in high activity variants prediction. (C) Comparison between EVOLVEpro in active learning format, in zero-shot 
pretraining format, and an existing zero-shot prediction method using protein language model (15) across 12 DMS datasets. 
Each point is a unique protein using its DMS data. (D) Performance over 10 rounds of EVOLVEpro with 16 mutants per round, 
compared to two different non-language model encoding schemes (one-hot encoding and integer encoding). Model 
performance is benchmarked on four datasets (31, 36, 40, 42) and compared to zero-shot ESM2 nomination success rate and 
background random sampling (15). Error bar represents the standard deviation for n=10 random simulations. 
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Fig. 2. Evolution of two monoclonal antibodies with EVOLVEpro. (A) Schematic of the evolution strategy with EVOLVEpro for 
engineering two monoclonal antibodies across two parameters (binding affinity and antibody expression). (B) Engineering of the C143 
antibody over five rounds of EVOLVEpro. Data shows cumulative top 10 mutants’ fold improvement over WT binding affinity to the 
target antigen across 5 evolution rounds. (C) IC50 value estimated from ELISA binding data for the WT C143 antibody, the best single 
mutant (LC N28K) and the best multi-mutant (LC N28R/Q40K+HC R39K). Error bars represent standard error of mean with n=3 technical 
replicates. A one way ANOVA was run between the three groups (*p<0.05, **p<0.01). (D) Scatter plot showing each individual mutant’s 
expression fold improvement versus binding affinity improvement for the C143 antibody. The best mutant in each round is highlighted 
with a larger circle. (E) Engineering of the aCD71 over five rounds of EVOLVEpro. Data shows cumulative top 10 mutants’ fold 
improvement over WT binding affinity to the target antigen across 5 evolution rounds. (F) IC50 value estimated from ELISA binding data 
for the WT anti-CD71 antibody, the best single mutant (S92A) and the best multi-mutant (T70A_S92V). Y axis is shown on log 10 scale. 
Error bars represent standard error of mean with n=3 technical replicates. A one way ANOVA was run between the three groups 
(*p<0.05, **p<0.01). (G) Scatter plot showing each individual mutant’s expression fold improvement versus binding affinity 
improvement for the aCD71 antibody. The best mutant in each round is highlighted with a larger circle. (H and I) Mapping of the top 
mutations on the predicted structure of C143 (H) and anti-CD71 (I) respectively (AF3). (J) Scatter plot comparing the predicted naive 
ESM-2 C143 protein fitness (predicted masked marginal score) and scaled tested activity of nominated mutants across evolution. Scatter 
points are colored by rounds in evolution. The correlation and linear regression line are shown in red and the R square of the correlation 
is reported. (K) Comparison of the C143 embedding latent space with either predicted naive ESM-2 protein fitness landscape or 
EVOLVEpro protein activity landscape. Yellow rhombus denotes WT sequence. 
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Fig. 3. Evolution of highly active miniature CRISPR nucleases with EVOLVEpro. (A) Schematic of the evolution strategy with 
EVOLVEpro for engineering a miniature Cas12f. (B) Engineering of PsaCas12f over four rounds of EVOLVEpro and a rational 
combination multi-mutant round. Data shows cumulative top 10 mutants from current and preceding rounds, as measured by fold 
improvement of indel activity at the endogenous RNF2 genomic locus. (C) Indel activities of WT PsaCas12f, epPsaCas12f, and a 
panel of published Cas12a and Cas12f nucleases on 10 different genomic targets across five genes (two guides per gene). The fold 
change on top of each guide denotes the relative fold increase of epPsaCas12f compared to the average of the other published 
Cas12a and Cas12f nucleases. A one-way ANOVA is performed for each guide sequence shown (****p<0.0001). Error bars 
represent standard error of mean with n=3 biological replicates. (D) Next-generation sequencing quantified indel formation at 
murine PCSK9 genomic loci by epPsaCas12f, WT PsaCas12f, and SpCas9. A one-way ANOVA is performed for each guide sequence 
shown (****p<0.0001). Error bars represent standard error of mean with n=3 biological replicates. (E) Schematic of the in vivo 
validation assay for EnPsaCas12f editing at the murine PCSK9 locus for PCSK9 reduction. (F) Serum PCSK9 levels at three different 
time points from −2 days of injection to +14 days. The percent of control PCSK9 was calculated by normalizing to the control group 
with PBS injected. A two-sided Student’s t test was run on each time point relative to −2 days’ baseline PCSK9 level (ns, non-
significant; *p<0.05). Error bars represent standard error of mean with n=3 biological replicates. (G) Mapping of the top mutations 
on the AlphaFold3 model of PsaCas12f. The RuvC active site is indicated by a red circle. (H) Heatmap showing most common 
PsaCas12f mutations explored by EVOLVEpro over rounds of evolution. Any position explored more than once is shown on a 
cumulative basis across rounds. (I) Scatter plot comparing the predicted naive ESM-2 protein fitness (predicted masked marginal 
score) and scaled tested activity of nominated mutants across evolution, scatter points are colored by rounds in evolution. (J and 
K) Comparison of the PsaCas12f embedding latent space with either predicted naive ESM-2 protein fitness landscape (J) or 
EVOLVEpro protein activity landscape (K). Yellow rhombus denotes WT sequence. (L) A kernel density estimate plot of protein 
fitness as predicted by ESM-2 versus protein activity as predicted by EVOLVEpro. The correlation and linear regression line are 
shown in red and the R square of the correlation is reported. 
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Fig. 4. Evolution of prime editor with EVOLVEpro. (A) Engineering of the prime editor PE2 with twinPE guides over seven rounds of 
EVOLVEpro. Data shows cumulative top 10 mutants from current and preceding rounds, as measured by fold improvement of prime 
editing activity to install a 46 bp AttB site at the murine NOLC1 genomic locus. (B) Validation of 4 evolved prime editors in the 
installation of attB sites at four different endogenous sites in either mouse or human genomes. A two-sided unpaired t test was run 
between WT and each evolved prime editor (ns, non-significant; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). Fold change over 
WT PE2 is shown for the best mutant on each genomic locus. Error bars represent standard deviation with n=3 biological replicates. 
(C) Mapping of the top mutations on the AlphaFold3 model of M-MLV RT. The RT active site is indicated by a red circle. (D) Heatmap 
showing most common PE2 mutations explored by EVOLVEpro over rounds of evolution. Any position explored more than once is 
shown on a cumulative basis across rounds. (E) Scatter plot comparing the predicted naive ESM-2 protein fitness (predicted masked 
marginal score) and scaled tested activity of nominated mutants across evolution, scatter points are colored by rounds in evolution. 
(F) Schematic of the evolution strategy for evolving the Bxb1 serine integrase from the Mycobacteriophage. (G) Engineering of the 
Bxb1 integrase over 8 rounds of EVOLVEpro. Data shows cumulative top 10 mutants from current and preceding rounds, as measured 
by fold improvement of plasmid integration over WT. (H) Performance of top Bxb1 mutants for plasmid recombination with low Bxb1 
expression in Hela cell. A two-sided Student’s t test was run between WT and each evolved Bxb1 integrase (***p<0.001, 
****p<0.0001). Fold change over WT Bxb1 is shown for the best mutant. Error bars represent standard deviation with n=3 biological 
replicates. (I) Validation of epBxb1 with PASTE at four genomic sites across human and mice genomes. A two-sided Student’s t test 
was run between WT and each evolved Bxb1 integrase (*p<0.05, **p<0.01). Fold change over WT Bxb1 integrase is shown for each 
genomic locus. Error bars represent standard deviation with n=3 biological replicates.  
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Fig. 5. Engineering RNA polymerases for high yield and low immunogenicity mRNA production. (A) Schematic of the strategy for high 
throughput T7 RNA polymerases mutant testing and evolution policy setup for evolving a high fidelity T7 RNAP. (B) Engineering of T7 RNAP 
over six rounds of EVOLVEpro. Data shows the top 10 mutants from current and preceding rounds, as measured by fold improvement of 
transcription fidelity over WT. (C) Performance of T7 mutants from six EVOLVEpro rounds and previously engineered G47A/884insG SOTA 
T7 RNAP in Cluc mRNA translation and immunogenicity in BJ Fibroblast cells. (D) Validation of epT7 for production of 6 mRNA sequences 
ranging from 513nt to 6496nt. Purified WT or mutant RNAP is used to produce these sequences, and they were transfected into BJ fibroblast 
cells for either protein translation readout or targeted IFNB1 gene expression analysis using quantitative polymerase chain reaction 24 
hours after transfection. A two-sided Student’s t test was run between WT and each evolved T7 RNAP (**p<0.01, ***p<0.001, 
****p<0.0001). Error bars represent standard deviation with n=3 biological replicates. (E) dsRNA ELISA is used to analyze the amount of 
dsRNA during transcription of a 1662 nt Cypridina luciferase mRNA. 500 ng of posttranscription product is used as input for the dsRNA 
ELISA. A two-sided Student’s t test was run between WT and each evolved T7 RNAP (****p<0.0001). Error bars represent standard deviation 
with n=3 biological replicates. (F) Mapping of the top mutations on the T7 RNAP structure (PDB ID 3E2E). The active site is indicated by a 
red circle. (G) Heatmap showing most common T7 RNAP mutations explored by EVOLVEpro over rounds of evolution. Any position explored 
more than once is shown on a cumulative basis across rounds. (H) Scatter plot comparing the predicted ESM-2 protein fitness score versus 
experimentally measured T7 RNAP transcription fidelity scaled score across evolution rounds. The correlation and linear regression line are 
shown in the plot. (I and J) Comparison of the T7 RNAP latent space with either predicted ESM-2 protein fitness (masked marginal score) or 
EVOLVEpro protein activity fold improvement. Yellow rhombus denotes WT sequence. (K) A kernel density estimate of protein fitness as 
predicted by ESM-2 versus protein activity as predicted by EVOLVEpro. The correlation and linear regression line are shown in red and the 
R2 of correlation is reported. 
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Fig. 6. Application of epT7 for circular RNA production and in vivo bioluminescence. (A) Schematic of circular RNA production. (B) 
Validation of epT7 produced circRNA on four different template sequences compared to both T7E643G and WT T7. Translation of each 
protein is measured in HEK293FT cells 48 hours after transfection. A two-sided Student’s t test was run between WT and each evolved 
T7 RNAP (***p<0.001, ****p<0.0001). Error bars represent standard deviation with n=3 biological replicates. (C) Tapestation gel 
electrophoresis analysis of circular Fluc RNA produced by either epT7 or WT RNAP. epT7 shows reduced concatemer production. (D) 
Comparison of RNA products for Fluc circRNA produced by epT7 compared to WT T7 via gel electrophoresis using 2% E-gel EX at 
different steps in the production process: post-initial IVT and post–RNase R processing. The panel on the right shows quantification 
of intermediate and nicked RNA ratio in the post IVT samples. Error bars represent standard deviation with n=3 biological replicates. 
(E) Comparison of purified GFP, nanoluc (Nluc), and Fluc circRNA yield by epT7 compared to WT T7 after the initial RNase R clean-up. 
The panel on the left shows the raw mass percentage left after the cleanup. The panel on the right shows the purity of the circular 
RNA in the post clean-up reaction as determined by quantification using a TapeStation analysis. A two-sided Student’s t test was run 
between WT and epT7 (**, p<0.01, ****, p<0.0001). (F) Comparison of dsRNA content for nanoluc circRNA produced by epT7 
compared to WT T7 using either 2 hours of IVT or 12 hours of IVT. Input into the dsRNA ELISA assay involves 500 ng of post–RNase R 
cleaned-up samples. A two-sided Student’s t test was run between WT and evolved T7 RNAP (**, p<0.01). Error bars represent 
standard deviation with n=3 biological replicates. (G) Schematic of the in vivo mRNA assay for measuring mRNA expression in the 
liver via non-invasive luminescent imaging. (H) In vivo luminescent signal detected 24 hours post-injection in mice injected with mRNA 
produced by either epT7 or WT T7 or PBS controls. A two-sided Student’s t test was run between WT, WT T7 RNAP, and epT7 (*, 
p<0.05). Error bars represent standard deviation with n=3 biological replicates. (I) Time-course of in vivo luminescent signal detected 
up to 96 hours post-injection of LNP-mRNA produced by either epT7 or WT T7, or PBS controls. A two-sided paired Student’s t test 
was run between WT, WT T7 RNAP, and epT7 (*p<0.05) for each time point. Error bars represent the standard error of mean with 
n=3 biological replicates. (J) A box plot of mutational likelihood for each individual mutant nominated by EVLOVEpro shown for each 
of the six proteins in this study. A dashed line at 0.05 and 0.1 are shown to denote the threshold for rare mutations and uncommon 
mutations, respectively. (K) A schematic showing the evolution of higher activity variants with EVOLVEpro versus traditional PLM 
evolution approaches. The mutagenesis landscape of proteins is often conceptualized as a complex terrain with numerous potential 
paths. Shown here is a gray road that conceptualizes the protein mutagenesis landscape where traversing upwards results in higher 
protein activity and traversing downwards reduces protein fitness. Traditional frameworks of evolutionary plausibility attempt to 
navigate this terrain based on natural selection, which is constrained by historical and environmental factors. 
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