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Directed protein evolution is central to biomedical applications but faces challenges like experimental complexity, inefficient
multi-property optimization, and local maxima traps. While in silico methods using protein language models (PLMs) can provide
modeled fitness landscape guidance, they struggle to generalize across diverse protein families and map to protein activity. We
present EVOLVEpro, a few-shot active learning framework that combines PLMs and regression models to rapidly improve
protein activity. EVOLVEpro surpasses current methods, yielding up to 100-fold improvements in desired properties. We
demonstrate its effectiveness across six proteins in RNA production, genome editing, and antibody binding applications. These
results highlight the advantages of few-shot active learning with minimal experimental data over zero-shot predictions.
EVOLVEpro opens new possibilities for Al-guided protein engineering in biology and medicine.

Protein diversity has been shaped by billions of years of evolu-
tionary pressure, filtering the potential design space for diverse
biological functions. Understanding the connection between pro-
tein amino acid sequence and function is crucial for advancing bi-
ology and developing new therapeutics. Experimental
approaches like deep mutational scanning (DMS) can directly
measure functional effects of protein mutations (1-3) but are lim-
ited to exploring only a fraction of the possible protein sequence
space. Computational approaches leveraging orthologous se-
guences can reduce the experimental data needed to map fitness
landscapes and optimize proteins (4-6), but these methods re-
quire multiple sequence alignments, high ortholog abundance,
and minimal sequence length variation.

To overcome these challenges, fitness can be inferred by
training broadly across evolutionary diversity. Protein language
models (PLMs), such as ESM2 (7), are trained across comprehen-
sive protein sequence databases to fill in missing amino acids.
PLMs learn informative biological representations (7—12) protein
structure prediction (7) and functional annotation (13). PLMs
have nominated protein mutants with improved activity (14, 15)
and generative PLMs (16—18) have been used to design novel pro-
teins. However, zero-shot predicted mutants have limited success
(14, 15) and de novo-designed proteins typically exhibit lower or
comparable activity relative to natural wild-type (WT) sequences
(16, 19). While zero-shot models can predict antibody mutations
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to increase binding affinity, they cannot improve other important
antibody features, such as developability and immunogenicity
(15, 20). These failures of PLMs to substantially improve protein
activity in zero-shot settings are driven by their inability to gener-
alize to new contexts due to limited training data (21) and the dif-
ference between evolutionary fitness and protein function.
Therefore, protein optimization and interpretation using PLM-
based approaches require additional experimental data to reach
design-specific objectives.

Iterative approaches for optimization, such as directed evolu-
tion (DE) (22), take advantage of the smoothness of protein fit-
ness landscapes to improve function. Although these methods
are successful in contexts with suitable activity landscapes and
screening methods, they can be labor intensive and fail on rugged
landscapes, especially when trapped in local optima. Some im-
provements can be gained from combining DE with machine
learning. Machine learning—directed evolution (MLDE) methods
(23-28) leveraging active learning have effectively improved di-
verse proteins but at the cost of comprehensive experimental
evaluation. Merging active learning with simpler protein repre-
sentation models, such as recurrent neural networks (29, 30), has
simplified the evolution process, but previous attempts at active
learning on protein models (30) have not generalized well beyond
proof-of-concept demonstrations like fluorescent protein engi-
neering due to shortcomings in the protein representation space.
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Given the limited success of PLM-based methods to rank var-
iant effects in a zero-shot fashion (15) or to iteratively nominate
protein mutations (30), we reasoned that active learning with
high-performance PLMs and small sets of mutants would improve
directed evolution performance. Here we present the protein
evolution model EVOLVEpro (evolution via language model-
guided variance exploration for proteins) to solve these chal-
lenges with MLDE. EVOLVEpro nominates high-activity protein
variants with active learning and minimal experimental testing,
achieving rapid prediction of high-activity mutants. This perfor-
mance stems from a modular approach that marries an evolution-
ary-scale PLM with a top-layer regression model to learn a
protein’s activity landscape and guide the directed evolution pro-
cess in silico. This top-layer model is trained over multiple rounds
of evolution, with each round evaluating a small set of EVOLVE-
pro-predicted mutants using one or more experimental assays.
These data are then used to update the model and predict the
next round of mutation candidates. We hypothesize that combin-
ing the PLM and regressor enables the identification of multiple
high-activity regions simultaneously, providing generalization
across diverse protein classes with rugged activity landscapes and
robustness to local optima due to detrimental or neutral mutants
(28). Moreover, EVOLVEpro prompting only uses protein se-
quences and does not require structural information, expert
knowledge, or prior data. We demonstrate EVOLVEpro’s ability to
evolve multiple activities of a protein simultaneously, opening up
vast possibilities for its use in biology and medicine.

Development and benchmarking of the EVOLVEpro model

We developed a deep learning-based directed evolution
framework, EVOLVEpro, combining (i) a PLM to encode protein
sequences into a continuous latent space to facilitate activity op-
timization and (ii) a top-layer regression model to learn the map-
ping between latent space and activity from a few number of data
points (i.e., the low-N regime). EVOLVEpro actively learns the fit-
ness landscape across multiple rounds of evolution. In each
round, the regression model ranks protein sequences according
to their predicted activity, selecting top-ranked sequences for ex-
perimental validation. Cycles are performed iteratively to im-
prove defined protein activities until they reach desired levels
(Fig. 1A).

We first optimized EVOLVEpro’s computational framework in
silico by curating 12 deep mutational scanning (DMS) datasets
(31—43) (table S2 and data S2), allowing the selection of optimal
architecture and parameters using simulated runs prior to any ex-
perimental testing. This simulation revealed ground truth activity
data to EVOLVEpro for only the variants nominated by the model.
The twelve DMS datasets selected for model benchmarking span
diverse activities, including viral spike proteins, RNA-guided nu-
cleases, DNA-binding proteins, RNA-binding proteins, and ki-
nases, maximizing the generalizability of the model architecture,
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which would serve as the final EVOLVEpro model for experi-
mental applications throughout the rest of the study.

We optimized the EVOLVEpro architecture across five param-
eters: (i) the strategy for first-round mutant selection, (ii) the top-
layer regression model that learns the activity landscape, (iii) the
active learning policy for selecting mutants for the next round, (iv)
the data processing for experimentally measured activities, and
(v) the PLM embedding vector transformation (table S1 and data
S1). We first selected ESM-2 as the base PLM because of its large
training data and available model size of >200M proteins and 15B
parameters, respectively. Using the ESM-2 15B parameter model,
our grid search (see methods) found that the optimal strategy
was (i) selecting a random set of first-round variants, (ii) using a
random forest regressor discriminatory model to predict protein
activities, (iii) using embeddings averaged across all amino acids,
and (iv) using a top-N selection strategy in each round of evolu-
tion (fig. S1A). This model nominated high frequencies of gain-of-
function protein variants in only five rounds (fig. S1, A and B), and
both median activity and activity of the nominated top mutant
increased rapidly from round to round across all DMS datasets
(fig. S1B). We calculated the top mutant’s improvement in activity
by scaling the activity score of the best mutant in the last round
relative to the first round across the 12 DMS datasets. In general,
10 rounds of EVOLVEpro evolution with 16 mutants per round
identified top mutants with up to 2.2-fold higher activity than the
starting WT sequence (fig. S1B). To understand how the number
of variants per round affected performance, we simulated
EVOLVEpro evolution with 10 to 100 variants per round. We
found that larger rounds increased prediction accuracy without
saturation (fig. S1C), indicating that EVOLVEpro can be used for
both extremely low-N evolution (<20 mutants per round) for
rapid and cheap experimental characterization and medium-N
(~100 mutants per round) for quicker and more efficient evolu-
tion with fewer rounds.

After optimizing the top-layer model and learning strategies,
we surveyed a panel of PLMs, Using the optimal parameters from
the grid search, we compared ESM-2 15B with smaller versions of
ESM-2 and ESM-1 (44), UniRep (29, 30), ProtT5 (45), ProteinBERT
(10), Ankh (9), one-hot encoding, and integer-encoded protein
representations for the ability to identify the highest activity can-
didates across the 12 datasets. The ESM-2 15B parameter model
outperformed other models on all datasets except two and re-
turned the greatest fraction of high-activity mutants, confirming
its final selection for the EVOLVEpro latent space model (Fig. 1B
and data S3). Across our panel of embedding methods, only four
PLMs had a significantly higher prediction accuracy than one-hot
encoding, as determined by one-way analysis of variance
(ANOVA), showing the critical importance of the base layer model
for EVOLVEpro performance. Given the high dimension of ESM2-
15B and the small number of samples seen by the top layer re-
gression model, we explored if the full input dimension was
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needed for our observed model performance. Reducing the input
dimension of the protein embedding using PCA, we tested a range
of input dimensions into the top layer regressor. The original full-
length embeddings performed best on 9 of the 12 datasets (fig.
S1D), with full-length embeddings contributing more to model ac-
curacy in difficult engineering tasks where there exist fewer high-
activity mutants in the population, such as MAPK1 kinase and
PafA. In contrast, for easier tasks such as infA and AsCas12f, all
dimensionalities saturated activity.

As MLDE methods require pre-training a discriminatory
model, we compared augmented EVOLVEpro with various
amounts of pre-training (Fig. 1C). Active learning drastically re-
duced the overall number of mutants required: EVOLVEpro with
only 5 rounds of evolution (16 mutants per round) was equivalent
in performance to EVOLVEpro pre-trained with 160 mutants,
whereas 10 rounds of evolution (16 mutants per round) was
equivalent to pre-training with 500 mutants. Moreover, EVOLVE-
pro outperformed zero-shot prediction methods (Fig. 1C) (15).
This comparison confirms that the few-shot nature of EVOLVEpro
allows for efficient directed evolution with minimal effort and
low-N testing per round (Fig. 1C and data S4). To explore if
EVOLVEpro benefited from base models that are better at extrap-
olation of complex landscapes, we compared the performance of
a random forest regressor with a Gaussian process regressor and
a k-nearest neighbor-based regressor, finding that the random
forest regressor performed best in 10 out of 12 datasets (fig. S1E).
This finding agrees with the utility of random forest regressors in
the low-N regime in other prediction tasks (46, 47).

Lastly, we analyzed the per-round activity improvement for
EVOLVEpro compared to one-hot and integer encoding and zero-
shot prediction. With 16 mutations per round, EVOLVEpro found
variants with significantly enhanced activity by round 5 across
every dataset (Fig. 1D and fig. S2). Moreover, the one-hot and in-
teger encoding frameworks often saturated much earlier in the
evolution process and never reached the activity levels achieved
by EVOLVEpro. Interestingly, we observe a non-linear increase in
protein activity after round 3 for some proteins, suggesting more
substantial gains in mapping the protein activity landscape as
EVOLVEpro evolution proceeds.

Antibody optimization with EVOLVEpro

We used EVOLVEpro to optimize two therapeutically relevant
monoclonal antibodies: C143, an antibody against the SARS-CoV-
2 spike protein, and aCD71, an antibody against the human trans-
ferrin receptor used for delivery of drugs and siRNA to muscle and
cardiac cells in vivo (15, 48, 49). aCD71 has more than 90% se-
quence homology to Delpacibart, a phase Il clinical stage therapy
for Myotonic dystrophy. Both antibodies have low nanomolar af-
finities against their cognate antigen, presenting a challenge for
further improvement by EVOLVEpro. We designed a multi-objec-
tive optimization with EVOLVEpro on antibody expression levels
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and binding affinity to the target antigen. Optimization over mul-
tiple features shows that the model can jointly evolve antibody
binding and yield, as antibody mutations often affect multiple an-
tibody features, including expression, stability, solubility, half-life,
or immunogenicity. Critically, zero-shot developability optimiza-
tion is difficult with protein language or structure-based inverse
folding models, as the relationship between sequence and devel-
opability or other non-binding features is not directly captured by
evolutionary sequence or structure data (15, 20). In our multi-ob-
jective directed evolution scheme, we weighed the binding affin-
ity at four times the expression levels (i.e., developability score)
to prioritize variants that bind with higher affinity (Fig. 2A).

For C143 evolution, we quantified binding affinity with an en-
zyme-linked immunosorbent assay (ELISA) against the SP6 stabi-
lizing variants of the SARS-CoV-2 spike (Wuhan strain) protein
(50). We saw improved binding after 3 rounds of EVOLVEpro evo-
lution, surpassing previous zero-shot approaches (15) (Fig. 2B and
fig. S3A). At round 4, we found significant improvement with a
light chain mutant (N28K), with an ICso of 0.19 nM (Fig. 2C). Using
our 4 rounds of single mutations, we had EVOLVEpro design
multi-mutant combinations for a fifth round. The best multi-mu-
tant (light chain N28R/Q40K with heavy chain R39K) bound to the
SP6 spike antigen with an ICso of 60 pM (Fig. 2C), likely due to the
synergistic interaction between N28R on the light chain and R39K
on the heavy chain. We stopped at one round of multi-mutant
evolution due to the substantial improvements we observed, but
in practice, multiple rounds of multi-mutant testing are likely
needed to reach convergence on desired properties. We found
that many improved binders compromised vyields (Fig. 2D), a
tradeoff due to the bias toward binding during the multi-objective
design. Despite this tradeoff, a subset of C143 mutants, such as
R39K, had both an increase in affinity and protein expression,
showing that developability can be co-optimized alongside bind-
ing affinity.

We explored the likelihood of the top EVOLVEpro nominated
mutations relative to training data and known antibody variants
observed in nature. We analyzed the top 10 mutations for both
occurrence in hotspot regions and deviation from the germline
sequence. We found none of the top 10 mutations are mutated
back to the germline unmutated common ancestor sequence
(UCA). The UCA sequence at light chain N28 is a serine (S). How-
ever, the affinity-enhancing mutation recommended by EVOLVE-
pro is either a lysine or arginine, both with likelihoods less than
0.05 when compared to the Uniprot training input, reinforcing the
notion that EVOLVEpro mutations are rare and novel. Moreover,
this observation highlights the utility of top layer regression
model to explore rare mutations not seen in the training input of
PLM by promoting exploration into unknown regions of the pro-
tein fitness landscape. Furthermore, we found the top single mu-
tant N28R (light chain) happens in the complementarity
determining region (CDR), but the majority of the top affinity-
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enhancing mutations (7 out of the top 10 mutations) are located
in the framework region. This highlights the de novo exploration
of EVOLVEpro on the entire variable region of the antibody to find
affinity-enhancing mutations that might not seem likely or intui-
tive in the framework region. To further understand EVOLVEpro’s
mutational trajectory, we represented the model’s attention to
particular residues as a cumulative frequency and found residues
like K33, R39, and D58 on the heavy chain and S14 and N28 on the
light chain are repeatedly explored (fig. S3B).

For using EVOLVEpro to in silico evolve an anti-CD71 antibody,
we measure the target binding affinity using enzyme-linked im-
munosorbent assay (ELISA) against the human TfR protein and
measured antibody expression with an anti-IgG. We saw improve-
ment in binding after just rounds of evolution with EVOLVEpro
(Fig. 2E and fig. S4A). We acquired 10 mutants using the efficient
evolution algorithm to benchmark against EVOLVEpro and found
that EVOLVEpro nominated mutants 35-fold better than WT
whereas efficient evolution’s best mutant is only eight-fold better
(15). At round 4, we found the best single mutant heavy chain
S92A to bind to the antigen with an ICso of 29 pM, significantly
higher than that of the WT at 551 pM (Fig. 2F). We also asked the
model to rank multi-mutants based on the single mutant data
from the first four rounds and performed one round of multimu-
tant testing. We improved binding and expression in the multi-
mutant round 5 with heavy chain T70A/S92V mutant. The multi-
mutant binds to the hTfr protein with an I1Cso of 19 pM (Fig. 2F).
Interestingly, most of the mutants nominated after round 1
showed a marked increase in expression profile and binding affin-
ity, showing that EVOLVEpro simultaneously engineered the de-
velopability and binding (Fig. 2G). This finding contrasts with the
results from the C143 antibody, implying the Pareto frontier of
binding and expression likely differs between the two antibodies,
with anti-CD71’s WT sequence easier to engineer across multiple
properties than C143’s WT sequence. Future work examining this
trade-off between multiple properties for additional antibodies
or proteins will enable EVOLVEpro to better traverse Pareto fron-
tiers more efficiently.

Upon analyzing the novelty of the aCD71 antibody mutations,
we found only one of the top 10 mutations is mutated back to the
germline unmutated common ancestor sequence (UCA) at posi-
tion V73. The UCA sequence at the site of the best mutation in
heavy chain S92 is a threonine (T). However, the affinity-enhanc-
ing mutation recommended by EVOLVEpro is either an alanine or
valine. S92V mutation has a mutation likelihood of less than 0.05
when compared to the Uniprot training input, highlighting its rar-
ity. This shows EVOLVEpro’s ability to insightfully choose novel
mutations not seen in the training input of the PLM base layer.
Furthermore, we found all top 10 affinity-enhancing mutations
are located in the framework region rather than in the CDR that
is commonly thought to determine binding affinity. Lastly, to un-
derstand EVOLVEpro’s mutational trajectory on anti-CD71, we
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represented the model’s attention to particular residues as the
cumulative frequency of individual residues being explored by the
model and found that multiple residues are repeatedly explored
by the model including T70 and S92 on the heavy chain and Q38
on the light chain (fig. S4B).

We used AlphaFold 3 to model the structure of the anti-CD71
and C143 antibodies (Fig. 2, H and |, and data S7). We found two
major clusters of exploration by EVOLVEpro on C143 antibody in
the framework region with light chain mutations S14, Q40, L50,
and K45 co-located and R39, S63, and E89 in close proximity on
the heavy chain. These mutations likely alter binding through
structural changes in the variable region. Additionally, was a CDR
mutation, N28, on the light chain located in the CDR-L1 region
that likely directly alters the interaction between the C143 anti-
body and the antigen, which is not possible to model with AF3
due to a low confidence score of the complex (Fig. 2H). For the
anti-CD71 antibody, we found all the best mutations clustered
around one region in the heavy chain domain. As they are all in
the framework region, they likely alter the binding affinity indi-
rectly, a hypothesis supported by the increase in expression rela-
tive to the WT sequence (Fig. 2I).

Lastly, we analyzed each mutant’s observed activity versus the
PLM-predicted fitness landscape. We calculated the mutant fit-
ness as a predicted marginal masked score within the ESM2 em-
beddings (pMMS) and found that the activities of EVOLVEpro
variants did not correlate with predicted ESM2 fitness (Fig. 2J and
fig. S4C). To extrapolate this finding across the entire C143 and
anti-CD71 mutational landscape, we projected the base layer PLM
fitness score and top-layer random forest predicted fold improve-
ment (pFl) in the latent space for every possible single mutant
variant, generating EVOLVEpro determined protein activity land-
scape (figs. S3C and S4E). There was relatively little overlap be-
tween the two distributions, with a negative correlation of -0.16
for C143 antibody and 0.01 for anti-CD71 antibody between pre-
dicted fitness and predicted activity, further highlighting ESM2’s
lack of understanding of protein activity (figs. S3C and S4E). We
projected the individual mutants onto the PCA space of the ESM2
embedding and found two opposing directions between higher
fitness and higher function (Fig. 2K and fig. S4D). Analyzing the
evolution trajectory from round 1 to the final round by calculating
the geometric midpoint of each round revealed the top layer
model directed the evolutionary process toward the higher side
of PCA1 for C143 antibody and the higher side of PCA2 for anti-
CD7, which we observe to correlate with higher protein function
(figs. S3D and S4F).

Evolution of a miniature RNA-guided CRISPR nuclease with
EVOLVEpro

Programmable RNA-guided nucleases have diverse applica-
tions in basic biology, therapeutics, and diagnostics. However,
commonly used nucleases, such as the Cas9 from Streptococcus
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pyogenes (SpCas9) are too large to effectively be packaged in
common adeno-assocated viral (AAV) vectors, and more compact
high-efficiency nucleases, such as the Cas9 from Staphylococcus
aureus (SaCas9) still preclude the use of larger regulatory ele-
ments or protein fusions. Miniature Cas12f nucleases have com-
pact sizes (<700 residues) but suffer from reduced efficiencies,
requiring engineering for genome editing applications (51). Previ-
ous Cas12f engineering efforts relied on DMS or rationally de-
signed mutations to increase the in vitro cleavage activity (33, 52—
55), requiring extensive screening to find the optimal variant. We
tested whether EVOLVEpro could rapidly develop highly active
Cas12f variants to accelerate miniature nuclease engineering.

We selected the Casl2f from Pseudomonas aeruginosa
(PsaCas12f) for evolution with set indel formation at the endoge-
nous RNF2 locus target site as the optimization metric (Fig. 3A).
After four rounds of evolution of 12 single mutants per round,
EVOLVEpro yielded point-mutants of PsaCas12f with up to 4.9-
fold improvement in indel formation. This top variant, PsaCas12f
K333V had >40% indel efficiency at the RNF2 site (Fig. 3B and fig.
S5A). To identify synergies between EVOLVEpro nominated mu-
tants, we combined the top-performing variants from previous
rounds in a fifth round. We evaluated a set of these multi-mutants
and found that PsaCas12f '178#/k333V/k454P ganarated ~ 50% indel ac-
tivity at the RNF2 locus (fig. S5A). Given its performance, we refer
to the PsaCas12f '178A/K333V/K454P yiarignt as EVOLVEpro PsaCas12f
(epPsaCas12f).

To generalize epPsaCas12f’s improved activity, we evaluated
the enzyme at 10 different targets across five endogenous ge-
nomic loci, comparing to WT PsaCas12f and seven previously
characterized Cas12 effectors, AsCasl2a, Cas12®, UnCas12f1,
enAsCas12f, OsCas12f, RhCas12f, and CasMINI (33, 53, 55-58).
We observed consistently higher epPsaCas12f activity compared
to WT PsaCas12f on 9 of 10 tested targets (Fig. 3C). Moreover,
epPsaCas12f edited the 10 targets with a 23.3 + 16.7% average
indel rate, surpassing all tested miniature Cas12f effectors and As-
Casl2a with 2.2- to 44-fold improvement. Interestingly,
epPsaCas12f generated an average deletion of 5-bp across the 10
tested targets (fig. S5B). Together, these data demonstrate that
epPsaCas12f is a highly active, compact effector for mammalian
genome editing that outperforms other small effectors.

We applied epPsaCas12f for in vivo genome editing applica-
tions, using its compact size for single-vector viral delivery in vivo.
We designed guides targeting a sequence 5 of exon 3 in the
mouse PCSK9 gene (Fig. 3D). The PCSK9 protein regulates blood
low-density lipoprotein (LDL) by binding to LDL receptors, making
it a valuable therapeutic target (59). We first tested the efficacy
of epPsaCas12f in a murine hepatocyte cell line (Hepa 1-6) by co-
transfecting murine codon-optimized epPsaCas12f and sgRNA
targeting sequences 5’ of exon 3 in the PCSK9 gene. Analyses of
epPsaCas12f, WT PsaCas12f, and Staphylococcus pyogenes Cas9
(SpCas9) revealed that epPsaCasl12f robustly edited PCSK9 in
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Hepal-6 cells with ~40% indel formation (comparable levels to
SpCas9 and 3-fold higher than the WT PsaCas12f) (Fig. 3D).

After validation of epPsaCas12f in Hepal-6 cells, we packaged
both epPsaCasl12f and its sgRNA targeting PCSK9 in a single
AAV2/8 vector (Fig. 3E). AAV-epPsaCas12f was administered at a
titer of 1.5X10*? viral genome copies per mouse via retro-orbital
injection into 3-month-old C57BL/6J mice. We tracked blood
PCSK9 levels for 14 days post-injection of AAV and found a signif-
icant decrease to around 50% of the original levels after 14 days
(Fig. 3F, fig. S5C). We then harvested the liver at day 15, isolated
the genomic DNA, and performed next-generation sequencing to
survey for indel formation at the PCSK9 target site (Fig. 5, D and
E). We found around 7% on-target indel formation in the AAV-
epPsaCas12f injected mice (fig. S5D), demonstrating that
epPsaCas12f can be used for single-vector AAV-mediated genome
editing. To survey off-targets, we used Cas-OFFinder to predict
the top four off-target cleavage sites generated by epPsaCas12f
and analyzed the guide-dependent off-target cleavage in the liver
(60). We only found detectable editing at one of the four sites
with a maximum level of 0.27% indels, confirming minimal off-
target cleavage triggered by epPsaCas12f (fig. S5F).

To understand the mechanisms of the beneficial mutations
nominated by the EVOLVEpro, we used Alphafold3 to predict the
structure of PsaCas12f (Fig. 3G and data S7). The predicted struc-
ture provides insights into how the PLM-nominated mutations,
including 1178A/K333V/K454P, contribute to enhancing the DNA
cleavage activity (Fig. 3G). The K333V mutation is located in the
WED domain, suggesting that it could increase the binding to its
RNA guide. The 1178A mutation is located in the middle of the
long a-helix in the REC domain and forms a hydrophobic core with
1245 and L248 in the adjacent a-helix. Given that alanine is a helix-
forming residue, the 1178A mutation may stabilize the a-helix in
the REC domain and thus augment the cleavage activity. The
K454P mutation is located at the C terminus of an a-helix in the
RuvC domain and forms hydrophobic interactions with A509 and
V511 in the adjacent a-helix, suggesting that it also stabilizes the
protein conformation.

We then looked at the model’s attention to particular residues
in the protein by calculating the cumulative frequency of individ-
ual residues explored by the model. Multiple residues were re-
peatedly nominated by the model, including G147 and E451 (Fig.
3H), showing that the model honed attention to specific amino
acids. We calculated the pMMS for each nominated mutant to
understand the relationship between the base layer PLM’s fitness
prediction and the actual measured protein activity (Fig. 31). We
found a weak negative correlation between fitness and activity in
PsaCas12’s local context. We then further projected the base
layer PLM'’s fitness score and the top-layer random forest regres-
sor’s activity score in the EMS2 latent space to understand
EVOLVEpro’s global mutational trajectory (Fig. 3, J to L, and fig.
S5G). We found a weak positive correlation of 0.03 between
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fitness and activity, further denoting the necessity of a top-layer
discrimination model to properly distinguish between high fitness
and high activity (Fig. 3l).

Engineering improved prime editors with EVOLVEpro

Many molecular tools, such as next-generation genome edit-
ing proteins, function as multiple enzymes acting in concert.
Prime editing, which uses an RNA-templated reverse transcrip-
tase to programmably install diverse genome edits, is the fusion
of a SpCas9 nicking mutant (nCas9) with an engineered Moloney
Murine Leukemia Virus Reverse Transcriptase (M-MLV RT)
[D200ON, L603W, T306K, W313F, T330P] (termed PE2). We rea-
soned that EVOLVEpro could improve upon these rational muta-
tions, as optimizations were discovered on M-MLV RT by directed
evolution approaches (61). As PE-based insertion has difficulty in-
stalling longer (>40 nt) edits, we focused on editing outcomes
with longer (46 bp) insertions, which have particular utility for
programmable gene insertion methods, such as PASTE (62). We
set up the evolution policy with a previously described twinPE ap-
proach, where two overlapping pegRNAs are used in combination
to install a 46bp attB site in the NOLC1 loci in murine hepatocyte
cell line (Hepal-6). Editing was quantified at NOLC1 loci using am-
plicon sequencing and NGS readout and the top-layer EVOLVEpro
model was trained to predict the insertion efficiency.

Over successive rounds of optimization, we found that
EVOLVEpro progressively learned the activity landscape of the RT
of PE2, yielding improved variants after the initial random selec-
tion round and substantially improving upon PE2-based editing by
round 4 (Fig. 4A and fig. S6A). To check for bias toward this single
locus in the genome that could have developed during the evolu-
tion campaign, we tested the top 4 performing variants (A660S,
L670C, L670K, and L671R) at three additional genomic loci (hu-
man AAVS1, human ALB, and mouse Factor IX) in two cell lines. At
all four sites tested, A660S had statistically significant improve-
ments (Fig. 4B). These results point to the general protein activity
improvement by EVOLVEpro, delivering an additional set of RT
mutations specifically for larger edits.

Projecting the top mutations onto the AlphaFold3-predicted
structure of the RT reveals that most of them are clustered in the
C-terminal RNA polymerase H (RNase H) domain (Fig. 4C), which
is a surprising result since most PE evolution focuses on RT muta-
genesis. We speculate that these mutations could alter the cleav-
age of the template DNA in the RNA-DNA heteroduplex by the
RNaseH domain (63), facilitating the completion of the prime ed-
iting reaction, a route that has not been explored by traditional
engineering of prime editors. Alternatively, they could inactive
the RNase H domain, as truncations of this domain have been
shown to slightly improve prime editing activity (64-66). We then
further analyzed EVOLVEpro’s residue site preference during evo-
lution and observed attention to residues like L670, L671, and
A660, suggesting it was learning that these positions could be
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quite beneficial for improving activity (Fig. 4D). Analysis of pre-
dicted fitness (pMMS) scored by the bottom layer PLM again
showed a divergence between fitness and activity for the prime
editor (Fig. 4E and fig. S6B), as we found almost no convergence
between the two distributions with a negative correlation of 0.08
(Fig. 4E).

Lastly, we try to understand the global mutational trajectory
by projecting the activity landscape learned by the random forest
regressor and base layer ESM2’s protein fitness landscape onto
the first two PCAs of the embedding (fig. S6, C and D). This analy-
sis points again to the divergence between the mutational land-
scape of a protein’s activity and the commonly used fitness
landscape learned during a foundational model’s training on all
protein sequences. When we charted the evolution trajectory, we
also found a clear movement to the lower side of PCA2 protein
embedding dimension, showing that the top layer is pushing the
sequences to that region in the latent space (fig. S6E).

Bxb1 integrase evolution with EVOLVEpro

Large serine recombinases (LSRs) are enzymes that facilitate
precise DNA rearrangements, making them crucial tools for ge-
nome editing. Their ability to recognize specific DNA sequences
and catalyze targeted recombination events allows for efficient
and accurate modifications of genetic material, which is essential
for advanced gene therapy, synthetic biology, and genetic re-
search. We recently developed a gene insertion technology,
PASTE, that leverages LSRs, specifically the Bxb1 integrase, for
programmable gene insertion in eukaryotic cells (62). A limitation
of Bxb1 integrase, however, is its activity saturates in the 20 to
60% range in cells, limiting the overall integration efficiency that
can be achieved. We sought to therefore evolve Bxbl using
EVOLVEpro to improve its activity and demonstrate improved
gene integration applications with PASTE in cells.

To evolve Bxb1l, we designed a simple integration assay in
HEK293FT cells that involved the insertion of an AttP-containing
DNA plasmid into an AttB target-containing plasmid (Fig. 4F). In-
tegration can be measured by next-generation sequencing, and
the evolution policy is designed to optimize this insertion effi-
ciency. We started evolution with a round of 11 random Bxb1l
point mutation variants and then over 9 rounds observed pro-
gressively increasing activity resulting in mutants with over 2.6-
fold higher activity than WT (Fig. 4G and fig. S7A). As Bxb1 is al-
ready fairly active, this fold improvement is expected as we reach
near-saturating levels of insertion. To validate the top hits from
the evolution campaign, we performed a Bxb1 plasmid titration
experiment in a separate cell line (Hela cells) and observed up to
fourfold improvement in recombination efficiency under low
Bxb1 expression (Fig. 4H). We further validated the top hits by
pre-installing attB sites into the genome of HEK293FT cells using
lentivirus and then surveyed for integration efficiency of cargo in
the genome. We found up to fourfold improvement by
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EVOLVEpro’s mutants compared to WT (fig. S7B). We termed
T166R variant as EVOLVEpro enhanced Bxb1 (epBxb1).

To test whether the epBxb1 variant’s improved activity can
improve the programmable insertion of cargo DNA into the chro-
mosome, we tested this variant in the context of PASTE and com-
pared it against the WT Bxb1 across five different genomic loci.
We found up to ~fourfold improvement in the final large cargo
insertion rate into the genome, which highlights the generalizable
gain in activity (Fig. 41 and fig. S7C).

An AlphaFold3-predicted model of Bxb1 bound to attachment
site DNA indicates that the top beneficial EVOLVEpro mutations
clustered in the Bxb1l DNA binding domains, likely increasing the
affinity to its DNA targets (fig. S8A). Of these residues, V292S
could directly interact with the phosphate backbone of the target
DNA based on its positioning relative to the attachment site,
whereas the others likely modulate DNA binding via indirect in-
teractions. Analysis of the residue exploration by the model re-
vealed that multiple positions, including F439, V375, and L275,
are visited up to 15 times; the DNA-interacting residue V292 was
also visited multiple times. Overall, this highlights EVOLVEpro's
ability to recognize the functional importance of certain regions
in the protein, much like structure-guided engineering ap-
proaches (fig. S8B).

We then calculated the relationship between the fitness
(pMMS) and activity (observed fold improvement) for Bxb1 inte-
grase and found a weakly positive correlation between the two
metrics contrary to the other proteins reported evolves. This
likely reflects a subset of protein families where protein stability
and fitness as learned by the PLM can predict activity as previ-
ously reported (67) (fig. S8C). However, given that the relation-
ship is weak, a model like EVOLVEpro is still needed to efficiently
and quickly reach high-performing variants without encountering
many false positives. Lastly, we found that the global mutation
landscape learned by EVOLVEpro was still divergent from the pre-
dicted fitness (pMMS) by ESM2 with an even weaker correlation,
further highlighting the ability of EVOLVEpro to learn protein ac-
tivity at a global scale and how stability/fitness prediction is not
sufficient for rapid and efficient protein evolution (fig. S8, D to G).

Evolving T7 RNA polymerase for efficient and highly pure
RNA production

Multi-objective optimization with EVOLVEpro allows for the
evolution of multiple complex activities. We chose to showcase
multi-objective optimization on a common and broadly used en-
zyme with applications across basic biology and therapeutics. We
selected the T7 RNA polymerase (RNAP) due to its critical role in
RNA production for mRNA therapies, mRNA vaccines, cell engi-
neering, and basic scientific studies. As mRNA production has nu-
merous features characterizing its potency and quality, as
opposed to genome editing where one feature matters the most,
we designed a multi-objective optimization function to evolve a
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high-fidelity T7 RNAP for mRNA production with these three pa-
rameters: (i) RNA yield measured via UV-vis spectrophotometry,
(ii) mRNA translation in a double-stranded RNA (dsRNA) sensitive
cell line measured via luciferase translation, and (iii) RNA purity
measured via immunogenicity in BJ fibroblast cells by interferon
B (IFN-B) RNA production (Fig. 5A). We weighted these features
in the EVOLVEpro objective function by 20, 40, and 40%, respec-
tively to prioritize the higher fidelity and lower immunogenicity
aspects of this enzyme for clinical applications. To facilitate high
throughput variant testing, we relied on SP6 in vitro transcription-
translation coupled reaction kits to generate mutant T7 RNAP in
a one-pot reaction and subsequently use the produced T7 RNAP
to produce co-transcriptionally capped Cypridina luciferase
mRNA for downstream in vitro testing.

During the initial two rounds of evolution, fold improvement
of top mutants was two- to fourfold. By rounds 3 and 4, we
started observing substantial improvements in all features, espe-
cially in translation and immunogenicity fold changes over the WT
T7 RNAP (Fig. 5B-C, fig. S9A). By the end of round 4, one T7 RNAP
mutant, E643G, generated luciferase mRNA that produced 34x
more translated luciferase and ~98% less immunogenicity (Fig.
5C). We sought to benchmark E643G against the previously engi-
neered state-of-the-art mutant T7 RNAP with G47A mutation and
884G insertion(G47A/884insG) that has markedly reduced immu-
nogenic byproduct in our in vitro transcription/translation (IVTT)
assay (68). We found that our E643G mutant produces sevenfold
higher translation in cells and approximately twofold less IFNB1
inflammation in BJ fibroblasts (fig. S9B).

To leverage the suite of mutants generated in the first four
rounds, we generated multi-mutants with EVOLVEpro, combining
up to three previously tested mutations. We also included combi-
nations with the previously identified G47A mutation known to
reduce dsRNA formation. In typical rational mutagenesis, single
beneficial mutations are combined according to their spatial loca-
tion under the assumption of synergistic effects of these muta-
tions. Here, we relied on EVOLVEpro’s ability to learn the activity
landscape to nominate multi-mutants. After two rounds of multi-
mutants corresponding to the sixth round of engineering,
EVOLVEpro nominated variants with up to ~57x more translation
from luciferase mRNA and ~515x less immunogenicity than the
original WT T7 RNAP (Fig. 5C). The top variant, T7
RNAPT3M/GA7TAEE43G \\ a5 substantially more effective at translation
and less immunogenic than the G47A/884insG mutant. This multi-
mutant was chosen as the final EVOLVEpro evolution candidate
and termed EVOLVEpro enhanced T7 RNAP, or epT7. The wide
range of activities we see upon combining mutations points to
complex epistatic interaction on the fitness landscape, and fur-
ther examination of these interactions is needed to understand
the mechanism underlying the range of activities seen for differ-
ent combination mutants.

Given the high throughput testing of mutant T7 RNAPs in the
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IVTT reaction, we hypothesized that the unoptimized IVT buffer
could change these mutant’s mRNA production (69) and sought
to compare the performance of top mutants in clinically relevant
IVT settings with NEB’s HiScribe transcription kit, followed by Vac-
cinia cap-1 capping and polyA tailing. We therefore purified the
top performing single mutant (E643G), previously reported state-
of-the-art mutant (G47A/884insG) (68), and our epT7
(T3M/G47A/E643G) along with WT to compare their perfor-
mance. We compared the production of six different mRNA se-
guences, ranging in size from 500 nt to 6500 nt, between epT7,
T7%643¢ and WT T7. Consistent with our IVTT-based experiment,
we found that epT7 and E643G produced significantly higher
MRNA in a 2-hour transcription scheme than both WT T7 RNAP
and the G47A/884insG variant (fig. S9C). Analysis of the three dif-
ferent mRNA products by both E-gel EX and TapeStation gel elec-
trophoresis systems confirmed the presence of a single on-target
product across all four enzymes (fig. S9, D to F). Looking at the
translation and immunogenicity aspects of the mRNAs produced
by these enzymes, we found that in all cases, epT7 produced
mMRNA had four- to 120-fold higher translation than wild type and
four- to 256-fold lower immunogenicity (Fig. 5D and fig. S10A).
Functional testing of SpCas9 mMRNA also shows significantly higher
editing from epT7’s produced mRNA in two separate cell lines (fig.
S10B). These results validate that the EVOLVEpro derived epT7
mutants are not buffer or template-specific and are genuinely im-
proving the quality of mRNA produced by the polymerase. We
next investigated the mechanism of the epT7 performance en-
hancements by investigating the quality of the RNA. Using an es-
tablished ELISA for dsRNA, we found that the dsRNA in the epT7-
produced mRNA was fivefold lower than WT T7-produced RNA
and it performed equally well as the RNA produced by the state-
of-the-art G47A/884insG mutant (68) (Fig. 5E).

Previous efforts to reduce dsRNA production relied on adding
a glycine residue at the C-terminal “foot” region of the enzyme
(884G insertion) (68). Our model revealed the functional im-
portance of E643 in transcription and, surprisingly, mutating this
residue rendered the same effect as 884G insertion (Fig. 5F and
fig. S9B). Indeed, analysis of the T7 RNAP structure reveals that
E643 is close to the DNA template, suggesting that E643G im-
proves template binding and RNA production (Fig. 5F). However,
E643K/E643R did not improve the fidelity of transcription (fig.
S9A), suggesting that these bulky residues sterically clash with the
template DNA.

To rationalize how EVOLVEpro is exploring the activity land-
scape it is useful to consider the progression of nominated resi-
dues through the first four rounds. E643 was found first in round
3 with the most beneficial mutation being E643N (Fig. 5G). The
model quickly zoomed into this region by exploring it 5 more
times in round 4, yielding E643G the best single mutant. G47A has
been previously reported to increase helix formation, and
EVOLVEpro took advantage of this helix-favoring mutation in our
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multi-mutant generation. The third mutated residue in epT7 is in
a disordered region (T3M), suggesting a role independent of DNA
template binding. T3M might be involved in improving protein
stability or other aspects that can modulate the polymerase ac-
tivities. These results suggest that EVOLVEpro can be used to
identify and interrogate the effect of various mechanisms and de-
termine the right balance biochemically to mutagenize.

We next calculated the relationship between the activity (ob-
served data) and fitness (pMMS) for T7 RNAP and found a nega-
tive correlation of 0.13, in this case denoting the lack of
association between the two metrics. EVOLVEpro successfully
navigated through this divergence by selecting mutants with
higher activity but not fitness in later rounds (Fig. 5H). Lastly, we
investigated the global evolutionary landscape of epT7 and
EVOLVEpro’s mutational trajectory. At a high level, as with the
previous proteins evolved, the activity map learned by EVOLVE-
pro diverged from the fitness map predicted by ESM-2, showing
that fitness predictions would not be able to predict the mutants
that were ultimately discovered to improve protein activity and
other parameters (Fig. 5, | to K, and fig. S10C).

Circular RNA production with epT7

Circular RNA has emerged as a promising therapeutic modal-
ity for protein replacement therapy thanks to its enhanced stabil-
ity and prolonged expression of proteins (70). Since we observed
significantly lower dsRNA production and higher fidelity of tran-
scription with epT7, we hypothesized that epT7 would enhance
circular RNA production since the use of RNase R during post-IVT
processing typically enriches for both circular RNA and dsRNA
species that are immunogenic (Fig. 6A). We thus applied epT7 to
the circularization of four different RNA sequences, finding that
the translation obtained by circRNA from epT7 is 3 to 30 fold
higher than RNA produced by WT T7 RNAP (Fig. 6B and fig. S11, A
to D and J). We then used TapeStation gel electrophoresis to
guantify the relative ratio of circular products post IVT and found
reduced long concatemer formation in the circular RNA produced
by epT7 (Fig. 6C). To better understand the mechanism behind
better translation of circular RNA made by epT7, we performed
gel electrophoresis using 2% E-gel EX as previously validated to
check for the relative ratio of precursor, nicked, intermediate and
full circular RNA both pre— and post—RNase R treatment (Fig. 6D).
We noticed reduced intermediate and nicked byproducts in circu-
lar RNA produced by epT7, showing higher fidelity of transcrip-
tion. We used the gel electrophoresis results to quantify the ratio
of circular RNA across three different templates and found signif-
icantly higher circular RNA production at around 25% efficiency,
which was ~2 fold higher than the efficiency of WT T7 RNAP,
higher circRNA purity, and lower concatemer production (Fig. 6E
and fig. 511, G to |). Lastly, we used dsRNA ELISA to detect the
amount of dsRNA left in the product after RNAse R cleanup. Con-
sistent with our hypothesis, there is a large increase in dsRNA
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percentage at around 1.5% from WT T7’s produced dsRNA (Fig.
6F). This dsRNA ratio is significantly reduced to 0.2% using epT7,
highlighting the fidelity of this variant during long transcription
that is needed to accommodate circular RNA production (Fig. 6F).
To confirm the higher stability of circular-eGFP RNA, we trans-
fected both WT T7 and epT7’s produced circRNA in HEK293FT
cells and imaged them 24 hours and 72 hours post-transfection
(fig. S11, E to F). We observed higher GFP fluorescence from epT7
than WT T7 RNAP and stable expression of GFP at 72 hours similar
to previously reported (70).

mRNA for in vivo bioluminescent imaging

Given the high fidelity of epT7, we compared the performance
of epT7 with WT T7 RNAP in producing 100% N-methylpseudour-
idine-5'-triphosphate-modified firefly luciferase mRNA that is
commonly used for in vivo deep tissue imaging (Fig. 6G). This pro-
duction process, including the modified bases, mimics the clinical
production of therapeutic mRNAs, allowing for a translationally
relevant evaluation of epT7. We packaged the produced mRNA
with lipid nanoparticles (LNPs) that traffic to the liver for biolumi-
nescent imaging. At 24 hours post-injection of the mRNA-loaded
LNPs, we observed ~10-fold higher luminescence for our epT7-
produced mRNA compared to mRNA produced by WT T7 RNAP
(Fig. 6H). Moreover, we tracked the expression kinetics of both
mRNAs for 96 hours and found consistently higher translation
with the epT7-produced Fluc mRNA for a longer period of time
(Fig. 61 and fig. S11K).

Originality of mutations explored during EVOLVEpro evolu-
tion

We analyzed the mutations proposed by EVOLVEpro on the
six proteins evolved in this study by calculating the mutational
likelihood of individual mutation compared to the training input
(Uniprot). We found that the median mutational likelihood for
each protein’s set of mutations ranges from 0.01 to 0.04 which is
well below the 0.05 cutoff for rare mutations (Fig. 6J) (15). Most
of the mutations explored by the model are uncommon muta-
tions not seen in nature as defined by a probability cutoff of less
than 0.1, with 92% of PE2 MLV RT mutations and 77% of Bxbl
integrase mutations below this threshold. Moreover, all the best
activity-enhancing single mutants explored during the evolution
of the six proteins in this study have a mutational likelihood of
less than 0.1. This analysis reveals that the mutation landscape
explored by EVOLVEpro is highly original compared to zero-shot-
based language models and reinforces the need to search outside
naturally occurring mutations to find activity-enhancing mutants
(fig. S12).

Discussion

We demonstrate EVOLVEpro as a model for in silico directed
evolution of protein activities using few-shot active learning. Over
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consecutive rounds of improvement, EVOLVEpro yields variants
with two- to 515-fold improvements in desired properties, includ-
ing binding, catalytic efficiency, and immunogenic byproducts.
Using both evolutionary scale PLMs and a regression layer,
EVOLVEpro learns general rules of protein activity, generating
highly active mutants with only a few cycles of evolution. Moreo-
ver, because of the rich latent space generated by the PLM and
powerful feature selections present in the top-layer module,
EVOLVEpro evolution is a low-N learning approach that requires
minimal wet lab experimentation. We benchmark EVOLVEpro
across 12 different DMS datasets covering 8 protein classes,
showing its superiority in the low-N evolution setting. In this
benchmarking work, we evaluate all currently available embed-
ding-based PLMs and perform a grid search to optimize over top-
layer regression models, active learning selection strategies, and
different normalization techniques toward the embeddings and
activity measurements. We find that PLMs are essential and their
representations of protein sequence outperform traditional en-
coding methods like one-hot encoding and integer encoding (Fig.
1B). Interestingly, even in the extreme scarcity of data relative to
the size of the input vector, dimensionality reduction of the em-
bedding space through PCA did not improve performance, rein-
forcing the importance of the PLM dimensions in guided in silico
directed evolution (see methods and data S1). The modular de-
sign of EVOLVEpro allows for the integration of future improve-
ments in autoregressive PLMs or next-generation representation
models.

The success of EVOLVEpro speaks to the inherent limitations
of PLMs, which are trained to learn a masked sequence recon-
struction task across evolutionary diversity. As natural sequences
do not necessarily select for optimal protein activity, the PLM’s
learned activity landscape will often not be correlated with a pro-
tein’s activity landscape (Fig. 6K). In scenarios of correlations be-
tween fitness and activity, such as antibodies, zero-shot PLM
protein evolution may work with some success (15, 20), but en-
zyme optimization has proven more challenging. It has been
shown that PLMs can scale with increasing parameters just like
large language models, but recent analyses have shown saturat-
ing scaling effects of PLMs with limited input training datasets
(Uniref) on larger models (71-74). Thus, it is likely that simply in-
creasing the parameters of these PLMs will not enable better pre-
diction of protein activities and other downstream tasks.
Alternatively, generative PLMs have yielded functional de novo
proteins, such as GFP and CRISPR nucleases (16, 19). These mod-
els explore a much larger search space than EVOLVEpro in the in-
itial design phase, but variant designs generated by these
methods do not have improved activities relative to WT proteins
yet, and the functional success rate of generated proteins is very
low. As such, Rufollo et al. successfully designed OpenCRISPR, an
Al-generated Cas9 protein that has cleavage efficiency compara-
ble with the WT SpCas9 (19). We expect generative PLMs to
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design fairly active protein sequences in tasks where there
doesn’t exist a good starting point (i.e., a binder against a previ-
ously unknown target) (75). These de novo designed sequences
may be suitable for combination with EVOLVEpro to create an
end-to-end de novo design and evolution framework where de
novo generated sequences can be rapidly optimized for state-of-
the-art activity and thus real-world deployment. In addition, bio-
physical based models can also be integrated with the regressive
top layer approach established here to further boost prediction
accuracy and enable rapid identification of gain-of-function mu-
tants in silico (76).

Using EVOLVEpro, we present the first comprehensive evalu-
ation of an Al directed evolution model across six therapeutically
relevant proteins. These proteins demonstrate a low correlation
between observed activity and the PLM-estimated fitness, requir-
ing EVOLVEpro to rapidly navigate the unseen activity landscape.
In some cases, we leverage EVOVLEpro for multi-objective feature
optimization, allowing evolution of multiple properties simulta-
neously. Critically, the assays used for measuring protein activity
in this work are incompatible with pooled screening approaches,
precluding typical directed evolution strategies. Across the multi-
mutant landscape of protein activity, EVOLVEpro is able to select
highly active single mutants out of more than 16,000 possible se-
quences and multi-mutants from more than 780 billion possible
sequences. We thoroughly validate the six proteins evolved by
EVOLVEpro for genome editing, binding, and RNA generation
tasks beyond the training set, finding state-of-the-art perfor-
mance. Structural analysis of top mutations reveals many distinct
mechanisms of activity improvement, suggesting future direc-
tions for directed evolution of these enzymes. In the context of
protein design, EVOLVEpro is a highly capable protein engineering
model in that it (i) has high rates of success, (ii) requires no special
knowledge about the protein, (iii) can be used for multi-objective
function or property optimization, and (iv) is highly modular, al-
lowing for any protein property with a quantifiable assay to be
used as an input without extensive finetuning. We anticipate
EVOLVEpro will continue to improve with new foundation models
and enhanced search strategies and will be broadly useful for pro-
tein engineering.

Materials and Methods
Use of ESM2 embeddings

Let x; =[a,,a,,...,a, | denote the amino acid sequence of the
i-th protein variant, where each a; represents an individual

amino acid and n is the length of the protein. The protein lan-
guage model embedding transformation (ESM2-15B) maps x; to

a sequence of embeddings, one for each amino acid, where d is
the dimensionality of the embedding space (hidden dimension):
E, =PLM(x;)eR™ (1)

This results in a per-token representation of size nxd. We

First release: 21 November 2024

science.org

use the final representation layer of the ESM2-15B model. To re-
duce the number of features in the low-N setting and obtain a
fixed-size representation regardless of protein length, we com-
pute the average embedding vector by taking the mean across all
amino acid positions:

- 1 n
e :;Zj:lE,.j (2)
This results in a single d -dimensional vector ae R repre-

senting the entire protein variant, which is then used as input for
EVOLVEpro.

EVOLVEpro Model

EVOLVEpro utilizes a Random Forest regressor as its top-layer
model to learn the functional grammar of variants with respect to
their activity. This model operates on information-rich latent

space mean embeddings e_i generated by a protein language
model as described previously, in an active learning setting. The
Random Forest regressor uses these embeddings e, as input fea-

tures to predict the activity or fitness of each variant.

A Random Forest Regressor was employed as the top-layer
model in the EVOLVEpro framework. This ensemble learning
method combines multiple decision trees to make predictions, of-
fering robustness against overfitting and the ability to capture
complex, non-linear relationships in the data.

The Random Forest model was configured with 100 estima-
tors (individual decision trees). The quality of splits was evaluated

using the Friedman Mean Squared Error (MSE) criterion.
N

Let D ={(e_ Yi )}H

are the input features (reduced embeddings) and y, e R are the

be the training dataset, where e_ieRd

target values (protein fitness).
Decision Trees:

Each tree h, (e_l) in the forest is trained on a bootstrap sample

of the original dataset. At each node, the best split is determined
by maximizing the reduction in impurity:

N.
Al =1(parent)— Nll;ﬁ I(left)—%l(right) (3)

where I is the Friedman MSE impurity measure, calculated as
follows:

N N
diff = Fp = Pl = ———— - diff* (4)
Nleft right
Here, v, and y,,, arethe mean target values in the left and
right child nodes, respectively, and N, and N, are the num-

ber of samples in each child node.
Random Forest Prediction:

The final prediction of the Random Forest for a new input e,
is the average of the predictions from all trees:
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— 1 T —

f(ei):¥ztzlhl (e,.) (5)

where T =100 is the number of trees in the forest.

Active Learning Approach:

For each round of EVOLVEpro, after training the Random For-
est on the current dataset, we apply the model to predict fitness
values for the remaining, untested protein variants. The active
learning step then selects the most promising variants for experi-
mental testing in the next round.

Given the nature of Random Forest regression, all predicted
values for untested variants will fall within the range of y-values
in the training set:

min (Ytrain ) < -)/}predict < max (Ytrain ) (6)
where y . are the fitness values in the training set and
Voreaia A€ the predicted fitness values for untested variants.

While we explored various selection strategies, including
choosing embeddings most distant from the training set in Euclid-
ean space and selecting a mix of top and bottom predictions, we
hypothesize that for the objective of round-over-round optimiza-
tion of top fitness, the top-n strategy is most effective.

The top-n strategy involves selecting the n variants with the
highest predicted fitness values:

Selected Variants = {e_, A y(n)} (7)
where Yn) is the nth highest predicted fitness value.

This strategy aims to iteratively stretch the upper limit of the
Random Forest’s prediction range:

max(ytmin )roundk < max(ylraiﬂ )roundk (8)

By focusing on the top predictions, we exploit the model’s cur-
rent understanding of high-fitness regions in the embedding
space, while also encouraging exploration of nearby areas that
may yield even better variants: While this greedy approach might
risk overlooking some areas of the fitness landscape, we believe
it aligns well with the goal of rapidly identifying and optimizing
top-performing protein variants in a limited number of experi-
mental rounds.

Benchmarking on 12 DMS datasets

For model benchmarking, we took 9 existing deep mutational
scanning (DMS) datasets which were employed in a previous
zero-shot high fitness prediction approach (15). From this work,
we leveraged a pre-determined cutoff for high-fitness variants for
each dataset to select variants that were low and high fitness. To
augment the use of these datasets, we also selected three addi-
tional DMS datasets: an AsCas12f compact genome editor (33),
Cov2 viral spike receptor-binding domain (43), and Zika virus en-
velope protein (42). For these datasets, cutoff values were set
based on the general distribution of high-activity variants. To fa-
cilitate downstream work, a tabular format CSV file and a fasta
file of all available mutant sequences with activity measurements
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were generated from each dataset.

EVOLVEpro Parameter Grid search

We conducted an extensive grid search to evaluate various
strategies for optimizing fitness in a low number of rounds. The
grid search explored the following parameters:

1. Fitness measurement: Raw fitness values from each dataset
or min-max normalized fitness.

2. First-round strategy: Random selection of variants or di-
verse selection using K-medoids clustering on protein language
model embeddings.

3. Learning strategies: We compared several strategies for se-
lecting variants in subsequent rounds, including:

a. Random selection

b. Top n predicted fitness variants

c. Top n/2 and bottom n/2 predicted fitness variants

d. Maximizing Euclidean embedding distance from previously
selected variants

4. Embedding types: We compared different embedding rep-
resentations, including raw embeddings, and PCA-reduced em-
beddings (from 10 to 1000) to account for the fact that this was a
high p, low n paradigm. This was entirely done on the largest (15B
parameter) ESM2 model.

5. Regression types: We evaluated various regression models
for fitness prediction, including ridge regression, lasso regression,
elastic net, linear regression, neural networks with a linear last
layer, random forest regression, KNN regression, Gaussian pro-
cesses and gradient boosting regression. These were largely used
with default parameters.

For each combination of parameters, we ran three simula-
tions (to vary the first round of selected variants) using 16 variants
per round to account for stochastic variability. Performance was
assessed using the proportion of high-fitness variants out of the
top 16 variants that the updated model would predict. We quan-
tified the overall effectiveness of each parameter value by count-
ing the number of datasets for which it achieved the highest mean
fitness binary percentage. This “winning strategy” count provided
a simple yet informative summary of which approaches were
most successful across diverse protein systems. The “winning
strategy” was random first round, raw fitness, top-n selection,
random forest regression, and raw embeddings.
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Fig. 1. Developing and benchmarking EVOLVEpro for protein language model-guided engineering. (A) Schematic describing
the EVOLVEpro method. Proteins of interest go through iterative rounds of low-N screening. A foundational PLM generates
embeddings for all mutants of a protein and the average embedding by pooling across all residues is used as input for the top-
layer model. Each mutant’s activity is experimentally determined and used to train a domain expert top-layer model with PLM
embedding as input. The top-layer model then nominates the top-N mutants for the next round of testing and the weights are
updated iteratively in an active learning format. (B) Benchmarking of foundational models across a panel of 12 comprehensive
deep mutational scanning (DMS) datasets. Each point is a unique protein and its DMS data. ESM2-15B has the highest average
percent success in high activity variants prediction. (C) Comparison between EVOLVEpro in active learning format, in zero-shot
pretraining format, and an existing zero-shot prediction method using protein language model (15) across 12 DMS datasets.
Each point is a unique protein using its DMS data. (D) Performance over 10 rounds of EVOLVEpro with 16 mutants per round,
compared to two different non-language model encoding schemes (one-hot encoding and integer encoding). Model
performance is benchmarked on four datasets (31, 36, 40, 42) and compared to zero-shot ESM2 nomination success rate and
background random sampling (15). Error bar represents the standard deviation for n=10 random simulations.
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Fig. 2. Evolution of two monoclonal antibodies with EVOLVEpro. (A) Schematic of the evolution strategy with EVOLVEpro for
engineering two monoclonal antibodies across two parameters (binding affinity and antibody expression). (B) Engineering of the C143
antibody over five rounds of EVOLVEpro. Data shows cumulative top 10 mutants’ fold improvement over WT binding affinity to the
target antigen across 5 evolution rounds. (C) ICso value estimated from ELISA binding data for the WT C143 antibody, the best single
mutant (LC N28K) and the best multi-mutant (LC N28R/Q40K+HC R39K). Error bars represent standard error of mean with n=3 technical
replicates. A one way ANOVA was run between the three groups (*p<0.05, **p<0.01). (D) Scatter plot showing each individual mutant’s
expression fold improvement versus binding affinity improvement for the C143 antibody. The best mutant in each round is highlighted
with a larger circle. (E) Engineering of the aCD71 over five rounds of EVOLVEpro. Data shows cumulative top 10 mutants’ fold
improvement over WT binding affinity to the target antigen across 5 evolution rounds. (F) ICso value estimated from ELISA binding data
for the WT anti-CD71 antibody, the best single mutant (S92A) and the best multi-mutant (T70A_S92V). Y axis is shown on log 10 scale.
Error bars represent standard error of mean with n=3 technical replicates. A one way ANOVA was run between the three groups
(*p<0.05, **p<0.01). (G) Scatter plot showing each individual mutant’s expression fold improvement versus binding affinity
improvement for the aCD71 antibody. The best mutant in each round is highlighted with a larger circle. (H and I) Mapping of the top
mutations on the predicted structure of C143 (H) and anti-CD71 (I) respectively (AF3). (J) Scatter plot comparing the predicted naive
ESM-2 C143 protein fitness (predicted masked marginal score) and scaled tested activity of nominated mutants across evolution. Scatter
points are colored by rounds in evolution. The correlation and linear regression line are shown in red and the R square of the correlation
is reported. (K) Comparison of the C143 embedding latent space with either predicted naive ESM-2 protein fitness landscape or
EVOLVEpro protein activity landscape. Yellow rhombus denotes WT sequence.
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Fig. 3. Evolution of highly active miniature CRISPR nucleases with EVOLVEpro. (A) Schematic of the evolution strategy with
EVOLVEpro for engineering a miniature Cas12f. (B) Engineering of PsaCas12f over four rounds of EVOLVEpro and a rational
combination multi-mutant round. Data shows cumulative top 10 mutants from current and preceding rounds, as measured by fold
improvement of indel activity at the endogenous RNF2 genomic locus. (C) Indel activities of WT PsaCas12f, epPsaCas12f, and a
panel of published Cas12a and Cas12f nucleases on 10 different genomic targets across five genes (two guides per gene). The fold
change on top of each guide denotes the relative fold increase of epPsaCas12f compared to the average of the other published
Cas12a and Cas12f nucleases. A one-way ANOVA is performed for each guide sequence shown (****p<0.0001). Error bars
represent standard error of mean with n=3 biological replicates. (D) Next-generation sequencing quantified indel formation at
murine PCSK9 genomic loci by epPsaCas12f, WT PsaCas12f, and SpCas9. A one-way ANOVA is performed for each guide sequence
shown (*¥***p<0.0001). Error bars represent standard error of mean with n=3 biological replicates. (E) Schematic of the in vivo
validation assay for EnPsaCas12f editing at the murine PCSK9 locus for PCSK9 reduction. (F) Serum PCSK9 levels at three different
time points from -2 days of injection to +14 days. The percent of control PCSK9 was calculated by normalizing to the control group
with PBS injected. A two-sided Student’s t test was run on each time point relative to -2 days’ baseline PCSK9 level (ns, non-
significant; *p<0.05). Error bars represent standard error of mean with n=3 biological replicates. (G) Mapping of the top mutations
on the AlphaFold3 model of PsaCas12f. The RuvC active site is indicated by a red circle. (H) Heatmap showing most common
PsaCas12f mutations explored by EVOLVEpro over rounds of evolution. Any position explored more than once is shown on a
cumulative basis across rounds. (l) Scatter plot comparing the predicted naive ESM-2 protein fitness (predicted masked marginal
score) and scaled tested activity of nominated mutants across evolution, scatter points are colored by rounds in evolution. (J and
K) Comparison of the PsaCas12f embedding latent space with either predicted naive ESM-2 protein fitness landscape (J) or
EVOLVEpro protein activity landscape (K). Yellow rhombus denotes WT sequence. (L) A kernel density estimate plot of protein
fitness as predicted by ESM-2 versus protein activity as predicted by EVOLVEpro. The correlation and linear regression line are
shown in red and the R square of the correlation is reported.
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Fig. 4. Evolution of prime editor with EVOLVEpro. (A) Engineering of the prime editor PE2 with twinPE guides over seven rounds of
EVOLVEpro. Data shows cumulative top 10 mutants from current and preceding rounds, as measured by fold improvement of prime
editing activity to install a 46 bp AttB site at the murine NOLC1 genomic locus. (B) Validation of 4 evolved prime editors in the
installation of attB sites at four different endogenous sites in either mouse or human genomes. A two-sided unpaired t test was run
between WT and each evolved prime editor (ns, non-significant; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). Fold change over
WT PE2 is shown for the best mutant on each genomic locus. Error bars represent standard deviation with n=3 biological replicates.
(C) Mapping of the top mutations on the AlphaFold3 model of M-MLV RT. The RT active site is indicated by a red circle. (D) Heatmap
showing most common PE2 mutations explored by EVOLVEpro over rounds of evolution. Any position explored more than once is
shown on a cumulative basis across rounds. (E) Scatter plot comparing the predicted naive ESM-2 protein fitness (predicted masked
marginal score) and scaled tested activity of nominated mutants across evolution, scatter points are colored by rounds in evolution.
(F) Schematic of the evolution strategy for evolving the Bxb1 serine integrase from the Mycobacteriophage. (G) Engineering of the
Bxb1 integrase over 8 rounds of EVOLVEpro. Data shows cumulative top 10 mutants from current and preceding rounds, as measured
by fold improvement of plasmid integration over WT. (H) Performance of top Bxb1 mutants for plasmid recombination with low Bxb1
expression in Hela cell. A two-sided Student’s t test was run between WT and each evolved Bxbl integrase (***p<0.001,
**%*n<0.0001). Fold change over WT Bxb1 is shown for the best mutant. Error bars represent standard deviation with n=3 biological
replicates. (I) Validation of epBxb1 with PASTE at four genomic sites across human and mice genomes. A two-sided Student’s t test
was run between WT and each evolved Bxb1 integrase (*p<0.05, **p<0.01). Fold change over WT Bxb1 integrase is shown for each
genomic locus. Error bars represent standard deviation with n=3 biological replicates.
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Fig. 5. Engineering RNA polymerases for high yield and low immunogenicity mRNA production. (A) Schematic of the strategy for hig
throughput T7 RNA polymerases mutant testing and evolution policy setup for evolving a high fidelity T7 RNAP. (B) Engineering of T7 RNAE
over six rounds of EVOLVEpro. Data shows the top 10 mutants from current and preceding rounds, as measured by fold improvement &
transcription fidelity over WT. (C) Performance of T7 mutants from six EVOLVEpro rounds and previously engineered G47A/884insG SOT;@
T7 RNAP in Cluc mRNA translation and immunogenicity in BJ Fibroblast cells. (D) Validation of epT7 for production of 6 mRNA sequence$
ranging from 513nt to 6496nt. Purified WT or mutant RNAP is used to produce these sequences, and they were transfected into BJ fibroblast
cells for either protein translation readout or targeted IFNB1 gene expression analysis using quantitative polymerase chain reaction 24
hours after transfection. A two-sided Student’s t test was run between WT and each evolved T7 RNAP (**p<0.01, ***p<0.001,
**%*n<0.0001). Error bars represent standard deviation with n=3 biological replicates. (E) dsRNA ELISA is used to analyze the amount of
dsRNA during transcription of a 1662 nt Cypridina luciferase mRNA. 500 ng of posttranscription product is used as input for the dsRNA
ELISA. A two-sided Student’s t test was run between WT and each evolved T7 RNAP (****p<0.0001). Error bars represent standard deviation
with n=3 biological replicates. (F) Mapping of the top mutations on the T7 RNAP structure (PDB ID 3E2E). The active site is indicated by a
red circle. (G) Heatmap showing most common T7 RNAP mutations explored by EVOLVEpro over rounds of evolution. Any position explored
more than once is shown on a cumulative basis across rounds. (H) Scatter plot comparing the predicted ESM-2 protein fitness score versus
experimentally measured T7 RNAP transcription fidelity scaled score across evolution rounds. The correlation and linear regression line are
shown in the plot. (I and J) Comparison of the T7 RNAP latent space with either predicted ESM-2 protein fitness (masked marginal score) or
EVOLVEpro protein activity fold improvement. Yellow rhombus denotes WT sequence. (K) A kernel density estimate of protein fitness as
predicted by ESM-2 versus protein activity as predicted by EVOLVEpro. The correlation and linear regression line are shown in red and the
R? of correlation is reported.
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Fig. 6. Application of epT7 for circular RNA production and in vivo bioluminescence. (A) Schematic of circular RNA production. (B)
Validation of epT7 produced circRNA on four different template sequences compared to both T75%436 and WT T7. Translation of each
protein is measured in HEK293FT cells 48 hours after transfection. A two-sided Student’s t test was run between WT and each evolved
T7 RNAP (***p<0.001, ****p<0.0001). Error bars represent standard deviation with n=3 biological replicates. (C) Tapestation gel
electrophoresis analysis of circular Fluc RNA produced by either epT7 or WT RNAP. epT7 shows reduced concatemer production. (D)
Comparison of RNA products for Fluc circRNA produced by epT7 compared to WT T7 via gel electrophoresis using 2% E-gel EX at
different steps in the production process: post-initial IVT and post—RNase R processing. The panel on the right shows quantification
of intermediate and nicked RNA ratio in the post IVT samples. Error bars represent standard deviation with n=3 biological replicates.
(E) Comparison of purified GFP, nanoluc (Nluc), and Fluc circRNA yield by epT7 compared to WT T7 after the initial RNase R clean-up.
The panel on the left shows the raw mass percentage left after the cleanup. The panel on the right shows the purity of the circular
RNA in the post clean-up reaction as determined by quantification using a TapeStation analysis. A two-sided Student’s t test was run
between WT and epT7 (**, p<0.01, ****, p<0.0001). (F) Comparison of dsRNA content for nanoluc circRNA produced by epT7
compared to WT T7 using either 2 hours of IVT or 12 hours of IVT. Input into the dsRNA ELISA assay involves 500 ng of post—-RNase R
cleaned-up samples. A two-sided Student’s t test was run between WT and evolved T7 RNAP (**, p<0.01). Error bars represent
standard deviation with n=3 biological replicates. (G) Schematic of the in vivo mRNA assay for measuring mRNA expression in the
liver via non-invasive luminescent imaging. (H) In vivo luminescent signal detected 24 hours post-injection in mice injected with mRNA
produced by either epT7 or WT T7 or PBS controls. A two-sided Student’s t test was run between WT, WT T7 RNAP, and epT7 (¥,
p<0.05). Error bars represent standard deviation with n=3 biological replicates. (I) Time-course of in vivo luminescent signal detected
up to 96 hours post-injection of LNP-mRNA produced by either epT7 or WT T7, or PBS controls. A two-sided paired Student’s t test
was run between WT, WT T7 RNAP, and epT7 (*p<0.05) for each time point. Error bars represent the standard error of mean with
n=3 biological replicates. (J) A box plot of mutational likelihood for each individual mutant nominated by EVLOVEpro shown for each
of the six proteins in this study. A dashed line at 0.05 and 0.1 are shown to denote the threshold for rare mutations and uncommon
mutations, respectively. (K) A schematic showing the evolution of higher activity variants with EVOLVEpro versus traditional PLM
evolution approaches. The mutagenesis landscape of proteins is often conceptualized as a complex terrain with numerous potential
paths. Shown here is a gray road that conceptualizes the protein mutagenesis landscape where traversing upwards results in higher
protein activity and traversing downwards reduces protein fitness. Traditional frameworks of evolutionary plausibility attempt to
navigate this terrain based on natural selection, which is constrained by historical and environmental factors.
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