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Abstract

A commonly emphasized challenge in medical AI is the drop in performance when
testing on data from institutions other than those used for training. However, even if
models trained on distinct datasets perform similarly well overall, they may still exhibit
other systematic differences. Here, we study these potential dataset-centric prediction
variations using two popular chest x-ray datasets, CheXpert (CXP) and MIMIC-CXR
(MMC). While CXP-trained models generally perform better on CXP than MMC test
data and vice versa, this performance decrease is not uniform across individual images.
We find that image-level variations in predictions are not random but can be inferred well
above chance, even for pathologies where the overall performance gap is small, suggesting
that there are systematic tendencies of models trained on different datasets. Furthermore,
these “predictive tendencies” are not solely explained by image statistics or attributes
like radiographic position or patient sex, but rather are pathology-specific and related to
higher-order image characteristics. Our findings stress the complexity of AI robustness and
generalization, highlighting the need for a nuanced approach that especially considers the
diversity of pathology presentation.
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1. Introduction

Deep learning (DL) models for medical imaging tasks have been shown to be prone to
performance degradation on data from unfamiliar sources, such as from previously unseen
institutions (Yu et al., 2022; Zech et al., 2018). Among the factors contributing to the
reduction in performance are covariate and concept shifts (Cohen et al., 2020; Zhang et al.,
2023); the former occurs due to shifts in the distribution of features between the train-
ing and testing datasets, while the latter occurs when the relationship between the input
features and target variables changes. A substantial body of research has investigated the
relationship between categorical attributes such as label distribution and patient demo-
graphics with performance and fairness gaps in the context of generalization (Pooch et al.,
2020; Seyyed-Kalantari et al., 2020; Larrazabal et al., 2020; Ahluwalia et al., 2023; Seyyed-
Kalantari et al., 2021; Glocker et al., 2023). Notably, shifts in these structured attributes
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across datasets often only account for a fraction of the generalization gaps, leaving room for
understanding the scope of features that contribute to a lack of generalization (Wu et al.,
2021). Traditionally, these generalization analyses are also often “model-centric”, focusing
primarily on assessing how the performance of one model varies across different datasets.
While this approach offers insights into model robustness and adaptability, it may not fully
capture the nuanced effects that the training domain has on the model behavior.

Here, we employ a “dataset-centric” approach to study how models trained on different
domains behave when evaluated on the same dataset, helping to isolate the influence of
training data. We specifically use two public chest x-ray datasets, CheXpert (Irvin et al.,
2019) and MIMIC-CXR (Johnson et al., 2019), given their popularity and the high preva-
lence of commercial products for this modality. We first demonstrate that dataset-centric
performance gaps exist for all pathologies in these datasets. Nonetheless, we find high vari-
ation in predictions at the image level independent of these gaps. We demonstrate that this
variability is not simply noise, but can be predicted significantly above chance, where these
“predictive tendencies” are specific to each pathology, cannot be explained by standard
structured attributes alone, and seem to be encoded in high-level image characteristics.

2. Methods

2.1. Datasets

We used two public chest x-ray datasets: 1) CheXpert (CXP) (Irvin et al., 2019) with
224,314 images from 65,240 patients from Stanford Hospital patients and 2) MIMIC-CXR
(MMC) (Johnson et al., 2019) consisting of 377,110 images from 65,379 patients at Beth
Israel Deaconess Medical Center. Both datasets include metadata and labels for 14 radio-
logical findings. When performing subgroup analysis, we considered structured attributes
of radiographic projection (view), patient race, sex, and age. We included race subgroups
of Asian, Black, and White patients in alignment with Gichoya et al. (2022) and ‘AP’, ‘PA’,
and ‘Lateral’ views.

2.2. Deep Learning Model Training

We trained deep learning models for two distinct tasks as described below. These models are
termed Pathology Prediction Models (PPMs) and Comparative Dataset Models (CDMs).
Accordingly, we split each dataset into four subsets, consisting of 50% for training the
PPMs, 20% for training the CDMs, 10% for validation for both model types, and 20% for
testing for both model types. These partitions were performed on a patient-level to ensure
that all radiographs from one patient were included in the same partition.

Pathology Prediction Models (PPMs) The PPM models are trained according to
the standard task of predicting the presence of pathologies. We train these models using
the following 12 pathology labels: ‘Atelectasis’, ‘Cardiomegaly’, ‘Consolidation’, ‘Edema’,
‘Enlarged Cardiomediastinum’, ‘Fracture’, Lung Lesion’, ‘Lung Opacity’, ‘Pleural Effusion’,
‘Pleural Other’, ‘Pneumonia’, ‘Pneumothorax’. For robustness, we mapped uncertain labels
(-1) as missing. We trained models separately on CXP and MMC and refer to them as CXP-
PPM and MMC-PPM.
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Comparative Dataset Models (CDMs) The CDMs are designed to discern whether,
for a given pathology, an x-ray is more likely to yield a relatively higher prediction from the
CXP-PPM or the MMC-PPM. We refer to this difference in the PPM predictions as the
predictive tendency. To generate the CDM training labels for a given dataset (Figure 1),
we first rank the PPM predictions for the CXP- and MMC-PPMs for a given pathology
p, with the normalized rankings denoted as Φp. This step helps to mitigate calibration
discrepancies between the two PPMs. Subsequently, we compute the predictive tendency
sp(xi) for image xi and pathology p as follows:

sp(xi) = Φp
CXP (xi)− Φp

MMC(xi) (1)

The resulting values are binarized into discrete labels, denoted as s′p(xi), using the median
value from the CDM-training dataset as the binarization threshold, which results in a
balanced distribution of labels. Each CDM was trained on a pathology-specific subset of the
full dataset. For example, for pneumothorax, we compute the predictive tendency labels for
all images with pneumothorax and use these labels to train a pneumothorax-specific CDM.
The trained CDM outputs an inferred predictive tendency ŝp

′(xi) to estimate whether a
model trained on CXP or MMC outputs a relatively higher pathology prediction for that
image.

Figure 1: Development of Pathology Prediction Models (PPMs) and Comparative
Dataset Models (CDMs). PPMs are trained to predict the presence of pathologies. The dif-
ferences in prediction scores between PPMs trained on different datasets are used to derive labels,
which are then used to train the CDMs.

Model Architecture and Training For both training tasks (PPM and CDM), we em-
ployed DenseNet121 models (Huang et al., 2016), pre-trained on ImageNet. Models were
trained for 50 epochs and training was performed separately on each dataset. Final weights
were selected based on the highest performance, as determined by AUROC, on the valida-
tion dataset. For each model configuration (PPM/CDM and CXP/MMC), we train three
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identical models using different random seeds to increase the robustness of the analysis.
Unless specified otherwise, reported performance metrics represent the average across the
three models. When using the PPMs to create training labels for the CDMs, the PPM pre-
dictions are averaged across the three random seeds and subsequently ranked. Models are
implemented and trained using the TorchXrayVision library (Cohen et al., 2021). Overall,
our goal was to develop models representing standard architectures, hyperparameters, and
image preprocessing, where more information can be found in the Appendix A.

Image Transformations To study the importance of image characteristics for a CDM’s
ability to learn predictive tendencies, we applied the following image transformations:
1) Pixel permutations: to disrupt the spatial information without affecting intensity distri-
butions by randomizing the position of each pixel within an image; 2) Frequency filtering:
to selectively remove low and high-frequency content (see Appendix A for more details).

2.3. Statistical Analysis

To test the association between the distribution of predictive tendencies and categorical
structured attributes (view, race, sex), we first performed a Kruskal-Wallis test (Kruskal
and Wallis, 1952), followed by a post-hoc Dunn test (Dunn, 1964). We use ϵ2 (King and
Minium, 1981) to determine effect sizes. Associations of the predictive tendency with patient
age are tested using the Spearman correlation coefficient. We apply Bonferroni correction
to correct for multiple comparisons. Statistical analysis was conducted using python 3.9
with SciPy 1.10 and scikit-posthocs 0.8.1 (Virtanen et al., 2020).

3. Results

3.1. Pathology Prediction Model performance and performance gaps

The PPMs trained on CXP and MMC achieved overall AUROC scores of 0.89 and 0.93
respectively (micro-average across all 12 pathologies), with AUROCs for each pathology
detailed in Appendix B, Table 2. The performances of the PPMs are comparable to those
reported in the existing literature, despite using only 50% of the available data for training
(Seyyed-Kalantari et al., 2020; Pham et al., 2019).

The generalization gap for a model f and performance metric R is traditionally defined
by the difference: R(fA, DA)−R(fA, DB), whereDA andDB are distinct, mutually exclusive
domains, and fA denotes the model developed on DA. We focus on a dataset-centric
approach for comparing model performance: R(fA, DA)−R(fB, DA), where the models are
trained separately on DA and DB and evaluated on the same domain. This dataset-centric
perspective shifts the focus to the training datasets to offer a more direct comparison of
models on the same data points.

The performance gaps between in-domain and out-of-domain models across all 12 patholo-
gies are depicted in Figure 2A. In-domain models consistently outperformed out-of-domain
ones, though the extent of these gaps varied by pathology. Fracture and pneumothorax ex-
hibited the largest gaps, while effusion and atelectasis had the smallest. Notably, pathologies
with higher PPM model performance tended to show narrower gaps (Figure 2B).
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3.2. Predictive Tendencies

Beyond aggregate performance differences, we studied the model behavior at the individual
image level. In this analysis, we focused on three pathologies due to their varying per-
formance gaps: pneumothorax, pneumonia, and pleural effusion. We first visualized the
image-level prediction scores between the different models. As illustrated in Figure 2C and
D, notable image-level variations were observed, even for pleural effusion which exhibits
high predictive performance and a relatively smaller performance gap. To quantify these
differences, we introduce the concept of predictive tendency (s) (Section 2.2) that measures
the difference in the ranked prediction scores between PPMs trained on different datasets.
In the analysis that follows, we analyze these predictive tendencies for images that are
labeled positive for each of the three selected pathologies.

Figure 2: Performance Gaps. A) Comparison of CXP- and MMC-PPM performance. Each bar
represents the difference in performance between the out-of-domain model minus the in-domain
model on the CXP (blue) and MMC (orange) test datasets. B) Association between pathology AU-
ROC and performance gap (averaged across CXP- and MMC-PPMs). Color indicates the relative
amount of positive labels in the datasets (# of positive labels/total # of images, a proxy for amount
of training data). C,D) Ranked CXP- and MMC-PPM predictions for CXP pneumothorax and
pleural effusion for positive (blue) and negative (grey) images. Cardiom: Cardiomegaly, Cons: Con-
solidation, ECM: Enlarged cardiomediastinum, Lung op: Lung opacity, Pneumoth: Pneumothorax

Structured Attributes To examine whether the observed predictive tendencies are ran-
dom or reflect systematic features, we first explored whether the tendencies are correlated
with structured attributes: patient demographics (race, sex, age) and x-ray radiographic
view. Akin to prior analysis of generalization gaps with these datasets, we find that these
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attributes can only explain a small fraction of the observed predictive tendencies. Across
the categorical attributes (race, sex, view), the attribute generally showing the highest asso-
ciation is view (Figure 3 and Appendix D, Figure 9). Nonetheless, this effect was really only
visually apparent for pleural effusion with an ϵ2 effect size of 0.18 in MMC (with 0 being
chance and 1 corresponding to all variance explained). The next highest effect size was 0.06
for patient sex in the CXP dataset for pneumothorax, with generally low visually apparent
differences in the distribution of predictive tendencies (Appendix D, Figure 9). All other ϵ2

effect sizes across patient sex and race were below 0.01. Correlations with patient age were
also generally low, with an Spearman correlation coefficients ranging from 0.02-0.21 across
datasets and pathologies (Appendix D, Table 3 and Fig. 10).

Figure 3: Predictive Tendencies by Radiographic View. Distributions of predictive tenden-
cies for each radiographic view for images with pneumothorax (left) and pleural effusion (right).
*: p < 0.02 (Kruskal-Wallis test followed by pairwise Dunn test), effect sizes determined by ϵ2.

Intensity Distributions As the structured attributes only explain a small fraction of
the observed variance, we next investigated a possible correlation between the predictive
tendencies and first-order image statistics, namely the distribution of pixel intensities. If
there were such a correlation, one would expect differences in the intensity histograms
between images that have a predictive tendency towards MMC versus towards CXP. While
we do observe differences in the histograms between the CXP and MMC datasets themselves,
the variation between images with different predictive tendencies was negligible compared to
these disparities between the datasets, as shown in Appendix E. Notably, the differences in
intensity histograms between datasets were consistently larger than the differences between
predictive tendencies even after adjusting for structured attributes.

3.3. Comparative Dataset Models

As neither structured attributes nor first-order image statistics could explain the predictive
tendencies, we next asked whether they are determined by patterns that DL models could
recognize. To this end, we trained a separate set of deep learning models termed Compara-
tive Dataset Models (CDMs) (Figure 1 and Section 2.2). CDMs were trained separately for
each dataset and for each of the three selected pathologies to avoid introducing the dataset
source as a potential shortcut and to enable comparisons across pathologies.
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Surprisingly, we find that the predictive tendencies can indeed be predicted well above
chance levels, with AUROCs between 0.74 and 0.85 (pneumonia and pleural effusion MMC-
CDMs, see Table 1). Notably, CDMs trained on CXP or MMC showed meaningful cross-
dataset performance, suggesting generalizable predictive patterns (grey values in Table 1).

Table 1: Performance of Comparative Dataset Models. AUROCs for CDMs for
pathologies evaluated on both datasets.

Pneumothorax Pneumonia Pleural Effusion
evaluated on evaluated on evaluated on

CDM Training Data CXP MMC CXP MMC CXP MMC

CXP 0.841 0.695 0.751 0.626 0.841 0.792
MMC 0.675 0.799 0.725 0.749 0.789 0.845

With this highly non-trivial CDM performance, we next explored what types of in-
formation these models have learned. We first examined exemplary images, comparing
those that received high predictions from the CDMs against those with low predictions.
This was followed by examining the associations between CDM predictions and structured
attributes. These analyses aligned with our previous findings regarding the predictive ten-
dencies, where radiographic view had a moderate association with CDM predictions but
other associations were much less apparent. More details and visual representations can be
found in Appendices F and G.

Next, we assessed whether the models generalize across pathologies, i.e., if a CDM
model trained on images with pneumothorax could also predict the predictive tendencies
for images with pleural effusion. Interestingly, we find that this is not the case. As shown
in Appendix H, Tables 5 and 6, the models exhibit nearly random AUROC performance
with a range of 0.43-0.60. These results further suggest that the predictive tendencies are
pathology-specific and cannot be explained by low level statistical differences.

Subsequently, we tested how other image characteristics might influence CDMs’ abil-
ity to discern predictive tendencies by applying targeted image transformations, retraining
the CDMs on these transformed images and assessing the impact on CDM performance.
To examine the role of spatial relationships, we randomized pixel positions in the x-rays,
disrupting the spatial structure but preserving the intensity distribution. This pixel permu-
tation significantly reduced CDM performance, dropping AUROCs to near-chance levels,
between 0.55 and 0.64 (Appendix H, Table 7), again aligning with our previous findings
that predictive tendencies are not linked to low-level image statistics.

We then assessed the importance of image frequencies by filtering out high or low fre-
quencies, following the method of Gichoya et al. (2022) who used this explainability ap-
proach in the context of models trained to predict patient race. When applied to the
CDMs, the filtering variably affected performance but consistently showed that CDMs rely
on both frequency ranges (Figure 4). Notably, CDMs maintained non-trivial performance
even when features are largely not perceptible to the human eye, qualitatively similar to
the results of Gichoya et al. (2022) for predicting patient race and suggesting that both sets
of models may rely on a mix of statistical features for their respective tasks.
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Figure 4: Performance of CDMs Trained and Tested Using Modified Images Top: AUROCs
with varying filter radius (low (left) and high pass (right) filters). Bottom: Sample images.

4. Discussion

Despite a wealth of research into DL model performance gaps, particularly in chest x-ray
analysis, a significant portion of these gaps remain unexplained (Wu et al., 2021). In this
study, we adopt a “dataset-centric” perspective to examine performance gaps between DL
models trained on different datasets, revealing that these gaps vary across pathologies and
are influenced by their representation in the datasets. Beyond performance however, a key
contribution of our work is introducing the concept of “predictive tendency” – the notion
that models trained on different datasets can exhibit systematic differences in predictions
regardless of overall performance. Our analysis suggests that these tendencies in two popu-
lar datasets are pathology-specific and depend on higher-order image statistics that are not
fully captured by structured attributes. These results especially emphasize the heterogene-
ity of disease presentation (Oakden-Rayner et al., 2019) and label creation, where variations
in representation across datasets and even radiologist/clinic-specific interpretation practice
could potentially contribute to our findings. Beyond showing that the tendencies can be
predicted using separate deep learning models, we envision avenues where this approach
can enable context-dependent ensembling strategies of multiple models, and tailored model
selection to individual patient and image profiles more generally. Altogether, our analy-
sis highlights the importance of a nuanced view of generalization, emphasizing the need
to address context-specific biases while leveraging this knowledge increase performance ro-
bustness across all patients.
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Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimr-
man, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H.
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Appendix A. Model training details

Image preprocessing Following common practices in the field (Cohen et al., 2021),
image preprocessing consisted of the following steps in order:

1. Center cropping to a square image

2. Resizing to 224 by 224 pixels

3. Intensity normalization to a range of -1024 to 1024

Hyperparameters We used the following hyperparameters for model training:

• Loss function: Weighted categorical cross-entropy; weights were determined by the
inverse of the label frequency in the training dataset

• Adam optimizer

• Learning rate: 1.0e-3

• Weight decay: 1.0e-5

• Number of epochs: 50

High and low pass filters We first convert an image to the frequency domain. Sub-
sequently, we defined a circular filter of a specified radius, r, and removed the frequency
content within the circle (high-pass) or outside of it (low-pass filtering). Lastly, we applied
an inverse Fourier transformation to convert the image back to the spatial domain. For this
step we utilize code provided by Gichoya et al. (2022).
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Appendix B. PPM results

Table 2: Performance of PPMs Per Dataset and Pathology: AUROCs (averaged across
seeds) per CXP- and MMC-PPMs tested on both datasets.

CXP test dataset MMC test dataset
Pathology CXP-PPM MMC-PPM CXP-PPM MMC-PPM
Atelectasis 0.887 0.884 0.890 0.908
Cardiomegaly 0.925 0.915 0.874 0.900
Consolidation 0.921 0.915 0.918 0.934
Edema 0.915 0.891 0.925 0.941
Enlarged Cardiomediastinum 0.815 0.782 0.824 0.881
Fracture 0.795 0.759 0.738 0.761
Lung Lesion 0.822 0.819 0.799 0.841
Lung Opacity 0.895 0.879 0.856 0.880
Pleural Effusion 0.936 0.937 0.935 0.952
Pleural Other 0.859 0.831 0.856 0.901
Pneumonia 0.861 0.858 0.792 0.832
Pneumothorax 0.790 0.755 0.814 0.866
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Appendix C. PPM prediction distributions

Figure 5: Ranked Predictive Scores Across Pathologies and Dataset: (A) Pleural Effusion in CXP
Dataset, positive (blue), negative (grey). (B) Pneumothorax in CXP Dataset, positive (blue), neg-
ative (grey). (C) Pneumonia in CXP Dataset, positive (blue), negative (grey). (D) Pleural Effusion
in MMC Dataset, positive (orange), negative (grey). (E) Pneumothorax in MMC Dataset, posi-
tive (orange), negative (grey). (F) Pneumonia in MMC Dataset, positive (orange), negative (grey).
effusion (D) positive (blue) and negative (grey) images
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Appendix D. Structured Attributes

Figure 6: Subgroup Distributions Across Dataset: (A) Sex, (B) Race , (C) Age , (D) View.

Figure 7: Ranked Predictive Scores for subgroups in CXP dataset: (A) Pleural Effusion By View,
Race, Sex and Age, (B) Pneumonia By View, Race, Sex and Age, (C) Pneumothorax By View,
Race, Sex and Age.
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Figure 8: Ranked Predictive Scores for subgroups in MMC dataset: (A) Pleural Effusion By View,
Race, Sex and Age, (B) Pneumonia By View, Race, Sex and Age, (C) Pneumothorax By View,
Race, Sex and Age.

Table 3: Spearman correlation coefficients between age and predictive tendencies s for
images with pneumothorax, pneumonia, and pleural effusion.

Dataset Pneumothorax Pneumonia Pleural Effusion

CXP 0.05 0.21 -0.02
MMC 0.14 0.15 -0.07
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Figure 9: Predictive Tendency Across Subgroups: (A) Pleural effusion by view, race, and sex, (B)
Pneumonia by view, race, and sex, (C) Pneumothorax by view, race, and sex. Epsilon squared effect
sizes are displayed when associations between the predictive tendency and structured attributes are
statistically significant.
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Figure 10: Relationship between the predictive tendency and patient age for images with pneumoth-
orax (top), pneumonia (middle), and pleural effusion (bottom) for test data from the CXP (left)
and MMC dataset (right).
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Figure 11: View distribution differences between images with pathology negative and positive images
for pneumothorax (A), pneumonia (B), and pleural effusion (C).
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Appendix E. Histograms

Figure 12: Average histograms for pneumothorax positive images by predictive tendency (top) and
separate for each view (bottom row) for the CXP (blue) and MMC test datasets (orange). m denotes
the binarization threshold of the predictive tendency s (median predictive tendency).
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Figure 13: Average histograms for pneumonia positive images by predictive tendency (top) and
separate for each view (bottom row) for the CXP (blue) and MMC test datasets (orange). m
denotes the binarization threshold of the predictive tendency s (median predictive tendency)..
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Figure 14: Average histograms for pleural effusion positive images by predictive tendency (top) and
separate for each view (bottom row) for the CXP (blue) and MMC test datasets (orange). m denotes
the binarization threshold of the predictive tendency s (median predictive tendency)..
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Appendix F. Comparison of X-rays with high and low CDM prediction
values

Example images that received high and low CDM predictions are plotted below, where high
predictions correspond to an inferred CXP predictive tendency and low predictions corre-
spond to an inferred MMC predictive tendency (Figures 15, 16, 17, and 18). While there
is large heterogeneity amongst these images, there are several contexts where particular
radiographic views are overrepresented. For instance, images depicting pneumothorax that
were inferred to have a CXP predictive tendency were predominantly lateral views. Con-
versely, pneumonia and pleural effusion images that were inferred to have a MMC predictive
tendencywere more likely to be lateral views. Nonetheless, the features driving other CDM
predictions are often unclear.
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Figure 15: Examples for the Pneumothorax CDM X-rays were randomly selected among the
10% of test dataset images with the highest (lowest) predictions of the Comparative Dataset Model
trained to infer the predictive tendency of images with pneumothorax.
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Figure 16: Examples for the Pneumonia CDM X-rays were randomly selected among the 10% of
test dataset images with the highest (lowest) predictions of the Comparative Dataset Model trained
to infer the predictive tendency of images with pneumonia.
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Figure 17: Examples for the Pleural Effusion CDM X-rays were randomly selected among the
10% of test dataset images with the highest (lowest) predictions of the Comparative Dataset Model
trained to infer the predictive tendency of images with pleural effusion
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Figure 18: Average of the X-rays with highest/lowest CDM predictions Averages of the
10% of test dataset images with the highest (lowest) predictions for CDMs trained on images with
pneumothorax (A), pneumonia (B), and pleural effusion (C).
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Appendix G. Association between CDM predictions and structured
attributes

Similarly to the analysis of associations between the predictive tendency and structured
attributes in Section 3.2, we analyzed the associations between CDM predictions (inferred
predictive tendencies) and structured attributes. These analyses largely reflected the ef-
fects outlined in Section 3.2 regarding predictive tendencies, wherein structured attributes
explained only a minor portion of the CDM predictions. Among the attributes examined,
the radiographic view emerged as having the strongest association with CDM predictions
across all pathologies. However, the effect sizes, quantified by epsilon squared, were modest,
ranging between 0.07 and 0.32. The patient’s sex showed a statistically significant associ-
ation with the CDM predictions for pneumonia and pleural effusion, albeit with minimal
effect sizes (epsilon squared of 0.006 and 0.02, respectively). No statistically significant
associations were observed between CDM predictions and the patient’s race or age for any
pathology, further emphasizing the unique association of the radiographic view.

Table 4: Spearman correlation coefficients between age and predictive tendencies s for
images with pneumothorax, pneumonia, and pleural effusion.

Dataset Pneumothorax Pneumonia Pleural Effusion

CXP 0.06 0.22 -0.03
MMC 0.15 0.20 -0.06
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Figure 19: Comparative Dataset Model Predictions Across Subgroups: (A) Images with pleural
effusion by view, race, and sex, (B) image with pneumonia by view, race, and sex, (C) images with
pneumothorax by view, race, and sex. Epsilon squared effect sizes are displayed when associations
between the CDM prediction (inferred predictive tendency) and structured attributes are statistically
significant.
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Figure 20: Relationship between CDM predictions and patient age for images with pneumothorax
(top), pneumonia (middle), and pleural effusion (bottom) for test data from the CXP (left) and
MMC dataset (right).
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Appendix H. Additional CDM results

Table 5: Performance of CXP-CDM Generalization Across Pathologies in CXP Dataset.

Datasets
Models Pneumothorax Pneumonia Pleural Effusion
Pneumothorax N/A 0.601 0.432
Pneumonia 0.550 N/A 0.539
Pleural Effusion 0.495 0.560 N/A

Table 6: Performance of MMC-CDM Generalization Across Pathologies in MMC Dataset.

Datasets
Models Pneumothorax Pneumonia Pleural Effusion
Pneumothorax N/A 0.537 0.369
Pneumonia 0.584 N/A 0.479
Pleural Effusion 0.473 0.524 N/A

Table 7: Performance of CDMs with Pixel Permutations.

Pneumothorax Pneumonia Pleural Effusion
evaluated on evaluated on evaluated on

Model trained on* CXP MMC CXP MMC CXP MMC

CXP 0.627 0.545 0.625 0.539 0.644 0.609
MMC 0.561 0.554 0.561 0.548 0.640 0.632

*Each row lists the performances of CDMs trained on either CXP or MMC subsets. For example, the
pneumothorax CXP-CDM was trained and evaluated on pneumothorax positive images form the CDM-
training and test datasets. Gray values indicate out-of-domain performance, i.e. the pneumothroax CXP-
CDMs tested on MMC pneumothorax test data and vice versa.
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