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Abstract: In many areas, vast amounts of information are rapidly accumulating in the form of
ontology-based knowledge graphs, and the use of information in these forms of knowledge graphs
is becoming increasingly important. This study proposes a novel method for efficiently learning
frequent subgraphs (i.e., knowledge) from ontology-based graph data. An ontology-based large-scale
graph is decomposed into small unit subgraphs, which are used as the unit to calculate the frequency
of the subgraph. The frequent subgraphs are extracted through candidate generation and chunking
processes. To verify the usefulness of the extracted frequent subgraphs, the methodology was applied
to movie rating prediction. Using the frequent subgraphs as user profiles, the graph similarity
between the rating graph and new item graph was calculated to predict the rating. The MovieLens
dataset was used for the experiment, and a comparison showed that the proposed method outper-
formed other widely used recommendation methods. This study is meaningful in that it proposed
an efficient method for extracting frequent subgraphs while maintaining semantic information and
considering scalability in large-scale graphs. Furthermore, the proposed method can provide results
that include semantic information to serve as a logical basis for rating prediction or recommendation,
which existing methods are unable to provide.

Keywords: frequent subgraph mining; knowledge graph; semantic web; ontology; rating prediction;
recommendation

1. Introduction

Since the emergence of the concept of the Semantic Web, ontologies used in informa-
tion science have been constructed by various agents across diverse domains to store and
organize information. Ontology is a semantic data model that specifies concepts and the
relationships between the concepts [1]. An ontology that defines the “type” of “things”
and reveals the semantic relationship between the “things” is itself an enormous graph and
a collection of various types of information.

Specifically, experts in each field define a domain ontology to represent their knowl-
edge about classes, properties, and instances in their point of view, according to W3C’s
Web standards such as Resource Description Framework (RDF) and Web Ontology Lan-
guage (OWL). In this paper, we referred to terminological component (TBox) as ‘ontology’
or ‘schema’ and assertion component (ABox) as ‘instance graph’ or ‘knowledge graph’.
In other words, a database that stores instance-level data using the graph structure of
ontology (class/property relations) is a knowledge graph. We refer to such a knowledge
graph as “ontology graph data” or “ontology-based knowledge graph” in our study.

If a frequent pattern (i.e., frequent subgraph) is discovered in an ontology-based
knowledge graph, then the semantic information it contains can be utilized to expand the
schema of that domain or acquire new application insights. For example, if it is discovered

Appl. Sci. 2021, 11, 932. https://doi.org/10.3390/app11030932 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7639-6687
https://orcid.org/0000-0001-5828-178X
https://doi.org/10.3390/app11030932
https://doi.org/10.3390/app11030932
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11030932
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/3/932?type=check_update&version=3


Appl. Sci. 2021, 11, 932 2 of 28

that certain instances in a knowledge graph possess common attributes, they can be
grouped together and defined as a new class, thus expanding knowledge.

However, considering that ontology includes semantic information, it is impossible
to apply a frequent subgraph mining algorithm to general graphs that simply consist of
nodes and edges. Moreover, as the data consist of one large graph rather than a set of
graphs, the occurrence must be divided into measurable units to calculate the frequency,
and dividing by item set (transaction) as in previous methods results in loss of graph
information.

Accordingly, this study proposed a methodology to effectively extract frequent sub-
graphs while retaining the graph information. First, this study presented a novel method
of decomposing a large-scale instance graph built based on an ontology into small unit
subgraphs. The unit subgraphs serve as the unit of occurrence to calculate the frequency
and support, and instance triples with support beyond the threshold are regarded as candi-
dates for chunking. The candidate instance triple becomes a new chunk, and candidate
generation and chunking are repeated to extract the frequent subgraph.

The usefulness of the information contained in these extracted frequent subgraphs was
verified through experiments. Using a movie ontology containing information on the actors,
genre, and director of a movie, a new ontology in which user rating is linked was created,
and the frequent subgraphs were extracted from the instance graph constructed based on
the new ontology. The frequent subgraphs and new item graphs were compared to predict
the rating, and the accuracy of the recommendation to the user was evaluated against
other recommendation algorithms. The results confirmed that the proposed methodology
outperforms the other algorithms in terms of accuracy and F1-score, demonstrating that
the methodology proposed in this study is useful for real applications.

1.1. Related Works
1.1.1. General Frequent Subgraph Mining

Frequent subgraph mining (FSM), a field of graph mining, relates to the investigation
of methods to find patterns that frequently occur (i.e., occur more than the threshold) in a
graph dataset [2]. Typically, FSM algorithms identify a suitable starting node from the graph,
apply the depth-first search (DFS) or breadth-first search (BFS) strategy to create candidate
subgraphs, and then count the frequency of each candidate to extract the patterns.

The most frequently cited FSM algorithm is gSpan [3], which supports undirected
graphs, uses DFS, and employs the minimum DFS code to specify the subgraphs uniquely.
Several other FSM algorithms have been developed for biochemical graph data. MoFa [4]
attempted to extract the patterns from graphs representing molecules. FFSM [5] attempted
to find subgraphs from protein structures with a small number of labels but large and
dense characteristics. Nijssen and Kok proposed an integrated algorithm called GASTON
to find frequent paths, trees, and graphs [6]. These studies primarily focused on graph
representation methods, methods for quickly and effectively generating candidates, and the
isomorphism test, which confirms whether subgraphs belonging to different graphs are
homogeneous (which is necessary for counting the frequency).

1.1.2. Frequent Subgraph Mining on Knowledge Graph

Subgraph mining with an ontology-based knowledge graph differs from general
subgraph mining. General FSM algorithms primarily address the structure of the final
extracted frequent subgraphs; that is, the fact that the specific structure frequently occurs
in the dataset is important. However, if FSM is applied to an ontology-based knowledge
graph, then the identified frequent subgraphs will have interpretable meanings, and these
‘meanings’ can be of use according to the ontology domain. For example, it is possible to
explain that a user likes action movies starring Tom Cruise because a frequent subgraph
from his data has a triple <Tom Cruise, Acting, Movie> with <Movie, MovieGenre, action>.
That is, one can get information for interpretation of the results (frequent subgraphs) from
an ontology-based knowledge graph.
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In a large-scale knowledge graph, it is necessary to determine a suitable unit or
transaction for counting the occurrences to find the frequent subgraphs. Accordingly,
to perform frequent subgraph mining, numerous studies converted the graph structure
into a set of transactions comprising a series of items and then solved it as a problem of
association rule mining or frequent pattern mining [7–11]. These methodologies have the
disadvantage that the semantic information of the graph is lost in the process of creating the
transactions. Moreover, it is difficult to regard the extraction results as frequent subgraphs,
even though it was approached through association rule mining (frequent pattern mining).

On the other hand, if we look at recent studies related to knowledge graph, Wang et al.
predicted human mobility activity embedding spatial knowledge graph [12], Zhou et al.
presented conversational recommendation approach via KG based semantic fusion [13],
and Li et al. extracted triplet samples from the knowledge graph [14]. We confirm that
many studies, including those not mentioned here, are proceeding with neural network
(such as graph recurrent neural network, deep neural network, graph convolutional neural
network) based research. While these studies are focused on the performance of solving
target problems, our research aims to have explanatory power solving problems at a
reasonable level.

1.1.3. Recommendation Algorithm

Research on recommendation using a knowledge graph has recently drawn much
attention. Palumbo et al. presented entity2rec, a recommender system based on property-
specific knowledge graph embeddings and introduced a new way of creating property-
specific sub-graphs [15]. Using Linked Open Data (LOD) knowledge base such as “DB-
pedia”, Recommender System with LOD (RS-LOD) model for cold start issue and Matrix
Factorization model with LOD (MF-LOD) for data sparsity problem was developed [16].
In a similar approach, Wang et al. proposed a new semantic similarity measure based on
semantic information in the LOD knowledge base, which is a hybrid measure based on
feature and distance metrics [17].

As the study focused on selection and embedding of semantic features, Noia et al.
showed how ontology-based (linked) data summarization can drive the selection of prop-
erties/features useful to a recommender system [18]. Anelli et al. showed how to initialize
latent factors in Factorization Machines by using semantic features coming from a knowl-
edge graph in order to train an interpretable model [19]. These studies did not directly
focus on knowledge expansion or recommendation algorithms fully utilizing knowledge
graphs, and knowledge graphs were used as a source of additional information or only
some features.

The objective of our study is not to develop a recommender system but to apply
the proposed methodology to a recommendation application for performance evaluation.
This evaluation is needed to verify whether the frequent subgraphs extracted in our
experiment adequately reflect the meaning of the original graph. Accordingly, we describe
several collaborative filtering algorithms used in the experiment.

Four algorithms were used for comparison. First, the kNN (k Nearest Neighborhood)
inspired algorithm utilizes information from neighbors close to the user to recommend
items [20]. The other three algorithms are matrix factorization algorithms, which decom-
pose the user-item matrix into two matrices [16]. We used the Singular Value Decomposition
(SVD) [21], SVD++ [20], and Non-negative Matrix Factorization (NMF) [22] algorithms for
the comparison.

As kNN, SVD, SVD++ and NMF algorithms were not developed for ontology graph
data, the calculations were performed based on numerical data, and the recommendations
were made without knowing the semantic information contained in ontology graph data.
Hence, it is difficult to logically explain why certain items are recommended. The proposed
methodology not only outperforms these algorithms, but also explains why the items were
recommended. Such merits raise the possibility that our approach can be developed into
an algorithm for collaborative filtering.
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2. Methodology

This section describes a novel and efficient methodology for finding frequent sub-
graphs in large-scale graphs and applies it to an actual case of rating prediction to verify
the superior performance and applicability of the proposed methodology.

2.1. Frequent Subgraph Mining

As mentioned above, the existing methodologies for frequent subgraph mining pri-
marily focused on enhancing computational performance without considering the semantic
information for each node and edge, mainly from the perspective of candidate generation
or the isomorphism test. The proposed methodology assumes an ontology graph and
utilizes semantic and mining query information to decompose a large graph into small
unit subgraphs, thereby maintaining semantic information and improving computational
efficiency.

As shown in Figure 1, the methodology comprises three main steps. The first is a pre-
processing step in which the mining query is used to find all possible paths in the ontology
graph while removing irrelevant components. In the second step, the irrelevant compo-
nents are removed from the instance graph, after which instance triple paths corresponding
to the paths of the ontology graph obtained in the first step are generated, through which
the unit subgraphs are generated and restructured. In the third and final step, using these
generated unit subgraphs as the unit of frequency, chunking and candidate generation
considering the chunk option and chunk label are repeated until the threshold is satisfied,
after which the final frequent subgraphs are extracted.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 29 
 

Hence, it is difficult to logically explain why certain items are recommended. The pro-
posed methodology not only outperforms these algorithms, but also explains why the 
items were recommended. Such merits raise the possibility that our approach can be de-
veloped into an algorithm for collaborative filtering. 

2. Methodology 
This section describes a novel and efficient methodology for finding frequent sub-

graphs in large-scale graphs and applies it to an actual case of rating prediction to verify 
the superior performance and applicability of the proposed methodology. 

2.1. Frequent Subgraph Mining 
As mentioned above, the existing methodologies for frequent subgraph mining pri-

marily focused on enhancing computational performance without considering the seman-
tic information for each node and edge, mainly from the perspective of candidate genera-
tion or the isomorphism test. The proposed methodology assumes an ontology graph and 
utilizes semantic and mining query information to decompose a large graph into small 
unit subgraphs, thereby maintaining semantic information and improving computational 
efficiency. 

As shown in Figure 1, the methodology comprises three main steps. The first is a 
preprocessing step in which the mining query is used to find all possible paths in the 
ontology graph while removing irrelevant components. In the second step, the irrelevant 
components are removed from the instance graph, after which instance triple paths cor-
responding to the paths of the ontology graph obtained in the first step are generated, 
through which the unit subgraphs are generated and restructured. In the third and final 
step, using these generated unit subgraphs as the unit of frequency, chunking and candi-
date generation considering the chunk option and chunk label are repeated until the 
threshold is satisfied, after which the final frequent subgraphs are extracted. 

Before explaining the detailed methodology, several terms are defined, and their 
meanings and assumptions used in this study are described. The ontology graph is shown 
in Figure 2a. Each class (node) and property (edge) are unique in a total ontology graph 
and multiple properties (multi edge) are allowed. Figure 2b is an example of an instance 
graph. A class of ontology graphs has one or more instances, and one or more properties 
between classes are inherited by the property between two instances. 

 
Figure 1. Proposed methodology. Figure 1. Proposed methodology.

Before explaining the detailed methodology, several terms are defined, and their
meanings and assumptions used in this study are described. The ontology graph is shown
in Figure 2a. Each class (node) and property (edge) are unique in a total ontology graph
and multiple properties (multi edge) are allowed. Figure 2b is an example of an instance
graph. A class of ontology graphs has one or more instances, and one or more properties
between classes are inherited by the property between two instances.
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Owing to the enormous cost of directly searching for frequent subgraph patterns in
an entire graph, this study attempts to improve the efficiency of this process by dividing
the entire graph into “unit subgraph.” “Unit subgraph” is a set of instances and properties
generated by the mining query. It comprises all paths from an instance of a start class to all
instances of the end classes and becomes the basic unit for calculating the frequency.

“Mining Query” is basically a concept for defining the extent of the subgraph when
dividing a large graph into subgraphs of small units. In this study, knowledge graphs
based on the ontology graph are the subject of the study, so we tried to make the most use
of the information that ontology has. When an expert with information about a specific
domain ontology performs frequent subgraph mining on his ontology-based knowledge
graph, “Mining Query” allows his domain knowledge to be fully reflected in the analysis.

The “Mining Query” concept is defined as follows.

Mining Query: = (SC, EC, CO) (1)

The mining query comprises three parts, which are defined as follows:

1. SC (Start Class): the start class of an ontology graph; each instance of this class is a
start node of a unit subgraph;

2. EC (End Class): a set of end classes; all instances of these classes are end nodes of the
unit subgraph;

3. CO (Chunking Option): chunking option; a set of classes to be chunked considering
instances as their classes in a unit subgraph (if not specified, instance level chunking
is performed).

For example, given a mining query “Q” (Equation (2)) has the following meanings:
“We try to find the frequent pattern in the linked relationship of “User” and “Academy”,
“Genre” and “Rating” and in the case of “WatchingEvent” and “Movie” classes, the infor-
mation in their instances is not used for analysis.” This approach is significant in that it can
incorporate domain information of experts into the frequent subgraph mining.

Q = (User, {Academy Genre Rating}, {WatchingEvent Movie}) (2)

In the example of Equation (2), the start class for composing the unit subgraphs
becomes the “User” class, the three classes of “{Academy Genre Rating}” are used as the
end classes, and during candidate generation, the instances of “{WatchingEvent Movie}”
classes are considered as a single class called “WatchingEvent” and “Movie”, respectively.

2.1.1. Ontology Graph Processing

Figure 3 shows an example of a general ontology graph, which considers the mining
query in Equation (2).
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The ontology resources in the sentence “Tenet is directed by Christopher Nolan”
are represented by class and property in the ontology graph. The ovals “(1)Movie” and
“(2)Person” in Figure 3 become classes representing the instances “Tenet” and “Christopher
Nolan,” respectively, and the rectangle on the edge connecting them, “[4]DirectedBy”,
acts as a property. Reflecting the mining query in Equation (2), the sky blue oval (“(4)User”)
in Figure 3 becomes the start class, the yellow ovals (“(7)Academy”, “(6)Genre”, “(3)Rat-
ing”) become the end classes, and the ovals “(0)WatchingEvent” and “(1)Movie” are
regarded only as classes without considering the differences in the instances belonging
to them in candidate generation. In addition, to maintain the generality of the ontology,
this study considers the reflexive property “[1]AssociatedWith” displayed in green and the
multiple properties between the “(1)Movie” and “(2)Person” classes displayed in orange
(“[2]Acting”) and black (“[4]DirectedBy”) lines, through which paths are found in the
ontology graph and instance triple paths are found in the instance graph.

The ontology graph in Figure 3 is represented in the form of the data structure in
Table 1 in an actual application.

Table 1. Ontology graph data structure.

Class Property Class

(0)Watching Event [0]WatchedMovie (1)Movie
(1)Movie [1]AssociatedWith (1)Movie
(2)Person [2]Acting (1)Movie
(3)Rating [3]RatingEvent (0)WatchingEvent
(1)Movie [4]DirectedBy (2)Person
(4)User [5]UserWatched (0)WatchingEvent
(1)Movie [6]MadeBy (5)Company
(1)Movie [7]ClassifiedBy (6)Genre
(2)Person [8]EducatedFrom (7)Academy

Next, based on the data expressed in the above form, a matrix with rows and columns
as classes is generated, which is used to find all paths from the start class to the end class
(Figure 4). We assume that a path contains no repeated properties.
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In Figure 4, the reflexive property mentioned above is reflected in the paths in the form
of “[1]AssociatedWith” between “(1)Movie” and “(1)Movie” classes, and the multiple prop-
erties are shown as two property paths, where the order of “[2]Acting” and “[4]DirectedBy”
is changed.

Finally, Figure 5 shows the clean ontology graph after removing the components that
do not belong to the paths between the start class and end class, that is, the components
unrelated to the given mining query.
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2.1.2. Unit Subgraph Generation

In this step, using this clean ontology graph and paths, the irrelevant components are
removed from the instance graph. The instance triple paths are obtained, and then the unit
subgraphs are generated and restructured. Figure 6 and Table 2 show an example of an
initial instance graph and some of its data structures.
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Table 2. Instance graph data structure.

ID Class Instance ID Instance Property Class Instance ID Instance

1 Watching Event W101 U1_M01 Watched
Media Movie M01 Movie_01

5 Person P01 Person_01 Acting Movie M01 Movie_01

13 Movie M02 Movie_02 Associated
With Movie M02 Movie_02

16 Movie M01 Movie_01 Directed By Person P01 Person_01

As shown in the instance graph data structure of Table 2, the reflexive property and the
multiple properties mentioned above were properly reflected in IDs 13, 5, and 16. Figure 7
shows the instance graph after removing the instance components (ID 7) unrelated to the
mining query, as in the ontology graph. However, unlike the reflexive property in the
ontology graph, a reflexive property connecting the same instances is not allowed at the
instance level; therefore, the corresponding triple instances (ID 13) are removed.
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Figure 8 shows the instance triple paths obtained using the ontology graph and paths.
The instances in the instance graph belong to a specific class. Because these classes are
found in the paths and the properties of the instance graph also match the properties of the
paths, it is not difficult to obtain the instance triple paths. In this example, the start class is
“User” and the instances belonging to that class are User_1, User_2, and User_3. Hence,
the set of instance triple paths that will compose the three unit subgraphs is obtained.

The unit subgraphs displayed in Figure 9 are generated by combining the instance
triple paths obtained for each instance of the user class. The rectangles indicate where
the instance triple ID of the original triple is changed to a new ID. This process is meant
to maintain the graph structure of each unit subgraph in the chunking step performed
later. These unit subgraphs then become the basic unit for calculating the frequency. The
candidate generation and chunking processes in the next step are performed for each unit
subgraph.
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2.1.3. Frequent Subgraph Extraction

In this step, the chunking option and chunk label are first applied to the instance
triples of the unit subgraphs. Then, the instance triples with support that satisfy the
specified threshold are selected as the candidates and chunked, after which the labels for
the chunks are applied to restructure the unit subgraphs. Figure 10 shows the process for
which the chunking option is applied. The corresponding instances of the unit subgraph
are considered as a class in the given chunking option “{Watching Event Movie}” in order
to be calculated at the class level rather than the instance level. For the instance triple
“<Movie_01, Directed By, Person_01>”, the “Movie_01” instance is changed to the label
“Movie” and the frequency is calculated considering the instance triple “<Movie, Directed
By, Person_01>.”
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The definitions for the frequency and support used in this study are explained as
follows.

Definition 1. The support of a subgraph g is defined as

supG(g) =
F
T

(3)

where F (Frequency) is the number of unit subgraphs in which the subgraph g occurs, and T is the
number of unit subgraphs in a database G = {G1, G2, · · · , Gn} consisting of a collection of unit
subgraphs. F is calculated as one count per unit subgraph regardless of whether g occurs once or
more than once in a unit subgraph.

The subgraphs in this study are composed of a set of instance triples and chunks, that
is, sets of instance triples to be newly labeled. The threshold is a criterion for whether an
instance triple or chunk can become a chunking candidate. In the case of Figure 11, because
the threshold is assumed to be 0.5, the instance triples with a support value of 0.67 or 1.00
become the candidates.
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Meanwhile, the instances corresponding to the “{Watching Event Movie}” classes are
changed to class, as shown in green, and the frequency and support are calculated at the
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class level. Although this triple appears twice in the “User_3” unit subgraph, the frequency
is incremented as one, as the number of unit subgraphs is counted.

As shown in Figure 11, the criteria to determine which of the four candidates that
satisfy the threshold should actually be chunked were applied in the following order.

1. Higher support,
2. Lager size of chunk,
3. Random if the preceding conditions are the same.

In Figure 12, the instance triple “<Watching Event, Watched Movie, Movie>” is targeted
for chunking, and chunking is actually performed. The result is shown in the changed
appearance of each unit subgraph and the ID and label newly attached to the new chunk
(“Watching Event-Movie”). For example, in the unit subgraph of “User_1”, “_1:1” is the
instance ID for managing the newly created chunk as a new instance, and “[_1:4]” signifies
that the newly created chunk (new instance) in each unit subgraph is identical. This is the
label used in the next candidate generation. Managing the chunk (new instance) in these
two forms satisfies the goal of maintaining the unit subgraph’s graph structure regardless of
chunking. That is, before chunking, instances such as “Watching Event” and “Movie” that
comprised the chunk were connected with instances such as “Rating_40” and “Person_01”,
respectively. After chunking, a new chunk (such as “_1:1”, “_1:15”, “_1:6”, and “_1:19”) is
connected with instances such as “Rating_40” and “Person_01” by the same property.
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Figures 13–15 show the repetition of the process until there is no instance triple (or
chunk) with support that satisfies the threshold. In this example, no candidate is generated
after performing the fourth chunking. The squares to the right of each figure show how the
chunk generated in the previous step grows in the next step. Accordingly, chunking ends
in steps 2 or 3 in certain unit subgraphs and in step 4 in others.
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Figure 16 shows the final frequent subgraphs found in the entire instance graph
after performing all the processes. Three frequent subgraphs were found in this example;
the frequent subgraph A© (subgraph in blue polygon in Figure 16) consists of four triples
among the triples of the original instance graph. That is, “<R50, Rating Event, Watching
Event>”, “<Watching Event, WatchedMovie, Movie>”, “<Movie, Directed By, P02>”, and
“<P02, Educated From, AC02>” constitute the frequent subgraph A© found in this example.

Thus far, this chapter explained the process of addressing the difficulty of finding
frequent patterns in a large-scale graph using an ontology graph, instance graph, and
mining query for generating unit subgraphs. We decomposed the entire graph into unit
subgraphs and calculated the frequency and support by the number of unit subgraphs
according to the mining query. This method has not been reported yet. In fact, given that
finding frequent subgraphs in a graph is known as an NP-hard problem, the methodology
proposed in this study can serve as a highly effective alternative. The next subsection
explains the application of the extracted frequent subgraph for movie rating prediction.



Appl. Sci. 2021, 11, 932 13 of 28Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 29 
 

 
Figure 16. Final frequent subgraphs. 

Thus far, this chapter explained the process of addressing the difficulty of finding 
frequent patterns in a large-scale graph using an ontology graph, instance graph, and min-
ing query for generating unit subgraphs. We decomposed the entire graph into unit sub-
graphs and calculated the frequency and support by the number of unit subgraphs ac-
cording to the mining query. This method has not been reported yet. In fact, given that 
finding frequent subgraphs in a graph is known as an NP-hard problem, the methodology 
proposed in this study can serve as a highly effective alternative. The next subsection ex-
plains the application of the extracted frequent subgraph for movie rating prediction. 

2.2. Movie Rating Prediction 
2.2.1. User Rating Ontology and Rating Graph 

The user rating ontology was defined to predict the ratings using the frequent sub-
graphs. In the user rating ontology, the purchase or consumption events of each user are 
combined with the basic domain ontology, which consists of items and item attributes. 
These events contain the degree of preference, that is, the rating information that the user 
assigns to the item. For example, Figure 17 below shows the user rating ontology schema 
for the movie domain. This is created by combining the user, watching event, and rating 
classes with the domain ontology that contains the information about the movie. The ac-
tual instance graph for this schema will connect one user to multiple movies. 

We apply the algorithm in Section 2.1 to a given instance graph based on the User 
Rating Ontology. Among the extracted frequent subgraphs, one or more subgraphs re-
lated to the rating was defined as the Rating Graph; i.e., it is a set of rating subgraphs. In 
Figure 18a, the rating graph contains a pattern based on the rating evaluated by the user. 
This pattern is an attribute set that influences the user’s decision to assign a high or low 
rating to the item. Accordingly, this can be used to predict the degree of preference and 
rating for other items. On the basis of these predictions, movies that the user is likely to 
rate highly can be found and recommended. 

Figure 16. Final frequent subgraphs.

2.2. Movie Rating Prediction
2.2.1. User Rating Ontology and Rating Graph

The user rating ontology was defined to predict the ratings using the frequent sub-
graphs. In the user rating ontology, the purchase or consumption events of each user are
combined with the basic domain ontology, which consists of items and item attributes.
These events contain the degree of preference, that is, the rating information that the user
assigns to the item. For example, Figure 17 below shows the user rating ontology schema
for the movie domain. This is created by combining the user, watching event, and rating
classes with the domain ontology that contains the information about the movie. The actual
instance graph for this schema will connect one user to multiple movies.
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We apply the algorithm in Section 2.1 to a given instance graph based on the User Rating
Ontology. Among the extracted frequent subgraphs, one or more subgraphs related to the
rating was defined as the Rating Graph; i.e., it is a set of rating subgraphs. In Figure 18a, the
rating graph contains a pattern based on the rating evaluated by the user. This pattern is an
attribute set that influences the user’s decision to assign a high or low rating to the item.
Accordingly, this can be used to predict the degree of preference and rating for other items.
On the basis of these predictions, movies that the user is likely to rate highly can be found
and recommended.
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2.2.2. Graph Similarity and Entropy

The rating graph is a set of patterns (i.e., instance triples), but it is also a graph.
Accordingly, this study measures the graph similarity between the target item graph and the
rating graph containing the knowledge experienced by the user, and the most similar rating
is used as the predicted value. To calculate the graph similarity, a modified Levenshtein
distance (edit distance) [23] was used, and entropy was defined for the cost of adding and
deleting triples. Typical definition of Graph Edit distance (GED) is known as follows.

Definition 2. Given a set of graph edit operations (also known as elementary graph operations),
the graph edit distance (GED(g1, g2)) between two graphs g1 and g2 can be defined as

GED(g1, g2) = min
(e1, ...ek)∈P(g1,g2)

k

∑
i=1

c(ei) (4)

where P(g1, g2) is the set of edit paths transforming g1 into g2 and c(e) ≥ 0 is the cost of each
graph edit operation e. In this study, edit operations are addition and deletion of triple considering
the graph as a set of triples and paths is not needed when considering characteristics of target graph
consisting of “movie” and its attributes. In terms of the cost of operation, addition and deletion have
the same value, but different values by triple. The concept of “entropy” is defined to work as a kind
of cost.

Entropy was defined as the proportion of information contained in each triple or
graph in all frequent subgraphs obtained in the previous step. Figure 18 shows the graphs
for which the graph similarity must be measured. In this process, each triple constituting
the rating graph represents frequency information indicating the number of times they
occur in the training data. Each triple contains a different amount of information; therefore,
the edit distance is calculated with different contributions corresponding to their different
entropies rather than equal contributions.
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Before describing the method for calculating the entropy, several definitions should
be presented. First, the rating graphs consist of the subgraphs extracted for each rating,
and the entropy is calculated considering the entire rating subgraph set. m is the number of
triples in the rating graph, and n is the number of rating classes that the user has evaluated.
In the case of the movie rating dataset used in the experiment of Section 3.1, the user can
assign a rating from 0.5 to 5.0 in units of 0.5, in which case n = 10.

Rating Graph Entropy (RGE) of rating j is the proportion of each rating in the rating
subgraph set. Accordingly, it is obtained by dividing the sum of the triple frequencies
constituting each rating graph by the sum of all triple frequencies of all ratings.

RGEj =
∑m

i=1 fij

∑n
j=1 ∑m

i=1 fij
(5)

where fij is the frequency of the triple i in rating j. In each rating graph, the importance of
the triple is assigned differently. The triple with the highest frequency in each rating graph
is defined as the Seed Triple (colored section in Table 3), and the entropy of the seed triple
has the same value as the RGE of the rating to which the seed triple belongs. The entropy
of a triple that is not a seed triple is calculated by dividing the frequency of the triple by
that of the seed triple. Thus, Triple Entropy (TE) is the ratio of the information indicating
the influence or dominance of each triple in the rating graph. s f j is the frequency of the
seed triple in rating j.

TEij =
fij

s f j
(6)

Table 3. Frequency and entropy of triple by rating.

Instance Triple Rating 3.0 Rating 4.0

Subject Property Object Freq. Entropy
(NTE) Freq. Entropy

(NTE)

Movie Sound PERS_0015893 0 0.000 2 0.031
Movie MovieGenre GENR_00018 3 0.069 0 0.000
Movie MoviePopularity POPU_U100 12 0.278 0 0.000
Movie MovieGenre GENR_00028 2 0.046 0 0.000
Movie Acting PERS_0000518 2 0.046 0 0.000
Movie MovieGenre GENR_00014 2 0.046 0 0.000
Movie MovieGenre GENR_00035 4 0.093 2 0.031
Movie MovieVote_Average VOAV_U90 0 0.000 5 0.077
Movie MovieVote_Average VOAV_U80 4 0.093 0 0.000
Movie MovieGenre GENR_00012 2 0.046 3 0.046
Movie MovieRevenue REVE_U100 8 0.185 5 0.077
Movie MovieGenre GENR_10749 0 0.000 2 0.031
Movie MovieVote_Count VOCO_U100 8 0.185 6 0.092
Movie MovieVote_Average VOAV_U50 2 0.046 0 0.000
Movie MovieGenre GENR_00053 2 0.046 0 0.000
Movie MovieCountry COUN_US 26 0.601 26 0.399
Movie MovieRuntime RUNT_U90 2 0.046 0 0.000
Movie MoviePopularity POPU_U90 0 0.000 2 0.031
Movie MovieGenre GENR_10751 3 0.069 2 0.031
Movie MovieBudget BUDG_U80 2 0.046 0 0.000
Movie Acting PERS_0001100 2 0.046 0 0.000
Movie Acting PERS_0005344 0 0.000 2 0.031

Total triple frequency 102 65

RGE by rating 0.611 0.389

Total NTE 1.989 0.874

Number of triples in rating graph 17 11

ANTE by rating 0.117 0.079

Colored cells represent the seed triple of each rating subgraph.
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The Normalized Triple Entropy (NTE) of each triple is calculated as the product of TE
(Equation (6)) and RGE (Equation (5)). This is the normalized entropy used when adding
or deleting each triple. The entropy values in Table 3 are NTEs for each rating and instance
triple calculated accordingly.

NTEij = TEij × RGEj (7)

When a triple that is not in the rating subgraph set must be added, a value that
serves as the edit distance cost is necessary. As shown in Equation (8) below, this Average
Normalized Triple Entropy (ANTE) by rating is calculated by dividing the normalized
entropy sum of the rating graph triples by the number of triples of the rating graph.

ANTEj =
∑m

i=1 NTEij

m
(8)

The values of Equations (5), (7) and (8) can be calculated for each instance triple and
rating, as shown in Table 3.

2.2.3. Rating Prediction

As shown in Figure 19, the cases encountered in rating prediction for each user can
be categorized into three types. The first is the case of an intersection when comparing all
triple sets of the entire rating subgraph set with the triple sets of the corresponding item
graph, which is explained in detail in (A). The second is the case with no intersection, and
the third is the case in which frequent subgraphs for each user are not extracted in the
beginning. The method for handling both cases is the same and is explained in (B).
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(A) Rating–Item Graph Similarity based Prediction

In this case, there is an intersection when comparing all triple sets of the entire rating
subgraph set with the triple sets of the corresponding item graph, and the similarity of the
item graph with the rating graph is calculated and compared to predict the rating.

First, the triples included in both the rating subgraph set and the item graph are
selected. Next, to calculate the similarity between the item graph and rating graph, the Lev-
enshtein distance (i.e., the cost of converting the rating graph to the item graph) is calculated
using the previously obtained NTE and ANTE. The edit distance involves the costs of
both deleting and adding a triple, and a smaller total cost indicates greater similarity.
This study used a method in which the NTE is subtracted when deleting a triple in the
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rating graph, and the ANTE is subtracted when adding a triple not in the rating graph.
The value obtained by multiplying the RGE by the number of intersections is used as the
baseline value to subtract from, thereby considering the proportion of the rating graph and
importance of the user preferred attribute. Finally, for a given target item graph, the rating
of the rating graph with the highest similarity is predicted. Table 4 shows the final rating
prediction result; in this example, only the rating subgraphs of ratings 3.0 and 4.0 are in the
extracted frequent subgraph. For each movie, a higher similarity rating graph is shown in
blue and "Actual" and "Predicted" columns are shown in beige if they are the same.

Table 4. Rating prediction result.

Target Instance Rating 3.0 Rating 4.0 Actual Predicted
MOVI_000408 4.011 1.888 3.0 3.0
MOVI_000581 3.894 3.967 4.0 4.0
MOVI_002164 4.011 1.888 3.0 3.0
MOVI_002636 1.894 0.888 3.0 3.0
MOVI_008984 2.894 0.808 3.0 3.0
MOVI_009255 2.011 0.967 3.0 3.0
MOVI_036593 −0.106 2.126 3.0 4.0

(B) Item–Item Graph Similarity Based Prediction

This method is applied when there is no intersection between the rating graph and
item graph and when there is no extracted rating subgraph. In either case, the similarity
between the rating graph and the item graph cannot be calculated.

The similarities between all item graphs (items in training set) and the target item
graph were calculated, and the rating of the most similar item was predicted. As in (A), the
Levenshtein distance is used; however, because entropy cannot be used in this case, the
cost of adding and deleting the triple is the same.

If multiple items have the same similarity, then to break the tie, the item with the
highest rating frequency in the user’s training set is predicted. For example, if the two
items of the highest similarity with the target item received ratings of 3.0 and 4.0 by the
user, then the more frequent rating among the ratings 3.0 and 4.0 is predicted.

3. Results

This section aims to demonstrate the superiority of the proposed frequent subgraph
mining and movie rating prediction methodology. We applied it to a real application and
compared the results with several popular recommendation methods. The experimental
process is as follows: first, the frequent subgraphs for each user are extracted through
training from the entire ontology graph data. Among these subgraphs, the Levenshtein
distance (edit distance) between the rating graph and movie graph in the test set is calcu-
lated for each rating. Then, the rating with the highest similarity is predicted. The function
in Equation (9) is used to calculate the threshold value by the user during training.

Threshold =
ln(the number o f movies in training set)

e
(the number o f unit subgraphs)

(9)

3.1. Dataset and Preprocessing

The dataset used in the experiment was “The Movies Dataset” (https://www.kaggle.
com/rounakbanik/the-movies-dataset) on the website “Kaggle.” The dataset is composed
of a combination of GroupLens and TMDB data. The MovieLens Dataset provided by
GroupLens, which comprises 26 million ratings from 270,000 users on 45,000 movies,
was used as the rating dataset. The metadata for these movies were collected through the
TMDB Open API and consisted of items such as cast, crew, keywords, budget, revenue,
languages, production companies, countries, TMDB vote counts, and vote averages. This
experiment was performed using a small rating dataset called “ratings_small” provided in

https://www.kaggle.com/rounakbanik/the-movies-dataset
https://www.kaggle.com/rounakbanik/the-movies-dataset
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the API, which consists of 66,459 ratings from 634 users on 6674 movies. Figure 20 shows
the user distribution based on the number of ratings; users with 100 ratings or less account
for nearly 65% of the total, displaying a bias toward users with a small number of ratings.
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Meanwhile, this dataset does not include the metadata for certain movies. These movies
include only the user’s rating information after watching the movie but lack information
about the movie itself. In this case, because the similarity cannot be determined based on
the edit distance, for the completeness of the algorithm, the rating that occurs the most in
the user profile was predicted and if the values were the same, the prediction was random.
Among the 66,459 ratings used in the experiment, movies with 76 ratings had no metadata.

In this study, Resource Description Framework (RDFS) and Web Ontology Language
(OWL) are used as the languages of our ontology graph. The ontology graph used in the
experiment was built as shown in Figure 17, according to the description in Section 2.2,
and each class and triple in the ontology graph was composed, as shown in Table 5.

Table 5. Ontology schema used in the experiment.

No. Class Property Class

1 Movie Acting Person
2 Movie Art Person
3 Movie BelongsToCollection Collection
4 Movie Camera Person
5 Movie CostumeMakeup Person
6 Movie Crew Person
7 Movie Directing Person
8 Movie Editing Person
9 Movie Lighting Person
10 Movie MovieBudget Budget
11 Movie MovieCompany Company
12 Movie MovieCountry Country
13 Movie MovieGenre Genre
14 Movie MovieKeyword Keyword
15 Movie MovieOriginalLang Language
16 Movie MoviePopularity Popularity
17 Movie MovieRating Rating
18 Movie MovieRevenue Revenue
19 Movie MovieRuntime Runtime
20 Movie MovieSpokenLang Language
21 Movie MovieVote_Average Vote_Average
22 Movie MovieVote_Count Vote_Count
23 Movie Production Person
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Table 5. Cont.

No. Class Property Class

24 Movie Sound Person
25 User UserWatching WatchingEvent
26 Movie VisualEffects Person
27 WatchingEvent WatchingMovie Movie
28 Movie Writing Person

The actual instance graph cannot be represented as an image owing to its enormous
size; however, Table 6 shows the number of instances by class used in the experiment.
The categorized classes are indicated as such “(categorized).” For these classes, because
the original data are represented numerically, preprocessing was performed to represent
it as a knowledge graph. Assuming a normal distribution for all numbers in a class,
it was changed from a numerical format to a nominal format by generating the categories
according to a certain ratio, thus constructing the instance graph (see Tables A1–A7).

Table 6. The number of instances by class used in the experiment.

No. Class No. of Instances

1 Budget (categorized) 8
2 Collection 1695
3 Company 23,693
4 Country 161
5 Genre 20
6 Keyword 19,956
7 Movie 6674
8 Person 350,798
9 Popularity (categorized) 7
10 Rating (categorized) 10
11 Revenue (categorized) 7
12 Runtime (categorized) 10
13 User 634
14 Vote_Average (categorized) 10
15 Vote_Count (categorized) 6
16 WatchingEvent 66,459

In the experiments, 80% of the dataset was used as a training set and 20% as a test set,
and each set was randomly configured three times for three different experiments. Table 7
shows the number of instance triples for training and testing, which constitute the dataset
used in each experiment.

Table 7. The number of instance triples used in the experiment.

Property Experiment 1 Experiment 2 Experiment 3

Training Test Training Test Training Test

Acting 1,568,052 407,883 1,577,280 398,655 1,575,919 400,016
Art 254,821 66,224 255,745 65,300 255,327 65,718

BelongsToCollection 17,768 4589 17,865 4492 17,836 4521
Camera 144,742 37,196 144,977 36,961 144,769 37,169

CostumeMakeup 167,732 43,606 168,005 43,333 167,897 43,441
Crew 291,150 75,077 292,277 73,950 292,229 73,998

Directing 111,729 28,559 111,465 28,823 111,866 28,422
Editing 126,661 32,488 126,916 32,233 126,959 32,190

Lighting 48,129 12,481 48,360 12,250 48,303 12,307
MovieBudget 44,897 11,515 44,953 11,459 44,955 11,457
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Table 7. Cont.

Property Experiment 1 Experiment 2 Experiment 3

Training Test Training Test Training Test

MovieCompany 140,654 36,222 140,759 36,117 141,128 35,748
MovieCountry 68,585 17,663 68,691 17,557 68,754 17,494

MovieGenre 143,655 36,810 143,947 36,518 143,688 36,777
MovieKeyword 588,456 151,113 588,580 150,989 588,765 150,804

MoviePopularity 52,833 13,514 52,838 13,509 52,839 13,508
MovieRating 52,867 13,516 52,867 13,516 52,867 13,516

MovieRevenue 45,396 11,686 45,449 11,633 45,493 11,589
MovieRuntime 52,823 13,513 52,831 13,505 52,829 13,507

MovieVote_Average 52,833 13,514 52,838 13,509 52,839 13,508
MovieVote_Count 52,833 13,514 52,838 13,509 52,839 13,508

Production 365,444 94,416 366,116 93,744 366,862 92,998
Sound 273,865 70,332 274,290 69,907 273,992 70,205

UserWatching 52,867 13,516 52,867 13,516 52,867 13,516
VisualEffects 121,357 31,731 121,798 31,290 121,958 31,130

WatchingMovie 52,867 13,516 52,867 13,516 52,867 13,516
Writing 132,087 33,992 132,281 33,798 132,487 33,592

Total 5,025,103 1,298,186 5,039,700 1,283,589 5,039,134 1,284,155

3.2. Evaluation Metrics and Methods

The goal of these experiments is to predict the movie ratings and therefore accuracy
was used as the basic evaluation metric. On the other side, considering that other method-
ologies used for performance comparison were designed to provide recommendations, the
precision, recall, and F1-score were compared. Moreover, considering that precision, recall,
and F1-score are typically evaluation indicators for binary classes and that this experiment
aims to predict for multi-class, this study used macro average precision, macro average
recall, and macro F1-score as the evaluation metrics. These are similar to the above three
metrics and are known to be suitable metrics for multi-class classification. The equations
used to calculate them are shown below [24].

Accuracy = ∑K
k=1(the number o f movies with identical actual and predicted rate)

the number o f movies in test

K : the number o f rates(i.e. 10 in here)
(10)

Precisionk =
TPk

TPk + FPk
(11)

Recallk =
TPk

TPk + FNk
(12)

MacroAveragePrecision =
Precisionk

K
(13)

MacroAverageRecall =
Recallk

K
(14)

Macro F1− Score = 2×
(

MacroAveragePrecision×MacroAverageRecall
MacroAveragePrecision + MacroAverageRecall

)
(15)

Equations (11) and (12) are calculated for each rating, and the other equations are
calculated for each user. The existing methods considered for comparison in this study
are kNN [20], SVD [21], SVD++ [20], and NMF [22], which have been often used for
comparison in recent recommendation studies [16,25]. As these methods utilize only the
user and rating information to generate a numerical prediction, for the sake of comparison,
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the prediction result was rounded up to the nearest 0.5 (the rating unit) and assigned to the
corresponding rating.

3.3. Experimental Results

Tables 8–10 show the results of three experiments using randomly divided training and
test sets. The value of each metric was obtained for each user and the corresponding average
was calculated, which is why “Average” is written before each metric. Overall, the proposed
approach outperforms the other methods by approximately 40% in terms of accuracy, and
although the F1-score differs by experiment, it is superior by approximately 5%. In terms
of the F1-score, although the precision of the proposed method is slightly inferior to that
of NMF in Experiment 3, this is sufficiently offset by the superior recall performance.
In fact, given that the methodology was applied to rating prediction, its overwhelming
superiority in accuracy could serve as a new milestone for existing studies in the movie
recommendation or rating prediction fields.

Table 8. Comparison of our proposed approach with other approaches in Experiment 1.

Method Average
Accuracy

Average
MacroAveragePrecision

Average
MacroAverageRecall

Average
Macro F1

kNN 0.2208 0.0815 0.0814 0.0855
NMF 0.2181 0.0876 0.0779 0.0855
SVD 0.2358 0.0803 0.0806 0.0823

SVD++ 0.2377 0.0833 0.0810 0.0843
Our approach 0.3283 0.0807 0.1042 0.0924

Table 9. Comparison of our proposed approach with other approaches in Experiment 2.

Method Average
Accuracy

Average
MacroAveragePrecision

Average
MacroAverageRecall

Average
Macro F1

kNN 0.2192 0.0826 0.0814 0.0869
NMF 0.2262 0.0917 0.0809 0.0911
SVD 0.2316 0.0772 0.0794 0.0821

SVD++ 0.2303 0.0808 0.0784 0.0849
Our approach 0.3300 0.0811 0.1052 0.0912

Table 10. Comparison of our proposed approach with other approaches in Experiment 3.

Method Average
Accuracy

Average
MacroAveragePrecision

Average
MacroAverageRecall

Average
Macro F1

kNN 0.2099 0.0788 0.0795 0.0837
NMF 0.2104 0.0884 0.0760 0.0885
SVD 0.2258 0.0738 0.0774 0.0796

SVD++ 0.2318 0.0785 0.0794 0.0839
Our approach 0.3261 0.0815 0.1041 0.0932

Figures 21 and 22 show the robustness of the proposed approach and the comparison
of performance of the proposed approach and the existing approaches for each experiment.
Regarding the accuracy, none of the approaches were significantly influenced by the
experiment, and the proposed approach outperformed the others. In terms of the F1-score,
kNN, NMF, and SVD exhibited variation according to the experimental data, whereas
SVD++ and the proposed approach were relatively stable.
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Figures 23–25 show the change in the measured values according to the number of ratings
in training. As shown, users with approximately 100 ratings comprised the majority, and in all
three experiments, there was no change in the accuracy according to the number of ratings.
In contrast, the F1-score clearly tended to improve as the number of user ratings increased.
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In addition to the performance of the movie rating prediction described so far, the fre-
quent subgraph derived from the experiment contains knowledge to explain to the user
why our methodology predicts that the movie will be rated at 5.0. Figure 26 shows the
frequent subgraph (i.e., the rating 5.0 graph) of “user 372” derived from the training set
used in the experiment and target movie (“Pretty Woman”) graph to be predicted that the
user gives a rating of 5.0.
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Figure 26. Example of rating graph and movie graph.

Between the “rating 5.0 graph” from “user 372”‘s past history and “Pretty Woman”
graph, there are attributes in common such as “Julia Roberts” as an actor, “comedy” and
“romance” in genre, “US” in film making country, revenue in 90–100% of all movies used in
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the experiment, and running time in 70–80% of all movies. With common factors described
above we can explain why our methodology predicts that “user 372” will give a rating of
5.0 for “Pretty Woman.” In particular, users do not intuitively know their preferences for
features such as revenue or running time. However, the fact that these features can also be
presented as a basis for prediction is a major feature of this study.

4. Discussion

With a continuous increase in the quantity of newly generated information, tools and
environments for amassing and utilizing information in the form of ontology-based knowl-
edge graphs are increasing in usefulness and scope of application. Therefore, researchers
across various fields are exploring diverse techniques to extract meaningful information
from the accumulated knowledge. That is, vast quantities of information, including user
activity on general web sites, purchase history and item viewing history on online stores,
and viewing and playback history on movie and music websites, do not exist only in the
form of raw data but are accumulated as components of structured knowledge graphs.
This study primarily aimed to efficiently find frequent patterns in these enormous knowl-
edge graphs, which were verified through experiments that determined how well these
frequent patterns represented the graph to which they belonged (in this case, the user).

In this study, we used Resource Description Framework (RDFS) and Web Ontology
Language (OWL) to represent our ontology. We newly designed the schema of this movie
ontology and created the knowledge graph by combining the user’s rating record and
movie information. Since these original data were in a rather simple form (tables), we could
easily represent our movie ontology at a relatively light level without using a language
with rich expressiveness. In the future, we need to think about how to deal with complex
and detailed ontology expressions such as inter-class relationships.

The actual experiments were performed on a notebook with an Intel® Core™ i5-
1035G7 CPU@ 1.2GHz processor with 16 GB of RAM running on Windows 64-bit. We
implemented our methodology using Java in frequent subgraph mining and using Python
in movie rating prediction. When implementing frequent subgraph mining, we tried to
reduce computational time by creating temporal tables during the computation process
and directly hashing reference to the data in these tables. In the process of basic exploration
and frequency counting, the frequency of all triples was calculated in advance, stored
in memory and used in candidate generation. We also created a table for triples in each
chunking step and used it to finally reconstruct a frequent subgraph.

Considering time complexity among computational complexity, time-consuming
operations in our methodology are performed in two major parts. The first is the process of
finding all paths between the start class and the end classes in the ontology graph. In this
case, the commonly used DFS was utilized, and time complexity is O(|class|+ |property|).
The second is the process of finding the same triple in a single table consisting of instance
triples, which, in the worst case, requires n(n− 1) iterations, when the number of instance
triples is n. Therefore, even if the “visited” flag was used, the time complexity is O

(
n2).

For space complexity, the size of the input data used in the experiment is about 300 MB,
and the memory used during the frequent subgraph mining is about 1.2 GB.

Regarding the threshold used in the process of generating the candidates subject to
chunking, it is necessary to research general criteria that can be applied in fields with
different data characteristics. For example, the main factors that should be considered
include the number of instances in the knowledge graph, the number of instance triples, or
the length and number of instance triple paths.

It is also necessary to research the chunking priority in future studies. In this study,
small subgraphs were prioritized for chunking if the frequencies were the same; however,
chunking the larger graph first may show better or worse performance. The chunking
priority needs to be determined to reflect the characteristics of the target knowledge graph
well and a study related to this is needed.
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Meanwhile, in terms of rating prediction, in place of the current method utilizing
graph similarity, a future study will be conducted on a method utilizing neural networks
by embedding the frequent patterns through matrix factorization.

5. Conclusions

This study first decomposed a large-scale ontology graph into small unit subgraphs,
used these as units to calculate the frequency of the instance triples (or chunks), and made
a chunk to find the frequent subgraphs. Next, the similarity between the rating graph and
item graph was calculated via a Levenshtein distance-based method to predict the rating.
The proposed approach was applied to an actual movie rating dataset and compared
with other recommendation methods. According to the results, it outperformed the other
approaches by approximately 40% in terms of accuracy and slightly outperformed them in
terms of the F1-score, thus demonstrating that the proposed methodology can be useful in
real applications.

The main contributions of this study are as follows:

1. This study presented a novel method of decomposing a large-scale knowledge graph
into small unit subgraphs. These unit subgraphs serve as the criterion for occurrence
counting, thereby enabling the frequency to be efficiently calculated. This approach of
generating unit subgraphs to mine frequent subgraphs maintains the graph structure
and meaning, which differentiates it from the method of simply creating transactions
through an item set to apply an association rule mining algorithm.

2. The process starts with one instance triple and expands the subgraph through chunk-
ing. This chunking method makes it possible to find larger patterns while maintaining
the structural information of the subgraph. By employing a method that utilizes in-
stance triple paths, the subgraph can be expanded without being significantly affected
by the size of the knowledge graph by performing chunking with a chunk and
instance triple or between chunks.

3. Rather than merely extracting the frequent subgraphs, the methodology was applied
to the application area of rating prediction. Its feasibility in providing recommen-
dations through rating prediction was demonstrated, thus empirically proving the
usefulness of frequent subgraphs. That is, the approach was shown to be effective
when compared with other collaborative filtering algorithms, and a method for con-
firming the significance of the extracted frequent pattern was presented.

4. The proposed methodology can be used as a general recommendation engine extend-
ing the scope of the movie rating prediction. Information such as a user’s purchasing
history, areas of interest, and personal profiles acquired at the time of subscription can
be represented in a graph, and then the proposed methodology can be used as a tool
to analyze the buying patterns of other users with similar purchasing histories. In ad-
dition, the proposed methodology can also demonstrate high utilization in natural
language processing such as complex questioning and natural language generation,
and anomaly detection, which monitors and controls anomalies in real time by mod-
eling complex structured networks, IT equipment and software in graph form, is a
suitable field to show the performance of our methodology. On the other hand, our
methodology is expected that in the bioscience area where the data involved is often
represented by knowledge graphs, it will be able to demonstrate good performance in
analyzing what proteins cause disease, what their relationship is, or whether certain
drugs react to certain proteins in the human body and affect lesions.

The extracted frequent subgraph maintains the original semantic information. The ex-
tensively researched rating prediction or recommendation approaches have the disadvan-
tage of being unable to provide a reason or explanation for the result, which will likely be
challenging to solve in future related studies as well. However, the methodology of this
study has the significant advantage of being able to provide a clear answer to questions
such as “Why do you predict that I will give this movie a 4.0 rating?” or “Why are you
recommending this movie to me?”
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Appendix A

The classes expressed in a numerical form in the dataset were assumed to be a normal
distribution and converted to the nominal form according to the categorization criteria
presented in the tables below for use in the experiment.

Table A1. Categorization criteria of “Budget” class in the experiment.

Real Budget Instance ID Instance Name

3,650,000 BUDG_U30 Budget_Under_norm_30%
12,902,809 BUDG_U40 Budget_Under_norm_40%
21,500,000 BUDG_U50 Budget_Under_norm_50%
30,250,000 BUDG_U60 Budget_Under_norm_60%
39,200,000 BUDG_U70 Budget_Under_norm_70%
50,200,000 BUDG_U80 Budget_Under_norm_80%
65,000,000 BUDG_U90 Budget_Under_norm_90%
380,000,000 BUDG_U100 Budget_Under_norm_100%

Table A2. Categorization criteria of “Popularity” class in the experiment.

Real Popularity Instance ID Instance Name

1.403423 POPU_U40 Popularity_Under_norm_40%
2.925476 POPU_U50 Popularity_Under_norm_50%
4.448075 POPU_U60 Popularity_Under_norm_60%
6.074832 POPU_U70 Popularity_Under_norm_70%
7.981930 POPU_U80 Popularity_Under_norm_80%

10.625787 POPU_U90 Popularity_Under_norm_90%
547.488298 POPU_U100 Popularity_Under_norm_100%

Table A3. Categorization criteria of “Rating” class in the experiment.

Real Rating Instance ID Instance Name

0.5 RATI_05 Rating_0.5
1.0 RATI_10 Rating_1.0
1.5 RATI_15 Rating_1.5
2.0 RATI_20 Rating_2.0
2.5 RATI_25 Rating_2.5
3.0 RATI_30 Rating_3.0
3.5 RATI_35 Rating_3.5
4.0 RATI_40 Rating_4.0
4.5 RATI_45 Rating_4.5
5.0 RATI_50 Rating_5.0
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Table A4. Categorization criteria of “Revenue” class in the experiment.

Real Revenue Instance ID Instance Name

31,678,778 REVE_U40 Revenue_Under_norm_40%
68,766,121 REVE_U50 Revenue_Under_norm_50%
105,834,556 REVE_U60 Revenue_Under_norm_60%
145,000,000 REVE_U70 Revenue_Under_norm_70%
191,502,426 REVE_U80 Revenue_Under_norm_80%
256,271,286 REVE_U90 Revenue_Under_norm_90%

2,787,965,087 REVE_U100 Revenue_Under_norm_100%

Table A5. Categorization criteria of “Runtime” class in the experiment.

Real Runtime Instance ID Instance Name

53 RUNT_U10 Runtime_Under_norm_10%
68 RUNT_U20 Runtime_Under_norm_20%
79 RUNT_U30 Runtime_Under_norm_30%
88 RUNT_U40 Runtime_Under_norm_40%
97 RUNT_U50 Runtime_Under_norm_50%

106 RUNT_U60 Runtime_Under_norm_60%
115 RUNT_U70 Runtime_Under_norm_70%
126 RUNT_U80 Runtime_Under_norm_80%
141 RUNT_U90 Runtime_Under_norm_90%

1256 RUNT_U100 Runtime_Under_norm_100%

Table A6. Categorization criteria of “Vote_Average” class in the experiment.

Real Vote Average Instance ID Instance Name

4.4 VOAV_U10 Vote_avg_Under_norm_10%
4.9 VOAV_U20 Vote_avg_Under_norm_20%
5.3 VOAV_U30 Vote_avg_Under_norm_30%
5.6 VOAV_U40 Vote_avg_Under_norm_40%
6.0 VOAV_U50 Vote_avg_Under_norm_50%
6.3 VOAV_U60 Vote_avg_Under_norm_60%
6.6 VOAV_U70 Vote_avg_Under_norm_70%
7.0 VOAV_U80 Vote_avg_Under_norm_80%
7.6 VOAV_U90 Vote_avg_Under_norm_90%

10.0 VOAV_U100 Vote_avg_Under_norm_100%

Table A7. Categorization criteria of “Vote_Count” class in the experiment.

Real Vote Count Instance ID Instance Name

4.4 VOAV_U10 Vote_avg_Under_norm_10%
4.9 VOAV_U20 Vote_avg_Under_norm_20%
5.3 VOAV_U30 Vote_avg_Under_norm_30%
5.6 VOAV_U40 Vote_avg_Under_norm_40%
6.0 VOAV_U50 Vote_avg_Under_norm_50%
6.3 VOAV_U60 Vote_avg_Under_norm_60%
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