
Posterior Contraction Rates for Matérn Gaussian
Processes on Riemannian Manifolds

Paul Rosa
University of Oxford

Viacheslav Borovitskiy
ETH Zürich

Alexander Terenin
University of Cambridge
and Cornell University

Judith Rousseau
University of Oxford

Abstract

Gaussian processes are used in many machine learning applications that rely on
uncertainty quantification. Recently, computational tools for working with these
models in geometric settings, such as when inputs lie on a Riemannian manifold,
have been developed. This raises the question: can these intrinsic models be
shown theoretically to lead to better performance, compared to simply embedding
all relevant quantities into Rd and using the restriction of an ordinary Euclidean
Gaussian process? To study this, we prove optimal contraction rates for intrinsic
Matérn Gaussian processes defined on compact Riemannian manifolds. We also
prove analogous rates for extrinsic processes using trace and extension theorems
between manifold and ambient Sobolev spaces: somewhat surprisingly, the rates
obtained turn out to coincide with those of the intrinsic processes, provided that
their smoothness parameters are matched appropriately. We illustrate these rates
empirically on a number of examples, which, mirroring prior work, show that
intrinsic processes can achieve better performance in practice. Therefore, our work
shows that finer-grained analyses are needed to distinguish between different levels
of data-efficiency of geometric Gaussian processes, particularly in settings which
involve small data set sizes and non-asymptotic behavior.

1 Introduction

Gaussian processes provide a powerful way to quantify uncertainty about unknown regression
functions via the formulation of Bayesian learning. Motivated by applications in the physical and
engineering sciences, a number of recent papers [11, 9, 10, 37] have studied how to extend this model
class to spaces with geometric structure, in particular Riemannian manifolds including important
special cases such as spheres and Grassmannians [4], hyperbolic spaces and spaces of positive definite
matrices [5], as well as general manifolds approximated numerically by a mesh [11].

These Riemannian Gaussian process models are starting to be applied for statistical modeling, and
decision-making settings such as Bayesian optimization. For example, in a robotics setting, Jaquier
et al. [27] has shown that using Gaussian processes with the correct geometric structure allows one to
learn quantities such as the orientation of a robotic arm with less data compared to baselines. The
same model class has also been used by Coveney et al. [15] to perform Gaussian process regression
on a manifold which models the geometry of a human heart for downstream applications in medicine.

Given these promising empirical results, it is important to understand whether these learning algo-
rithms have good theoretical properties, as well as their limitations. Within the Bayesian framework,
a natural way to quantify data-efficiency and generalization error is to posit a data-generating mech-
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(a) Intrinsic (b) Extrinsic (c) Intrinsic (d) Extrinsic

Figure 1: Samples from different Matérn Gaussian processes on different manifolds, namely a
one-dimensional dumbbell-shaped manifold and a two-dimensional sphere. Notice that the values
across the dumbbell’s bottleneck can be very different for the intrinsic process in (a), despite being
very close in the ambient Euclidean distance and in contrast to the situation for the extrinsic model in
(b). On the other hand, there is little qualitative difference between (c) and (d), since the embedding
produces a reasonably-good global approximation to geodesic distances on the sphere.

anism model and study if—and how fast—the posterior distribution concentrates around the true
regression function as the number of observations goes to infinity.

Within the Riemannian setting, it is natural to compare intrinsic methods, which are formulated
directly on the manifold of interest, with extrinsic ones, which require one to embed the manifold
within a higher-dimensional Euclidean space. For example, the two-dimensional sphere can be
embedded into the Euclidean space R3: intrinsic Gaussian processes model functions on the sphere
while extrinsic ones model functions on R3, which are then restricted to the sphere. Are the former
more efficient than the latter? Since embeddings—even isometric ones—at best only preserve
distances locally, they can induce spurious dependencies, as points can be close in the ambient space
but far away with respect to the intrinsic geodesic distance: this is illustrated in Figure 1. In cases
where embeddings significantly alter distances, one can expect intrinsic models to perform better,
and it is therefore interesting to quantify such differences.

In other settings, the manifold on which the data lies can be unknown, which makes using intrinsic
methods directly no longer possible. There, one would like to understand how well extrinsic methods
can be expected to perform. According to the manifold hypothesis [18], it is common for perceptual
data such as text and images to concentrate on a lower-dimensional submanifold within, for instance,
pixel space or sequence space. It is therefore also interesting to investigate how Gaussian process
models—which, being kernel-based, are simpler than for instance deep neural networks—perform in
such scenarios, at least in the asymptotic regime.

In this work, we develop geometric analogs of the Gaussian process posterior contraction theorems of
van der Vaart and van Zanten [56]. More specifically, we derive posterior contraction rates for three
main geometric model classes: (1) the intrinsic Riemannian Matérn Gaussian processes, (2) truncated
versions of the intrinsic Riemannian Matérn Gaussian processes, which are used in practice to avoid
infinite sums, and (3) the extrinsic Euclidean Matérn Gaussian processes under the assumption that
the data lies on a compact Riemannian manifold. In all cases, we focus on IID randomly-sampled
input points—commonly referred to as random design in the literature—and contraction in the sense
of the L2(p0) distance, defined in Section 2. We focus on compact Riemannian manifolds: this
allows one to define Matérn Gaussian processes through their Karhunen–Loève expansions, which
requires a discrete spectrum for the Laplace-Beltrami operator—see for instance Borovitskiy et al.
[11] and Chavel [13], Chapter 1—and is a common setting in statistics [39].

Contributions. We show that all three classes of Gaussian processes lead to optimal procedures, in
the minimax sense, as long as the smoothness parameter of the kernel is aligned with the regularity
of the unknown function. While this result is natural—though non trivial—in the case of intrinsic
Matérn processes, it is rather remarkable that it also holds for extrinsic ones. This means that in
order to understand their differences better, finite-sample considerations are necessary. We therefore
present experiments that compute the worst case errors numerically. These experiments highlight that
intrinsic models are capable of achieving better performance in the small-data regime. We conclude
with a discussion of why these results—which might at first seem counterintuitive—are very natural
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when viewed from an appropriate mathematical perspective: they suggest that optimality is perhaps
best seen as a basic property or an important guarantee that any sensible model should satisfy.

2 Background

Gaussian process regression is a Bayesian approach to regression where the modeling assumptions
are yi = f(xi) + εi, with εi ∼ N(0, σ2

ε), xi ∈ X , and f is assigned a Gaussian process prior.
A Gaussian process is a random function f : X → R for which all finite-dimensional marginal
distributions are multivariate Gaussian. The distribution of such a process is uniquely determined by
its mean function m(·) = E(f(·)) and covariance kernel k(·, ·′) = Cov(f(·), f(·′)), hence we write
f ∼ GP(m, k).

For Gaussian process regression, the posterior distribution given the data is also a Gaussian process
with probability kernel Π(· | x,y) = GP(mΠ(·|x,y), kΠ(·|x,y)), see Rasmussen and Williams [41],

mΠ(·|x,y)(·) = K(·)x(Kxx + σ2
εI)

−1y, (1)

kΠ(·|x,y)(·, ·′) = K(·,·′) −K(·)x(Kxx + σ2
εI)

−1Kx(·′). (2)

These quantities describe how incorporating data updates the information contained within the
Gaussian process. We will be interested studying the case where X is a Riemannian manifold, but
first review the existing theory on the asymptotic behaviour of the posterior when X = [0, 1]d.

2.1 Posterior Contraction Rates

Posterior contraction results describe how the posterior distribution concentrates around the true
data generating process, as the number of observations increases, so that it eventually uncovers the
true data-generating mechanism. The area of posterior asymptotics is concerned with understanding
conditions under which this does or does not occur, with questions of posterior contraction rates—
how fast such convergence occurs—being of key interest. At present, there is a well-developed
literature on posterior contraction rates, see Ghosal and van der Vaart [20] for a review.

In the context of Gaussian process regression with random design, which is the focus of this paper,
the true data generating process is assumed to be of the form

yi | xi ∼ N(f0(xi), σ
2
ε) xi ∼ p0 (3)

where f0 ∈ F ⊆ RX , a class of real-valued functions, and N(µ, σ2) denotes the Gaussian with
moments µ, σ2. Note that, in this particular variant, these equations exactly mirror those of the
Gaussian process model’s likelihood, including the use of the same noise variance σ2

ε in both cases:
in this paper, we focus on the particular case where σε is known in advance. This setting is restrictive,
one can extend to an unknown σε > 0 using techniques that are not specific to our geometric setting:
for instance, the approach of [55] allows to handle an unknown σε if one assumes an upper and lower
bound on it and keep the same contraction rates. In practice, more general priors, including ones that
do not assume an upper or lower bound on σε, can be used, such as a conjugate one like in Banerjee
[6]—these can also be analyzed to obtain contraction rates, albeit with additional considerations. The
generalization error for prediction in such models is strongly related to the weighted L2 loss given by

∥f − f0∥L2(p0)
=

(∫
X

|f(x)− f0(x)|2 dp0(x)
)1/2

(4)

which is arguably the natural way of measuring discrepancy between f and f0, given the fact that the
covariates xi are sampled from p0. The posterior contraction rate is then defined as

Ex,y Ef∼Π(·|x,y)∥f − f0∥2L2(p0)
(5)

where Ef∼Π(·|x,y)(·) denotes expectation under the posterior distribution while Ex,y(·) denotes
expectation under the true data generating process.1 In the case of covariates distributed on [0, 1]d,
posterior contraction rates have been derived under Matérn Gaussian process priors [47] in van der
Vaart and van Zanten [56], who showed the following result.

1Note that other notions of posterior contraction can be found in the literature, see Ghosal and van der Vaart
[20] and Rousseau [42] for examples that are slightly weaker than the definition we work with.

3



Result 1 (Theorem 2 of van der Vaart and van Zanten [56]). In the Bayesian regression model, let
f be a mean-zero Matérn Gaussian process prior on Rd with amplitude σ2

f , length scale κ, and
smoothness ν > d/2. Assume that the true data generating process is given by (3), where p0 has a
Lebesgue density on X = [0, 1]d which is bounded from below and above by 0 < cp0 < Cp0 < ∞,
respectively. Let f0 ∈ Hβ ∩ CHβ with β > d/2, where Hβ and CHβ the Sobolev and Hölder spaces,
respectively. Then there exists a constant C > 0, which does not depend on n but does depend on d,
σ2
f , ν, κ, β, p0, σ2

ε , ∥f0∥Hβ(M), and ∥f0∥CHβ(M), such that

Ex,y Ef∼Π(·|x,y)∥f − f0∥2L2(p0)
≤ Cn

− 2min(β,ν)
2ν+d (6)

and, moreover, the posterior mean satisfies

Ex,y ∥mΠ(·|x,y) − f0∥2L2(p0)
≤ Cn

− 2min(β,ν)
2ν+d . (7)

Note that mΠ(·|x,y) is the Bayes estimator [52] of f associated to the weighted L2 loss and that the
second inequality above is a direct consequence of the first. Therefore the posterior contraction rate
implies the same convergence rate for mΠ(·|x,y). The best rate is attained when β = ν: that is, when
true smoothness and prior smoothness match—which is known to be minimax optimal in the problem
of estimating f0: see Tsybakov [52]. In this paper, we extend this result to the manifold setting.

2.2 Related Work and Current State of Affairs

The formalization of posterior contraction rates of Bayesian procedures dates back to the work of
Schwartz [46] and Le Cam [29], but has been extensively developed since the seminal paper of Ghosal
et al. [19] for various sampling and prior models, see for instance [20, 42] for reviews. This includes,
in particular, work on Gaussian process priors [54, 56, 57, 43, 49]. Most of the results in the literature,
however, assume Euclidean data: as a consequence, contraction properties of Bayesian models under
manifold assumptions are still poorly understood, with exception of some recent developments in
both density estimation [7, 8, 60] and regression [63, 60].

The results closest to ours are those of Yang and Dunson [63] and Castillo et al. [12]. In the former, the
authors use an extrinsic length-scale-mixture of squared exponential Gaussian processes to achieve
optimal contraction rates with respect to the weighted L2 norm, using a completely different proof
technique compared to us, and their results are restricted to f0 having Hölder smoothness of order
less than or equal to two. On the other hand Castillo et al. [12] consider, as an intrinsic process on the
manifold, a hierarchical Gaussian process based on its heat kernel and provide posterior contraction
rates. For the Matérn class, Li et al. [30] presents results which characterize the asymptotic behavior
of kernel hyperparameters: our work complements these results by studying contraction of the
Gaussian process itself toward the unknown ground-truth function. One can also study analogous
discrete problems: Dunson et al. [17] and Sanz-Alonso and Yang [45] present posterior contraction
rates for a specific graph Gaussian process model in a semi-supervised setting. In the next section,
we present our results on Matérn processes, defined either by restriction of an ambient process or by
an intrinsic construction, and discuss their implications.

3 Posterior Contraction Rates on Compact Riemannian Manifolds

We now study posterior contraction rates for Matérn Gaussian processes on manifolds, which are
arguably the most-widely-used Gaussian process priors in both the Euclidean and Riemannian
settings. We begin by more precisely describing our geometric setting before stating our key results
and discussing their implications. From now on, we write X = M, to emphasize that the covariate
space is a manifold.
Assumption 2. Assume that M ⊂ RD is a smooth, compact submanifold (without boundary) of
dimension d < D equipped with the standard Riemannian volume measure µ.

We denote |M| =
∫
M dµ(x) for volume of M. With this geometric setting defined, we will need

to describe regularity assumptions in terms of functional spaces on the manifold M. We work
with Hölder spaces CHγ(M), defined using charts via the usual Euclidean Hölder spaces, the
Sobolev spaces Hs(M), and Besov spaces Bs

∞,∞(M) which are one of the ways of generalizing
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(a) Intrinsic (b) Extrinsic (c) Intrinsic (d) Extrinsic

Figure 2: Different Matérn kernels k(•, x) on different manifolds.

the Euclidean Hölder spaces of smooth functions to manifolds. We follow Coulhon et al. [14] and
Castillo et al. [12], and define these spaces using the Laplace-Beltrami operator on M in Appendix A.

Recall that the data-generating process is given by (3), with f0 as the true regression function and p0
as the distribution of the covariates.
Assumption 3. Assume that p0 is absolutely continuous with respect to µ, and that its density,
denoted by p0, satisfies c ≤ p0 ≤ C for 0 < c,C < ∞. Assume the regression function f0 satisfies
f0 ∈ Hβ(M) ∩Bβ

∞,∞(M) for some β > d/2, and that σ2
ε > 0 is fixed and known.

This setting can be extended to handle unknown variance σε by putting a prior on σε, following the
strategy of Salomond [44] and Naulet and Barat [36]. Since we are focused primarily on the impact
of the manifold, we do not pursue this here. With the setting fully defined, we proceed to develop
posterior contraction results for different types of Matérn Gaussian process priors: intrinsic, intrinsic
truncated and extrinsic.

3.1 Intrinsic Matérn Gaussian Processes

We now introduce the first geometric Gaussian process prior under study—the Riemannian Matérn
kernel of Whittle [62], Lindgren et al. [33], and Borovitskiy et al. [11]. This process was originally
defined using stochastic partial differential equations: here, we present it by its Karhunen–Loève
expansion, to facilitate comparisons with its truncated analogs presented in Section 3.2.
Definition 4 (Intrinsic Matérn prior). Let ν > 0, and let (λj , fj)j≥0 be the eigenvalues and orthonor-
mal eigenfunctions of the Laplace–Beltrami operator on M, in increasing order. Define the intrinsic
Riemannian Matérn Gaussian process through its Karhunen–Loève expansion to be

f(·) =
σ2
f

Cν,κ

∞∑
j=1

(
2ν

κ2
+ λj

)− ν+d/2
2

ξjfj(·) ξj ∼ N(0, 1) (8)

where ν, κ, σ2
f are positive parameters and Cν,κ is the normalization constant, chosen such that

1
|M|

∫
M

Var(f(x)) dµ(x) = σ2
f , where Var denotes the variance.

The covariance kernels of these processes are visualized in Figure 2. With this prior, and the setting
defined in Section 3, we are ready to present our first result: this model attains the desired optimal
posterior contraction rate as soon as the regularity of the ground-truth function matches the regularity
of the Gaussian process, as described by the parameter ν.
Theorem 5. Let f be a Riemannian Matérn Gaussian process prior of Definition 4 with smoothness
parameter ν > d/2 and let f0 satisfy Assumption 3. Then there is a C > 0 such that

Ex,y Ef∼Π(·|x,y)∥f − f0∥2L2(p0)
≤ Cn

− 2min(β,ν)
2ν+d . (9)

All proofs are given in Appendix B. Our proof follows the general approach of van der Vaart and van
Zanten [56], by first proving a contraction rate with respect to the distance n−1/2∥f(x)− f0(x)∥Rn

at input locations x, and then extending the result to the true L2-distance by applying a suitable
concentration inequality. The first part is obtained by studying the concentration function, which
is known to be the key quantity to control in order to derive contraction rates of Gaussian process
priors—see Ghosal and van der Vaart [20] and van der Vaart and van Zanten [57] for an overview.
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Given our regularity assumptions on f0, the most difficult part lies in controlling the small-ball
probabilities Π

[
∥f∥C(M) < ε

]
: we handle this by using results relating this quantity with the entropy

of an RKHS unit ball with respect to the uniform norm. Since our process’ RKHS is related to the
Sobolev space Hν+d/2(M) which admits a description in terms of charts, we apply results on the
entropy of Sobolev balls in the Euclidean space to conclude the first part. Finally, to extend the rate to
the true L2(p0) norm, following van der Vaart and van Zanten [56], we prove a Hölder-type property
for manifold Matérn processes, and apply Bernstein’s inequality. Together, this gives the claim.

This result is good news for the intrinsic Matérn model: it tells us that asymptotically it incorporates
the data as efficiently as possible at least in terms of posterior contraction rates, given that its regularity
matches the regularity of f0. An inspection of the proof shows that the constant C > 0 can be seen to
depend on d,σ2

f , ν, κ, β, p0,σ2
ε , ∥f0∥Hβ(M), ∥f0∥Bβ

∞∞(M), and ∥f0∥CHβ(M). Theorem 5 extends
to the case where the norm is raised to any power q > 1 rather than the second power, with the
right-hand side raised to the same power: see Appendix B for details. We now consider variants of
this prior that can be implemented in practice.

3.2 Truncated Matérn Gaussian Processes

The Riemannian Matérn prior’s covariance kernel cannot in general be computed exactly, since
Definition 4 involves an infinite sum. Arguably the simplest way to implement these processes
numerically is to truncate the respective infinite series in the Karhunen–Loève expansion by taking
the first J terms, which is also optimal in an L2(M)-sense.

Note that the truncated prior is a randomly-weighted finite sum of Laplace–Beltrami eigenfunctions,
which have different smoothness properties compared to the original prior: the truncated prior takes
its values in C∞(M) since the eigenfunctions of M are smooth—see for instance De Vito et al. [16].
Nevertheless, if the truncation level is allowed to grow as the sample size increases, then the regularity
of the process degenerates and one gets a function with essentially-finite regularity in the limit.

Truncated random basis expansions have been studied extensively in the Bayesian literature in the
Euclidean setting—see for instance Arbel et al. [2] and Yoo et al. [64] or Ghosal and van der Vaart
[20], Chapter 11 for examples with priors based on wavelet expansions. It is known that truncating
the expansion at a high enough level usually allows one to retain optimality. Instead of truncating
deterministically, it is also possible to put a prior on the truncation level and resort to MCMC
computations which would then select the optimal number of basis functions adaptively, at the
expense of a more computationally intensive method—this is done, for instance, in van der Meulen
et al. [53] in the context of drift estimation for diffusion processes. Random truncation has been
proven to lead in many contexts to adaptive posterior contraction rates, meaning that although the
prior does not depend on the smoothness β of f0, the posterior contraction rate—up to possible lnn
terms—is of order n−β/(2β+d): see for instance Arbel et al. [2] and Rousseau and Szabo [43].

By analogy of the Euclidean case with its random Fourier feature approximations [40], we can call
the truncated version of Definition 4 the manifold Fourier feature model, for which we now present
our result.
Theorem 6. Let f be a Riemannian Matérn Gaussian process prior on M with smoothness parameter
ν > d/2, modified to truncate the infinite sum to at least Jn ≥ cn

d(min(1,ν/β))
2ν+d terms, and let f0 satisfy

Assumption 3. Then there is a C > 0 such that

Ex,y Ef∼Π(·|x,y)∥f − f0∥2L2(p0)
≤ Cn

− 2min(β,ν)
2ν+d . (10)

The proof is essentially-the-same as the non-truncated Matérn, but involves tracking dependence of
the inequalities on the truncation level Jn, which implicitly defines a sequence of priors rather than a
single fixed prior.

This result is excellent news for the intrinsic models: it means that they inherit the optimality
properties of the limiting one, even in the absence of the infinite sum—in spite of the fact that the
corresponding finite-truncation prior places its probability on C∞(M). Again, the constant C > 0
can be seen to depend on d,σ2

f , ν,κ,β,p0,σ2
ε , ∥f0∥Hβ(M), ∥f0∥Bβ

∞∞(M), and ∥f0∥CHβ(M). This
concludes our results for the intrinsic Riemannian Matérn priors. We now study what happens if,
instead of working with a geometrically-formulated model, we simply embed everything into Rd and
formulate our models there.
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3.3 Extrinsic Matérn Gaussian Processes

The results of the preceding sections provide good reason to be excited about the intrinsic Riemannian
Matérn prior: the rates it obtains match the usual minimax rates seen for the Euclidean Matérn prior
and Euclidean data, provided that we match the smoothness ν with the regularity of f0. Another
possibility is to consider an extrinsic Gaussian process, that is, a Gaussian process defined over
an ambient space. This has been considered by Yang and Dunson [63] for instance for the square-
exponential process, in an adaptive setting where one does not assume that the regularity β of f0 is
explicitly known, but where β ≤ 2. In this section we prove a non-adaptive analog of this result for
the Matérn process.
Definition 7 (Extrinsic Matérn prior). Assume that the manifold M is isometrically embedded in the
Euclidean space RD, such that we can regard M as a subset of RD. Consider the Gaussian process
with zero mean and kernel given by restricting onto M the standard Euclidean Matérn kernel

kν,κ,σ2
f
(x, x′) = σ2

f

21−ν

Γ(ν)

(√
2ν

∥x− x′∥RD

κ

)ν

Kν

(√
2ν

∥x− x′∥RD

κ

)
(11)

where σf , κ, ν > 0 and Kν is the modified Bessel function of the second kind [22].

Since the extrinsic Matérn process is defined in a completely agnostic way with respect to the
manifold geometry, we would expect it to be less performant when M is known. However, it turns
out that the extrinsic Matérn process converges at the same rate as the intrinsic one, as given in the
following claim.
Theorem 8. Let f be a mean-zero extrinsic Matérn Gaussian process prior with smoothness parame-
ter ν > d/2 on M, and let f0 satisfy Assumption 3. Then for some C > 0 we have

Ex,y Ef∼Π(·|x,y)∥f − f0∥2L2(p0)
≤ Cn

− 2min(β,ν)
2ν+d . (12)

Theorem 8 is a surprising result because the optimal rates in this setting only require the knowledge
of the regularity β, but not the knowledge of the manifold or the intrinsic dimension. More precisely,
the prior is not designed to be an adaptive prior, since it is a fixed Gaussian process, but it surprisingly
adapts to the dimension of the manifold, and thus to the manifold.

The proof is also based on control of concentration functions. The main difference is that, although
the ambient process has a well known RKHS—the Sobolev space Hs+D/2

(
RD
)
—the restricted

process has a non-explicit RKHS, which necessitates further analysis. We tackle this issue by using
results from Große and Schneider [24] relating manifold and ambient Sobolev spaces by linear
bounded trace and extension operators, and from Yang and Dunson [63] describing a general link
between the RKHS of an ambient process and its restriction. This allows us to show that the restricted
process has an RKHS that is actually norm-equivalent to the Sobolev space Hν+d/2(M), which
allows us to conclude the result in the same manner as in the intrinsic case.

As consequence, our argument applies mutatis mutandis in any setting where suitable trace and
extension theorems apply, with the Riemannian Matérn case corresponding to the usual Sobolev
results. In particular, our arguments therefore apply directly to other processes possessing similar
RKHSs, such as for instance various kernels defined on the sphere—see e.g. Wendland [61], Chapter
17 and Hubbert et al. [26]. The constant C > 0 can be seen to depend on d,D,σ2

f , ν,κ,β,p0,σ2
ε ,

∥f0∥Hβ(M),∥f0∥Bβ
∞∞(M),∥f0∥CHβ(M)—notice that here C depends implicitly on D because of the

presence of trace and extension operator continuity constants. We now proceed to understand the
significance of the overall results.

3.4 Summary of Results

As a consequence of our previous results, fixing a single common data generating distribution
determined by p0, f0, under suitable conditions the intrinsic Matérn process, its truncated version,
and the extrinsic Matérn process all possess the same posterior contraction rate with respect to
the L2(p0)-norm, which depends on d, ν, and β, and is optimal if the regularities of f0 and the
prior match. These results imply the following immediate corollary, which follows by convexity of
∥·∥2L2(p0)

using Jensen’s inequality.
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Corollary 9. Under the assumptions of Theorems 5, 6 and 8, it follows that, for some C > 0

Ex,y ∥mΠ(·|x,y) − f0∥2L2(p0)
≤ Cn− 2min(β,ν)

2ν+d (13)

where mΠ(·|x,y) is the posterior mean given a particular value of (xi, yi)
n
i=1.

When ν = β, the optimality of the rates we present in the manifold setting can be easily inferred by
lower bounding the L2-risk of the posterior mean by the L2-risk over a small subset of M and using
charts, which translates the problem into the Euclidean framework for which the rate is known to be
optimal—see for instance Tsybakov [52].

To contextualize this, observe that even in cases where the geometry of the manifold is non-flat, the
asymptotic rates are unaffected by the choice of the prior’s length scale κ—in either the intrinsic, or
the extrinsic case—but only by the smoothness parameter ν. Indeed, the RKHS of the process is only
determined—up to norm equivalence—by ν, which plays an important role in the proofs. This, and
the fact that extrinsic processes attain the same rates, implies that the study of asymptotic posterior
contraction rates cannot detect geometry in our setting, as was already hinted by Yang and Dunson
[63]. Hence, in the geometric setting, optimal posterior contraction rates should be thought of more
as a basic property that any reasonable model should satisfy. Differences in performance will be
down to constant factors alone—but as we will see, these can be significant. To understand these
differences, we turn to empirical analysis.

4 Experiments

From Theorems 5, 6 and 8, we know that intrinsic and extrinsic Gaussian processes exhibit the
same posterior contraction rates in the asymptotic regime. Here, we study how these rates manifest
themselves in practice, by examining how worst-case errors akin to those of Corollary 9 behave
numerically. Specifically, we consider the pointwise worst-case error

v(τ)(t) = sup
∥f0∥Hν+d/2≤1

Eεi∼N(0,σ2
ε)

∣∣m(τ)
Π(·|x,y)(t)− f0(t)

∣∣2 (14)

where m(τ)
Π(·|x,y) is the posterior mean corresponding to the zero-mean Matérn Gaussian process prior

with smoothness ν, length scale κ, amplitude σ2
f , which is intrinsic if τ = i or extrinsic if τ = e. We

use a Gaussian likelihood with noise variance σ2
ε and observations yi = f0(xi)+εi, and examine this

quantity as a function of the evaluation location t ∈ M. By allowing us to assess how error varies
in different regions of the manifold, this provides us with a fine-grained picture of how posterior
contraction behaves.

One can show that v(τ) may be computed without numerically solving an infinite-dimensional
optimization problem. Specifically, (14) can be calculated, in the respective intrinsic and extrinsic
cases, using

v(i)(t) = k(i)(t, t)−K
(i)
tX

(
K

(i)
XX + σ2

εI
)−1

K
(i)
Xt (15)

v(e)(t) ≈ (K
(i)
tX′ −αtK

(i)
XX′)(K

(i)
X′X′)

−1(K
(i)
X′ t −K

(i)
X′ Xα⊤

t ) + σ2
εαtα

⊤
t (16)

where, for the extrinsic case, αt = K
(i)
tX(K

(e)
XX+σ2

εI)
−1, and X′ is a set of points sampled uniformly

from the manifold M, the size of which determines approximation quality. The intrinsic expression is
simply the posterior variance k(i)Π(·|x,y)(t, t), and its connection with worst-case error is a well-known
folklore result mentioned somewhat implicitly in, for instance, Mutny and Krause [35]. The extrinsic
expression is very-closely-related, and arises by numerically approximating a certain RKHS norm. A
derivation of both is given in Appendix F. To assess the approximation error of this formula, we also
consider an analog of (16) but instead defined for the intrinsic model, and compare it to (15): in all
cases, the difference between the exact and approximate expression was found to be smaller than
differences between models. By computing these expressions, we therefore obtain, up to numerics,
the pointwise worst-case expected error in our regression model.

For M we consider three settings: a dumbbell-shaped manifold, a sphere, and the dragon manifold
from the Stanford 3D scanning repository. In all cases, we perform computations by approximating
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Figure 3: Worst-case error estimates for the intrinsic and extrinsic processes, on the dumbbell,
sphere, and dragon manifolds (lower is better, y axis is in the logarithmic scale). We see that, on
the dumbbell and dragon manifold, intrinsic models achieve lower expected errors than extrinsic
models for the ranges considered (top), and that their expected error consistently varies less as a
function of space (bottom). In contrast, on the sphere, both models achieve similar performance, with
differences between models falling within the range of variability caused by different random number
seeds. We also see that the difference between computing the pointwise worst-case error exactly and
approximately, in the intrinsic case where computing this difference is possible, is small in all cases.

the manifold using a mesh, and implementing the truncated Karhunen–Loève expansion with J = 500
eigenpairs obtained from the mesh. We fix smoothness ν = 5

2 , amplitude σ2
f = 1, and noise variance

σ2
ε = 0.0005, for both the intrinsic and extrinsic Matérn Gaussian processes. Since the interpretation

of the length scale parameter is manifold-specific, for the intrinsic Gaussian processes we set κ = 200
for the dumbbell, κ = 0.25 for the sphere, and κ = 0.05 for the dragon manifold. In all cases,
this yielded functions that were neither close to being globally-constant, nor resembled noise. Each
experiment was repeated 10 times to assess variability. Complete experimental details are given
in Appendix G.2

The length scales κ are defined differently for intrinsic and extrinsic Matérn kernels: in particular,
using the same length scale in both models can result in kernels behaving very differently. To alleviate
this, for the extrinsic process, we set the length scale by maximizing the extrinsic process’ marginal
likelihood using the full dataset generated by the intrinsic process, except in the dumbbell’s case
where the full dataset is relatively small, and therefore a larger set of 500 points was used instead.
This allows us to numerically match intrinsic and extrinsic length scales to ensure a reasonably-fair
comparison.

Figure 3 shows the mean, and spatial standard deviation of vτ (t), where by spatial standard deviation
we mean the sample standard deviation computed with respect to locations in space, rather than with
respect to different randomly sampled datasets. From this, we see that on the dumbbell and dragon
manifold—whose geometry differs significantly from the respective ambient Euclidean spaces—
intrinsic models obtain better mean performance. The standard deviation plot reveals that intrinsic
models have errors that are less-variable across space. This means that extrinsic models exhibit
higher errors in some regions rather than others—such as, for instance, regions where embedded
Euclidean and Riemannian distances differ—whereas in intrinsic models the error decays in a more
spatially-uniform manner.

In contrast, on the sphere, both models perform similarly. Moreover, both the mean and spatial
standard deviation decrease at approximately the same rates, indicating that the extrinsic model’s
predictions are correct about-as-often as the intrinsic model’s, as a function of space. This confirms
the view that, since the sphere does not possess any bottleneck-like areas where embedded Euclidean
distances are extremely different from their Riemannian analogs, it is significantly less affected by
differences coming from embeddings.

2Code available at: HTTPS://GITHUB.COM/ATERENIN/GEOMETRIC_ASYMPTOTICS.
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In total, our experiments confirm that there are manifolds on which geometric models can perform
significantly better than non-geometric models. This phenomenon was also noticed in Dunson et al.
[17], where a prior based on the eigendecomposition of a random geometric graph, which can be
thought as an approximation of our intrinsic Matérn processes, is compared to a standard extrinsic
Gaussian process. In our experiments, we see this through expected errors, mirroring prior results
on Bayesian optimization performance. From our theoretical results, such differences cannot be
captured through posterior contraction rates, and therefore would require sharper technical tools, such
as non-asymptotic analysis, to quantify theoretically.

5 Conclusion

In this work, we studied the asymptotic behavior of Gaussian process regression with different
classes of Matérn processes on Riemannian manifolds. By using various results on Sobolev spaces
on manifolds we derived posterior contraction rates for intrinsic Matérn process defined via their
Karhunen-Loeve decomposition in the Laplace–Beltrami eigenbasis, including processes arising from
truncation of the respective sum which can be implemented in practice. Next, using trace and extension
theorems which relate manifold and Euclidean Sobolev spaces, we derived similar contraction rates
for the restriction of an ambient Matérn process in the case where the manifold is embedded in
Euclidean space. These theoretical asymptotic results were supplemented by experiments on several
examples, showing significant differences in performance between intrinsic and extrincic methods
in the small sample size regime when the manifold’s geometric structure differs from the ambient
Euclidean space. Our work therefore shows that capturing such differences cannot be done through
asymptotic contraction rates, motivating and paving the way for further work on non-asymptotic error
analysis to capture empirically-observed differences between extrinsic and intrinsic models.
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A Preliminaries

Here we describe preliminaries necessary for Appendices B to E. This includes some basic properties
of the Laplace–Beltrami operator on compact manifolds, partitions of unity subordinate to atlases,
function spaces such as Hölder, Sobolev and Besov spaces, general Gaussian random elements on
Banach spaces, and a certain technical lemma. Hereinafter, the expression a ≲ b means a ≤ Cb for
some constant C > 0 whose value is irrelevant to our claims.

A.1 Laplace–Beltrami Operator and Subordinate Partitions of Unity

Let M denote a compact connected Riemannian manifold without boundary of dimension d ∈ Z>0.
The Laplace–Beltrami operator ∆ on M is self-adjoint and positive semi-definite [48, Theorem
2.4]. Let (L2(M), ⟨·, ·⟩L2(M)) denote the Hilbert space of square integrable (equivalence classes of)
functions on M with respect to the standard Riemannian volume measure.

By standard theory [13, 23], there exists an orthonormal basis {fj}∞j=0 of L2(M) consisting of the
eigenfunctions of ∆, namely ∆fj = −λjfj , with λj ≥ 0. We assume that the pairs (λj , fj) are
sorted such that 0 = λ0 ≤ λj ≤ λj+1. The growth of λj can be characterized as follows.

Result 10 (Weyl’s Law). There exists a constant C > 0 such that for all j large enough we have

C−1j2/d ≤ λj ≤ Cj2/d. (17)

Proof. See Chavel [13], Chapter 1.

Following De Vito et al. [16] and Große and Schneider [24] we fix a family T = (Ul, ϕl, χl)
L
l=1, where

L ∈ Z>0, the local coordinates ϕl : Ul ⊂ M → Vl = ϕl(Ul) ⊂ Rd are smooth diffeomorphisms, and
the functions χl form a partition of unity subordinate to {Ul}Ll=1, that is χl ∈ C∞(M), supp(χl) ⊂
Ul, 0 ≤ χl ≤ 1 and

∑
l χl = 1—here, we can choose L finite by compactness of M. For convenience

and without loss of generality, we assume that Vl = (0, 1)d. With this, we can start defining function
spaces on M.

A.2 Hölder Spaces CHγ and the spaces of continuous functions C and smooth functions C∞

Consider an arbitrary domain X ⊆ Rd or X ⊆ M. We denote the class of infinitely differentiable
functions on X by C∞(X ). Let Ck(X ) denote the Banach space of k ∈ Z>0 times continuously
differentiable functions on X with finite norm

∥f∥Ck(X ) = sup
x∈X

∣∣∇kf(x)
∣∣ (18)

where ∇k is the kth covariant derivative, as in Hebey [25], Section 2.1 and Aubin [3], Definition 2.2.
We also write C(X ) = C0(X ) for the space of continuous functions on X .

The Euclidean Hölder spaces CHγ(Rd), where γ = k+ α with k ∈ Z≥0 and 0 < α ≤ 1, are defined
by3

CHγ(Rd) =
{
f ∈ Ck(Rd) : ∥f∥CHγ(Rd) < ∞

}
(19)

where

∥f∥CHγ(Rd) = ∥f∥Ck(Rd) + sup
x,y∈Rd, x̸=y

|f(x)− f(y)|
∥x− y∥αRd

. (20)

More information on these definitions may be found, for instance, in Giné and Nickl [21] and Triebel
[51]. We now turn to the manifold versions of the Hölder spaces.

3Hölder spaces are often also denoted by Cγ as well, with γ ∈ R>0. Since, using this formulation, they do
not coincide with Ck(X ) when k = γ ∈ Z≥0, we use the notation CHγ to avoid confusion.
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Definition 11 (Hölder spaces). For all γ > 0 we define the Hölder space CHγ(M) on the manifold
M to be the space of all f : M → R satisfying

∥f∥CHγ(M) =

L∑
l=1

∥∥(χlf) ◦ ϕ−1
l

∥∥
CHγ(Rd)

< ∞. (21)

Since the charts ϕl are smooth, Definition 11 can be easily seen to be independent of the chosen atlas,
with equivalence of norms.

A.3 Sobolev and Besov Spaces

We now introduce the manifold versions of the Sobolev and Besov spaces, whose definitions in the
standard Euclidean case may be found, for instance, in Triebel [51]. For Sobolev spaces we use the
Bessel-potential-based definition, following De Vito et al. [16].

Definition 12 (Sobolev spaces). For any s > 0 we define the Sobolev space Hs(M) on the manifold
M as the Hilbert space of functions f ∈ L2(M) such that ∥f∥2Hs(M) = ⟨f, f⟩Hs(M) < ∞ where

⟨f, g⟩Hs(M) =

∞∑
j=0

(1 + λj)
s⟨f, fj⟩L2(M)⟨g, fj⟩L2(M). (22)

Remark 13. It is easy to see that substituting (1 + λj)
s in (22) with β(α+ λj)

s or with (α+ βλs
j)

for any α, β > 0 results in the same set of functions and an equivalent norm. The former follows
from Borovitskiy et al. [11], eq. (109). The latter follows from the Binomial Theorem.

For Besov spaces we follow Coulhon et al. [14] and Castillo et al. [12] and define them in terms
of approximations by low-frequency functions. We fix a function Φ ∈ C∞(R≥0,R≥0) such that
K = supp(Φ) ⊂ [0, 2] and Φ(x) = 1 for x ∈ [0, 1]. We also define the functions Φj(x) = Φ

(
2−jx

)
.

Coulhon et al. [14], Corollary 3.6 shows that the operators Φj(
√
∆) defined by

Φj

(√
∆
)
f =

∑
j≥0

Φj

(√
λj

)
⟨fj , f⟩fj (23)

are bounded in the space Lp(M) for all 1 ≤ p ≤ ∞.4 Moreover, the same result also shows that
we can express any f ∈ Lp(M) as f = limj→∞ Φj(

√
∆)f in Lp(M). Φj(

√
∆)f can intuitively

be considered as a version of f filtered by a low-pass filter. The next definition introduces the
Besov spaces Bs

p,q(M), which are formulated in terms of quality-of-approximation by low-frequency
functions.

Definition 14 (Besov spaces). For any s > 0 and 1 ≤ p, q ≤ ∞ we define the Besov space Bs
p,q(M)

on the manifold M as the space of functions f ∈ Lp(M) such that ∥f∥Bs
p,q(M) < ∞ where

∥f∥Bs
p,q(M) =

∥f∥Lp(M) +
(∑

j≥0

(
2js∥Φj(

√
∆)f − f∥Lp(M)

)q)1/q
if q < +∞

∥f∥Lp(M) + supj≥0 2
js∥Φj(

√
∆)f − f∥Lp(M) if q = +∞.

(24)

The classical Besov spaces Bs
2,2 coincide with the Sobolev spaces Hs on Rd, in the sense that they

define the same set of functions and equivalent norms—see for instance Giné and Nickl [21] section
4.3.6—and even on manifolds if one follows the construction of Triebel [51], pages 7.3–7.4 for Besov
spaces. Since our definition of the Besov spaces is somewhat non-standard, we present a proof.

Proposition 15. For all s > 0, Hs(M) = Bs
2,2(M) as sets and there exist two constants C1, C2 > 0

such that for all f ∈ Hs(M) = Bs
2,2(M) we have

C1∥f∥Hs(M) ≤ ∥f∥Bs
2,2(M) ≤ C2∥f∥Hs(M). (25)

4The space Lp(M) is the Banach space of functions (or rather their equivalence classes) that are integrable
when raised to the power p < ∞ or essentially bounded for p = ∞. See for instance Triebel [50] for details.
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Proof. It is enough to prove (25), the rest will follow automatically. The main technical tools used in
the proof are Result 10 and summation by parts. First, we prove the upper bound. Denote the support
set of Φ by K = supp(Φ). Notice that(

∥f∥Bs
2,2(M) − ∥f∥L2(M)

)2
=
∑
j≥0

22js
∥∥Φj

(√
∆
)
f − f

∥∥2
L2(M)

(26)

=
∑
j≥0

22js
∑

l:
√
λl /∈2jK

∣∣⟨fl, f⟩L2(M)

∣∣2 (27)

≤
∑
j≥0

22js
∑

l:
√
λl>2j

∣∣⟨fl, f⟩L2(M)

∣∣2. (28)

The last inequality results from the fact that [0, 1] ⊂ K. By Weyl’s Law (Result 10), there exists
a constant C > 0 such that λl ≤ Cl2/d. Without loss of generality, we can assume that C = 22r,
r ∈ Z>0. Hence

√
λl > 2j implies l > 2d(j−r), thus we have(

∥f∥Bs
2,2(M)−∥f∥L2(M)

)2≤∑
j≥0

22js
∑

l>2d(j−r)

∣∣⟨fl, f⟩L2(M)

∣∣2 (29)

=
∑

0≤j≤r

22js
∑

l>2d(j−r)

∣∣⟨fl, f⟩L2(M)

∣∣2 +∑
j>r

22js
∑

l>2d(j−r)

∣∣⟨fl, f⟩L2(M)

∣∣2 (30)

≤r22rs∥f∥2L2(M) + 22rs
∑
j>0

22js
∑
l>2dj

∣∣⟨fl, f⟩L2(M)

∣∣2. (31)

Now let Rj =
∑

l>2dj

∣∣⟨fl, f⟩L2(M)

∣∣2 and SJ =
∑J

j=1 2
2js ≤ 22s

22s−12
2Js, S0 = 0. Write∑

j>0

22js
∑
l>2dj

∣∣⟨fl, f⟩L2(M)

∣∣2 =
∑
j>0

(Sj − Sj−1)Rj (32)

=
∑
j>0

Sj(Rj −Rj+1) (33)

=
∑
j>0

Sj

∑
2dj<l≤2d(j+1)

∣∣⟨fl, f⟩L2(M)

∣∣2 (34)

≤ 22s

22s − 1

∑
j>0

22js
∑

2dj<l≤2d(j+1)

∣∣⟨fl, f⟩L2(M)

∣∣2 (35)

≤ 22s

22s − 1

∑
j>0

∑
2dj<l≤2d(j+1)

l2s/d
∣∣⟨fl, f⟩L2(M)

∣∣2 (36)

≤ cs22s

22s − 1

∑
j>0

∑
2dj<l≤2d(j+1)

λs
l

∣∣⟨fl, f⟩L2(M)

∣∣2 (37)

=
cs22s

22s − 1

∑
l>2d

λs
l

∣∣⟨fl, f⟩L2(M)

∣∣2 (38)

≤ cs22s

22s − 1

∑
l≥0

λs
l

∣∣⟨fl, f⟩L2(M)

∣∣2 (39)

where we have used Result 10 to get existence of a c such that l2/d ≤ cλl. This proves the upper
bound. The proof for the lower bound is similar.

Proposition 15 provides a characterization of the Sobolev spaces Hs(M). There is yet another charac-
terization of these spaces that will be useful later, in terms of charts. We present this characterization
as part of the following result.
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Theorem 16. On the Sobolev space Hs(M), the following norms are equivalent:

∥f∥Hs (M) =

( ∞∑
j=0

(1 + λj)
s⟨f, fj⟩2L2(M)

)1/2

(40)

∥f∥Bs
2,2(M) = ∥f∥L2(M) +

(∑
j≥0

(
2js∥Φj(

√
∆)f − f∥L2(M)

)2)1/2

(41)

∥f∥Hs
T (M) =

(
L∑

l=1

∥∥(χlf) ◦ ϕ−1
l

∥∥2
Hs(Rd)

)1/2

(42)

Proof. The equivalence between ∥·∥Hs(M) and ∥f∥Bs
2,2(M) is given by Proposition 15. The proof

of equivalence between ∥·∥Hs(M) and ∥f∥Hs
T (M) can be found in De Vito et al. [16].

A.4 Gaussian Random Elements

Here we recall the definition of a Gaussian process as a Banach-space-valued random variable,
following for instance van Zanten and van der Vaart [59].

Definition 17 (Gaussian random element). Let (B, ∥·∥B) be a Banach space, and f be a Borel
random variable with values in B almost surely. We say that f is a Gaussian random element if b∗(f)
is a univariate Gaussian random variable for every bounded linear functional b∗ : B → R.

Random variables of this kind are also sometimes called Gaussian in the sense of duality. One
should think of a Gaussian random element as a generalization of a Gaussian process, but which is
better-behaved from a function-analytic point of view and in particular does not require the process
to be an actual function—as opposed to, for instance, a measure or a distribution. Many connections
between the usual Gaussian processes and Gaussian random elements exist, see Lifshits [32], Ghosal
and van der Vaart [20], Appendix I, van der Vaart and van Zanten [57] for details. The following
observation about Gaussian random elements will be useful later.

Lemma 18. A Gaussian process f on the manifold M with almost surely continuous sample paths is
a Gaussian random element in the Banach space

(
C(M), ∥·∥C(M)

)
of continuous functions on M.

Proof. Since C(M) is separable, this follows from Lemma I.6 in Ghosal and van der Vaart [20].

A.5 A Technical Lemma

In order to apply Bernstein’s inequality when going from the error at input locations to the L2(p0)
error, we will use the following technical extrapolation lemma.

Lemma 19. For any function g : M → R, a number γ ∈ R>0 \ Z>0 and a density p0 : M → R>0

with 1 ≲ p0, we have

∥g∥L∞(M) ≲ ∥g∥
d

2γ+d

CHγ(M)∥g∥
2γ

2γ+d

L2(p0)
. (43)

Proof. We use Lemma 15 from van der Vaart and van Zanten [56] and push it through charts. More
precisely we have, using Bγ

∞,∞
(
[0, 1]D

)
= CHγ

(
[0, 1]D

)
for γ /∈ Z>0, that

∥g∥L∞(M) ≤
∑
l

∥∥(χlg) ◦ ϕ−1
l

∥∥
L∞(Vl)

(44)

≲max
l

∥∥(χlg) ◦ ϕ−1
l

∥∥ d
2γ+d

CHγ(Vl)

∥∥(χlg) ◦ ϕ−1
l

∥∥ 2γ
2γ+d

L2(Vl)
. (45)

By definition of the the manifold Hölder spaces, this gives

∥g∥L∞(M) ≲ ∥g∥
d

2γ+d

CHγ(M) max
l

∥∥(χlg) ◦ ϕ−1
l

∥∥ 2γ
2γ+d

L2(Vl)
. (46)
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Finally, since χl are bounded, the charts are smooth, and p0 is lower bounded, we have∥∥(χlg) ◦ ϕ−1
l

∥∥2
L2(Vl)

=

∫
Vl

∣∣(χlg) ◦ ϕ−1
l (y)

∣∣2dy ≲
∫
Ul

g2(x)p0(x)µ(dx) ≲ ∥g∥2L2(M) (47)

which gives the result.

This concludes the necessary preliminaries. We now turn to the proofs of our main results.

B Proofs

Throughout this section we use the notation from Appendix A and results from Appendices C to E.
We start by defining our notation for Gaussian likelihood and probability distribution of the sample.

Definition 20. For every x ∈ Mn and f : M → R we define p
(f)
x,y to be the joint distribution

corresponding to the marginal px = p0 and conditional p(f)y|x = N(f(x), σ2
εI), where f(x) is the

vector with entries f(xi). Expectations with respect to p
(f)
x,y , to px and to p

(f)
y|x we denote by E(f)

x,y , by

Ex and by E(f)
y|x, respectively. Sometimes, when f is clear from the context, we omit the subscript (f).

Using van der Vaart and van Zanten [56], Theorem 1, which is valid for any compact metric space
and thus also for M, we can deduce a posterior contraction rate at data input locactions, with respect
to the empirical L2-norm5

∥f∥n =

(
1

n

n∑
i=1

f(xi)
2

)1/2

(48)

by studying the concentration functions with respect to the uniform norm. This is the purpose of the
following lemma, whose proof mainly follows [56], but crucially relies on two new components: (i)
the small ball asymptotics for manifolds we study in Appendix E and (ii) the characterization of the
RKHS corresponding to both intrinsic and extrinsic priors as manifold Sobolev spaces we obtain
in Appendix C. We recall that the prior Πn may depend on n if we consider a truncated intrinsic
Matérn process.

Theorem 21. Let Πn denote the prior in either Theorem 5, Theorem 6 or Theorem 8 with smooth-
ness parameter ν > d/2. Let Hn denote the corresponding RKHS. Define the concentration
function for f0 ∈ C(M) and ε > 0 by

φf0(ε) = − lnPf∼Πn

[
∥f∥L∞(M) < ε

]
+ inf

f∈Hn: ∥f−f0∥L∞(M)<ε
∥f∥2Hn

. (49)

Then if f0 ∈ Hβ(M) ∩Bβ
∞,∞(M), β > 0 we have φf0(εn) ≤ nε2n for εn a multiple of n−min(ν,β)

2ν+d .

Proof. The first term on the right-hand side of Equation (49) is bounded by Cε−d/ν by Lemma 33.
To bound the second term, we assume, without loss of generality,6 that ν ≥ β. Consider an
approximation f = Φj(

√
∆)f0 of f0, where cε ≤ 2−βj ≤ ε and c > 0 does not depend on j. Since

we assume f0 ∈ Bβ
∞,∞(M), by definition of Bβ

∞,∞(M) we have

∥f0 − f∥L∞(M) ≤ ∥f0∥Bβ
∞,∞(M)2

−βj ≲ ε (50)

where in the last inequality the Bβ
∞,∞(M)-norm is the constant implied by notation ≲. We now

show that
∥f∥2Hn

≲ ε−
2
β (ν−β+d/2). (51)

First notice that by Lemma 24 and Proposition 27, for any prior considered here we have Hn ⊆
Hν+d/2(M) and ∥·∥Hn

≲ ∥·∥Hν+d/2(M) with a constant that does not depend on n. Hence using

5This is actually a seminorm, but we follow the rest of the literature in referring to it as a norm.
6If β > ν then f0 ∈ Hβ(M) ∩Bβ

∞,∞ ⊆ Hν(M) ∩Bν
∞,∞(M) gives εn ∝ n− ν

2ν+d = n−min(β,ν)
2ν+d .
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Result 10 (Weyl’s Law) and properties of Φ, we have

∥f∥2Hn
≲ ∥f∥2Hν+d/2(M) (52)

=
∑
l≥0

(1 + λl)
ν+d/2Φ2

(
2−j
√
λl

)∣∣∣⟨fl, f0⟩L2(M)

∣∣∣2 (53)

≤
∑

l:
√
λl≤2j+1

(1 + λl)
ν+d/2−β(1 + λl)

β
∣∣∣⟨fl, f0⟩L2(M)

∣∣∣2 (54)

≤ 2(j+2)(ν+d/2−β)
∑

l:
√
λl≤2j+1

(1 + λl)
β
∣∣∣⟨fl, f0⟩L2(M)

∣∣∣2 (55)

≤ 2(j+2)(ν+d/2−β)
∑
l≥0

(1 + λl)
β
∣∣∣⟨fl, f0⟩L2(M)

∣∣∣2 (56)

= 2(j+2)(ν+d/2−β)∥f0∥2Hβ(M) (57)

≲ ε−
1
β (ν+d/2−β)∥f0∥2Hβ(M) ≲ ε−

2
β (ν+d/2−β)∥f0∥2Hβ(M). (58)

Our assumption ν ≥ β implies that
2

β
(ν − β + d/2) ≥ d

β
≥ d

ν
. (59)

Hence, we have ε−d/ν ≤ ε−
2
β (ν−β+d/2) which gives us φf0(ε) ≲ ε−

2
β (ν−β+d/2). It is then easy to

check that εn = Mn− β
2ν+d satisfies φf0(εn) ≤ nε2n for M > 0 large enough.

From this, we deduce an upper bound on the error in the empirical L2 norm ∥·∥n, that is, on the
Euclidean distance between the posterior Gaussian process f and the ground truth function f0
evaluated at data locations xi.
Lemma 22. Let Πn denote the prior in either Theorem 5, Theorem 6 or Theorem 8 with smoothness
parameter ν > d/2. Fix f0 ∈ Hβ(M) ∩Bβ

∞,∞(M) with β > 0. Then

Ef∼Πn(·|x,y)∥f − f0∥2n ≤ ε2n (60)

for εn ∝ n−min(ν,β)
2ν+d with constant depending on f0, ν but not on x.

Proof. By Theorem 21 for εn a multiple of n−min(β,ν)
2ν+d , we have φf0(εn) ≤ nε2n. By virtue of this,

the proof of Theorem 1 and Proposition 11 of van der Vaart and van Zanten [56] imply the result.
Indeed, the proof of Theorem 1 relies solely on the fact that φf0(εn/2) ≤ nε2n and an application of
van der Vaart and van Zanten [56], Proposition 11. We have φf0(εn) ≤ nε2n ≤ n(2εn)

2 and hence
the condition is satisfied with εn replaced by 2εn.

We now turn to the proofs of our main results, Theorems 5, 6 and 8, which for convenience we restate
below. The idea of these proofs is to extend the result of Lemma 22 from input locations to the whole
manifold M using an appropriate concentration inequality. To this end, the proof closely follows
the one of Theorem 2 in van der Vaart and van Zanten [56], but relies on Lemma 22 proved above
and on the concentration inequality we prove in Appendix D along with some important sample
differentiablity properties of the prior processes.
Theorem 5. Let f be a Riemannian Matérn Gaussian process prior of Definition 4 with smoothness
parameter ν > d/2 and let f0 satisfy Assumption 3. Then there is a C > 0 such that

Ex,y Ef∼Π(·|x,y)∥f − f0∥2L2(p0)
≤ Cn

− 2min(β,ν)
2ν+d . (9)

Theorem 6. Let f be a Riemannian Matérn Gaussian process prior on M with smoothness parameter
ν > d/2, modified to truncate the infinite sum to at least Jn ≥ cn

d(min(1,ν/β))
2ν+d terms, and let f0 satisfy

Assumption 3. Then there is a C > 0 such that

Ex,y Ef∼Π(·|x,y)∥f − f0∥2L2(p0)
≤ Cn

− 2min(β,ν)
2ν+d . (10)
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Theorem 8. Let f be a mean-zero extrinsic Matérn Gaussian process prior with smoothness parame-
ter ν > d/2 on M, and let f0 satisfy Assumption 3. Then for some C > 0 we have

Ex,y Ef∼Π(·|x,y)∥f − f0∥2L2(p0)
≤ Cn

− 2min(β,ν)
2ν+d . (12)

Proof of Theorems 5, 6 and 8. To ease notation, we denote the expectations under the true data
generating process by Ex,y = E(f0)

x,y and Ey|x = E(f0)
y|x , omitting the superscript (·)f0 . Take

εn ∝ n−min(β,ν)
2ν+d satisfying φf0(εn/2) ≤ nε2n, noting that such a rate exists by Theorem 21. Then,

for each n, there exists an element fn ∈ Hn, where Hn is the RKHS corresponding to Πn, satisfying

∥fn∥2Hn
≤ nε2n ∥fn − f0∥L∞(M) ≤ εn/2. (61)

Write

ε−2
n Ex,y Ef∼Πn(·|x,y)∥f − f0∥2L2(p0)

≲ ε−2
n Ex,y Ef∼Πn(·|x,y)∥fn − f0∥2L2(p0)

(62)

+ ε−2
n Ex,y Ef∼Πn(·|x,y)∥f − fn∥2L2(p0)

(63)

≲ 1 + ε−2
n Ex,y Ef∼Πn(·|x,y)∥f − fn∥2L2(p0)

. (64)

Thus, we can work with f − fn instead of f − f0. Define B(r) =
{
∥f − fn∥L2(p0)

> εnr
}

. Then

ε−2
n Ef∼Πn(·|x,y)∥f − fn∥2L2(p0)

. =

∫ ∞

0

2r Pf∼Πn(·|x,y)(B(r)) dr. (65)

Fix a γ such that d/2 < γ < ν, γ /∈ Z>0 and s > 0, τ > 0 and define

B(I)(r) = {2∥f − fn∥n > εnr} (66)

B(II)(r) =
{
∥f∥CHγ(M) > τ

√
nεnr

s
}

(67)

B(III)(r) = B(r) \
(
B(I)(r) ∪ B(II)(r)

)
. (68)

Then B(r) ⊆ B(I)(r)∪B(II)(r)∪B(III)(r), and thus for an indexed family of events Ar to be chosen
later, we have

ε−2
n Ef∼Πn(·|x,y)∥f − fn∥2L2(p0)

≲
∫ ∞

0

r Pf∼Πn(·|x,y)
(
B(I)(r)

)
dr +

∫ ∞

0

r1Ac
r
dr (69)

+

∫ ∞

0

r1Ar
Pf∼Πn(·|x,y)

(
B(II)(r)

)
dr +

∫ ∞

0

r1Ar
Pf∼Πn(·|x,y)

(
B(III)(r)

)
dr. (70)

For the first term, by Lemma 22 applied conditionally on x, for which we got a bound on the
integrated empirical L2-norm uniformly on the design points, we have

Ex,y

∫ ∞

0

r Pf∼Πn(·|x,y)
(
B(I)(r)

)
dr ≲ ε−2

n Ex,y Ef∼Πn(·|x,y)∥f − f0∥2n ≲ ε−2
n ε2n = 1. (71)

Moreover, by Lemma 14 of van der Vaart and van Zanten [56] applied with r in the notation of the
reference being equal to

√
nεnr

s, for each r > 0, the event

Ar(x) =

u ∈ Rn :

∫ p
(f)
y|x(u)

p
(f0)
y|x (u)

dΠn(f) ≥ e−nε2nr
2s

Pf∼Πn

(
∥f−f0∥L∞(M)<εnr

s
) (72)

⊇

u ∈ Rn :

∫ p
(f)
y|x(u)

p
(f0)
y|x (u)

dΠn(f) ≥ e−nε2nr
2s

Pf∼Πn(∥f−f0∥n<εnr
s)

 (73)

is such that
p
(f0)
y|x [Ac

r(x)] ≤ e−nε2nr
2s/8. (74)
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It should be noted that the
√
n factor disappears because of the discrepancy between the empirical L2

norm ∥·∥n and the Euclidean norm used in van der Vaart and van Zanten [56]. By Fubini’s Theorem
and since nε2n ≥ n

d
2ν+d ≥ 1, the second term is bounded by

Ex,y

∫ ∞

0

r1Ac
r(x)

dr =

∫ ∞

0

rEx

[
Ey|x

[
1Ac

r(x)

]]
dr (75)

≤
∫ ∞

0

re−nε2nr
2s/8 dr (76)

≤
∫ ∞

0

re−r2s/8 dr = Cs < ∞. (77)

It remains to bound the last two terms. By Bayes’ Rule, we have the equality

Pf∼Πn(·|x,y)
(
∥f∥CHγ(M) > τ

√
nεnr

s
)
=

∫
∥f∥CHγ (M)>τ

√
nεnrs

p
(f)
y|x(y) dΠn(f)∫

p
(f)
y|x(y) dΠn(f)

(78)

=

∫
∥f∥CHγ (M)>τ

√
nεnrs

p
(f)

y|x(y)

p
(f0)

y|x (y)
dΠn(f)∫ p

(f)

y|x(y)

p
(f0)

y|x (y)
dΠn(f)

(79)

therefore for y ∈ Ar(x), we have

Pf∼Πn(·|x,y)
(
∥f∥CHγ(M) > τ

√
nεnr

s
)

(80)

≤ enε
2
nr

2s

Pf∼Πn

(
∥f − f0∥L∞(M) < εnrs

) ∫
∥f∥CHγ (M)>τ

√
nεnrs

p
(f)
y|x(y)

p
(f0)
y|x (y)

dΠn(f). (81)

Hence taking expectations, using Tonelli’s Theorem, and Ex,y
p
(f)

y|x(y)

p
(f0)

y|x (y)
= 1 gives

Ex,y

[
1Ar(x) Pf∼Πn(·|x,y)

(
∥f∥CHγ(M) > τ

√
nεnr

s
)]

(82)

≤ enε
2
nr

2s

Pf∼Πn

(
∥f − f0∥L∞(M) < εnrs

) Ex,y

∫
∥f∥CHγ (M)>τ

√
nεnrs

p
(f)
y|x(y)

p
(f0)
y|x (y)

dΠn(f) (83)

=
enε

2
nr

2s

Pf∼Πn

(
∥f − f0∥L∞(M) < εnrs

) ∫
∥f∥CHγ (M)>τ

√
nεnrs

Ex,y

p
(f)
y|x(y)

p
(f0)
y|x (y)

dΠn(f) (84)

=
enε

2
nr

2s

Pf∼Πn

(
∥f − f0∥L∞(M) < εnrs

) Pf∼Πn

(
∥f∥CHγ(M) > τ

√
nεnr

s
)
. (85)

Therefore, the third term can be bounded as

Ex,y

∫ ∞

0

r1Ar
Pf∼Πn(·|x,y)

(
B(II)(r)

)
dr (86)

≤
∫ ∞

0

r
enε

2
nr

2s

Pf∼Πn

(
∥f − f0∥L∞(M) < εnrs

) Pf∼Πn

(
∥f∥CHγ(M) > τ

√
nεnr

s
)
dr. (87)

Now, using Lemma 31, for a possibly small constant c > 0 independent of n, we have

Pf∼Πn(·|x,y)
(
∥f∥CHγ(M) > τ

√
nεnr

s
)
≤ e−cτ2nε2nr

2s

. (88)

Moreover, by using the bound on the concentration function in Theorem 21 and Ghosal and van der
Vaart [20], Proposition 11.19, we can assume that

Pf∼Πn

[
∥f − f0∥L∞(M) < εnr

s
]
≥ e−c−1nε2nr

2s

. (89)
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Therefore, the third term is bounded by

Ex,y

∫ ∞

0

r1Ar(x) Pf∼Πn(·|x,y)
(
B(II)(r)

)
dr ≤

∫ ∞

0

re−n(cτ2−1)ε2nr
2s

ec
−1nε2nr

2s

dr (90)

≤
∫ ∞

0

re−r2s dr < ∞ (91)

if τ2c > 2 + c−1. It remains to bound the last term. We have, by the same arguments as above, that

Ex,y

∫ ∞

0

r1Ar(x) Pf∼Πn(·|x,y)
(
B(III)(r)

)
dr (92)

= Ex,y

∫ ∞

0

r1Ar(x) (93)

× Pf∼Πn(·|x,y)
(
∥f∥CHγ(M) ≤ τ

√
nεnr

s, 2∥f − fn∥n ≤ εnr ≤ ∥f − fn∥L2(p0)

)
dr (94)

≤
∫ ∞

0

r
enε

2
nr

2s

Pf∼Πn

(
∥f − f0∥L∞(M) < εnrs

) (95)

× Ex Pf∼Πn

(
∥f∥CHγ(M) ≤ τ

√
nεnr

s, 2∥f − fn∥n ≤ εnr ≤ ∥f − fn∥L2(p0)

)
dr (96)

≤
∫ ∞

0

re(c+1)nε2nr
2s

(97)

×
∫
∥f∥CHγ (M)≤τ

√
nεnrs,εnr≤∥f−fn∥L2(p0)

Ex 1∥f−fn∥L2(p0)≥2∥f−fn∥n
dΠn(f) dr. (98)

As the squared empirical L2-norm is a Monte Carlo approximation of the true L2-norm, the probability
in the integrand can be controlled via a concentration inequality. As in van der Vaart and van Zanten
[56], we use Bernstein’s inequality [58, Lemma 2.2.9]. For a collection Y1, . . . Yn of random variables
such that EYi = 0 and Yi ∈ [−M,M ] almost surely for some constant M > 0, this inequality asserts

P(|Y1 + . . .+ Yn| > x) ≤ 2 exp

(
−1

2

x2

v +Mx/3

)
(99)

where v ≥ Var(Y1 + . . .+ Yn). We put Yi =
1
n (f(xi)− fn(xi))

2 − 1
n∥f − fn∥2L2(p0)

where xi are
IID with xi ∼ p0. It is easy to check that EYi = 0 and Yi ∈ [−M,M ] for M = 1

n∥f − fn∥L∞(M).

Furthermore, v = 1
n∥f − fn∥2L∞(M)∥f − fn∥2L2(M) upper-bounds the variance of the respective

sum, since

Var(Y1 + . . .+ Yn) =
1

n
Varx∼p0

(f(x)− fn(x))
2 ≤ 1

n
Ex∼p0

(f(x)− fn(x))
4 (100)

≤
∥f − fn∥2L∞(M)

n
Ex∼p0

(f(x)− fn(x))
2 = v. (101)

Using Bernstein’s inequality with Yi, M , v as above and with x = 3
4∥f − fn∥2L2(p0)

, we have

Ex 1∥f−fn∥L2(p0)≥2∥f−fn∥n
= Ex 1∥f−fn∥2

L2(p0)
≥4∥f−fn∥2

n
(102)

= Ex 1∥f−fn∥2
n−∥f−fn∥2

L2(p0)
≤− 3

4∥f−fn∥2
L2(p0)

(103)

≲ exp

(
−1

2

x2

v +Mx/3

)
(104)

= exp

(
−

9
32∥f − fn∥4L2(p0)

v + 1
n∥f − fn∥2L∞(M)

3
4∥f − fn∥2L2(p0)

/3

)
(105)

= exp

(
−9n

32

4

5

∥f − fn∥2L2(p0)

∥f − fn∥2L∞(M)

)
(106)

= exp

(
−9n

40

∥f − fn∥2L2(p0)

∥f − fn∥2L∞(M)

)
. (107)
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Moreover, by Lemma 19, since γ /∈ Z>0, we have

∥f − fn∥L∞(M) ≲ ∥f − fn∥
d

2γ+d

CHγ(M)∥f − fn∥
2γ

2γ+d

L2(p0)
. (108)

Using the Sobolev Embedding Theorem, given in De Vito et al. [16], Theorem 4, ∥f − fn∥CHγ(M) ≲

∥fn∥H + ∥f∥CHγ(M) ≲ τ
√
nεnr

s whenever ∥f∥CHγ(M) ≤ τ
√
nεnr

s. Therefore, for a constant
c > 0, when ∥f∥CHγ(M) ≤ τ

√
nεnr

s and εnr ≤ ∥f − fn∥L2(p0)
, we have that

Ex 1∥f−fn∥L2(M)≥2∥f−fn∥n
≲ exp

−cn
∥f − fn∥2L2(p0)

∥f − fn∥
2d

2γ+d

CHγ(M)∥f − fn∥
4γ

2γ+d

L2(p0)

 (109)

≤ e−cτ
− 2d

2γ+d n
2γ

2γ+d r
2d

2γ+d
(1−s)

. (110)

Hence, we can bound the last term as

Ex,y

∫ ∞

0

r1Ar Pf∼Πn(·|x,y)
(
B(III)(r)

)
dr (111)

≲
∫ ∞

0

re(c+1)nε2nr
2s

e−cτ
− 2d

2γ+d n
2γ

2γ+d r
2d

2γ+d
(1−s)

dr. (112)

We have n
2γ

2γ+d = n
(
n− d/2

2γ+d

)2
. Since εn ≲ n−min(ν,β)

2ν+d and min(ν, β) > d/2, we have nε2n ≲

n
2γ

2γ+d for some γ ∈ (d/2, ν). Moreover, for this choice of γ and s small enough we have 2d
2γ+d (1−

s) ≥ 2s, which proves that for some constants C,C ′, C ′′ > 0 the fourth term is bounded by

C

∫ ∞

0

re−C′rC
′′

dr < ∞. (113)

This concludes the proof.

Remark 23. Following the proof, it is easy to see that ∥f − f0∥2L2(p0)
on the left-hand side of

Equations (9), (10) and (12) can be replaced with ∥f − f0∥qL2(p0)
for any q > 1, changing the

exponent − 2min(β,ν)
2ν+d on the right-hand side to − qmin(β,ν)

2ν+d .

C Characterizing Reproducing Kernel Hilbert Spaces of Matérn Kernels

We start by describing the reproducing kernel Hilbert spaces (RKHSs) of the (truncated) intrinsic
Matérn processes, proving that they coincide with (certain subspaces of) the manifold Sobolev spaces.
We follow the ideas of Borovitskiy et al. [11], where the same was shown somewhat implicitly. We
consider the more-involved case of the extrinsic Matérn processes immediately after.

The next lemma describes the RKHS of the intrinsic Matérn processes, including truncated variants.
This result is easy to obtain since we have defined them in terms of the Karhunen–Loève expansions.
Lemma 24. Let HJ be the RKHS of the intrinsic Matérn Gaussian process with smoothness parameter
ν truncated at the level J ∈ Z>0 ∪ {∞}, and let {fj}∞j=0 be the orthonormal basis of Laplace–
Beltrami eigenfunctions. The space HJ is norm-equivalent—with constants depending only on ν, κ

and σ2
f—to the set of functions f =

∑J
j=1 bjfj with bj ∈ R, equipped with the inner product〈 J∑

j=1

bjfj ,

J∑
j=1

b′jfj
〉
HJ

=

J∑
j=1

(1 + λj)
ν+d/2

bjb
′
j . (114)

In particular, HJ ⊂ Hν+d/2(M) for all J , and for every h ∈ HJ we have ∥h∥HJ
= ∥h∥Hν+d/2(M).

Proof. By direct computation, the covariance k of the (truncated) intrinsic Gaussian process is

k(x, x′) =
σ2
f

Cν,κ

J∑
j=1

(
2ν

κ2
+ λj

)−(ν+d/2)

fj(x)fj(x
′). (115)
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Hence, the covariance operator K : L2(M) → L2(M) defined by

(Kf)(x) =

∫
M

k(x, x′)f(x′) dx′ (116)

is diagonal in the basis {fj}Jj=1, with Kfj =
σ2
f

Cν,κ

(
2ν
κ2 + λj

)−(ν+d/2)
fj . Then, Kanagawa et al.

[28], Theorem 4.2 implies that HJ consists of functions of form f =
∑J

j=1 ajfj satisfying

∥f∥2HJ
=

σ2
f

Cν,κ

J∑
j=1

(
2ν

κ2
+ λj

)ν+d/2

|aj |2 < ∞. (117)

Using the elementary inequality min
(
2ν
κ2 , 1

)
≤

2ν
κ2 +λ

1+λ ≤ max
(
2ν
κ2 , 1

)
, we find that this space is

norm-equivalent to the space H
ν+d/2
J (M) of functions f =

∑J
j=1 ajfj satisfying

∥f∥2
H

ν+d/2
J (M)

=

J∑
j=1

(1 + λj)
ν+d/2|aj |2 < ∞ (118)

where the comparison constants

√
σ2
f

Cν,κ
min

(
1, 2ν

κ2

)
and

√
σ2
f

Cν,κ
max

(
1, 2ν

κ2

)
only depend on the

parameters ν, κ, σ2
f .

The next two theorems will be useful to characterize the RKHS of the extrinsic Matérn process on M.
We start by a lemma relating the RKHS of the restriction of a Gaussian process to the original one.

Lemma 25. Assume that k is a kernel on Rd, f ∼ GP(0, k) with almost surely continuous sample
paths and H̃ is the RKHS of k. If M ⊆ Rd is a submanifold, then the RKHS H corresponding to the
restricted process f|M is the set of all restrictions g|M of functions g ∈ H̃ equipped with the norm

∥h∥H = inf
g∈H̃, g|M=h

∥g∥H̃. (119)

Moreover there always exists an element g ∈ H̃ such that g|M = f and ∥g∥H̃ = ∥f∥H.

Proof. Lemma 5.1 in Yang and Dunson [63].

The last result will be used to characterize the RKHS of the extrinsic Matérn Gaussian processes
using trace and extension operators. The second ingredient for this is the following.

Theorem 26. If s > D−d
2 then the restriction operator extends to a bounded linear map Tr :

Hs
(
RD
)
→ Hs−D−d

2 (M). Moreover, for every u > 0 there exists a bounded right inverse Ex :

Hu(M) → Hu+D−d
2

(
RD
)

such that Tr ◦Ex = idHu(M) where Tr corresponds to s = u+ D−d
2 .

Proof. Theorem 4.10 in Große and Schneider [24].

The last two results allow us to characterize the RKHS of the extrinsic Matérn process on M.

Proposition 27. The RKHS H of a restricted extrinsic Matérn process f with smoothness parameter
ν on M is norm-equivalent to the Sobolev space Hν+d/2(M).

Proof. Using Lemma 25, the RKHS H can be characterized as the set of functions f : M → R that
are the restrictions of some g ∈ H̃, where H̃ is the RKHS of the ambient Matérn process f̃ , with

∥f∥H = inf
g∈H̃, g|M=f

∥g∥H̃. (120)

24



Since H̃ is norm-equivalent to the Sobolev space7 Hν+D/2
(
RD
)
—see for instance Kanagawa et al.

[28]—by Theorem 26, for every f ∈ H we have

∥f∥H ≲ ∥Ex(f)∥Hν+D/2(RD) ≲ ∥f∥
Hν+D/2−D−d

2 (M)
= ∥f∥Hν+d/2(M). (121)

Similarly, for every g ∈ H̃ with g|M = f , we have

∥f∥Hν+d/2(M) =
∥∥g|M∥∥Hν+d/2(M)

≲ ∥g∥Hν+D/2(RD) ≲ ∥g∥H̃. (122)

Hence, taking the infimum, we obtain

∥f∥Hν+d/2(M) ≲ inf
g∈H̃, g|M=f

∥g∥H̃ = ∥f∥H. (123)

The claim follows.

D Concentration and Sample Path Regularity

In this section, we prove that intrinsic, truncated intrinsic and extrinsic Matérn processes are sub-
Gaussian, uniformly with respect to the truncation parameter in the case of the truncated intrinsic
Matérn process, and live in Hölder spaces with appropriate exponents. On our way to proving
this, we characterize sample path regularity of (truncated) intrinsic Matérn processes, which is of
independent interest. A simple way to do this would be to build on the results of Appendix C, using
Driscoll’s Theorem—given in Kanagawa et al. [28], Theorem 4.9—and the Sobolev Embedding
Theorem—De Vito et al. [16], Theorem 4—but that would only give us that the sample paths are
almost surely in CHγ(M) for every 0 < γ < ν − d/2, γ /∈ N, whereas here we improve the range of
index to γ < ν.

Kolmogorov’s continuity criterion is a standard tool to show that a given stochastic process has a
Hölder continuous version: we re-prove it here because we will need a form of the result which gives
explicit control of the Hölder norms, which is not usually included in the respective statement.

Lemma 28 (Kolmogorov’s continuity criterion). If g ∼ Π is a zero-mean Gaussian process on [0, 1]d

with
E |g(x)− g(y)|2 ≤ C∥x− y∥2ρRd (124)

for some 0 < ρ ≤ 1 and C > 0, then there exists a version of g with samples paths in CHα
(
[0, 1]d

)
for every 0 < α < ρ. Moreover for every α < ρ this version satisfies E ∥g∥2CHα([0,1]d) ≤ C ′ where
C ′ < +∞ depends only on C, ρ, α and d.

Proof. Take x, y ∈ [0, 1]d,M > 0 and q ∈ N. Since the random variable g(x)− g(y) is Gaussian
we have

E |g(x)− g(y)|2q =
(2q)!

2qq!

(
E |g(x)− g(y)|2

)q
≤ Cq∥x− y∥2ρqRd (125)

where we have defined Cq = Cq (2q)!
2qq! . The reason for considering the the 2qth power will become

clear later in the proof. By Markov’s inequality, for every x, y ∈ [0, 1]d we have

P(|g(x)− g(y)| > u) ≤ Cqu
−2q∥x− y∥2qρRd . (126)

Now, take X = ∪k≥0Xk, Xk = 2−kZd ∩ [0, 1]d. Then, the previous inequality applied to any
adjacent x, y ∈ Xk, where we see Xk as a graph where two vertices are connected if they differ by
2−k, and u = M2−kα, implies

P
(
|g(x)− g(y)| > M2−kα

)
≤ CqM

−2q2−2kq(ρ−α). (127)

7Note that this norm-equivalence is the only property of the Gaussian process we use in the proofs. Any
other Gaussian process satisfying this, including ones different from the Matérn processes of Borovitskiy et al.
[11], would also work. This is of potential interest since other Euclidean kernels, such as Wendland kernels [61],
are known to possess RKHSs which are norm-equivalent to those of the Matérn kernel.
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Denote K = supx,y∈Xadjacent
|g(x)−g(y)|
∥x−y∥α . Summing over k ≥ 1 and adjacent points in X—and there

are at most C2k(d+1) of them where C > 0 is an absolute constant—gives us for q > d+1
2(ρ−α) that

P(K > M) ≤
∑
k≥0

∑
x,y∈Xadjacent

P
(
|g(x)− g(y)| > M2−kα

)
(128)

≤ C
∑
k≥0

2k(d+1)CqM
−2q2−2kq(ρ−α) =

CCq

1− 22q(ρ−α)−d−1
M−2q. (129)

In particular, for all q > max
(
1, d+1

2(ρ−α)

)
, we have

E(K2) = 2

∫ ∞

0

M P(K > M) dM = 2

∫ 1

0

M P(K > M) dM + 2

∫ ∞

1

M P(k > M) dM (130)

≤ 2 + 2

∫ ∞

1

M P(K > M) dM ≤ CC,α,ρ,d (131)

for some constant CC,α,ρ,d < +∞. This means that K is finite almost surely. Since X is dense in
[0, 1]d and g is almost surely uniformly continuous on X by the classical version of the Kolmogorov’s
continuity criterion—see for instance Lototsky and Rozovsky [34]—g admits a unique continuous
extension to [0, 1]d on a probability one event A. Let us define

g(x) =

{
lim

y→x,y∈X
g(y) on A,

0 otherwise,
(132)

for x ∈ [0, 1]d. For any x, y ∈ [0, 1]d and xn → x, yn → y, xn, yn ∈ X we have on A

|g(x)− g(y)| ≤ lim inf
n→∞

(|g(x)− g(xn)|+ |g(xn)− g(yn)|+ |g(yn)− g(y)|) (133)

≤ lim inf
n→∞

(|g(x)− g(xn)|+K∥xn − yn∥αRd + |g(yn)− g(y)|) (134)

=K∥x− y∥αRd . (135)

On the complement of A, we have g = 0. Hence, g is α-Hölder continuous on [0, 1]d with the same
(random) constant K, since

E ∥g∥2CHα([0,1]d) = E
(

sup
x,y∈X

|g(x)− g(y)|
∥x− y∥α

)2

≤ EK2 ≤ CC,α,ρ,d < ∞. (136)

Since g is a version of g, the claim follows.

The next lemma applies our version of Kolmogorov’s criterion, Lemma 28, to the intrinsic Matérn
processes on M by considering charts. This allows us to show that the sample paths are almost surely
in CHγ(M) for every γ < ν, which is both used in our arguments and also of independent interest.
For the claims in Appendix B, we need to ensure that this property holds somewhat uniformly
with respect to the truncation parameter, which is why we tracked the constants in our proof of
Kolmogorov’s criterion. As we will see, the main difficulty in the proof of the next result will be to
tackle the case of regularity strictly larger than 1.

Lemma 29. Let f ∼ Πn be an intrinsic Matérn process with smoothness parameter ν > 0 truncated
at Jn ∈ N ∪ {∞}. Then for every γ < ν we have

sup
n

Ef∼Πn

[
∥f∥2CHγ(M)

]
< ∞. (137)

Proof. We start with the case ν ≤ 1. Take 1 ≤ l ≤ L and define hl = (χlf) ◦ ϕ−1
l . Then hl is a

Gaussian process with covariance kernel K̃l given by

K̃l(x, y) = (χl ◦ ϕ−1
l )(x)K(ϕ−1

l (x), ϕ−1
l (y))(χl ◦ ϕ−1

l )(y) (138)
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where x, y ∈ Vl and K(x, y) = Cov(f(x), f(y)) is the covariance kernel of f . Let H̃l be the RKHS
induced by K̃l. We seek to apply Lemma 28 to hl. For all x, y ∈ Vl, where we recall that we can
assume that Vl = (0, 1)d,, we have

Ef∼Πn
|hl(x)− hl(y)|2 = K̃l(x, x) + K̃l(y, y)− 2K̃l(x, y) (139)

=
∥∥∥K̃l(x, ·)− K̃l(y, ·)

∥∥∥2
H̃l

(140)

= sup
∥φ∥H̃l

=1

∣∣∣∣〈K̃l(x, ·)− K̃l(y, ·), φ
〉
H̃l

∣∣∣∣2 (141)

= sup
∥φ∥H̃l

=1

|φ(x)− φ(y)|2 (142)

≤ sup
∥φ∥H̃l

=1

∥φ∥2CHν(Vl)
∥x− y∥2νRd (143)

where ∥φ∥2CHν(Vl)
can potentially be infinite or unbounded: we will show this is not the case. To do

this it suffices to show that we have a continuous embedding H̃l ↪→ CHν(Vl), that is ∥·∥CHν(Vl)
≲

∥·∥H̃l
. The RKHS H̃l is by definition the completion of{
p∑

i=1

αiK̃l(xi, ·) : p ≥ 1, αi ∈ R, xi ∈ Vl

}
(144)

=

{
p∑

i=1

αi

(
χl ◦ ϕ−1

l

)
(xi)

(
χl ◦ ϕ−1

l

)
(·)K

(
ϕ−1
l (xi), ϕ

−1
l (·)

)
: p ≥ 1, αi ∈ R, xi ∈ Vl

}
(145)

with respect to the topology induced by the RKHS norm∥∥∥∥∥
p∑

i=1

αiK̃l(xi, ·)

∥∥∥∥∥
2

H̃l

=

p∑
i,j=1

αiαj

(
χl ◦ ϕ−1

l

)
(xi)

(
χl ◦ ϕ−1

l

)
(xj)K

(
ϕ−1
l (xi), ϕ

−1
l (xj)

)
. (146)

Denote the RKHS of K by H. By Theorem 16, and by the equality ∥·∥H = ∥·∥Hν+d/2(M) on H
which follows by Lemma 24, we have∥∥∥∥∥

p∑
i=1

αiK̃l(xi, ·)

∥∥∥∥∥
2

Hν+d/2(Rd)

(147)

=

∥∥∥∥∥
p∑

i=1

αi

(
χl ◦ ϕ−1

l

)
(xi)

(
χl ◦ ϕ−1

l

)
(·)K(ϕ−1

l (xi), ϕ
−1
l (·))

∥∥∥∥∥
2

Hν+d/2(Rd)

(148)

≲

∥∥∥∥∥
p∑

i=1

αi

(
χl ◦ ϕ−1

l

)
(xi)K(ϕ−1

l (xi), ·)

∥∥∥∥∥
2

Hν+d/2(M)

(149)

=

∥∥∥∥∥
p∑

i=1

αi

(
χl ◦ ϕ−1

l

)
(xi)K(ϕ−1

l (xi), ·)

∥∥∥∥∥
2

H

(150)

=

p∑
i,j=1

αiαj

(
χl ◦ ϕ−1

l

)
(xi)

(
χl ◦ ϕ−1

l

)
(xj)K

(
ϕ−1
l (xi), ϕ

−1
l (xj)

)
(151)

=

∥∥∥∥∥
p∑

i=1

αiK̃l(xi, ·)

∥∥∥∥∥
2

H̃l

. (152)

Therefore, we have a continuous embedding H̃l ↪→ Hν+d/2
(
Rd
)

with ∥·∥Hν+d/2(Rd) ≲ ∥·∥H̃l

on H̃l. By the Sobolev Embedding Theorem in Rd—see for instance Triebel [50], Section 2.7.1,
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Remark 2—we have B
ν+d/2
2,2

(
Rd
)
= Hν+d/2

(
Rd
)
↪→ CHν

(
Rd
)
, which implies H̃l ↪→ CHν

(
Rd
)

by composition. Thus, there exists a constant C = Cν such that

Ef∼Πn |hl(x)− hl(y)|2 ≤ C∥x− y∥2νRd (153)

for x, y ∈ Vl. Hence, by applying Lemma 28, there exists a version h̃l of hl with almost surely
α-Hölder continuous sample paths for every α < ν. Now consider f̃ =

∑L
l=1 h̃l ◦ ϕl. Then f̃ is a

version of f . We proceed to bound Ef∼Πn

[
∥f̃∥2CHα(M)

]
. For any 1 ≤ l, r ≤ L write

∣∣∣h̃r(ϕr(ϕ
−1
l (x)))− h̃r(ϕr(ϕ

−1
l (y)))

∣∣∣ ≤ K
∣∣ϕr(ϕ

−1
l (x))− ϕr(ϕ

−1
l (y))

∣∣α ≤ CK|x− y|α (154)

where C is the Lipshitz constant of ϕr ◦ϕ−1
l which is well defined and finite because this composition

is a diffeomorphism and K is a random constant with Ef∼Πn
K2 ≤ Cα,ν,d. Hence

Ef∼Πn

∥∥f̃∥∥2CHα(M)
= Ef∼Πn

L∑
l=1

∥∥∥(χlf̃
)
◦ ϕ−1

l

∥∥∥2
CHα(Rd)

(155)

= Ef∼Πn

L∑
l=1

∥∥∥∥∥
(
χl

L∑
r=1

h̃r ◦ ϕr

)
◦ ϕ−1

l

∥∥∥∥∥
2

CHα(Rd)

(156)

≲
L∑

l=1

L∑
r=1

Ef∼Πn

∥∥∥h̃r ◦ ϕr ◦ ϕ−1
l

∥∥∥2
CHα(Rd)

≲ Ef∼Πn
K2 ≤ Cα,ν,d. (157)

which gives the ν ≤ 1 case.

We now turn to the general case. The proof will be similar to the one of Ghosal and van der Vaart
[20], Proposition I.3 although we need to control the Hölder norms and work through charts since
our Gaussian processes are supported on manifolds. Assume for simplicity that d = 1, 1 < ν ≤ 2,
otherwise it suffices to introduce coordinates and to proceed by induction on ⌊ν⌋. Let l ∈ {1, . . . , L},
and as before define K̃l(x, y) =

(
χl ◦ ϕ−1

l

)
(x)
(
χl ◦ ϕ−1

l

)
(y)K

(
ϕ−1
l (x), ϕ−1

l (y)
)

the covariance
kernel of hl = (χlf) ◦ ϕ−1

l as well as H̃l its RKHS.

First, let us construct an L2(Ω)-derivative ḣl of hl, where L2(Ω) is the space of random variables
with finite variance with ⟨a, b⟩L2(Ω) = E(ab). This derivative is a square integrable process on Vl

such that

Ef∼Πn

∣∣∣∣hl(x+ δ)− hl(x)

h
− ḣl(x)

∣∣∣∣2 → 0 (158)

as h → 0, for all x ∈ Vl. For this, we will first show that ∂K̃l

∂x (x, ·) ∈ H̃l for every x ∈ Vl—here ∂K̃l

∂x

denotes the derivative of the function K̃l(·, ·′) with respect to the first argument—and that

∥∥∥∥∥∂K̃l

∂x
(x, ·)− ∂K̃l

∂x
(x′, ·)

∥∥∥∥∥
H̃l

≤ Cν |x− x′|ν−1
. (159)
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We first show that K̃l(x+δ,·)−K̃l(x,·)
h is a Cauchy net8 in H̃l. We have∥∥∥∥∥K̃l(x+ δ, ·)− K̃l(x, ·)

h
− K̃l(x+ δ′, ·)− K̃l(x, ·)

h′

∥∥∥∥∥
H̃l

(160)

= sup
∥φ∥H̃l

=1

〈
K̃l(x+ δ, ·)− K̃l(x, ·)

h
− K̃l(x+ δ′, ·)− K̃l(x, ·)

h′ , φ

〉
H̃l

(161)

= sup
∥φ∥H̃l

=1

(
φ(x+ δ)− φ(x)

h
− φ(x+ δ′)− φ(x)

h′

)
(162)

= sup
∥φ∥H̃l

=1

∫ 1

0

[φ′(x+ th)− φ′(x+ th′)] dt (163)

≤ sup
∥φ∥H̃l

=1

∥φ′∥CHν−1(Vl)
|h− h′|ν−1 (164)

≤ sup
∥φ∥H̃l

=1

∥φ∥CHν(Vl)
|h− h′|ν−1 (165)

where in (163) the derivative φ′ exists because, exactly as in the case ν ≤ 1, we can show show that
H̃l ↪→ CHν

(
Rd
)
. This also implies that for a constant C = Cν we have∥∥∥∥∥K̃l(x+ δ, ·)− K̃l(x, ·)

h
− K̃l(x+ δ′, ·)− K̃l(x, ·)

h′

∥∥∥∥∥
H̃l

≤ C|h− h′|ν−1
. (166)

As |h− h′|ν−1 → 0 when h, h′ → 0, because ν > 1, this proves that K̃l(x+δ,·)−K̃l(x,·)
h is a Cauchy

net in H̃l: by completeness of H̃l it converges in H̃l to a limit. Since by general properties of RKHSs,
convergence in H̃l implies pointwise convergence, the limit satisfies

lim
h→0

K̃l(x+ δ, y)− K̃l(x, y)

h
=

∂K̃l

∂x
(x, y). (167)

Hence the partial derivative ∂K̃l

∂x (x, y) exists for all y and ∂K̃l

∂x (x, ·) ∈ H̃l. Moreover, by the
isometry L2(Ω) ∋ hl(x) 7→ Ef∼Πn

hl(x)hl(·) = K̃l(x, ·) ∈ H̃l, we deduce that hl is actually
L2(Ω)-differentiable, with an L2(Ω)-derivative denoted as ḣl, and that the derivative process ḣl is
Gaussian, as it is an L2(Ω)-limit of Gaussian random variables, satisfying Ef∼Πn ḣl(x)ḣl(y) =〈

∂K̃l

∂x (x, ·), ∂K̃l

∂x (y, ·)
〉
H̃l

Having established the existence of an L2(Ω)-derivative ḣl of the process hl, we would like now to
show that ḣl possesses a (γ − 1)-regular version for every γ < ν. For this, we would like to apply
Lemma 28 to ḣl. Notice that, by isometry, for all h > 0 we have

Ef∼Πn

∣∣∣ḣl(x)− ḣl(y)
∣∣∣2 =

∥∥∥∥∥∂K̃l

∂x
(y, ·)− ∂K̃l

∂x
(x, ·)

∥∥∥∥∥
2

H̃l

(168)

≤ 3

∥∥∥∥∥K̃l(y + δ, ·)− K̃l(y, ·)
h

− ∂K̃l

∂x
(y, ·)

∥∥∥∥∥
2

H̃l

(169)

+ 3

∥∥∥∥∥K̃l(x+ δ, ·)− K̃l(x, ·)
h

− ∂K̃l

∂x
(x, ·)

∥∥∥∥∥
2

H̃l

(170)

+ 3

∥∥∥∥∥K̃l(x+ δ, ·)− K̃l(x, ·)
h

− K̃l(y + δ, ·)− K̃l(y, ·)
h

∥∥∥∥∥
2

H̃l

. (171)

8See for instance Aliprantis and Border [1] for a review of Cauchy nets.
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Therefore, by the same arguments as above, we have(
Ef∼Πn

∣∣∣ḣl(x)−ḣl(y)
∣∣∣2)1/2

≲ lim inf
h→0

∥∥∥∥∥K̃l(x+ δ, ·)−K̃l(x, ·)
h

− K̃l(y + δ, ·)−K̃l(y, ·)
h

∥∥∥∥∥
H̃l

(172)

≤ lim inf
h→0

sup
∥φ∥H̃l

=1

∫ 1

0

|φ′(x+ th)− φ′(y + th)|dt (173)

≤ lim inf
h→0

Cν |x− y|ν−1
= Cν |x− y|ν−1 (174)

where the transition from the second-to-last line to the last line is similar to (163)–(165).

Therefore, we can apply Lemma 28 to ḣl, and find a version h̃′
l of ḣl with sample paths in CHα−1(Vl)

almost surely for all α < ν, such that

Ef∼Πn

∥∥h̃′
l

∥∥2
CHα−1(Vl)

≤ Cν,α < +∞ α < ν. (175)

This gives Hölder regularity of the respective derivatives: we now integrate these to obtain a Hölder-
regular version of the process itself. Take any cl ∈ (0, 1) and consider h̃l = hl(cl) +

∫ ·
cl
h̃′
l(t) dt.

Then since h̃′
l is almost surely in CHα−1(Vl), h̃l is has sample paths almost surely in CHα(Vl).

Moreover, it is easy to check using our previous results that h̃l has an L2(Ω)-derivative given by h̃′
l.

This implies that h̃l is a version of hl.

To conclude the argument, we construct f̃ from the obtained parts, by pulling h̃l back from the
charts to the manifold. Consider f̃ =

∑L
l=1 h̃l ◦ ϕl. Arguing as in the case ν ≤ 1, we see that

f̃ is a version of f with CHα(M) sample paths for every α < ν, and for every α < ν we have
Ef∼Πn

∥f̃∥2CHα(M) ≤ Cα,ν < +∞. This gives the claim.

With this, it is easy to prove that all Matérn Gaussian processes considered in this paper can be seen
as Gaussian random elements in the Banach space

(
C(M), ∥·∥C(M)

)
of continuous functions on M.

This allows us to use the same proof scheme as in van der Vaart and van Zanten [56] through the
control of the concentration functions defined in Appendix B. It is also important that we work with
Gaussian random elements in C(M)—and not only with the classical notion of Gaussian process,
as the concentration functions are defined using the Gaussian random element RKHS defined in
van Zanten and van der Vaart [59], which can potentially be different from the classical RKHS.
Fortunately, when the process is a Gaussian random element in C(M), van Zanten and van der Vaart
[59], Theorem 2.1 implies that the two notions of RKHS coincide.

Corollary 30. The intrinsic Matérn Gaussian processes of Definition 4, their truncated versions
as in Theorem 6 as well as the extrinsic Matérn Gaussian processes of Definition 7 are Gaussian
random elements in

(
C(M), ∥·∥C(M)

)
.

Proof. By Lemma 18, it suffices to show that the processes have almost surely continuous sample
paths. Since Euclidean Matérn Gaussian processes have continuous sample paths, this implies the
same for their restrictions, the extrinsic Matérn Gaussian processes on M. For the intrinsic Matérn
process, we apply Lemma 29.

Using Lemma 29 and known properties of Euclidean Matérn processes, we now show, in a sense,
that all of the Matérn processes presented in this paper are sub-Gaussian, in a manner which holds
uniformly with respect to the truncation parameter in the case of the truncated intrinsic Matérn
process, and live in Hölder spaces with appropriate exponents. This result is used to control Hölder
norms when going from the error at input locations to the L2(p0)-error. We use the notation Πn to
emphasize that the prior depends on n when we consider a truncated intrinsic Matérn process.

Lemma 31. For f ∼ Πn with Πn the prior in either Definition 4, Theorem 6 or Definition 7, for
every ν > 0 and γ < ν, γ /∈ Z>0, there exists a constant σ(f) = σγ(f) independent of n we have
for x > 0 that

P
(
∥f∥CHγ(M) > (x+ 1)σ(f)

)
≤ 2e−x2/2. (176)
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Proof. We start with the restriction f of an extrinsic Matérn process f̃ to M, as in Definition 7.
By van der Vaart and van Zanten [56], Section 3.1, for every γ < ν we have f̃ ∈ CHγ

(
[0, 1]D

)
almost surely. By Ghosal and van der Vaart [20], Lemma I.7, for every γ < ν, f̃ is a Gaussian
random element in the Banach space CHγ

(
[0, 1]D

)
. In particular, by the Borell–TIS inequality [20,

Proposition I.8] we have for x > 0 that

P
(∥∥f̃∥∥CHγ([0,1]D)

> (x+ 1)σ
(
f̃
))

≤ 2e−x2/2 (177)

where σ
(
f̃
)
=
(
E
∥∥f̃∥∥2CHγ([0,1]D)

)1/2
< ∞. Since M is smooth, the restriction f also satisfies for

x > 0 the expression

P
(
∥f∥CHγ(M) > (x+ 1)σ(f)

)
≤ 2e−x2/2 (178)

perhaps for a possibly larger constant σ(f). Finally, the case of the intrinsic Matérn process f ∼ Πn

truncated at Jn ∈ Z>0 ∪ {∞} follows in the same manner, as we have shown in Lemma 29 that
supn≥1 Ef∼Πn∥f∥

2
CHα(M) ≤ Cα,ν .

E Small Ball Asymptotics

Here, we bound the probability that a Matérn Gaussian process lies in the ε-ball with respect to the
L∞-norm for small ε. For a Banach space B, an element x ∈ B and a number r ∈ R>0, let us denote
the closed r-ball around x by BB

r (x). We start by an upper bound on the metric entropy of Sobolev
balls on M with respect to the uniform norm.

Lemma 32 (Entropy of Sobolev balls). For any s > 0 define the ε-covering number of A ⊆ Hs(M)
with respect to the norm ∥·∥L∞(M) by

N
(
ε,A, ∥·∥L∞(M)

)
= argmin

J∈Z>0

{
∃h1, .., hJ ∈ A : A ⊂

J⋃
j=1

BL∞(M)
ε (hj)

}
. (179)

Then for any s > d/2, there exist C, ε0 > 0 such that for every ε ≤ ε0

lnN
(
ε,B

Hs(M)
1 (0), ∥·∥L∞(M)

)
≤ Cε−

d
s , (180)

where the left-hand side of the inequality above, as a function of ε, is called the metric entropy
of the Sobolev ball BHs(M)

1 (0) with respect to the uniform norm ∥·∥L∞(M).

Proof. Using charts we will reduce the problem to the entropy of the unit ball of the Sobolev space
Hs
(
[0, 1]d

)
for which the upper bound is known. Take f ∈ B

Hs(M)
1 (0) and consider approximations

of f by g of the form

g =

L∑
l=1

χl(gl ◦ ϕl) (181)

for some functions gl : Vl → R where Vl ⊆ Rd. We have

∥∥f − g
∥∥
L∞(M)

=
∥∥ L∑
l=1

χl(gl ◦ ϕl − f)
∥∥
L∞(M)

≤
L∑

l=1

∥∥χl(gl ◦ ϕl − f)
∥∥
L∞(Ul)

(182)

≤
L∑

l=1

∥∥gl ◦ ϕl − f
∥∥
L∞(Ul)

≤
L∑

l=1

∥∥gl − f ◦ ϕ−1
l

∥∥
L∞(Vl)

(183)

≤ L max
1≤l≤L

∥∥gl − f ◦ ϕ−1
l

∥∥
L∞([0,1]d)

. (184)

This means that to approximate f by g uniformly on M, we need to choose the functions gl that
approximate f ◦ ϕ−1

l well with respect to the uniform norm on [0, 1]d.
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Next, we show that the functions f ◦ ϕ−1
l are contained in an Euclidean Sobolev ball of radius R,

with R depending only on ν and the atlas. To do this we use Große and Schneider [24], Lemma 2.1
to write∥∥∥f ◦ ϕ−1

l

∥∥∥
Hs([0,1]d)

=
∥∥∥ L∑
l′=1

(χl′f) ◦ ϕ−1
l

∥∥∥
Hs([0,1]d)

≤
L∑

l′=1

∥∥∥(χl′f) ◦ ϕ−1
l

∥∥∥
Hs([0,1]d)

(185)

=

L∑
l′=1

∥∥∥(χl′f) ◦ ϕ−1
l′ ◦ ϕl′ ◦ ϕ−1

l

∥∥∥
Hs([0,1]d)

(186)

≲
L∑

l′=1

∥∥∥(χl′f) ◦ ϕ−1
l′

∥∥∥
Hs([0,1]d)

≲ ∥f∥Hs(M). (187)

Note, importantly, that the remark just above Große and Schneider [24], Lemma 2.1 allows us to
consider Besov spaces Bs

2,2 coinciding with the Sobolev spaces Hs instead of the Besov spaces
Bs

2,∞—to get from the second line to the third. Note also that the constant hidden behind the notation
≲ in the last line where we use Theorem 16 is the radius R. Without loss of generality we assume
R = 1. By the Euclidean counterpart of the result we are proving [21, Theorem 4.3.36], we have

lnN
(
ε,B

Hs[0,1]d

1 (0), ∥·∥L∞([0,1]d)

)
≲ ε−

d
s . (188)

Let h1, .., hJ ∈ B
Hs([0,1]d)
1 (0) be such that BHs([0,1]d)

1 (0) ⊂
⋃J

j=1 B
L∞([0,1]d)
ε/L (hk). Then for any

f ∈ B
Hs(M)
1 (0) there exists a sequence {jl}Ll=1 ⊆ {1, .., J} such that∥∥f −

L∑
l=1

χl(hjl ◦ ϕl)
∥∥
L∞(M)

< L
ε

L
= ε. (189)

This shows that N
(
ε,B

Hs(M)
1 (0), ∥·∥L∞(M)

)
≤ LJ , where L is just the number of charts, thereby

proving the claim.

For the related diffusion spaces [16], the RKHS corresponding to the heat (diffusion) kernels, Castillo
et al. [12] uses the results of Coulhon et al. [14] to bound the entropy in terms of a wavelet frame
instead of relying on charts. We believe this alternative proof scheme should work in our case as well.
However, we could not, to the best of our effort, get a tight-enough bound for the Sobolev spaces by
directly using the results of Coulhon et al. [14] and therefore we chose to rely on charts instead.

Having established regularity properties for our prior processes, we now turn to the small ball problem:
we want to find sharp lower bounds on P(∥f∥L∞(M) < ε) where f ∼ Π is our prior process. This
will be crucial in order to control the concentration functions used in Appendix B. In fact, it is
well-known that this problem is closely related to the estimation of the metric entropy of the unit ball
of the RKHS of f with respect to the uniform norm: see Li and Linde [31] for details. Since we have
already characterized the RKHS of our processes in Proposition 27 and Lemma 24, we are able to
lower bound the small-ball probabilities. The technicality here involves getting a bound uniform in
the truncation parameter for the truncated intrinsic Matérn process, as the truncated Matérn process is
a sequence of priors rather than a fixed prior.
Lemma 33. If f ∼ Πn where Πn is the prior in either Definition 4 and Theorem 6 or Definition 7
with smoothness parameter ν > d/2, then there exist two constants C, ε0 > 0 that do not depend on

n such that for all ε ≤ ε0 we have − lnP
(
∥f∥L∞(M) < ε

)
≤ Cε−

d
ν .

Proof. Because the processes are Gaussian random elements in C(M) by Lemma 18, their stochastic
process RKHS given by Proposition 27 coincide with their Gaussian random element RKHS defined
in van Zanten and van der Vaart [59]. Hence, for the non-truncated intrinsic and the extrinsic Matérn
processes, the result follows by a direct application of Lemma 32 and Li and Linde [31], Theorem
1.2. For the intrinsic Matérn process truncated at Jn it is not immediately clear that the constants
C, ε0 can be taken independent of n, so we go through the proof of Li and Linde [31], Proposition
3.1 to see that this is, in fact, the case. We first need a crude upper bound of the form

− lnP
(
∥f∥L∞(M) < ε

)
≤ cε−c (190)
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for some possibly large constant c > 0. To get such a bound, we use Castillo et al. [12], Proposition 3
which shows the existence of a universal constant C > 0 such that for all ε ≤ min(1, 4σ(f))

− lnP
(
∥f∥L∞(M) < ε

)
≤ Cn(ε) ln

(
6n(ε)max(1, σ(f))

ε

)
(191)

where σ(f) =
(
Ef∼Πn∥f∥

2
L∞(M)

)1/2
and n(ε) is defined in the following way in Castillo et al.

[12], page 684 using auxiliary quantities lJ that are defined in Li and Linde [31], page 1562, namely

n(ε) = max{J ≥ 0 : 4lJ(f) ≥ ε}, (192)

lJ(f) = inf
{(

Ef∼Πn

∥∥∥∑
j≥J

εjhj

∥∥∥2
L∞(M)

)1/2
: f

(d)
=
∑

j≥1
εjhj

}
(193)

with
(d)
= standing for the equality in distributions and the infimum being taken over all possible

decompositions
∑

j≥1 εjhj with hj ∈ C(M), εj being a sequence of IID N(0, 1) random variables,
and the series being required to converge uniformly almost surely.9

The function f =
∑Jn+1

j=1

(
2ν
κ2 + λj−1

)− ν+d/2
2 εjfj−1 is a valid decomposition. Therefore

lJ(f) ≤

Ef∼Πn

∥∥∥Jn+1∑
j=J

(
2ν

κ2
+ λj−1

)− ν+d/2
2

εjfj−1

∥∥∥2
L∞(M)

1/2

. (194)

By the Sobolev Embedding Theorem and by Weyl’s Law, given in Result 10, for every d/2 < γ < ν
there exists a constant C = Cγ,M such that for all J ∈ Z>0, allowing C to change from line to line,
we have

Ef∼Πn

∥∥∥∥Jn+1∑
j=J

(1 + λj−1)
− ν+d/2

2 εjfj−1

∥∥∥∥2
L∞(M)

≤ C2 Ef∼Πn

∥∥∥∥Jn+1∑
j=J

(1 + λj−1)
− ν+d/2

2 εjfj−1

∥∥∥∥2
Hγ(M)

(195)

= C2
Jn+1∑
j=J

(1 + λj−1)
−(ν+d/2−γ) (196)

≤ C2
Jn+1∑
j=J

j−(1+2(ν−γ)/d) (197)

≤ C2
∑
j≥J

j−(1+2(ν−γ)/d) (198)

≤ C2J−2(ν−γ)/d. (199)

By choosing J = 1 this gives us σ(f) ≤ C independent of n. Moreover, by choosing J ≥
Cε−

d
2(ν−γ) , again for a comparison constant C independent of n, this gives us n(ε) ≤ Cε−

d
2(ν−γ)

for C independent of n. This implies using Castillo et al. [12], Proposition 3 that

− lnP
(
∥f∥L∞(M) < ε

)
≤ cε−c (200)

for c > 0 independent of n.

With this crude bound, we can now continue the proof of Li and Linde [31], Proposition 3.1. For
this, we need a metric entropy estimate. For this notice that for all J ∈ Z>0 ∪ {∞} we have

BHJ

1 (0) ⊂ BH∞

1 (0) = B
Hν+d/2(M)
1 (0), and therefore using Lemma 32, we have the metric entropy

estimate
lnN

(
ε,BHJ

1 (0), ∥·∥L∞(M)

)
≤ Cε−

d
ν+d/2 (201)

for a constant C > 0 independent of J . Therefore following the proof of proposition 3.1 in Li
and Linde [31] (with J ≡ 1) we find − lnP

(
∥f∥L∞(M) < ε

)
≤ Cε−

d
ν for every ε ≤ ε0, where

C, ε0 > 0 are constants independent of n.
9We consider

∑
j≥1, unlike

∑
j≥0 frequently used above, in order to follow the respective references.
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F Expressions for Pointwise Worst-case Errors

Let k be a kernel on some abstract input domain X , and let Hk be the respective RKHS. Consider n
input values X ⊆ X and let σ2

ε > 0 be the noise variance. Define

mk,X,f,ε(t) = KtX(KXX + σ2
εI)

−1(f(X) + ε), (202)

v(i)(t) = vk,X(t) = k(t, t)−KtX

(
KXX + σ2

εI
)−1

KXt. (203)

Proposition 34. With notation above

v(i)(t) = sup
f∈Hk,∥f∥Hk

≤1

Eε∼N(0,σ2
εI)

|f(t)−mk,X,f,ε(t)|2. (204)

Proof. To simplify notation, we shorten Eε∼N(0,σ2
εI)

to E and denote α = KtX(KXX + σ2
εI)

−1.
First of all, by direct computation,

Emk,X,f,ε(t) = αf(X), (205)

Emk,X,f,ε(t)
2 = αf(X)f(X)⊤α⊤ + σ2

εαα⊤. (206)

Write

E|f(t)−mk,X,f,ε(t)|2 = f(t)2 − 2f(t)Emk,X,f,ε(t) + Emk,X,f,ε(t)
2 (207)

= f(t)2 − 2f(t)αf(X) +αf(X)f(X)⊤α⊤ + σ2
εαα⊤ (208)

= (f(t)−αf(X))
2
+ σ2

εαα⊤ (209)

=
〈
k(t, ·)−

n∑
j=1

αjk(xj , ·), f
〉2
Hk

+ σ2
εαα⊤. (210)

As ∥g∥Hk
= supf∈Hk,∥f∥Hk

≤1⟨g, f⟩Hk
, implying supf∈Hk,∥f∥Hk

≤1⟨g, f⟩
2
Hk

= ∥g∥2Hk
, we have

sup
f∈Hk

∥f∥Hk
≤1

E|f(t)−mk,X,f,ε(t)|2 =
∥∥∥k(t, ·)− n∑

j=1

αjk(xj , ·)
∥∥∥2
Hk

+ σ2
εαα⊤ (211)

= k(t, t)− 2αKXt +αKXXα⊤ + σ2
εαα⊤

αKXt

(212)

= k(t, t)−αKXt = k(t, t)−KtX(KXX + σ2
εI)

−1KXt

vk,X(t)

.

(213)

We now move to the misspecified case. Consider the RKHS Hc for some other kernel c : X ×X → R
instead of Hk. Then, continuing from (210), write

sup
f∈Hc

∥f∥Hc
≤1

E|f(t)−mk,X,f,ε(t)|2 =
∥∥∥c(t, ·)− n∑

j=1

αjc(xj , ·)
∥∥∥2
Hc

+ σ2
εαα⊤. (214)

The next question is how to compute the norm on the right-hand side. There is not much hope
of doing this exactly in the misspecified case: thus, we consider approximations. To this end,
we take some large set of locations X′ ⊆ X . Then we use ∥g∥2Hc

≈ g(X′)⊤C−1
X′X′g(X′) for

g(·) = c(t, ·)−
∑n

j=1 αjc(xj , ·). As a result, we obtain the approximation

sup
f∈Hc

∥f∥Hc
≤1

E|f(t)−mk,X,f,ε(t)|2 ≈ g(X′)⊤C−1
X′X′g(X

′) + σ2
εαα⊤ = ṽk,c,X(t) = v(e)(t) (215)

where v(e)(t) was first introduced in Section 4
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To compute spatial averages of this quantity, let gt(·) = c(t, ·) −
∑n

j=1 αjc(xj , ·), the same as g

before, but now with explicit dependence on t. Similarly, put αt = KtX(KXX + σ2
εI)

−1. Then

gt(X
′) = CX′ t −CX′ Xα⊤

t = CX′ t −CX′ X(KXX + σ2
εI)

−1KXt (216)

gt(X
′)⊤C−1

X′X′gt(X
′) = (CtX′ −αtCXX′)C−1

X′X′

(
CX′ t −CX′ Xα⊤

t

)
. (217)

From here we can also deduce that
1

|X′|
∑
t∈X′

ṽk,c,X(t) =
1

|X′|
∑
t∈X′

gt(X
′)⊤C−1

X′X′gt(X
′) (218)

=
1

|X′|
tr
(
gX′(X′)⊤C−1

X′X′gX′(X′)
)

(219)

where gX′(X′) = CX′ X′−CX′ X(KXX+σ2
εI)

−1KXX′ .

G Full Experimental Details

All of our kernels were computed using GPJAX [38] and the GEOMETRIC KERNELS library.10 We
use three manifolds, each represented by a mesh: (i) a dumbbell-shaped manifold represented as a
mesh with 1556 nodes, (ii) a sphere represented by an icosahedral mesh with 2562 nodes, and (iii)
the Stanford dragon mesh, preprocessed to keep only its largest connected component, which has
100179 nodes. For the sphere, we also considered a finer icosahedral mesh with 10242 nodes, but
this was found to have virtually no effect on the computed pointwise expected errors.

We use extrinsic Matérn and Riemannian Matérn kernels with the following hyperparameters: σ2
f = 1

and σ2
ε = 0.0005. For the truncated Karhunen–Loève expansion, we used J = 500 eigenpairs

obtained from the mesh. We selected smoothness values to ensure norm-equivalence of the intrinsic
and extrinsic kernels’ reproducing kernel Hilbert spaces, which was ν = 5/2 for the intrinsic model,
and ν = 5/2 + d/2 for the extrinsic model, where d is the manifold’s dimension. We used different
length scales for each manifold: κ = 200 for the dumbbell, κ = 0.25 for the sphere, and κ = 0.05
for the dragon, selected to ensure that the Gaussian processes were neither approximately constant,
nor white-noise-like. We considered data sizes of N = 50, N = 500, and N = 1000, respectively,
for the dumbbell, sphere, and dragon, sampled uniformly from the mesh’s nodes, which in each case
resulted in a reasonably-uniform distribution of points across the manifold. Finally, for the extrinsic
pointwise error approximation, we used a subset X′ uniformly sampled from each mesh’s nodes, of
size equal to the data size. For each respective test set, we used the full mesh. Each experiment was
repeated for 10 different seeds.

To set the length scales for the extrinsic process, we used maximum marginal likelihood optimization
on the full data, except for the dumbbell whose full data size is small and for which we instead
generated a larger set consisting of 500 points. We optimzied only the length scale, leaving all other
hyperparameters fixed. We used ADAM with a learning rate of 0.005, and an initialization equal to
the length scale κ of the intrinsic model, except for the dumbbell where this lead to divergence and
we instead used an initial value of κ/4. We ran the optimizer for a total of 1000 steps. With these
settings, we found empirically that maximum marginal likelihood optimization always converged.

10See HTTPS://GPJAX.READTHEDOCS.IO and HTTPS://GEOMETRIC-KERNELS.GITHUB.IO.
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