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Abstract

Contrastive learning has achieved remarkable suc-
cess in learning effective representations, with
supervised contrastive learning often outperform-
ing self-supervised approaches. However, in real-
world scenarios, data annotations are often am-
biguous or inaccurate, meaning that class labels
may not reliably indicate whether two examples
belong to the same class. This limitation restricts
the applicability of supervised contrastive learn-
ing. To address this challenge, we introduce the
concept of “continuous semantic similarity” to de-
fine positive and negative pairs. Instead of directly
relying on imprecise class labels, we measure
the semantic similarity between example pairs,
which quantifies how closely they belong to the
same category by iteratively refining weak su-
pervisory signals. Based on this concept, we
propose a graph-theoretic framework for weakly-
supervised contrastive learning, where semantic
similarity serves as the graph weights. Our frame-
work is highly versatile and can be applied to
many weakly-supervised learning scenarios. We
demonstrate its effectiveness through experiments
in two common settings, i.e., noisy label and par-
tial label learning, where existing methods can be
easily integrated to significantly improve perfor-
mance. Theoretically, we establish an error bound
for our approach, showing that it can approximate
supervised contrastive learning under mild con-
ditions. The implementation code is available at
https://github.com/Speechless-10308/WSC.
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1. Introduction
In recent years, there has been a resurgence of research in
contrastive learning, which has led to significant advance-
ments in the field of representation learning (He et al., 2020;
Oord et al., 2018; Chen et al., 2020; Caron et al., 2020;
Zbontar et al., 2021; Khosla et al., 2020). These works
share a common underlying principle: they aim to pull an
anchor and its corresponding “positive” examples closer to-
gether in the embedding space, while simultaneously push-
ing the anchor away from a set of “negative” examples. In
self-supervised contrastive learning, positive examples are
generated through various data augmentation techniques
applied to the original samples, thereby creating different
views or representations of the same data instance. Negative
examples, on the other hand, are randomly selected from
different samples, as illustrated in Figure 1(a). In contrast,
fully-supervised contrastive learning utilizes additional su-
pervisory information by treating samples from the same
class as positive pairs, thereby constructing multiple pos-
itive examples (Khosla et al., 2020), as shown in Figure
1(b). However, real-world supervisory information is often
inaccurate and ambiguous (Lin et al., 2023; Zhang et al.,
2021b; Wang et al., 2022; Zhang et al., 2022; Guo et al.,
2020; 2025), manifesting as weakly-supervised information
such as noisy labels (Amsaleg et al., 2017; Yan et al., 2013)
and partial labels (Luo and Orabona, 2010; Chen et al.,
2018; Dong et al., 2023), which cannot directly indicate
class membership between samples. As a result, traditional
methods fail to effectively utilize weak supervisory infor-
mation, significantly limiting the applicability of supervised
contrastive learning in real-world tasks.

To address the limitations of existing methods, we introduce
a more general concept of positive and negative examples:
continous semantic similarity. Samples with a higher likeli-
hood of belonging to the same category are assigned higher
semantic similarity, where values of 1 and 0 correspond to
positive and negative pairs in traditional contrastive learning,
respectively. This can be viewed as a continuous extension
of the conventional positive-negative example framework.
Furthermore, as illustrated in Figure 1(c), we extend the
contrastive learning objective to align the feature similarity
of two samples with their corresponding semantic similarity.

Specifically, we formulate a graph-theoretic framework for
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(c) Weakly-supervised Contrastive

Figure 1. (a) Self-supervised contrastive learning constructs positive example pairs by using different views of the same image and
constructs negative example pairs by using different images. (b) Supervised contrastive learning further regards different images of the
same class as additional positive example pairs. (c) Our proposed weakly-supervised contrastive learning abandons the concepts of
discrete positive and negative examples.

weakly-supervised representation learning, where vertices
represent augmented data points and edges are defined by
their corresponding semantic similarity. The semantic simi-
larity is constructed from two perspectives. First, data points
derived from different views of the same instance are as-
signed a relatively high semantic similarity. Second, we
leverage the corresponding weakly-supervised information
to approximate whether two samples belong to the same
class, thereby constructing the semantic similarity between
data points from different instances after augmentation.

By modeling semantic similarities using the provided
weakly-supervised information, our method is highly ver-
satile and applicable to various weakly-supervised learning
scenarios, including noisy label and partial label settings.
The contrastive loss derived from our framework is straight-
forward to implement, stable during training, and can be
seamlessly integrated as a plug-and-play component, con-
sistently enhancing the performance of existing methods in
weakly-supervised learning.

Additionally, we provide a comprehensive theoretical analy-
sis of the method’s performance, deriving the downstream
error bound for feature learning using our contrastive loss
under various weakly-supervised settings. The analysis
shows that, under mild conditions, our framework can ap-
proximate the performance achievable with fully-supervised
information, thus theoretically ensuring its effectiveness.

In summary, our main contributions are summarized below:

• We propose a unified framework for contrastive learn-
ing that leverages weakly-supervised information, in-
cluding noisy and partial labels. By introducing the

concept of semantic similarity as a generalization of
positive and negative examples, our framework offers
new insights into how contrastive learning can effec-
tively utilize ambiguous supervisory information.

• The loss derived from our framework is highly versa-
tile and can be seamlessly integrated into a wide range
of weakly-supervised learning settings, consistently
leading to performance improvements. Notably, our
approach shows substantial gains in challenging set-
tings with high noise and partial label rates, achieving
improvements of 6.8% and 7.8%, respectively, under-
scoring its robustness and effectiveness in addressing
real-world weak supervision challenges.

• Our theoretical analysis offers a rigorous performance
guarantee for the proposed framework, showing that
it can approximate supervised contrastive learning un-
der mild conditions and elucidating how and to what
extent weakly-supervised information can enhance the
effectiveness of representation learning.

2. Weakly-Supervised Contrastive Learning
We describe the setup and goal of weakly-supervised learn-
ing. Let X denote instance space and Y = {y1, y2, . . . , yc}
denote label space. D denotes the joint distribution
(X ,Y). Furthermore, given Q = {q1, q2, . . . , qv} de-
notes weakly-supervised information space. We de-
note DQ as the joint distribution (X ,Q) which gener-
ated form D with process DQ(x) = D(x),DQ(q |
x) = T (x)D(y | x), where DQ(q | x) and
D(y | x) denote

[
DQ(q

1 | x), . . . ,DQ(q
v | x)

]T
and[

D(y1 | x), . . . ,D(yc | x)
]T

, respectively and T (x) ∈
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Rv×c is the transition matrix with T (x)i,j = DQ(q
i |

x, yj). In this paper, we consider two popular weakly-
supervised settings with different data generation processes,
namely instance-independent and instance-dependent. The
former satisfies the condition of T (x) is independent of
the samples, whereas the latter does not. The objective of
learning with weak supervision is to derive a multi-class
predictive model h from weakly-supervised training set
D = {(xi, qi)}mi=1 ∼ Dm

Q . For brevity, we denote P as
probability of joint distribution (X ,Y,Q) induced by D
and DQ in the reminder of this paper.

2.1. A Graph-Theoretic View

To investigate representation learning in weakly-supervised
settings, we adopt a novel view of contrastive learning
(HaoChen et al., 2021), framing it as a graph spectral cluster-
ing problem where data points serve as vertices and classes
correspond to connected sub-graphs. Preliminarily, we con-
sider representation learning under self-supervised condition
by modeling an augmentation graph G where the vertices
represent all augmented samples, and the edge weights are
constructed based on self-supervised connectivity (Chen
et al., 2020; HaoChen et al., 2021):

wu
x,x′ = Ex̃∼P(X )[A(x | x̃)A(x′ | x̃)], (1)

where A(· | x̃) denotes distribution of augmentations such
as Gaussian blur, color distortion and random cropping from
natural data x̃ ∈ X .

The optimal features are obtained through graph spectral
clustering of the given graph, where dense intra-class con-
nectivity plays a key role in ensuring good clustering proper-
ties (HaoChen et al., 2021; Sun et al., 2023). However, when
the graph is constructed purely based on self-supervised con-
nectivity, the assumption of dense intra-class connections
implies that most distinct data points within the same class
should share same augmented samples, a condition that may
not hold in practice.

Therefore, it is natural to consider incorporating additional
intra-class connections by leveraging label information to
further improve the quality of the graph, as follows:

wl
x,x′ ≜ E(x̃,ỹ),(x̃′,ỹ′)∼P(X ,Y)2

[I [ỹ = ỹ′]A(x | x̃)A(x′ | x̃′)] ,
(2)

where I [·] denotes the indicator function.

With the additional graph connectivity defined above, we
can construct improved augmentation graph with perturba-
tion edge weight:

wx,x′ = αwu
x,x′︸ ︷︷ ︸

Self-supervised

+ βwl
x,x′︸ ︷︷ ︸

Supervised.

(3)

However, in weakly-supervised learning settings, the afore-
mentioned edge weights cannot be directly derived due to
the absence of true labels. In the next subsection, we pro-
pose a framework that leverages weakly-supervised infor-
mation to establish additional connectivity, thereby enabling
weakly-supervised representation learning.

2.2. Representation and Semantic Similarity Matching

The main idea of our framework is to approximate wl
x,x′

in Equation 3 using weakly-supervised information. The
following proposition demonstrates the existence of such an
approximation.
Proposition 2.1. For any S : X → Rc×v that satisfies
the condition: P(y | x) = S(x)P(q | x) holds almost
everywhere in X , the following equation holds:

wwl
x,x′(S) ≜ E(x̃,q̃),(x̃′,q̃′)∼P(X ,Q)2

[S ((x̃, q̃), (x̃′, q̃′))A(x | x̃)A(x′ | x̃′)] = wl
x,x′ ,

(4)
where S ((x̃, q̃), (x̃′, q̃′)) = S(x̃)T:,q̃S(x̃

′):,q̃′ .

Remark: Proposition 2.1 reformulates the goal of ap-
proximating supervised connections wl

x,x′ using weakly-
supervised information into constructing an S that satisfies
specific properties. In the next subsection, we present meth-
ods for constructing such S that meets, or approximately
meets these properties. Furthermore, S ((x̃, q̃), (x̃′, q̃′)) in
Equation 4 can be viewed as estimation of semantic simi-
larity between two samples according to the corresponding
weakly-supervised information. In this context, the graph in
Equation 2 is discrete, edge existing only if they belong to
the same class, while its approximation in Equation 4 rep-
resents a continuous graph, where the connection strength
corresponds to the estimated semantic similarity. The proof
of Proposition 2.1 is in Appendix B.1.

Based on the approximate wwl
x,x′(S) provided in Proposi-

tion 2.1, we now present a unified framework for weakly-
supervised representation learning. To this end, we begin by
providing a formal definition of the perturbation augmenta-
tion graph.
Definition 2.2. (Perturbation augmentation graph) We refer
a graph where the vertices represent all augmented samples
and adjacency matrix A constructed by perturbation con-
nectivity as perturbation augmentation graph. Specifically,
giving two augmentation data points x, x′:

Ax,x′ = αwu
x,x′ + βwwl

x,x′(S). (5)

Let F be an embedding matrix with F x,: ∈ Rd is embed-
ding of sample x, we consider optimal features derived
from the graph spectral clustering of the given such graph
in Definition 2.2 (Chung, 1997; HaoChen et al., 2021):

F ∗ = argmin
∥∥∥Ã− FF T

∥∥∥
F
, (6)
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where Ã is normalized adjacency matrix of A with Ãx,x′ =
Ax,x′√
AxAx′

,Ax =
∑

x′ Ax,x′ .

Now, if we view each row of F as a scaled version of learned
feature embedding f : X → Rd, the above optimal features
can be obtained through minimize an end-to-end contrastive
learning loss. We formalize this connection in following
proposition.

Proposition 2.3. We define F x,: =
√
Axfx and weakly-

supervised contrastive loss Lwsc as follow:

Lwsc(f) ≜− 2αL1(f)− 2βL2(f)

+ α2L3(f) + β2L4(f) + 2αβL5(f),
(7)

where

L1(f) ≜ Ex̃∼P(X ),x,x′∼A(·|x̃)
[
fxf

T
x′

]
, (8)

L2(f) ≜ E(x̃,q̃),(x̃′,q̃′)∼P(X ,Q)2,x∼A(·|x̃),x′∼A(·|x̃′)[
S((x̃, q̃), (x̃′, q̃′))fxf

T
x′

]
,

(9)

L3(f) ≜ Ex̃,x̃′∼P(X )2,x∼A(·|x̃),x′∼A(·|x̃′)

[(
fxf

T
x′

)2]
,

(10)
L4(f) ≜ E(x̃,q̃),(x̃′,q̃′)∼P(X ,Q)2,x∼A(·|x̃),x′∼A(·|x̃′)[

S′(x̃, q̃)S′(x̃′, q̃′)
(
fxf

T
x′

)2]
,

(11)

L5(f) ≜ E(x̃,q̃)∼P(X ,Q),x̃′∼P(X ),x∼A(·|x̃),x′∼A(·|x̃′)[
S′(x̃, q̃)

(
fxf

T
x′

)2]
,

(12)

where S ((x̃, q̃), (x̃′, q̃′)) = S(x̃)T:,q̃S(x̃
′):,q̃′ , S

′(x̃, q̃) =

S(x̃)T:,q̃P(y).

Then the following equation holds:∥∥∥Ã− FF T
∥∥∥
F
= Lwsc(f) + Const. (13)

Furthermore, when assuming uniform class distribution
P(y) =

[
1
c , . . . ,

1
c

]T
, Lwsc(f) can be rewritten as:

Lwsc(f) ≜ −2αL1(f)− 2βL2(f) +

(
α+

β

c

)2

L3(f)

(14)

Remark: By the Eckart–Young–Mirsky theorem (Eckart
and Young, 1936), F ∗ in Equation 6 consists of the top-d
eigenvectors of Ã. This property enables clustering perfor-
mance analysis via the connectivity of Ã. Proposition 2.3
outlines an end-to-end method for training a neural network
to approximate these optimal features. The pseudo code
for computing Lwsc in Equation 7 with batch data under
a uniform class distribution is given in Algorithm 1, with
the general version (without the uniform class assumption)
provided in Appendix E. We can intuitively interpret Lwsc

Algorithm 1 The calculation of Lwsc in uniform class dis-
tribution case

Input: features of two augmentation views of batch
data with corresponding weakly-supervised information
X1

Q,X
2
Q ∈ RBQ×d, Q ∈ QBQ , features of two augmen-

tation view of batch unlabeled data X1
U ,X

2
U ∈ RBU×d,

S in Proposition 2.1, coefficients α, β
Output: batch data estimated loss L̂wsc

Compute S(X) ∈ Rc×BQ ,S(X):,x = S(x):,q

Compute L̂1 =
Tr[X1

Q(X2
Q)T ]+Tr[X1

U (X2
U )T ]

BQ+BU

Compute L̂2 =
∥(S(X)TS(X))⊗(X1

Q(X2
Q)T )∥

1

B2
Q

Take X1 =
[
X1

Q;X
1
U

]
,X2 =

[
X2

Q;X
2
U

]
Compute L̂3 =

∥X1(X2)T∥2

2

(BQ+BU )2

Return: L̂wsc = −2αL̂1 − 2βL̂2 + (α+ β/c)2L̂3

as follows: L1 and L2 push the features of positive pairs to
be closer, with L1 pulling closer features of two views of
the same image, and L2 pulling closer features of different
images with different weights which equal to continuous ad-
jacency matrix S(X)S(X)T in Algorithm 1 of the sampled
sub-graph. L3,L4,L5 are regularization terms to prevents
feature collapse. Finally, Lwsc depends solely on S, hence
it can be adapted to multiple weakly-supervised setting by
constructing the corresponding S. The proof is provided in
Appendix B.2.

2.3. Instantiating under Various Weakly Information

In this paper, we consider two typical paradigms of weakly
supervision: noisy label learning (NLL), partial label learn-
ing (PLL). For noisy label leaning, we have Q = Y but mis-
takes exist DQ(T (X) ̸= Ic×c) > 0. For partial label learn-
ing, we have Q = 2Y \ ∅ and DQ(y ∈ q | x) = 1,∀x ∈ X .
In the following text, we show how to instantiate our frame-
work into these two settings.

Reviewing Proposition 2.1, a good S ought to satisfy or ap-
proximately satisfy the condition P(y | x) = S(x)P(q | x).
In this subsection, we provide methodologies for construct-
ing it in various settings, thereby completing the instanti-
ation of the framework. Next, we will separately discuss
instance-independent and instance-dependent settings.

Instance-Independent Setting. For this setting, we have
instance-independent transition matrix T : there exists a T
satisfies T = T (x) holding almost everywhere in X . The
following proposition illustrates that S can be constructed
by estimating the transition matrix T .

Proposition 2.4. Under instance-independent assumption,
we have the sufficient condition for S(x) = S,∀x ∈ X to
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satisfy condition in Proposition 2.1 as follows:

ST = Ic×c. (15)

where Ic×c denote the identity matrix of size c× c.

Proof. When S satisfies the above condition, we have fol-
lowing equation holds almost everywhere in X :

SP(q | x) = STP(y | x) = P(y | x). (16)

Inspired by Proposition 2.4, we can use any matrix S for
Lwsc that satisfies ST̂ = I , where T̂ is an estimate of T . In
the noisy label setting, methods such as Liu and Tao 2016;
Patrini et al. 2017; Xia et al. 2019; Li et al. 2021; Lin et al.
2023 can estimate T̂ , and Ŝ is its inverse. In the partial
label setting, T ∈ R(2c−1)×c is hard to estimate due to
the curse of dimensionality, but with the assumption where
labels are independent adopted into the candidate set (Cour
et al., 2011; Lv et al., 2020; Feng et al., 2020b), T̂ can be
estimated by c times of mixing proportion estimation (Garg
et al., 2021), and Ŝ can be derived through pseudo-inverse
or constructive methods. See more details in Appendix F.

Instance-Dependent Setting. In this setting, a universal
transition matrix T applicable to all samples does not exist,
thereby rendering the methods discussed previously ineffec-
tive. However, according to Bayes theorem, we have:

P(y | x) =
∑
q∈Q

P(y, q | x) =
∑
q∈Q

P(y | x, q)P(q | x).

(17)
Thus, we can construct Ŝ as Ŝ(x)y,q = P̂(y | x, q) where
P̂(y | x, q) can be any estimation of P(y | x, q). Specifically,
it is obtained through the current predictions of the model.
This process is also called self-labeling and has been widely
discussed. Specifically, in the context of noisy labels, related
studies include Liu et al. 2020; Li et al. 2022; Ortego et al.
2021; Liu et al. 2022; Xiao et al. 2023; Qiao et al. 2024;
for partial labels, related studies are conducted by Xu et al.
2021; Wang et al. 2022; Wu et al. 2022; Zhang et al. 2022;
Qiao et al. 2023a; 2024. See more details in Appendix F.

3. Theoretical Understanding
We now present a theoretical analysis of the performance of
features learned from weakly-supervised data. Following
the traditional theoretical framework (Chen et al., 2020;
HaoChen et al., 2021), we use the linear probe to evaluate
the performance of representation learning. Concretely, we
use a linear classifier with weights B ∈ Rd×c and predict
hf,B(x) = argmaxi∈Y BT

:,if(x) for an augmented data

x. Then given naturally data x̃ ∈ X , we ensemble the
predictions on augmented data and predict:

h̃f,B(x̃) = argmax
i∈Y

Ex∼A(·|x̃) [I [hf,B(x) = i]] . (18)

We define linear probe error of representation f as follow:

ε(f) = min
B∈Rd×c

E(x̃,ỹ)∼P(X ,Y)

[
I
[
h̃f,B(x̃) ̸= ỹ

]]
. (19)

Regarding the given constructed Ŝ and training set D =
DQ ∪DU , where DQ is set of training samples with corre-
sponding weakly-supervised information and DU is set of
unlabeled samples, we learn f through:

f̂(D) = argmin L̂wsc(f), (20)

where L̂wsc(f) is the estimate of Lwsc(f) using data DQ
and DU with constructed Ŝ.

In this section, we examine ε(f̂(D)) through three steps:

• We consider ε(f∗), where f∗ is derived from the spec-
tral clustering of the perturbation graph A.

• We consider the gap between Lwsc(f
∗) and

Lwsc(f̂(D)). Specifically, such a gap is caused by two
aspects. On the one hand, there is the estimation error
resulting from the limited samples. On the other hand,
the constructed Ŝ cannot fully satisfy the properties in
Proposition 2.1.

• We control ε(f̂(D))− ε(f∗) through Lwsc(f̂(D))−
Lwsc(f

∗) to obtain the minimum downstream error.

3.1. How Can Supervised Information Help
Representation Learning

In this subsection, we examine ε(f∗) where f∗ is de-
rived from graph spectral clustering of A with entries
Ax,x′ = αwu

x,x′ + βwwl
x,x′(S). The two properties of a

graph serve as crucial elements that have a significant im-
pact on performance. Specifically, these properties are the
density of connections within a class and the sparsity of con-
nections between classes. The following several definitions
respectively characterize these properties of the graph.
Definition 3.1. (Data points from the different class hardly
share augmented data) We refer data augmentation A as
γ-consistent under joint distribution P(X ,Y) if there exist
a pseudo labeler ŷ(x) for augmentation data such that:

E(x̃,ỹ)∼P(X ,Y),x∼A(·|x̃) [I [ỹ = ŷ(x)]] ≤ γ. (21)

Small γ in Definition 3.1 implies the sparsity of connec-
tions between different classes in Au which constructed by
self-supervised connectivity. Next, to formulate density of
connections within a class, we introduce Dirichlet conduc-
tance and sparsest partition which are standard in spectral
graph theory.
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Definition 3.2. (Dirichlet conductance) For a graph
G(X , w) and a subset Ω ⊆ X , we define the Dirichlet con-
ductance of Ω as:

ΦG(Ω) =

∑
x∈Ω,x′ /∈Ω wx,x′∑

x∈Ω wx
. (22)

Definition 3.3. (Sparsest partition) For a graph G(X , w) and
an integer i ∈ [2, |X |], we define the sparsest i-partition:

ρi = min
Ω1,...,Ωi

max{ΦG(Ω1), . . . ,ΦG(Ωi)}, (23)

where Ω1, . . . ,Ωi are non-empty sets that form a partition
of X .

Intuitively, Dirichlet conductance represents the fraction of
edges from Ω to its complement, and sparsest partition rep-
resent the number of edges between many disjoint subsets.
When sparsity of connections between classes holds, we
might expect ρc ≈ 0. Furthermore, any ρd where d > c
needs to break one class into many pieces, hence a large ρd
reflects density of connections within a class. Giving such
definition for two main properties of graph, the following
theorem bounds linear probe error of feature derived from
perturbation graph.

Theorem 3.4. Given augmentation graph G with pertur-
bation adjacency matrix A = αAu + βAwl(S) where S
stratify properties in Proposition 2.1, if A is γ-consistent
with γ > 0 and representation dimension d > 2c, we have:

ε(f∗) ⪯ Õ

(
γ

(
α∗ρu⌊ d

2 ⌋ + β∗
(
1− 2c

d

))−2
)
, (24)

where ρu is sparsest partition of self-supervised connectivity
graph Au, and α∗ = α

α+β/c , β∗ = β/c
α+β/c .

Remark: Theorem 3.4 bounds linear probe error of fea-
ture derived from perturbation graph through properties of
self-supervised connectivity graph and perturbation coef-
ficients. Theorem 3.4 demonstrates that the perturbation
graph increases the density of intra-class connections with-
out adding extra-class connections, thereby improving the
performance of feature. Specifically, when β∗ in Theorem
3.4 equals to zero, the theorem degenerates into Theorem
3.8. in HaoChen et al. 2021 which bounds linear probe error
of feature derived from self-supervised connectivity graph.
When assuming ρud/2 < 1 − 2c

d , bounds in Equation 24
decrease as β∗ increases. Such a condition is almost always
satisfied in reality, due to ρi ≤ Õ(1 − 1

i ) for every graph
and density of the graph constructed using self-connections
is usually much smaller than this upper bound (HaoChen
et al., 2021). The proof of Theorem 3.4 is in Appendix C.1.

3.2. How Weakly-Supervised Information
Approximates Supervised Information

In this subsection, we first consider the gap between
Lwsc(f̂(D)) and Lwsc(f

∗). f̂(D) is an optimal feature
that minimizes empirical loss L̂wsc(f ;D) defined as:

L̂wsc(f ;D) = EX1
Q,X2

Q∼f(A(·|DQ)2)X1
U ,X2

U∼f(A(·|DU )2[
L̂wsc(f ;X

1
Q,X

2
Q,X

1
U ,X

2
U , Ŝ, Q)

]
,

(25)
where Ŝ is constructed to approximately satisfy the property
in Proposition 2.1 and L̂wsc in expectation is computed
through Algorithm 1.

To this end, we decouple Lwsc(f̂(D))−Lwsc(f
∗) into two

parts, the finite sample error and the approximation error
caused by the constructed Ŝ. To analyze the first part, we
introduce the Rademacher complexity which is a standard
concept in generalization error analysis.

Definition 3.5. (Maximal possible empirical Rademacher
complexity for feature extractor) Let F be a hypothesis
class of feature extractors from X to Rd, for n ∈ Z+, we
define Maximal possible empirical Rademacher complexity
R̂n(F) for feature extractor under X as:

R̂n(F) = max
i∈[d]

max
{x1,...,xn}∈Xn

Eσ

sup
f∈F

1

n

n∑
j=1

σjfi(xj)

 ,

(26)
where σ = {σ1, . . . , σn} are n Rademacher variables
with σi independently uniform variable taking value in
{+1,−1}.

To analyze the second part, we introduce expected bias for
approximated Ŝ.

Definition 3.6. (Expected bias for Ŝ) We defined expected
bias ∆(Ŝ) under D(X ) as follow:

∆(Ŝ) = Ex∼P(X )

[∥∥∥P(y | x)− Ŝ(x)P(q | x)
∥∥∥
1

]
. (27)

Utilizing the above two definitions, we have following theo-
rem bounds the gap Lwsc(f̂(D))− Lwsc(f

∗).

Theorem 3.7. Given perturbation coefficients α, β satisfy
α + β/c = 1, and assuming ∥F∥∞ < +∞, for a random
training dataset D = DQ ∪ DU with nq and nu samples
respectively. Then with probability at least 1− δ, we have:

Lwsc(f̂(D))− Lwsc(f
∗) ≤ (α+ 1)η0R̂nu+nq

2

(F)

+ (α+ 1)η1η(nu + nq, δ) + βη2∆(Ŝ)

+ β sup
x∈X

∥∥∥Ŝ(x)T Ŝ(x)∥∥∥
∞

(
η3R̂nq

2
(F) + η4η(nq, δ)

)
,

(28)
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where η0, η1, η2, η3, η4 are constants related to ∥F∥∞ and

feature dimension d and η(n, δ) =
√

log 2/δ
n + δ

2 .

Remark: Theorem 3.7 demonstrates that in our framework,
the features learned through finite samples and weak su-
pervision information can approximate the features derived
from the perturbation graph which incorporates supervision
information and thus has been proved in the Theorem 3.4
to possess good clustering properties. Specifically, the ap-
proximation error can be regarded as two parts. The first
part, comprising the first and second terms in Equation 28,
is the finite sample error when using all the training samples
to approximate the self-supervised graph, which is derived
through the standard finite sample approximation analy-
sis. The second part is the error when using the samples
with weakly supervision information to approximate the
perturbed part. The third and fourth terms in the Equation
28 describe two aspects of this error respectively. The third
term describes the estimation error brought about by the bias
of Ŝ , which can be regarded as the bias term of the error.
The fourth term describes the approximation error due to
limited samples and can be regarded as the variance term of
the error. supx∈X

∣∣∣Ŝ(x)Ŝ(x)T ∣∣∣ illustrates that the presence
of weakly-supervised information exacerbates the learning
difficulty, even when an unbiased estimate of Ŝ is utilized.
From this perspective, the two terms can be regarded as the
trade-off between variance and bias. The proof of Theorem
3.7 is in Appendix C.2.

Theorem D.7 in HaoChen et al. 2021 characterize the er-
ror propagation from pre-training to the downstream task,
combine with our Theorems 3.4 and 3.7, we can obtain final
ϵ(f̂(D)) as follows:

Corollary 3.8. (Main results: linear probe error of feature
learned from our framework) Given representation dimen-
sion d > 4r, and α, β satisfy α+ β

c = 1, A is γ-consistent
with γ > 0, then with probability at least 1− δ, we have:

ε(f̂(D)) ≤ Õ

(
γ

(
α∗ρu⌊ d

2 ⌋ + β∗
(
1− 2c

d

))−2
)

+ (α+ 1)
(
η′0R̂n

2
(F) + η′1η(n, δ)

)
+ βη′2∆(Ŝ)

+ β sup
x∈X

∥∥∥Ŝ(x)T Ŝ(x)∥∥∥
∞

(
η′3R̂nq

2
(F) + η′4η(nq, δ)

)
,

(29)
where [η′0, η

′
1, η

′
2, η

′
3, η

′
4] =

d
∆2

λ
[η0, η1, η2, η3, η4] with ∆λ

is the eigenvalue gap between the 3
4d-th and the d-th eigen-

value of perturbation graph, and n = nu + nq .

Proof. By substituting Theorems 3.4 and 3.7 into Theorem
D.7 in HaoChen et al. 2021, the corollary can be directly
obtained. The restatement of Theorem D.7 in HaoChen et al.
2021 can been found in Appendix C.3.

Remark: Corollary 3.8 demonstrates that the performance
of the features learned within our framework is determined
by two aspects. Firstly, the quality of the clustering structure
of the constructed augmented graph. Secondly, the error
arising from approximating the constructed graph using fi-
nite samples with weakly-supervised information. As β
increases, the clustering structure of the constructed graph
improves, but the approximation error also increase accord-
ingly. This suggests that in practical representation learning,
selecting an appropriate β is crucial for effectively integrat-
ing self-supervised and supervised information.

4. Experiment
In this section, we empirically validate the efficacy of our
framework across two paradigms of weakly-supervised
learning, namely noisy label learning (NLL), partial label
learning (PLL). For implementation, our weakly-supervised
contrastive (WSC) loss is combined only with the simplest
baseline. Detailed implementation can be found in Ap-
pendix E.

4.1. Learning with Noisy Labels

Dataset and Experimental Setting. For the case of noisy
label learning, following the settings in Li et al. 2020; Liu
et al. 2020, we verify the effectiveness of our method on
CIFAR-10 and CIFAR-100 (Krizhevsky, 2012) with two
types of label noise: symmetric and asymmetric. Symmetric
noise refers to the random reassignment of labels within the
training set according to a predefined noise ratio. In con-
trast, asymmetric noise is designed to replicate real-world
label noise, where labels are replaced exclusively by those
of similar classes (e.g., dog ↔ cat). In order to fully ver-
ify the effectiveness of the proposed method, we select ten
baselines for NLL comparison under the same experimen-
tal setting: DivideMix (Li et al., 2020), ELR (Liu et al.,
2020), SOP (Liu et al., 2022), GFWS (Chen et al., 2024)
and ProMix (Xiao et al., 2023), which do not incorporate
contrastive learning, as well as MOIT (Ortego et al., 2021),
Sel-CL (Li et al., 2022), and TCL (Huang et al., 2023),
which leverage a contrastive learning module. Due to space
limitations, the implementation details, along with addi-
tional comparisons on the instance-dependent noisy dataset
CIFAR-10N (Wei et al., 2022) and the realistic, larger-scale
instance-dependent noisy dataset Clothing1M (Xiao et al.,
2015), are provided in Appendix E.1.

Experimental Result. Table 1 shows the classification
accuracy for each comparative approach. Most of the ex-
perimental results are the same as those reported in their
original paper, except for ProMix, which we reproduce due
to differences in our settings. The proposed method demon-
strates competitive performance across various settings and
datasets. It outperforms existing approaches in most sce-
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Table 1. Comparisons with each methods on simulated NLL datasets. Each run has been three times with different randomly generated
noise, and the mean of the last five epochs are reported.

Dataset CIFAR-10 CIFAR-100

Noise Type Sym. Asym. Sym. Asym.

Noise Ratio 0.5 0.8 0.9 0.4 0.2 0.5 0.8 0.9 0.4

CE 80.70 65.80 42.70 82.20 58.10 47.10 23.80 3.50 43.34
DivideMix 94.60 93.20 76.00 93.40 77.10 74.60 60.20 31.00 55.57
ELR 94.80 93.30 78.70 93.00 77.90 73.80 60.80 33.40 69.94
SOP 95.50 94.00 - 93.80 78.80 75.90 63.30 - 69.53
GFWS 96.60 94.12 84.22 94.75 77.49 75.51 66.46 45.82 75.82
ULAREF 94.31 91.47 - 92.56 76.16 72.39 54.72 - 76.11
ProMix 93.23 83.11 - 89.83 75.43 71.64 43.35 - 72.13

MOIT 90.00 79.00 69.60 92.00 73.00 64.60 46.50 36.00 71.55
Sel-CL 93.90 89.20 81.90 93.40 76.50 72.40 57.70 29.30 74.20
TCL 93.90 92.50 89.40 92.60 78.00 73.30 65.00 54.50 73.10

WSC (Ours) 95.79±0.19 94.62±0.07 90.93±0.14 95.22±0.09 79.21±0.13 77.51±0.17 71.92±0.17 61.32±0.15 76.31±0.32

Table 2. Comparisons with each methods on simulated PLL datasets. Each run has been repeated three times with different randomly
generated partial labels, and the mean and standard deviation values of the last five epochs are reported.

Dataset CIFAR-10 CIFAR-100 CUB-200

Partial Ratio 0.5 0.6 0.7 0.8 0.05 0.1 0.2 0.3 0.05

LWS 85.30±0.36 80.33±1.33 72.11±0.58 58.49±0.33 54.78±0.26 50.44±0.38 32.44±0.48 25.49±0.58 39.74±0.43

PRODEN 89.82±0.38 87.44±0.35 86.44±0.20 85.78±0.55 72.65±0.09 71.05±0.23 68.44±0.79 55.21±0.44 62.56±0.10

CC 82.30±0.28 80.08±0.07 77.15±0.45 75.94±0.88 63.74±0.51 57.55±0.19 50.41±0.47 40.28±0.29 55.61±0.02

MSE 75.47±0.85 73.64±0.28 69.09±0.67 64.32±0.33 51.17±0.25 47.33±0.94 42.55±0.33 35.11±0.49 22.07±2.36

GFWS 95.22±0.08 95.01±0.03 94.21±0.14 93.58±0.21 76.89±0.32 75.95±0.10 73.18±0.51 60.25±0.37 70.77±0.20

RCR 95.01±0.03 94.37±0.07 93.28±0.05 91.67±0.10 77.01±0.22 75.85±0.35 72.58±0.31 57.48±0.95 -

PiCO 94.63±0.21 94.25±0.31 93.68±0.06 92.01±0.18 74.19±0.28 72.74±0.64 70.89±0.44 61.35±0.88 72.12±0.74

WSC (Ours) 95.41±0.08 95.22±0.10 95.03±0.04 94.41±0.05 77.88±0.19 77.26±0.30 75.13±0.24 69.15±0.05 74.55±0.17

narios, including those based on other contrastive learning
techniques. Notably, our method shows significant improve-
ments under high noise rates. For instance, on CIFAR-100
with a 90% noise rate, it surpasses the previous best TCL by
6.85%, highlighting the substantial performance gains our
framework offers for NLL.

4.2. Learning with Partial Labels

Dataset and Experimental Setting. For the case of par-
tial label learning, following Wang et al. 2022, we verify
the effectiveness of our method on CIFAR-10 (Krizhevsky,
2012), CIFAR-100 (Krizhevsky, 2012) and CUB-200 (Wah
et al., 2011b) with different partial ratios. The partial label
datasets are generated by flipping the negative labels to can-
didate labels with a specified partial ratio. In other words,
all c− 1 negative labels can be uniformly aggregated into
the ground truth label to form the set of candidate labels.
We choose seven baselines for PLL using same experiment
setting for comparison: LWS (Wen et al., 2021), PRODEN
(Lv et al., 2020), CC (Feng et al., 2020b), MSE (Feng et al.,
2020a), RCR (Wu et al., 2022) and GFWS (Chen et al.,

2024), which do not incorporate contrastive learning, as
well as PiCO (Wang et al., 2022), which employs a con-
trastive learning module. The implementation details, along
with additional comparisons using different partial label ra-
tios on CUB-200 and the hierarchical-generated partial label
dataset CIFAR-100-H (Wang et al., 2022), are provided in
Appendix E.2.

Experimental Result. Table 2 shows the main results for
PLL. Our proposed method achieves the best performance
across almost all settings compared to the baseline methods.
It is worth noting that our method achieves a larger perfor-
mance gap among the previous methods when the partial
rate is large. Especially on CIFAR-100 with a partial ratio of
0.3, the proposed method outperforms previous best method
by 7.8%, which is a strong evidence that our method can
achieve better results on these more difficult datasets.

5. Conclusion
This paper introduces a novel approach for contrastive
learning that incorporates weakly-supervised information
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through graph spectral theory. Extensive experiments and
theoretical analysis validate its effectiveness. We propose
semantic similarity as a continuous measure of class mem-
bership, offering new insights into utilizing ambiguous su-
pervision in contrastive learning. Our framework has the
potential to be extended to a wider range of scenarios, includ-
ing bag-level weak supervision and multi-modal matching.
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Supplementary Material

A. Notation

Table 3. List of common mathematical symbols used in this paper.

Symbol Definition

X ,Y = {y1, . . . , yc} Instance space and label space respectively
Q = {q1, . . . , qv} Weakly-supervised information space

D Joint distribution on (X ,Y) for target pattern
DQ Joint distribution on (X ,Q) for weakly-supervised pattern which generated form D

T (x) ∈ Rv×c Transition matrix with T (x)i,j = DQ(q
i | x, yj)

D(y | x) The abbreviation of vector
[
D(y1 | x), . . . ,D(yc | x)

]T
DQ(q | x) The abbreviation of vector

[
DQ(q

1 | x), . . . ,DQ(q
v | x)

]T
P The abbreviation of probability on joint distribution (X ,Y,Q) induced by D and DQ
DQ Set of training samples with corresponding weakly-supervised information
DU Set of unlabeled training samples

D = DQ ∪DU Final training dataset
n, nq, nu Size of D,DQ, DU , respectively

(x̃, ỹ), (x̃′, ỹ′) Two naturally data points with their label sampling form D
x, x′ Two augmentation data points form x̃ and x̃′ respectively

A(· · · | x̃) Distribution of the data augmentation
wx,x′ The edge weight of the edge connecting the two augmented samples constructed
wu

x,x′ The edge weight constructed through self-supervised connectivity
wl

x,x′ The edge weight constructed through fully-supervised
wwl

x,x′ The edge weight constructed through weakly-supervised connectivity
α, β perturbation coefficients for integrating self-supervised and supervised information.
A Adjacency matrix of constructed augmentation graph
Ã Normalized adjacency matrix of constructed augmentation graph

S : X → Rc×v The recovery matrix used for compute the semantic similarity of samples
S ((x̃, q̃), (x̃′, q̃′)) Computed semantic similarity of samples with corresponding weakly-supervised information
Ŝ : X → Rc×v Constructed approximate recovery matrix

F Embedding matrix with F x,: ∈ Rd is embedding of sample x
f : X → Rd Learned feature embedding
B ∈ Rd×c Linear classifier weight
hf,B(x) Prediction for augmentation data x with feature f and classifier B
h̃f,B(x̃) Ensemble prediction for naturally data x̃ with feature f and classifier B
g(x) Posterior category probability give x predicted by neural networks
ε(f) Linear probe error of feature embedding f
ρ Sparsest partition of a graph in Definition. 3.3
ρu Sparsest partition of self-supervised connectivity graph Au

η0, . . . , η4 Constant only related to F∞ and features dimension d
∆λ Eigenvalue gap between the ⌊3d/4⌋-th and the d-th eigenvalue of graph A

η′0, . . . , η
′
4 Proportional amplification of constant η0, . . . , η4
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B. Proof of Section. 2
In this section, we provide the proof details of the proposition in the Section. 2.

B.1. Proof of Proposition. 2.1

Proposition B.1. (Recap of Proposition 2.1). For any S : X → Rc×n that satisfies the condition: P(y | x) = S(x)P(q | x)
holds almost everywhere in X , the following equation holds:

wwl
x,x′(S) ≜ E(x̃,q̃),(x̃′,q̃′)∼P(X ,Q)2 [S ((x̃, q̃), (x̃′, q̃′))A(x | x̃)A(x′ | x̃′)] = wl

x,x′ , (30)

where S ((x̃, q̃), (x̃′, q̃′)) = S(x̃)T:,q̃S(x̃
′):,q̃′ .

Proof. The proof is direct, on the one hand, we can expand wl
x,x′ and obtain:

wl
x,x′ = E(x̃,ỹ),(x̃′,ỹ′)∼P(X ,Y)2 [I [ỹ = ỹ′]A(x | x̃)A(x′ | x̃′)]

=

∫ ∑
ỹ,ỹ′∈Y2

P(x̃, ỹ)P(x̃′, ỹ′)I [ỹ = ỹ′]A(x | x̃)A(x′ | x̃′)dx̃dx̃′

=

∫
P(x̃)P(x̃′)dx̃dx̃′

∑
ỹ,ỹ′∈Y2

P(ỹ | x̃)P(ỹ′ | x̃′)I [ỹ = ỹ′]A(x | x̃)A(x′ | x̃′)

=

∫
P(x̃)P(x̃′)dx̃dx̃′

∑
ỹ∈Y

P(ỹ | x̃)P(ỹ | x̃′)A(x | x̃)A(x′ | x̃′)

=

∫
P(x̃)P(x̃′)dx̃dx̃′ (P(y | x̃)TP(y | x̃′)

)
A(x | x̃)A(x′ | x̃′)

= Ex̃,x̃′∼X 2

[
P(y | x̃)TP(y | x̃′)A(x | x̃)A(x′ | x̃′)

]
.

(31)

On the other hand, we can expand the wwl
x,x′ and obtain:

wwl
x,x′ = E(x̃,q̃),(x̃′,q̃′)∼P(X ,Q)2 [S ((x̃, q̃) , (x̃′, q̃′))A(x | x̃)A(x′ | x̃′)]

=

∫ ∑
q̃,q̃′∈Q2

P(x̃, q̃)P(x̃′, q̃′)S ((x̃, q̃) , (x̃′, q̃′))A(x | x̃)A(x′ | x̃′)dx̃dx̃′

=

∫
P(x̃)P(x̃′)dx̃dx̃′

∑
q̃,q̃′∈Q2

P(q̃ | x̃)P(q̃′ | x̃′)S(x̃)T:,q̃S(x̃
′):,q̃′A(x | x̃)A(x′ | x̃′)

=

∫
P(x̃)P(x̃′)dx̃dx̃′P(q | x̃)T

(
S(x̃)TS(x̃′)

)
P(q | x̃′)A(x | x̃)A(x′ | x̃′)

= Ex̃,x̃′∼X 2

[
P(q | x̃)T

(
S(x̃)TS(x̃′)

)
P(q | x̃′)A(x | x̃)A(x′ | x̃′)

]
.

(32)

When S satisfies the condition of P(y | x) = S(x)P(q | x) holds almost everywhere in X , we have follow equation holds
almost everywhere in X 2:

P(q | x̃)T
(
S(x̃)TS(x̃′)

)
P(q | x̃′) = (S(x̃)P(q | x̃))T (S(x̃′)P(q | x̃′)) = P(y | x̃)TP(y | x̃′) (33)

Combining Equations 31, 32, and 33, we finish the proof.

B.2. Proof of Proposition. 2.3

Proposition B.2. (Recap of Proposition. 2.3). We define F x,: =
√
Axfx and weakly-supervised contrastive loss Lwsc as

follows:
Lwsc(f) ≜ −2αL1(f)− 2βL2(f) + α2L3(f) + β2L4(f) + 2αβL5(f), (34)

where:
L1(f) ≜ Ex̃∼P(X ),x,x′∼A(·|x̃)

[
fxf

T
x′

]
, (35)
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L2(f) ≜ E(x̃,q̃),(x̃′,q̃′)∼P(X ,Q)2,x∼A(·|x̃),x′∼A(·|x̃′)

[
S((x̃, q̃), (x̃′, q̃′))fxf

T
x′

]
, (36)

L3(f) ≜ Ex̃,x̃′∼P(X )2,x∼A(·|x̃),x′∼A(·|x̃′)

[(
fxf

T
x′

)2]
, (37)

L4(f) ≜ E(x̃,q̃),(x̃′,q̃′)∼P(X ,Q)2,x∼A(·|x̃),x′∼A(·|x̃′)

[
S′(x̃, q̃)S′(x̃′, q̃′)

(
fxf

T
x′

)2]
, (38)

L5(f) ≜ E(x̃,q̃)∼P(X ,Q),x̃′∼P(X ),x∼A(·|x̃),x′∼A(·|x̃′)

[
S′(x̃, q̃)

(
fxf

T
x′

)2]
, (39)

where S ((x̃, q̃), (x̃′, q̃′)) = S(x̃)T:,q̃S(x̃
′):,q̃′ , S

′(x̃, q̃) = S(x̃)T:,q̃P(y).

Then the following equation holds: ∥∥∥Ã− FF T
∥∥∥
F
= Lwsc(f) + Const, (40)

Where Ax,x′ = αwu
x,x′ + βwwl

x,x′ , and Ãx,x′ =
Ax,x′

√
Ax

√
Ax′

.

Furthermore, when assuming uniform class distribution P(y) =
[
1
c , . . . ,

1
c

]T
, above Lwsc(f) can also rewrite as:

Lwsc(f) ≜ −2αL1(f)− 2βL2(f) +

(
α+

β

c

)2

L3(f). (41)

Proof. First we can expand
∥∥∥Ã− FF T

∥∥∥
F

as follows:

∥∥∥Ã− FF T
∥∥∥
F
=
∑
x,x′

(
Ax,x′

√
Ax

√
Ax′

− F x,:F
T
x′,:

)2

=
∑
x,x′

(
F x,:F

T
x′,:

)2
− 2

Ax,x′
√
Ax

√
Ax′

F x,:F
T
x′,: + Const

=
∑
x,x′

AxAx′
(
fxf

T
x′

)2 − 2Ax,x′fxf
T
x′ + Const.

(42)

Next, We analyze the two terms in the RHS of Equation 42 separately. We first expand the second term in RHS of Equation
42 as follows:∑

x,x′

−2Ax,x′fxf
T
x′ =

∑
x,x′

−2(αwu
x,x′ + βwwl

x,x′)fxf
T
x′

= −2α
∑
x,x′

Ex̃∼P(X)[A(x | x̃)A(x′ | x̃)]fxfT
x′

− 2β
∑
x,x′

E(x̃,q̃),(x̃′,q̃′)∼P(X ,Q)2 [S ((x̃, q̃) , (x̃′, q̃′))A(x | x̃)A(x′ | x̃′)] fxf
T
x′

= −2αEx̃∼P(X)

∑
x,x′

A(x | x̃)A(x′ | x̃)fxfT
x′


− 2βE(x̃,q̃),(x̃′,q̃′)∼P(X ,Q)2

∑
x,x′

S ((x̃, q̃) , (x̃′, q̃′))A(x | x̃)A(x′ | x̃′)fxf
T
x′


= −2αEx̃∼P(X)

[
Ex∼A(·|x̃),x′∼A(·|x̃)

[
fxf

T
x′

]]
− 2βE(x̃,q̃),(x̃′,q̃′)∼P(X ,Q)2

[
S ((x̃, q̃) , (x̃′, q̃′))Ex∼A(·|x̃),x′∼A(·|x̃′)

[
fxf

T
x′

]]
.

(43)

By substituting the definitions of L1(f) and L2(f) into the Equation 43, we have:∑
x,x′

−2Ax,x′fxf
T
x′ = −2αL1(f)− 2βL2(f) (44)
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On the other hand, we have:

Ax =
∑
x′

Ax,x′ = α
∑
x′

wu
x,x′ + β

∑
x′

wwl
x,x′

= αEx̃∼P(X)

[∑
x′

A(x | x̃)A(x′ | x̃)

]

βE(x̃,q̃),(x̃′,q̃′)∼P(X ,Q)2

[∑
x′

S ((x̃, q̃) , (x̃′, q̃′))A(x | x̃)A(x′ | x̃′)

]
= αEx̃∼P(X) [A(x | x̃)]

+ βE(x̃,q̃),(x̃′,q̃′)∼P(X ,Q)2

[∑
x′

S ((x̃, q̃) , (x̃′, q̃′))A(x | x̃)A(x′ | x̃′)

]
.

(45)

By the definition of S ((x̃, q̃) , (x̃′, q̃′)), we can rewrite the second term of RHS of Equation 45 as follows:

E(x̃,q̃),(x̃′,q̃′)∼P(X ,Q)2

[∑
x′

S ((x̃, q̃) , (x̃′, q̃′))A(x | x̃)A(x′ | x̃′)

]

= E(x̃,q̃)∼P(X ,Q)

[
A(x | x̃)S(x̃)T:,q̃Ex̃′∼X [S(x̃′)P(q | x̃′)]

∑
x′

A(x′ | x̃′)

]
= E(x̃,q̃)∼P(X ,Q)

[
A(x | x̃)S(x̃)T:,q̃Ex̃′∼X [P(y | x̃′)]

]
= E(x̃,q̃)∼P(X ,Q)

[
A(x | x̃)S(x̃)T:,q̃P(y)

]
= E(x̃,q̃)∼P(X ,Q) [S

′(x̃, q̃)A(x | x̃)] ,

(46)

where we defined S′(x̃, q̃) = S(x̃)T:,q̃P(y) before. By substituting Equation 46 into Equation 45, we have:

Ax = αEx̃∼P(X) [A(x | x̃)] + βE(x̃,q̃)∼P(X ,Q) [S
′(x̃, q̃)A(x | x̃)] . (47)

Using results of Equation 47, we can expand the first term in RHS of Equation 42 as follows:∑
x,x′

AxAx′
(
fxf

T
x′

)2
=
∑
x,x′

(
αEx̃∼P(X ) [A(x | x̃)] + βE(x̃,q̃)∼P(X ,Q)[S

′(x̃, q̃)A(x | x̃)]
)

(
αEx̃′∼P(X )[A(x′ | x̃′)] + βE(x̃′,q̃′)∼P(X ,Q)[S

′(x̃′, q̃′)A(x′ | x̃′)]
)
(fxf

T
x′)2

= α2Ex̃,x̃′∼P(X 2)

∑
x,x′

A(x | x̃)A(x′ | x̃′)
(
fxf

T
x′

)2
+ β2E(x̃,q̃),(x̃′,q̃′)∼P(X ,Q)2

∑
x,x′

S′(x̃, q̃)S′(x̃′, q̃′)A(x | x̃)A(x′ | x̃′)
(
fxf

T
x′

)2
+ 2αβE(x̃,q̃)∼P(X ,Q),x̃′∼P(X )

S′(x̃, q̃)
∑
x,x′

A(x | x̃)A(x′ | x̃′)
(
fxf

T
x′

)2 .

(48)

By substituting the definitions of L3(f), L4(f) and L5(f) into RHS of Equation 48, we rewrite its three terms as follows,
respectively:

α2Ex̃,x̃′∼P(X 2)

∑
x,x′

A(x | x̃)A(x′ | x̃′)
(
fxf

T
x′

)2 = α2Ex̃,x̃′∼P(X )2,x∼A(·|x̃),x′∼A(·|x̃′)

[(
fxf

T
x′

)2]
= α2L3(f). (49)

β2E(x̃,q̃),(x̃′,q̃′)∼P(X ,Q)2

∑
x,x′

S′(x̃, q̃)S′(x̃′, q̃′)A(x | x̃)A(x′ | x̃′)
(
fxf

T
x′

)2
= β2E(x̃,q̃),(x̃′,q̃′)∼P(X ,Q)2,x∼A(·|x̃),x′∼A(·|x̃′)

[
S′(x̃, q̃)S′(x̃′, q̃′)

(
fxf

T
x′

)2]
= β2L4(f).

(50)
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2αβE(x̃,q̃)∼P(X ,Q),x̃′∼P(X )

S′(x̃, q̃)
∑
x,x′

A(x | x̃)A(x′ | x̃′)
(
fxf

T
x′

)2
= 2αβE(x̃,q̃)∼P(X ,Q),x̃′∼P(X ),x∼A(·|x̃),x′∼A(·|x̃′)

[
S′(x̃, q̃)

(
fxf

T
x′

)2]
= 2αβL5(f).

(51)

By combining the results of Equations 48, 49, 50, and 51, we obtain:∑
x,x′

AxAx′
(
fxf

T
x′

)2
= α2L3 + β2L4 + 2αβL5. (52)

By substituting the results of Equations 44 and 52 into Equation 42, we can obtain the Equation 40. Furthermore, when
assume uniform class distribution P(y) =

[
1
c , . . . ,

1
c

]T
, above L4(f) can be rewritten as follows:

L4(f) = E(x̃,q̃),(x̃′,q̃′)∼P(X ,Q)2,x∼A(·|x̃),x′∼A(·|x̃′)

[
S′(x̃, q̃)S′(x̃′, q̃′)

(
fxf

T
x′

)2]
= Ex̃,x̃′∼P(X )2,x∼A(·|x̃),x′∼A(·|x̃′)

 1

c2

∑
q̃∈Q,ỹ′∈Y

S(x̃)ỹ,q̃P(q̃ | x̃)
∑

q̃′∈Q,ỹ′∈Y
S(x̃′)ỹ′,q̃′P(q̃′ | x̃′)

(
fxf

T
x′

)2
= Ex̃,x̃′∼P(X )2,x∼A(·|x̃),x′∼A(·|x̃′)

 1

c2

∑
ỹ∈Y

(S(x̃)P(q | x̃))ỹ
∑
ỹ′∈Y

(S(x̃′)P(q | x̃′))ỹ′

(
fxf

T
x′

)2
=

1

c2
Ex̃,x̃′∼P(X )2,x∼A(·|x̃),x′∼A(·|x̃′)

[(
fxf

T
x′

)2]
=

1

c2
L3(f).

(53)

Similarly, L5(f) can be rewritten as follows:

L5(f) = E(x̃,q̃)∼P(X ,Q),x̃′∼P(X ),x∼A(·|x̃),x′∼A(·|x̃′)

[
S′(x̃, q̃)

(
fxf

T
x′

)2]
= Ex̃,x̃′∼P(X )2,x∼A(·|x̃),x′∼A(·|x̃′)

1
c

∑
q̃∈Q,ỹ′∈Y

S(x̃)ỹ,q̃P(q̃ | x̃)
(
fxf

T
x′

)2
=

1

c
Ex̃,x̃′∼P(X )2,x∼A(·|x̃),x′∼A(·|x̃′)

∑
ỹ∈Y

(S(x̃)P(q | x̃))ỹ
(
fxf

T
x′

)2
=

1

c
Ex̃,x̃′∼P(X )2,x∼A(·|x̃),x′∼A(·|x̃′)

[(
fxf

T
x′

)2]
=

1

c
L3(f).

(54)

Combining the results of Equations 53 and 54, Lwsc(f) can be rewritten as follows thus finishing the proof of Equation 41.

Lwsc(f) = −2αL1(f)− 2βL2(f) + α2L3(f) + β2L4(f) + 2αβL5(f)

= −2αL1(f)− 2βL2(f) +

(
α2 +

(
β

c

)2

+ 2
αβ

c

)
L3(f)

= −2αL1(f)− 2βL2(f) +

(
α+

β

c

)2

L3(f).

(55)
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C. Proof of Section. 3
In this section, we provide the proof detail of theorems in the Section. 3. Our theoretical framework mainly follow theoretical
framework in HaoChen et al. 2021. In order to eliminate technical complexity, we assume vertices of augmentation graph
have to be a finite but exponentially large set. This is a reasonable assumption given that modern computers store data with
finite bits so the possible number of all data has to be finite, and results can been easier generalized to the infinite case
through Theorem F.2 in HaoChen et al. 2021. Moreover, without loss of generality, we assume a uniform class distribution
to simplify the proof.

C.1. Proof of Theorem 3.4

Theorem C.1. (Recap of Theorem 3.4) Given augmentation graph G with perturbation adjacency matrix A = αAu +
βAwl(S) where S stratify properties in Proposition. 2.1, if A is γ-consistent with γ > 0 and representation dimension
d > 2c, we have:

ε(f∗) ⪯ Õ

(
γ

(
α∗ρu⌊ d

2 ⌋ + β∗
(
1− 2c

d

))−2
)
, (56)

where ρu is sparsest partition of self-supervised connectivity graph Au, and α∗ = α
α+β/c , β∗ = β/c

α+β/c .

Lemma C.2. For any proportionality constant η > 0, then linear probe error of features derived from ηA is equal to
features derived from A.

Proof. Assuming that g∗ is features derived form ηA, then through results of Proposition. B.2, we have g∗x =
G∗

x√
ηAx

where
G∗ define as follows:

G∗ = argmin
∥∥∥ηÃ−GGT

∥∥∥
F
. (57)

Since ηÃx,x′ =
ηAx,x′

√
ηAx

√
ηAx′

= A√
Ax

√
Ax′

= Ãx,x′ , we have:

G∗ = argmin
∥∥∥Ã−GGT

∥∥∥
F
= F ∗. (58)

Hence features derived form ηA can be rewritten as:

g∗x =
G∗

x√
ηAx

=
F ∗

x√
ηAx

=
f∗
x√
η
. (59)

For any linear classifier B ∈ Rd×c, we have:

hg∗,B(x) = argmax
i∈Y

BT
:,ig

∗(x) = argmax
i∈Y

1
√
η
BT

:,if
∗(x) = hf∗,B(x). (60)

In the end, we finish the proof with:

ε(g∗) == min
B∈Rd×c

E(x̃,ỹ)∼P(X ,Y)

[
I
[
h̃g∗,B(x̃) ̸= ỹ

]]
= min

B∈Rd×c
E(x̃,ỹ)∼P(X ,Y)

[
I
[
h̃f∗,B(x̃) ̸= ỹ

]]
= ε(f∗). (61)

Using results of Lemma C.2, we can assume α+ β
c = 1 in Theorem C.1 (When α+ β

c ̸= 1, we consider perturbation graph
with A = α

α+β/cA
u + β

α+β/cA
wl ).

We are now ready to formally prove the theorem. Our proof relies partly on the theoretical results in HaoChen et al. 2021.
For the sake of completeness, we will restate some of the theoretical results in HaoChen et al. 2021 in this section.

Lemma C.3. If A is γ-consistent augmentation distribution, and ŷ(x) is corresponding pseudo labeler for augmentation
data such that satisfy condition in Definition 3.1, then for any linear classifier B and feature f , we have:

E(x̃,ỹ)∼P(X ,Y)

[
I
[
h̃f,B(x̃) ̸= ỹ

]]
≤ 2

(
Ex̃∼P(X ),x∼A(·|x̃) [I [hf,B(x) ̸= ŷ(x)]] + γ

)
(62)
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Proof. For any x̃ that satisfy h̃f,B(x̃) ̸= ỹ, we claim:

Ex∼A(·|x̃) [I [hf,B(x) ̸= ỹ]] ≥ 1

2
. (63)

Hence, we have:

E(x̃,ỹ)∼P(X ,Y)

[
I
[
h̃f,B(x̃) ̸= ỹ

]]
≤ 2E(x̃,ỹ)∼P(X ,Y),x∼A(·|x̃) [I [hf,B(x) ̸= ỹ]]

= 2E(x̃,ỹ)∼P(X ,Y),x∼A(·|x̃) [I [hf,B(x) ̸= ỹ] (I [hf,B(x) = ŷ(x)] + I [hf,B(x) ̸= ŷ(x)])]

≤ 2E(x̃,ỹ)∼P(X ,Y),x∼A(·|x̃) [I [ŷ(x) ̸= ỹ] + I [hf,B(x) ̸= ŷ(x)]]

≤ 2
(
γ + Ex̃∼P(X ),x∼A(·|x̃) [I [hf,B(x) ̸= ŷ(x)]]

)
.

(64)

Using results of Lemma C.3, the problem has been transformed into analyzing Ex̃∼P(X ),x∼A(·|x̃) [I [hf,B(x) ̸= ŷ(x)]]. We
proceed with the following analysis.

Lemma C.4. Given a real symmetric matrix L with size of N , and ϑi, i = 1, 2, . . . d, d < N be the top-d smallest unit-norm
eigenvector of L with eigenvalue λi (make them orthogonal in case of repeated eigenvalue), then for any vector µ ∈ RN ,
there exists a vector b ∈ Rd, such that: ∥∥∥∥∥µ−

d∑
i=1

biϑi

∥∥∥∥∥
2

2

≤ R(µ)

λd+1
∥µ∥22 , (65)

where R(µ) = µTLµ
µTµ

is the Rayleigh quotient of u.

Proof. We first decompose µ on the basis of the space spanned by the eigenvectors µ =
∑N

i=1 biϑi, then we have:

R(µ) =

∑N
i=1 λib

2
i

∥µ∥22
≥

λd+1

∑N
i=d+1 b

2
i

∥µ∥22
=

λd+1

∥µ∥22

∥∥∥∥∥µ−
d∑

i=1

biϑi

∥∥∥∥∥
2

2

(66)

Lemma C.5. Given the pseudo-label indicator function U define as Ux,i =
√
AxI [ŷ(x) = i] and feature F ∗ derived form

perturbation graph A with perturbation coefficients α and β satisfy α+ β/c = 1, then we have:

min
B∈Rd×c

∥U − F ∗B∥22 ≤ 2γ

λd+1
, (67)

where λd+1 is (d+1)-th smallest eigenvalue of normalized Laplacian matrix I − Ã of perturbation augmentation graph.

Proof. According to the Eckart-Young-Mirsky theorem (Eckart and Young, 1936), F ∗ contains scaling of the top-d smaller
eigenvectors of I − Ã. Using results of Lemma C.4, we have:

min
B∈Rd×c

∥U − F ∗B∥22 =

c∑
i=1

min
b∈Rd

∥U :,i − F ∗b∥ ≤
c∑

i=1

1

λd+1
UT

:,i(I − Ã)U :,i

=
1

λd+1

c∑
i=1

∑
x

AxI[ŷ(x) = i]−
∑
x,x′

Ax,x′I[ŷ(x) = i]I[ŷ(x′) = i]


=

1

λd+1

c∑
i=1

∑
x,x′

Ax,x′I[(ŷ(x) = i ∧ ŷ(x′) ̸= i) ∨ (ŷ(x) ̸= i ∧ ŷ(x′) = i)]


=

1

λd+1

∑
x,x′

Ax,x′I[ŷ(x) ̸= ŷ(x′)]

(68)
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Furthermore, we have:∑
x,x′

Ax,x′I[ŷ(x) ̸= ŷ(x′)] = α
∑
x,x′

wu
x,x′I[ŷ(x) ̸= ŷ(x′)] + β

∑
x,x′

wwl
x,x′(S)I[ŷ(x) ̸= ŷ(x′)]

= α
∑
x,x′

wu
x,x′I[ŷ(x) ̸= ŷ(x′)] + β

∑
x,x′

wl
x,x′I[ŷ(x) ̸= ŷ(x′)]

= αEx̃∼P(X )

∑
x,x′

I[ŷ(x) ̸= ŷ(x′)]A(x | x̃)A(x′ | x̃)


+ βE(x̃,ỹ),(x̃′,ỹ′)∼P(X ,Y)2

∑
x,x′

I[ŷ(x) ̸= ŷ(x′)]I [ỹ = ỹ′]A(x | x̃)A(x′ | x̃′)


≤ αEx̃,ỹ∼P(X ,Y)

∑
x,x′

(I[ŷ(x) ̸= ỹ] + I[ŷ(x′) ̸= ỹ])A(x | x̃)A(x′ | x̃)


+ βE(x̃,ỹ),(x̃′,ỹ′)∼P(X ,Y)2

∑
x,x′

(I[ŷ(x) ̸= ỹ] + I[ŷ(x′) ̸= ỹ′]) I [ỹ = ỹ′]A(x | x̃)A(x′ | x̃′)


= 2αEx̃,ỹ∼P(X ,Y),x∼A(·|x̃) [I [ỹ = ŷ(x)]]

+ 2βEx̃,ỹ∼P(X ,Y),x∼A(·|x̃),ỹ′∼P(Y) [I [ỹ = ŷ(x)] I [ỹ = ỹ′]]

≤ 2(α+ β/c)γ = 2γ,
(69)

here the first inequality holds because:

I[ŷ(x) ̸= ŷ(x′)] ≤ I[ŷ(x) ̸= ỹ] + I[ŷ(x′) ̸= ỹ]. (70)

I[ŷ(x) ̸= ŷ(x′)]I [ỹ = ỹ′] ≤ (I[ŷ(x) ̸= ỹ] + I[ŷ(x′) ̸= ỹ′]) I [ỹ = ỹ′] . (71)

Finally, we substitute Formula 69 into Formula 68 to complete the proof.

Lemma C.6. Given the pseudo-label indicator function V define as V x,i = I [ŷ(x) = i] and feature f∗(x) = 1√
Ax

(
F ∗

x,:

)T
then we have:

min
B∈Rd×c

Ex̃∼P(X ),x∼A(·|x̃) [I [hf∗,B(x) ̸= ŷ(x)]] ≤ 2 min
B∈Rd×c

Ex̃∼P(X ),x∼A(·|x̃)

[∥∥∥V T
x,: −BT f∗(x)

∥∥∥2
2

]
≤ 4γ

λd+1
. (72)

Proof. Firstly, we prove the first inequality in the Formula 72. For any x, hf∗,B(x) ̸= ŷ(x) there exists y′ such that
(BT f∗(x))y′ > (BT f∗(x))ŷ(x), hence, we have:

∥∥∥V T
x,: −BT f∗(x)

∥∥∥2
2
≥ (1− (BT f∗(x))ŷ(x))

2 + ((BT f∗(x))y′)2

≥ 1

2
(1− (BT f∗(x))ŷ(x) + (BT f∗(x))y′)2 ≥ 1

2
.

(73)

Next, we can expand Ex̃∼P(X ),x∼A(·|x̃)

[∥∥∥V T
x,: −BT f∗(x)

∥∥∥2
2

]
and obtain:

Ex̃∼P(X ),x∼A(·|x̃)

[∥∥∥V T
x,: −BT f∗(x)

∥∥∥2
2

]
=
∑
x

P(x)
∥∥∥V T

x,: −BT f∗(x)
∥∥∥2
2

(74)
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We claim P(x) = Ax when α+ β/c = 1:

Ax = α
∑
x′

wu
x,x′ + β

∑
x′

wl
x,x′

= αEx̃∼P(X )[A(x | x̃)
∑
x′

A(x′ | x̃)] + βE(x̃,ỹ),(x̃′,ỹ′)∼P(X ,Y)2

[
I [ỹ = ỹ′]A(x | x̃)

∑
x′

A(x′ | x̃′)

]
= αEx̃∼P(X )[A(x | x̃)] + βE(x̃,ỹ)∼P(X ,Y),ỹ′∼P(Y) [I [ỹ = ỹ′]A(x | x̃)]

= αP(x) +
β

c
P(x) = P(x)

(75)

By substituting Equation 75 into Equation 74, we have:

Ex̃∼P(X ),x∼A(·|x̃)

[∥∥∥V T
x,: −BT f∗(x)

∥∥∥2
2

]
=
∑
x

Ax

∥∥∥V T
x,: −BT f∗(x)

∥∥∥2
2

=
∑
x

∥∥∥UT
x,: −BT (F ∗

x,:)
T
∥∥∥2
2

= ∥U − F ∗B∥22 .

(76)

Using the results of Lemma C.5, we finish the proof of the second inequality in the Formula 72.

Combining Lemmas C.2, C.3, C.6 , we have prove under condition in Theorem C.1:

ε(f∗) ≤ 2

(
4

λd+1
+ 1

)
γ, (77)

where λd+1 is d+ 1-th smallest eigenvalue of normalized Laplacian matrix of perturbation graph.

The following lemma establishes the relationship between this eigenvalue and graph connectivity, allowing us to get rid of
the dependency on λd+1.

Lemma C.7. (Higher-order Cheeger’s inequality, Proposition. 1.2 in Louis and Makarychev 2014) Let G = (V,E) be a
weight graph with |V | = N . Then for any t ∈ [N ] and ζ > 0 such that (1 + ζ)t ∈ [N ], there exist a partition Ω1, . . . ,Ωt of
V with:

ΦG(Ωi) ⪯ poly

(
1

ζ

)√
λ(1+ζ)t log t,∀i ∈ [t]. (78)

In Lemma C.7, we take ζ = 1 and (1 + ζ)t = 2t = d + 1, there exist a partition Ωi, . . . ,Ω⌊d/2⌋ such that
maxi∈[⌊d/2⌋] ΦG(Ωi) ⪯

√
λd+1 log (d+ 1). We take ρ as sparest partition of perturbation graph. By Definition 3.3,

we have ρ⌊d/2⌋ ≤ maxi∈[⌊d/2⌋] ΦG(Ωi) ⪯
√
λd+1 log (d+ 1) which leads to there exist a constant η(d) such that

1
λd+1

≤ η(d) 1
ρ2
⌊d/2⌋

. The following lemma bounds the sparest partition of perturbation graph.

Lemma C.8. Given perturbation graph with Ax,x′ = wx,x′ = αwu
x,x′ + βwwl

x,x′(S) where α + β/c = 1, and self-
connectivity graph Au

x,x′ with sparest partition ρu, then we have lower bounds of sparest partition ρ of graph A as
follows:

ρd ≥ αρud +
β

c
(1− c

d
). (79)
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Proof. Firstly, for any subset Ω of augmentation data points, we have:

ΦA(Ω) =

∑
x∈Ω,x′ /∈Ω wx,x′∑

x∈Ω wx
=

∑
x∈Ω,x′ /∈Ω αwu

x,x′ + βwwl
x,x′(S)∑

x∈Ω wx

=

∑
x∈Ω,x′ /∈Ω αwu

x,x′ + βwl
x,x′∑

x∈Ω wx
=

∑
x∈Ω,x′ /∈Ω αwu

x,x′ + βwl
x,x′

P(Ω)

= α

∑
x∈Ω,x′ /∈Ω wu

x,x′

P(Ω)
+ β

∑
x∈Ω,x′ /∈Ω wl

x,x′

P(Ω)

= α

∑
x∈Ω,x′ /∈Ω wu

x,x′∑
x∈Ω wu

x

+
β

c

∑
x∈Ω,x′ /∈Ω wl

x,x′∑
x∈Ω wl

x

.

= αΦAu(Ω) +
β

c
ΦAl(Ω),

(80)

here the 4-th and 6-th equality derived from Equation 75.

Hence we have lower bounds of ρd as follows:

ρd = min
Ω1,...,Ωd

max{ΦA(Ω1), . . . ,ΦA(Ωd)}

= min
Ω1,...,Ωd

max{αΦAu(Ω1) +
β

c
ΦAl(Ω1), . . . , αΦAu(Ωd) +

β

c
ΦAl(Ωd)}

≥ α min
Ω1,...,Ωd

max{ΦAu(Ω1), . . . ,ΦAu(Ωd)}+
β

c
min

Ω1,...,Ωd

max{ΦAl(Ω1), . . . ,ΦAl(Ωd)}

= αρud +
β

c
ρld,

(81)

here the inequality holds because taking the minimum separately is always less than taking the minimum simultaneously.

In the following text, we prove that ρld ≥ (1 − c
d ) to finish the proof of Lemma C.8. For any subset Ω, we can compute

ΦAl(Ω) as follows:

ΦAl(Ω) =

∑
x∈Ω,x′ /∈Ω wl

x,x′∑
x∈Ω wx

=

∑
x∈Ω,x′ /∈Ω wl

x,x′

P(Ω)/c

=
E(x̃,ỹ),(x̃′,ỹ′)∼P(X ,Y)2

[∑
x∈Ω,x′ /∈Ω I [ỹ = ỹ′]A(x | x̃)A(x′ | x̃′)

]
∑c

i=1
1
c2P(Ω | ỹ = c)

=
E(x̃,ỹ),(x̃′,ỹ′)∼P(X ,Y)2

[∑
x∈Ω,x′ /∈Ω I [ỹ = ỹ′]A(x | x̃)A(x′ | x̃′)

]
∑c

i=1
1
c2P(Ω | ỹ = c)

=

1
c2

∑c
i=1 E(x̃,x̃′)∼P(·|ỹ=i)2

[∑
x∈Ω,x′ /∈Ω A(x | x̃)A(x′ | x̃′)

]
∑c

i=1
1
c2P(Ω | ỹ = c)

=

∑c
i=1 E(x̃,x̃′)∼P(·|y=i)2

[∑
x∈Ω,x′ /∈Ω A(x | x̃)A(x′ | x̃′)

]
∑c

i=1 P(Ω | ỹ = i)

=

∑c
i=1 P(Ω | ỹ = i)(1− P(Ω | ỹ = i))∑c

i=1 P(Ω | ỹ = i)
.

(82)

For any partition Ω1, . . . ,Ωd of augmentation graph, we claim that they must satisfy conditions as follows:∑d
i=1 P(Ωi | ỹ = j) = 1, ∀j ∈ [c]∑c
j=1 P(Ωi | ỹ = j) > 0, ∀i ∈ [d].

.
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Hence, when take P(Ωi | ỹ = j) = ωi,j , we have:

ρld ≥ min
w

Ψ(ω) =min
ω

max
i∈[d]

∑c
j=1 ωi,j(1− ωi,j)∑c

j=1 ωi,j

s.t.
d∑

i=1

ωi,j = 1, ∀j ∈ [c]

c∑
j=1

ωi,j > 0, ∀i ∈ [d]

0 ≤ ωi,j ≤ 1, ∀i ∈ [c], j ∈ [d].

(83)

We claim that the ω∗ that minimizes the constrained minimization problem defined by Formula 83 should satisfy the
condition: there exists i∗, j∗ = argmini,j:ω∗

i,j>0 ω∗
i,j such that ω∗

i∗,j = 0,∀j ∈ [c] \ j∗ and Ψ(ω∗) = 1− ω∗
i∗,j∗ .

To view that, one the one hand, for any ω break this condition, we can construct a w′ such that Ψ(ω′) < Ψ(ω) as follows:

ω′
i∗,j∗ = 0, ω′

1,j∗ = ω1,j∗ + ωi∗,j∗

ω′
i,j = ωi,j , otherwise,

(84)

here we assume ω1,j∗ > 0. In order to verify Ψ(ω′) < Ψ(ω), we first notice that:∑c
j=1 ω

′
i∗,j(1− ω′

i∗,j)∑c
j=1 ω

′
i∗,j

=

∑
j ̸=j∗ ωi∗,j(1− ωi∗,j)∑

j ̸=j∗ ωi∗,j
≤
∑c

j=1 ωi∗,j(1− ωi∗,j)∑c
j=1 ωi∗,j

, (85)

here the inequality holds because for any j ̸= j∗, we have 1− ωi∗,j ≤ 1− ωi∗,j∗ .

Furthermore, we also notice that:∑c
j=1 ω

′
1,j(1− ω′

1,j)∑c
j=1 ω

′
1,j

=

∑
j ̸=j∗ ω1,j(1− ω1,j) + (ω1,j∗ + ωi∗,j∗)(1− ω1,j∗ − ωi∗,j∗)∑

j ̸=j∗ ω1,j + ω1,j∗ + ωi∗,j∗

≤
∑

j ̸=j∗ ω1,j(1− ω1,j) + ω1,j∗(1− ω1,j∗)∑
j ̸=j∗ ω1,j + ω1,j∗

=

∑c
j=1 ω1,j(1− ω1,j)∑

j ̸=j∗ ω1,j
.

(86)

Combining Formulas 85 and 86, we have Ψ(ω′) < Ψ(ω).

On the other hand, when the condition is met, for any i ̸= i∗, we have:∑c
j=1 ωi,j(1− ωi,j)∑c

j=1 ωi,j
≤ 1− wi∗,j∗ , (87)

here the inequality holds because for any j with ωi,j ̸= 0, we have 1− wi,j < 1− wi∗,j∗ .

Utilizing the above results, we can rewrite the constrained optimization problem as follows:

min
ω

1− ωi∗,j∗

s.t.
d∑

i=1

ωi,j = 1, ∀j ∈ [c]

c∑
j=1

ωi,j > 0, ∀i ∈ [d]

0 ≤ ωi,j ≤ 1, ∀i ∈ [c], j ∈ [d]

ωi∗,j = 0,∀j ∈ [c] \ j∗,

(88)

where i∗, j∗ = argmini,j ωi,j . Furthermore, for any ω that satisfies the constraint of the above Formula 88, we have
c =

∑
i,j ωi,j ≥ dωi∗,j∗ through there are at least d non-zero elements in ωi,: for any i ∈ [d]. Substituting this result into

Equation 83, We have proved that ρld ≥ 1− c
d , thereby completing the proof.
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Finally, we combine the results of Lemma C.8 and Equation 77 to complete the final proof of Theorem C.1.

Proof of Theorem C.1. By substituting Formula 79 into Formula 77 using Lemma C.7, we obtain the following bound,
thereby completing the proof of Theorem C.1.

ε(f∗) ≤ 2

(
4

λd+1
+ 1

)
γ ≤ η(d)

γ

ρ2⌊d/2⌋

≤ η(d)

(
γ

(
αρu⌊d/2⌋ +

β

c
(1− 2c

d
)

)−2
) (89)

C.2. Proof of Theorem 3.7

Theorem C.9. (Recap of Theorem 3.7) Given F , assuming ∥F∥∞ = κ < +∞, for a random training dataset D = DQ∪DU
with nq and nu samples respectively. Then with probability at least 1− δ, we have:

Lwsc(f̂(D, Ŝ))− Lwsc(f
∗) ≤

(
α+ (α+ β/c)2

)(
η0R̂nq+nu

2

(F) + η1

(√
log 2/δ

nq + nu
+

δ

2

))

+ β sup
x∈X

∥∥∥Ŝ(x)T Ŝ(x)∥∥∥
∞

(
η2R̂nq

2
(F) + η3

(√
log 2/δ

nq
+

δ

2

))
+ βη4∆(Ŝ),

(90)

where η0 ⪯ κd+ κ2d2; η1 ⪯ κ2d+ κ4d2; η2 ⪯ κd; η3, η4 ⪯ κ2d are constants related to ∥F∥∞ and feature dimension d.

Definition C.10. (Empirical weakly-supervised spectral contrastive loss under uniform class distribution) Given constructed
Ŝ : X → Rc×n and considering training dataset with corresponding weakly-supervised information DQ = {(xi, qi)

nq

i=1}
and training dataset without any supervised information DU = {(xi)

nq+nu

i=nq+1}, we define empirical weakly-supervised
spectral contrastive under uniform class distribution as follows:

L̂wsc(f ;D, Ŝ) = EX1
Q,X2

Q∼f(A(·|DQ)2),)X1
U ,X2

U∼f(A(·|D)2

[
L̂wsc(X

1
Q,X

2
Q,X

1
U ,X

2
U , Ŝ, Q)

]
= Ex1

i ,x
2
i∼A(·|xi)2

−2α
1

nu + nq

nu+nq∑
i=1

f(x1
i )f(x

2
i )

T + (α+ β/c)2
1

(nu + nq)2

nu+nq∑
i=1

nu+nq∑
j=1

(
f(x1

i )f(x
2
i )

T
)2

+ Ex1
i ,x

2
i

−2β
1

n2
q

nq∑
i=1

nq∑
j=1

Ŝ(xi)
T
:,qiŜ(xi):,qjf(x

1
i )f(x

2
i )

T


(91)

Giving f̂(D, Ŝ) = argmin L̂wsc(f ;D, Ŝ) in Definition C.10. The follow lemma decompose the error bound of
Lwsc(f̂(D, Ŝ))− Lwsc(f

∗) .

Lemma C.11. We define L̂wsc(f ; Ŝ) as expected weakly-supervised spectral contrastive loss using constructed Ŝ, then we
have:

Lwsc(f̂(D, Ŝ))− Lwsc(f
∗) ≤ 2 sup

f∈F

(
L̂wsc(f ;D, Ŝ)− L̂wsc(f ; Ŝ)

)
+ 2 sup

f∈F

∣∣∣L̂wsc(f ; Ŝ)− L̂wsc(f)
∣∣∣ (92)

Proof. On the one hand, we have:(
Lwsc(f̂(D, Ŝ))− Lwsc(f

∗)
)
−
(
L̂wsc(f̂(D, Ŝ); Ŝ)− L̂wsc(f

∗; Ŝ)
)

≤
∣∣∣Lwsc(f̂(D, Ŝ))− L̂wsc(f̂(D, Ŝ); Ŝ)

∣∣∣+ ∣∣∣Lwsc(f
∗)− L̂wsc(f

∗; Ŝ)
∣∣∣

≤ 2 sup
f∈F

∣∣∣L̂wsc(f ; Ŝ)− Lwsc(f)
∣∣∣ .

(93)
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On the other hand, we have:

L̂wsc(f̂(D, Ŝ); Ŝ)−L̂wsc(f
∗; Ŝ) = L̂wsc(f̂(D, Ŝ); Ŝ)− L̂wsc(f̂(D, Ŝ);D, Ŝ)

+ L̂wsc(f̂(D, Ŝ);D, Ŝ)− L̂wsc(f
∗;D, Ŝ) + L̂wsc(f

∗;D, Ŝ)− L̂wsc(f
∗; Ŝ)

≤ 2 sup
f∈F

(
L̂wsc(f ;D, Ŝ)− L̂wsc(f ; Ŝ)

)
.

(94)

Combining Formulas 93 and 94 completes the proof.

We first bounds the first term in Formula 92. It is direct to see that L̂wsc(f ;D, Ŝ) is an unbiased estimator of L̂wsc(f ; Ŝ),
to make use of the Rademacher complexity theory to given a generalize bound of this term, we convert the non sum of i.i.d
pairwise function to a sum of i.i.d form by using perturbations in U-process (Clémençon et al., 2008).

Definition C.12. (Sub-sampling for empirical weakly-supervised spectral contrastive loss) We sample tuples to calculate
the empirical weakly-supervised spectral contrastive loss as follows:

x1
i , x

2
i ∼ A(· | xi)

2, i = 1, . . . , nq + nu (95)
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(96)

The following lemma reveals the relationship between the Rademacher complexity of feature extractors and the Rademacher
complexity of the loss defined on U-process sub-sampling.

Lemma C.13. Let F be a hypothesis class of feature extractors from X to R. Assume ∥F∥∞ = κ and let R̂n(F) be
maximal possible empirical Rademacher complexity for feature extractor in Definition 3.5, then we can bounds empirical
Rademacher complexity on sub-sampling samples as follows:
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Proof. We first proof Formula 97 as follows:
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(100)
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For any x1
i , x

2
i and j, we use Talagrand’s lemma to bound the end term of Formula 100:
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(101)

Combining results of Formulas 100 and 101, we can get Formula 97.

Next, we also use Talagrand’s lemma to bound LHS of Formula 98 as follows:
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(102)

where the first inequality follows from Talagrand’s lemma, and the second and third inequalities result from Formulas 100
and 101, respectively.
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:,qiŜ(xi):,qjf(x

1
i )f(x

2
i+nq/2

)T is supx∈X
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(103)

where the second inequality is directed results of Formula 97 which we have already proved in the previous text.

Lemma C.14. Let F be a hypothesis class of feature extractors from X to R. Assuming ∥F∥∞ = κ. Then with probability
at least 1− δ over random training set Dq and Du, we have :
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∞

(
η2R̂nq

2
(F) + η3

(√
log 2/δ

nq
+

δ

2

))
,

(104)

where η is constant related to ∥F∥∞ and feature dimension d.

26



Weakly-Supervised Contrastive Learning for Imprecise Class Labels

Proof. For convenience, we will abbreviate α+ (α+ β/c)2 as η(α, β). On one hand, note that fact −2αf(x1
i f(x
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T ) +
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]
, we apply standard gener-

alization analysis based on Rademacher complexity and get: with probability at least 1− δ2
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corresponding sub-sampling tuples, we have, for any f ∈ F :
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This means with probability at least 1−δ over D, we have: with probability at least 1−δ/2 over corresponding sub-sampling
tuples condition on D, Formula 105 holds. Hence, with probability at least probability 1− δ/2 over D, we have:
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(106)
On the other hand, note that fact −2βf(x1
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[
−2βκ2d, 2βκ2d

]
and using the exact same
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By combining Formulas 106 and 107 with facts L̂wsc(f ; Ŝ) = ED

[
L̂u
wsc(f ;D, Ŝ) + L̂l

wsc(f ;D, Ŝ)
]
, The proof can be

concluded.

We next bound the second term in Formula 92. The following lemma bounds supf∈F

∣∣∣L̂wsc(f ; Ŝ)− Lwsc(f)
∣∣∣.

Lemma C.15. Let F be a hypothesis class of feature extractors from X to Rd with ∥F∥∞ = κ. Then we have:
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Proof. We expand
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here the 5-th inequality holds because we have:
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∥∥∥P(y | x̃′)− Ŝ(x̃′)P(q | x̃′)

∥∥∥
1

(110)

27



Weakly-Supervised Contrastive Learning for Imprecise Class Labels

Finally, we combine the results of Lemmas C.11, C.14, C.15 to complete the final proof of Theorem C.9.

Proof of Theorem C.9. Take η0 = 64(κd+κ2d2), η1 = 8κ2d+2κ4d2, η2 = 64κd, η3 = 8κ2d, η4 = 24κ2d.By substituting
the results of Lemmas C.14 and C.11 into Formula 92, and then the proof can be completed.

C.3. Detail of Corollary 3.8

By substituting Theorems 3.4 and 3.7 into Theorem D.7 in HaoChen et al. 2021, the corollary can be directly obtained. We
restate Theorem D.7 in HaoChen et al. 2021 as follows:

Theorem C.16. (Theorem D.7 in HaoChen et al. 2021) Assume representation dimension d > 4r + 2, Recall λi be the i-th
largest eigenvalue of the normalized adjacency matrix. Then, for any ϵ > 0 and f̂ ∈ F such that Lwsc(f̂) ≤ Lwsc(f

∗) + ϵ,
we have:

ε(f̂) ≤ ε(f∗) +
d

∆2
λ

ϵ, (111)

where ∆λ ≜ λ⌊3d/4⌋ − λd is the eigenvalue gap between the ⌊3d/4⌋-th and the d-th eigenvalue.

D. Related Work
Many methods have been developed to solve various weakly-supervised learning problems. At the same time, research on
representation learning has also made significant breakthroughs in recent years. In this section, we revisit these related work
and divide them into two parts: weakly-supervised learning and representation learning.

D.1. Weakly-Supervised Learning

In real world, the widely existing supervised information is weakly-supervised information which is either inaccurate or
ambiguous. In order to enable effective and accurate learning from this weakly-supervised information, previous work
has proposed a series of methods for weakly-supervised learning. The two typical paradigms related to weakly-supervised
learning are noisy label learning (NLL) and partial label learning (PLL) , which is what we will introduce in this section.

Noisy Label Learning (NLL). Noisy labels may be caused by annotation errors, and overfitting to these label errors
will lead to poor model performance (Zhang et al., 2021a; Wei et al., 2024; Li et al., 2023). Several strategies have been
developed to mitigate the label noise. The mainstream of NLL methods cover the following aspects: using robust loss
function (Zhang and Sabuncu, 2018; Wang et al., 2019), modeling the noise transfer matrix, performing sample selection
and correcting incorrect labels. In particular, label correction methods have shown promising results than other methods in
noisy label learning. Liu et al. 2020 prove that the model can accurately predict a subset of mislabeled examples during the
early learning phase. This observation implies a potential strategy for rectifying the corresponding labels, which can be
achieved by generating novel labels tantamount to either soft or hard pseudo-labels estimated via the model (Tanaka et al.,
2018). Han et al. 2018 propose Co-teaching which trains two different networks for the label correction. Inspired by the fact
that clean samples have a smaller loss in the early learning stage, Arazo et al. 2019 apply a mixture model to the losses
of each sample to estimate the probability that a sample is mislabeled and correct the loss based on the prediction of the
network. Similar to the previous two methods, DivideMix (Li et al., 2020), deploys two neural networks to conduct mutual
sample selection and apply semi-supervised learning methodology, where the targets are computed based on the average
predictions obtained from different data augmentations.

Partial Label Learning (PLL). Partial labels, while preventing the omission of the correct label, introduce greater ambiguity
into the labeling process. The prior works can be divided into average-based strategies and identification-based strategies.
The average-based methods usually treat all candidate labels equally. Lv et al. 2023 discussed and analyzed the robustness
performance of different average-based loss. However, those methods may introduce the misleading false positive label into
the training process. To overcome these limitations, identification-based strategies, which regard the correct label as a latent
variable and aim to identify it from the candidate label set, have drawn intensive attention and achieved remarkable progress.
PRODEN (Lv et al., 2020) and CC (Feng et al., 2020b) utilize the predictions generated by the predictive model as label
information, thus assigning more weights to labels that are more likely to be correct. Wen et al. 2021 propose a family of
loss functions for label disambiguation. Wu et al. 2022 perform supervised learning on non-candidate labels and employ
consistency regularization on candidate labels.
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In recent years, a more practical setting called instance-dependent partial label learning (IDPLL) has also received
considerable attention. In IDPLL, the candidate set is generated from labels that have a certain semantic similarity with
the true label, which also increases the difficulty of disambiguation. Qiao et al. 2023b propose to explicitly model the
instance-dependent generation process by decomposing it into separate generation steps. Wu et al. 2024 introduce a novel
rectification process to ensure that candidate labels consistently receive higher confidence than non-candidates. He et al.
2023 propose a two-stage framework employing normalized entropy for selective disambiguation of well-disambiguated
examples. CEL (Yang et al., 2025) employs a class associative loss to enforce intra-candidate similarity and inter-set
dissimilarity among the class-wise embeddings for each sample.

Some research has also turned to trying to use a more unified framework to solve both NLL and PLL problems. ULAREF
(Qiao et al., 2024) improves the reliability of label refinement by globally detecting the reliability of the prediction model
and locally enhancing the supervision signal, thereby improving the performance of the prediction model. GFWS (Chen
et al., 2024) treat the ground-truth labels as latent variables and try to model the entire distribution of all possible labeling
entailed by weakly-supervised information, thus allowing a unified solution to deal with NLL and PLL. Although these
methods try to uniformly exploit the common features of weakly-supervised information to solve the weakly-supervised
learning challenges, they all ignore the potential of high-quality representations to achieve label disambiguation.

D.2. Representation Learning and Weakly-Supervised Representation Learning

In recent years, contrastive learning has become dominant in representation learning because they can learn more distinct
representations. A plethora of works has explored the effectiveness of contrastive learning in unsupervised representation
learning (He et al., 2020; Oord et al., 2018; Chen et al., 2020; Caron et al., 2020; Zbontar et al., 2021). Meanwhile, there are
also many works trying to introduce more information into contrastive learning or bring new insights from different views
(Khosla et al., 2020; HaoChen et al., 2021; Sun et al., 2023; Cui et al., 2023; Zhou et al., 2024).

Khosla et al. 2020 attempt to introduce supervised information into contrastive learning. The approach regards samples
in same classes as positive samples and achieves significant performance improvements on multiple supervised learning
tasks. Due to the success of contrastive learning, many researchers have made a lot of attempts to improve the performance
on weakly-supervised learning incorporated with the advantages of contrastive learning. On the line of NLL, the role of
contrastive learning is different. MOIT (Ortego et al., 2021) uses the agreement between the features learned by contrastive
learning and the original labels to identify mislabeled samples. Sel-CL (Li et al., 2022) utilizes k-nn nearest neighbors to
select confident sample pairs and use these sample pairs for supervised contrastive learning. TCL (Huang et al., 2023) uses a
Gaussian mixture model to disambiguate labels, and then uses self-supervised contrastive learning to further learn more
robust representations. For PLL, PiCO (Wang et al., 2022) integrates contrastive learning with prototype learning. The
former facilitates the formation of well-structured clusters, which in turn enables prototype learning to acquire prototype
representations. The latter assists in the selection of positive samples for contrastive learning.

On the other hand, some researchers try to view and explain contrastive learning from different perspectives. Inspired
by the widespread application of spectral graph theory in the field of machine learning, HaoChen et al. 2021 first regard
contrastive learning as a problem of graph clustering on augmentation graph and introduce a spectral contrastive loss, which
greatly promoted the progress of unsupervised contrastive learning. Along this line, Sun et al. 2023 introduce supervised
information to this spectral contrastive learning framework, transforming the augmentation graph in the original problem
into a perturbation graph, thus achieving great performance improvement on open-world semi-supervise learning task.

Despite their success in the respective field, they all overlooked the importance of correctly utilizing weakly-supervised
information. Relevant theories and experiments have verified that simply introducing inaccurate noise labels for contrastive
learning is ineffective and even harmful (Cui et al., 2023). Therefore, it is necessary to design a special contrastive learning
framework for weakly-supervised information. Overall, our method is the first approach to utilize weakly-supervised
information for contrastive learning from a graph spectral theory perspective. Sufficient experiments and complete and
rigorous theory guarantee the effectiveness of the proposed method.

E. Implementation Details
In this section, we provide more details on the implementation of our approach. In general, our proposed framework contains
three training strategies: supervised loss, strong-weak augmentation consistency regularization (Xie et al., 2020), and the
proposed weakly-supervised contrastive learning (WSC) loss. Among them, the supervised loss varies with different settings,
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while the other two losses do not change with the setting.

Specifically, given any sample x, its weakly-supervised information can be denoted as q ∈ Q. Let the extracted feature
embedding be f(x), the final probability prediction of the neural network be g(x), and the strong augmentation function be
As(·). Our method can be formalized as:

L(x, q) = Lsup(g(x), q) + LCE(g(As(x)), g̃(Aw(x))) + Lwsc(f), (112)

where g̃(x) means the prediction is made by a fixed copy of current model, indicating that the gradient is not propagated.
The first term in equation 112 means the supervised loss which will be introduced next. The second term is the so called
strong-weak augmentation consistency regularization, which consistently utilize the prediction of the weakly-augmented
data to train the strongly-augmented data, and it is commonly used in weakly-supervised learning (Xie et al., 2020; Wang
et al., 2022; Wu et al., 2022; Chen et al., 2024). The third term is the proposed WSC loss, which needs at least three inputs:
the embeddings of the features of two different views of the sample and the constructed matrix Ŝ. In this paper, we compute
this loss through Algorithm 1 which assumes a uniform class distribution, pseudo code of computing WSC loss without this
assumption can be found in Algorithm 2. We left method for construct Ŝ in next section.

E.1. Noisy Label Learning

Setup. For CIFAR-10 and CIFAR-100, an 18-layer PreAct ResNet is employed and stochastic gradient descent (SGD) is
utilized for training with a momentum value of 0.9, a weight decay factor of 0.001, and a batch size of 128 over a total
of 250 epochs. The initial learning rate is set to 0.02 and adjusted by a cosine learning rate scheduler. In our framework,
both the projection head and the classification head are configured as a two-layer Multilayer Perceptron (MLP) with a
dimension of 256 and the number of classes. The parameters are set to α = 1, β = 12 for CIFAR-10 and α = 2, β = 300
for CIFAR-100. Additionally, for CIFAR-100, the last term of our loss function is scaled by a factor of 3. In addition, we
also conduct experiments on CIFAR-10N and CIFAR-100N, where we use a 34-layer ResNet as the backbone for feature
extraction, others are same as the previous one. Besides, a 50-layer ResNet pretrained with ImageNet-1K was used to train
for 15 epochs on Clothing1M. The batch size are set to be 64 and the initial learning rate is 0.002 and then multiply by a
factor of 0.1 in the 7th epoch. We also set α = 1, β = 28. The detailed hyper-parameters are presented in Table 4.

Table 4. Hyper-parameters for noisy label learning used in experiments.

Hyper-parameter CIFAR-10 (CIFAR-10N) CIFAR-100 (CIFAR-100N) Clothing1M

Image Size 32 32 224

Model PreAct-ResNet-18 (ResNet-34) PreAct-ResNet-18 (ResNet-34)
ResNet-50

(ImageNet-1K Pretrained)
Batch Size 128 128 64

Learning Rate 0.02 0.02 0.002
Weight Decay 1e-3 1e-3 1e-3
LR Scheduler Cosine Cosine MultiStep

Training Epochs 250 250 15
Classes 10 100 14

α 1 2 1
β 12(6) 300 28

Baselines. The performance of proposed method for noisy label is compared against ten baselines:

• CE, which utilizes the standard cross-entropy loss directly to train the model in a batch.

• DivideMix (Li et al., 2020), which regards noisy instances as unlabeled data and employs the strategy involving label
co-refinement and co-guessing.

• ELR (Liu et al., 2020), which focuses on early learning via regularization to preclude the memorization of incorrect
labels.

• SOP (Liu et al., 2022), which models the noise with sparse over-parameterization and exploits implicit regularization.
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Table 5. Comparisons with each methods on CIFAR-10N, CIFAR-100N and Clothing1M. Each runs has been repeated 3 times with
different randomly-generated noise and we report the best accuracy.

Dataset CIFAR-10N CIFAR-100N Clothing1M

Noisy Type Random1 Aggregate Worst Clean Noisy Ins.

CE 85.02±0.65 87.77±0.38 77.69±1.55 76.70±0.74 55.50±0.66 69.10
Forward 86.88±0.50 88.24±0.22 79.79±0.46 76.18±0.37 57.01±1.03 -
Co-teaching 90.33±0.13 91.20±0.13 83.83±0.13 73.46±0.09 60.37±0.27 -
ELR 94.43±0.41 94.83±0.10 91.09±1.60 78.57±0.12 66.72±0.07 72.90
GFWS 94.86±0.07 95.30±0.03 93.55±0.14 78.53±0.21 68.07±0.33 74.02
CORES 94.45±0.14 95.25±0.09 91.66±0.09 73.87±0.16 55.72±0.42 73.20
SOP 95.28±0.13 95.61±0.13 93.24±0.21 78.91±0.43 67.81±0.23 73.50

WSC (Ours) 96.13±0.52 96.50±0.72 93.60±0.21 81.31±0.16 71.00±0.16 74.75±0.18

• GFWS (Chen et al., 2024), which is a unified framework that uses Expectation-Maximization to model noisy label as
latent variables.

• ULAREF (Qiao et al., 2024), which trains the predictive model with refined labels through global detection and local
enhancement.

• ProMix (Xiao et al., 2023), which meticulously selects, dynamically extends, and optimally utilizes clean sample sets
within the devised semi-supervised learning framework.

• MOIT (Ortego et al., 2021), which jointly exploits contrastive learning and classification to enhance performance
against label noise, with contributions including an ICL loss, a novel label noise detection method, and a fine-tuning
strategy.

• Sel-CL (Li et al., 2022), which leverages nearest neighbors to select confident pairs for supervised contrastive learning.

• TCL (Huang et al., 2023), which disambiguate labels by a Gaussian mixture model and uses self-supervised contrastive
learning to further learn more robust representations.

Discussion. Recent works on NLL can be categorized into three types, with methods based on the noise transition matrix
demonstrating empirical effectiveness. In our proposed framework, we use the cross-entropy loss to align the model output
conditioned by the estimated noisy transition matrix and the noisy label. Besides, in order to better learn from the noisy
label, we follow Li et al. 2021 and impose the following regularization constraints on the estimated noise transition matrix
T . The above two terms will construct the supervised loss as:

Lsup(g(x), q) = LCE(g(x)T , q) + λ log det(T ), (113)

where λ is a regularization coefficient.

Additional Experiments. In addition to the results we present in the main paper which mainly focuses on the the simulated
datasets, we also verify the effectiveness of the proposed method on the CIFAR-N dataset (Wei et al., 2022), which equips
the training samples of CIFAR dataset with human-annotated noisy label. On CIFAR-10N, we used three noise types:
Aggregate, Random1, and Worst, with corresponding noise rates of 9.03%, 17.23%, and 40.21%. For CIFAR-100N, we
compared the model performance under Clean and Noisy settings with a noise rate of 40.21%. We also include a full
comparison on Clothing1M which has more realistic and large-scale instance noise (Xiao et al., 2015).

The results shown in Table 5 show the superiority of our method on these datasets. It is particularly noteworthy that our
method performs very well on CIFAR-100N, which should be due to the fact that our contrastive learning method specially
designed for weakly supervised learning helps learn more and better feature representations. It is worth noting that since
the noise type of these datasets is not suitable for estimation using a noise transition matrix, we ignore the second term of
Equation 113 during training.

Qualitative Results. Figure 2 visualizes the learned representations under a high noise ratio. Compared to ELR+, which
employs two distinct backbones to obtain more meaningful representations, our method generates well-defined structures
with semantically meaningful information, leading to superior accuracy in these settings.
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(a) WSC on CIFAR-10 (b) ELR+ on CIFAR-10 (c) WSC on CIFAR-100 (d) ELR+ on CIFAR-100

Figure 2. We present t-SNE visualizations of the learned representations on the CIFAR dataset with 90% symmetric noise. Figure 2(a)
and Figure 2(b) illustrate the results for WSC and ELR+ on CIFAR-10, while Figure 2(c) and Figure 2(d) display the results for WSC and
ELR+ on CIFAR-100 under the same noise condition, where only 20 categories with the highest accuracy for each model are shown.

E.2. Partial Label Learning

Setup. For simulated PLL settings, we use Wide-ResNet-28-2 trained from scratch and ResNet-18 pre-trained with
ImageNet-1K as our feature extractors on the CIFAR dataset and CUB-200 dataset, respectively. Following most of
experimental setups conducted on the contrastive network, we use a 2-layer MLP that outputs 128-dimensional embeddings
as our projection head. The batch size is 256 and the weight decay is 0.0001 across all the PLL settings. We set the initial
learning rate to be 0.1 and adjust it by MultiStep and Cosine scheduler on CIFAR datasets and CUB-200 respectively.
On CIFAR-10 and CIFAR-100 (CIFAR-100-H), we train our model for 200 epochs using parameters α = 1, β = 12 for
CIFAR-10 and α = 2, β = 300 for CIFAR-100. For the CUB dataset, we train for 300 epochs with parameters α = 2 and β
linearly increasing from 0 to 400. The detailed choice of hyper-parameters is provided in Table 6. Furthermore, for IDPLL
settings, we use ResNet-34 pre-trained with ImageNet-1K as our feature extractors following (Yang et al., 2025). We train
our model for 500 epochs and set the initial learning rate be 0.1 and adjust it by Cosine scheduler on both four fine-grained
datasets. The detailed choice of hyper-parameters is provided in Table 7.

Table 6. Hyper-parameters for simulated partial label learning used in experiments.

Hyper-parameter CIFAR-10 CIFAR-100 (CIFAR-100H) CUB-200

Image Size 32 32 224

Model Wide-ResNet-28-2 Wide-ResNet-28-2
ResNet-18

(ImageNet-1K Pretrained)
Batch Size 256 256 256

Learning Rate 0.1 0.1 0.01
Weight Decay 1e-4 1e-4 1e-5
LR Scheduler MultiStep MultiStep Cosine

Training Epochs 200 200 300
Classes 10 100 200

α 1 2 2
β 12 300 0-400

Discussion. We provide the detailed implementation of Lsup on PLL setting here. The average-based methods has been
widely used in recent PLL works. Given the probability prediction g(x), we can denote the classifier as h(x) = argmin

i∈Y
gi(x).

Besides, the candidate set q can be derived from the weakly supervised information, thus, the family of average partial label
losses can be formally writen as:

Lavg(h(x), q) =
1

|q|
∑
i∈q

ℓ(h(x), i), (114)
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Table 7. Hyper-parameters for instance-dependent partial label learning used in experiments.

Hyper-parameter CUB200 CARS196 DOGS120 FGVC100

Model ResNet-34(Pretrained) ResNet-34(Pretrained) ResNet-34(Pretrained) ResNet-34(Pretrained)
Image Size 224 224 224 224
Batch Size 256 256 256 256

Learning Rate 0.01 0.01 0.01 0.01
Weight Decay 1e-5 1e-5 1e-5 1e-5
LR Scheduler Cosine Cosine Cosine Cosine

Training Epochs 500 500 500 500
Classes 200 196 120 100

α 2 2 2 2
β 0-400 0-400 0-240 0-200

where | · | represents the cardinality. There are different loss functions ℓ that can be chosen, and we use the commonly used
cross-entropy loss to implement our framework. The supervised loss can then be obtained from the above average partial
label loss.

Baselines. We compare the proposed framework with seven methods handling partial labeled data:

• LWS (Wen et al., 2021), which weights candidate labels and non-candidate labels through a leverage parameter.

• PRODEN (Lv et al., 2020), which progressively identifies correct labels through the model output.

• CC (Feng et al., 2020b), which derives a classifier consistent risk estimator through a transition matrix.

• MSE (Feng et al., 2020a), which uses Mean Square Error loss to learn with multiple complementary labels.

• RCR (Wu et al., 2022), which performs supervised learning on non-candidate labels and employ consistency regular-
ization on candidate labels.

• PiCO (Wang et al., 2022), which utilizes a contrastive loss term to enhance the model disambiguation ability.

We also include four IDPLL methods to compare:

• IDGP (Qiao et al., 2023b), which proposes to explicitly model the instance-dependent generation process by decompos-
ing it into separate generation steps.

• DIRK (Wu et al., 2024), which introduces a novel rectification process to ensure that candidate labels consistently
receive higher confidence than non-candidates.

• NPELL (He et al., 2023), which proposes a two-stage framework employing normalized entropy for selective disam-
biguation of well-disambiguated examples.

• CEL (Yang et al., 2025), which employs a class associative loss to enforce intra-candidate similarity and inter-set
dissimilarity among the class-wise embeddings for each sample.

Additional Experiments. To further investigate the performance of our proposed method on fine-grained image classification
tasks, we conduct additional experiments using CIFAR-100 with hierarchical labels (CIFAR-100-H) (Wang et al., 2022),
where candidate labels are generated from the 20 superclasses in CIFAR-100. Furthermore, we extend our experiments on
CUB-200, as presented in the main paper, to include a wider range of partial label ratios, specifically 0.01, 0.05, 0.1. We
also extend our experiments on IDPLL setting. Following previous work (Wu et al., 2024; Yang et al., 2025), we conduct
experiments on four fine-grained datasets: CUB-200 (Wah et al., 2011a), CARS-196 (Krause et al., 2013), DOGS-120
(Khosla et al., 2011), and FGVC-100 (Maji et al., 2013), and we employed the IDPLL noisy label generation method
proposed by VALEN (Xu et al., 2021) to generate instance-dependent noisy labels which is the standard experimental
protocol in IDPLL settings.
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Table 8. Comparisons with each methods on simulated PLL datasets. Each runs has been repeated 3 times with different randomly-
generated partial labels and we report the mean and std values of last 5 epochs.

Dataset CIFAR-100-H CUB-200

Partial Ratio 0.1 0.5 0.8 0.01 0.05 0.1

PiCO 76.55±0.68 74.98±0.42 66.38±0.24 74.14±0.28 72.12±0.74 62.02±1.16

LWS 63.88±0.10 59.37±0.25 40.33±0.19 73.74±0.23 39.74±0.43 12.30±0.77

PRODEN 67.42±0.91 64.89±0.75 50.41±0.38 72.34±0.04 62.56±0.10 35.89±0.05

CC 58.11±0.46 56.44±0.37 30.11±0.48 56.63±0.01 55.61±0.02 17.01±1.44

MSE 57.88±0.85 51.13±0.32 28.33±0.44 61.12±0.51 22.07±2.36 11.40±2.42

GFWS 77.10±0.18 76.08±0.25 61.35±0.71 73.19±0.42 70.77±0.20 47.44±0.15

RCR 77.38±0.33 75.78±0.25 65.31±0.19 - - -

WSC (Ours) 78.31±0.17 76.67±0.11 66.77±0.05 76.88±0.39 74.55±0.17 56.13±0.34

Table 9. Comparisons with each methods on IDPLL settings with four fine-grained datasets. Each runs has been repeated 3 times with
different randomly-generated partial labels and we report the mean and std values of last 5 epochs.

Dataset WSC (Ours) CEL DIRK NEPLL IDGP PiCO PRODEN

CUB-200 68.90±0.27 68.60±0.10 66.60±1.07 62.88±1.66 58.16±0.58 58.56±0.90 65.05±0.14

CARS-196 87.88±1.18 86.22±0.08 85.31±0.77 85.05±0.17 79.56±0.46 70.15±1.63 83.35±0.05

DOGS-120 79.75±0.32 78.18±0.12 75.97±0.29 74.84±0.09 66.79±0.38 67.80±0.06 70.94±0.43

FGVC-100 77.80±0.39 78.36±0.19 76.86±3.54 75.36±0.59 72.48±0.86 63.52±0.94 69.34±0.39

Our method outperforms other methods except the experiment on CUB-200 with 0.1 partial ratio as shown in Table 8.
The improvement can be attributed to PiCO’s class prototype-based pseudo-labeling mechanism for disambiguation, a
strategy that has proven effective in several fine-grained classification tasks. Moreover, our approach avoids the need for
additional complex techniques. By incorporating our contrastive loss into the training objective, we achieve an 8.69%
improvement over GFWS in this setting, highlighting the potential for even greater performance gains. Similarity, our
WSC method demonstrates strong performance in the instance-dependent partial label learning (IDPLL) setting as shown
in Table 9 without introducing any complex modules or additional technical components. The results further validate that
WSC can effectively address the challenges of instance-dependent label ambiguity while maintaining a straightforward
implementation.

E.3. Ablation Study

We conduct ablation experiments on CIFAR-100, as shown in Table 10. The results demonstrate that the proposed WSC
loss consistently improves performance, especially under high noise rates, where it increases performance by 16.22% and
8.99%, respectively, further validating the effectiveness of the proposed method.

Table 10. Ablation studies of our proposed algorithm on CIFAR-100 with different ratio of noisy label and partial label.

Components Noisy Label Partial Label

Supervised Loss Consistency Regularizer WSC Loss 0.5 0.8 0.9 0.1 0.2 0.3

✓ 53.89 41.35 20.11 61.50 55.22 35.44
✓ ✓ 75.43 66.40 45.10 75.80 73.12 60.16
✓ ✓ ✓ 77.51 71.92 61.32 77.26 75.13 69.15

F. Details of Construction of Semantic Similarity under Different Scenarios

In this section, we will introduce more details respectively regarding the construction of Ŝ in the scenarios of noisy label
learning and partial label learning.
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Algorithm 2 batch data estimation of Lwsc under general scenario

Input: features of two augmentation view of batch data with corresponding weakly-supervised information X1
Q,X

2
Q ∈

RBQ×d, Q ∈ QBQ , features of two augmentation view of batch data without any supervised information X1
U ,X

2
U ∈

RBU×d, S in Proposition. 2.1, class prior P(y) ∈ Rc×1, proportional coefficients α, β
Output: batch data estimated loss L̂wsc

Compute S(X) ∈ Rc×BQ ,S(X):,x = S(x):,q
Compute S′(X) ∈ R1×BQ ,S′(X) = P(y)TS(X)

Compute L̂1 =
Tr[X1

Q(X2
Q)T ]+Tr[X1

U (X2
U )T ]

BQ+BU

Compute L̂2 =
∥(S(X)TS(X))⊗(X1

Q(X2
Q)T )∥

1

B2
Q

Compute L̂3 =
∥X1

Q(X2
Q)T∥2

2
+∥X1

U (X2
U )T∥2

2

B2
Q+B2

U

Compute L̂4 =

∥∥∥√S′(X)TS′(X)⊗(X1
Q(X2

Q)T )
∥∥∥2

2

B2
Q

Take XQ = [X1
Q;X

2
Q],XU = [X1

U ;X
2
U ],S

′(X) = [S′(X),S′(X)]

Compute L̂5 =

∥∥∥∥√Diag(S′(X))XQXT
U

∥∥∥∥2

2

4BQ×BU
.

Return: L̂wsc(X
1
Q,X

2
Q,X

1
U ,X

2
U ,S, Q) = −2αL̂1 − 2βL̂2 + α2L̂3 + β2L̂4 + 2αβL̂5

F.1. Details of Construction of Semantic Similarity under Noisy Label Setting

Using Environment Information. For instance-independent noisy label setting, there exists a T satisfies T = T (x) holding
almost everywhere in X . Hence, inspired by our Proposition 2.4, in this setting, we can use Ŝ(x) = (T̂ )−1 for any x ∈ X ,
where T̂ is estimated noisy transition matrix. Quite a number of studies have already investigated how to estimate the noise
transition matrix (Liu and Tao, 2016; Patrini et al., 2017; Xia et al., 2019; Li et al., 2021; Zhang et al., 2021b; Lin et al.,
2023). These methods are usually divided into two categories: anchor-based methods and anchor-free methods. The former
(Liu and Tao, 2016; Patrini et al., 2017; Xia et al., 2019) usually fits the noise posterior directly, and then estimates the
noise matrix by this estimated noise posterior probability on the data of reliable anchor points. In recent years, it is the
latter (Li et al., 2021; Zhang et al., 2021b; Lin et al., 2023) that has achieved better results. They obtain the estimated noise
matrix by searching for the matrix that minimizes a specific metric within the matrix family that can linearly represent all
noise posteriors. Specifically, Li et al. 2021 uses volume of estimated noisy matrix as this specified metric and Zhang et al.
2021b uses total variation as this specified metric. Lin et al. 2023 additionally adopts a bi-level optimization to increase
the robustness against the error of the estimation of the noise posterior and thus achieving better performance. All above
methods can be used to construct Ŝ.

Using Both Environment and Samples Information. However, the aforementioned way of constructing semantic
similarity only takes into account the weakly-supervised information while ignoring the information of the samples
themselves. Therefore, even if we obtain a completely accurate noise matrix through estimation, such a construction method
will still add a variance term to the learning error (supx∈X

∥∥∥Ŝ(x)T Ŝ(x)∥∥∥
∞

in Formula 29), thus resulting in sub-optimal
performance in practice. Recalling Bayes theorem:

P(y | x) =
∑
q∈Q

P(y, q | x) =
∑
q∈Q

P(y | x, q)P(q | x). (115)

Thus we can take Ŝ(x)y,q = P̂(y | x, q) where P̂(y | x, q) is estimation posterior with corresponding weakly-supervised
information. With a estimated noisy transition matrix T̂ , we can estimate P̂(y | x, q) as follows:

P̂(y | x, q) ∝ P̂(y, q | x) = P̂(y | x)T̂ q,y = g(Aw(x))T̂ q,y, (116)

where g(Aw(x)) denotes posterior probability predicted by the current neural network.

Such a construction method can be regarded as constructing semantic similarity by integrating the information of the current
neural network, the sample information and the estimated environmental information. Therefore, better performance has
been achieved in practice.
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Using Samples Information. For instance-dependent setting which we do not assume that all samples share the same noise
transition matrix, the methods mentioned above become invalid. In such setting, we are unable to utilize the environmental
information and can only rely on the properties of the neural network itself as well as the sample information for estimation
P̂(y | x, q). This type of method has also been widely discussed in noisy label learning (Liu et al., 2020; Li et al., 2022;
Ortego et al., 2021; Liu et al., 2022; Xiao et al., 2023; Huang et al., 2023; Qiao et al., 2024) and has achieved higher
performance in practice. The main idea of this method can be summarized by the following equation:

P̂(y | x, q) = P̂(y | x, ŷ) =
{
I[ŷ = y] x ∈ Dr

g(Aw(x))y x /∈ Dr
, (117)

where the ŷ denotes corresponding noisy label, and Dr is a “reliable” set of noisy labels which are screened out using a
specific method.

Specifically, such screening methods are usually carried out based on empirical observation that the neural networks tend to
learn easy (correct) samples first, and then start to fit onto the hard (corrupt) samples in the later phase of training, hence
the samples with small loss values are presumed to be reliable, while those with large loss values are not. The specific
implementation of screening is diverse. Any screening method can be used in our framework to construct the corresponding
Ŝ. In this paper, we will not describe these methods in more details.

Construct of Main Experiments. To avoid introducing more details into the methods in the main paper, the Ŝ selected in
the main experiments of this paper only adopts the simplest form and does not use any screening mechanisms that have
been proven to be effective. We simply take Ŝ as Ŝ(x)y,q = P̂(y | x, q) = g(Aw(x))y for any x. More experiment of using
different Ŝ can be referred to in the Table 11. For the sake of simplicity in this experiment, the first way to construct S is to
use a fixed real noise matrix. The second way to construct S is the same as the method used in our main paper. In the third
approach, we construct P̂(y | x, q) as a convex combination of the original noisy label and the model predictions, with the
weights predicted by a two-component Gaussian mixture model. This method is a commonly used label bootstrap technique,
as demonstrated by (Huang et al., 2023). The second method achieves the best results, as it leverages both the overall
environmental information and the sample information more effectively. Additionally, due to the accuracy of clean sample
screening in the early learning stage, the third method achieves performance similar to the second method. In contrast,
using the inverse of the noise transition matrix alone, even with the true noise transition matrix, leads to suboptimal results
because it neglects the sample information.

F.2. Details of Construction of Semantic Similarity under Partial Label Setting

Using Environment Information. For instance-independent partial label setting, unlike the situation of noisy label, it is
generally quite difficult to directly estimate the transition matrix T due to the curse of dimensionality. However, when using
the commonly assumption that labels are independent adopted into the candidate set (Cour et al., 2011; Lv et al., 2020; Feng
et al., 2020b), the problem can be simplified. We formally present this assumption as follows:

Assumption F.1. (Selected candidate at uniform and independent (SCUI) assumption) The partial label problem satisfies
the SCUI assumption if its generation process meets follow equation:

P(q | x, yi) = I[yi ∈ q]
∏

y∈Y,y ̸=yi

P(y /∈ q | x, yi)I[y/∈q]P(y ∈ q | x, yi)I[y∈q]

= I[yi ∈ q]
∏

y∈Y,y ̸=yi

(1− σy)
I[y/∈q]σI[y∈q]

y ,
(118)

where P(y ∈ q | x, yi) = µy for any y ̸= yi.

Giving this assumption, we can decompose the partial label problem into c times independent binary classification noisy
label problems. When each σy in known, it is easy to see follow S will satisfy ST = Ic×c:

Sy,q =

{
1 y ∈ q
−σy

1−σy
y /∈ q

, (119)

Hence, if we can get estimated σ̂y for any y ∈ Y , we can take Ŝy,q through Equation 119.
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Now we consider how to estimate this σy . We assume a uniform class distribution and encode q = l ∈ [0, 1]c, where li = 1
indicates yi ∈ q. The following equation holds:

P(x | li = 1) =
P(x, Y = yi, li = 1) + P(x, Y ̸= yi, li = 1)

P(li = 1)

=
(1/c)P(x | Y = yi) + (1− 1/c)σiP(x | Y ̸= yi)

(1/c) + (1− 1/c)σi

=
(1/c)P(x | Y = yi) + (1− 1/c)σiP(x | li = 0)

(1/c) + (1− 1/c)σi

= (1− θi)P(x | Y = yi) + θiP(x | li = 0),

(120)

where θi =
(c−1)σy

1+(c−1)σy
.

Using Equation 120, we transform the problem of estimating σi into the problem of estimating θi. The later is a mixture
proportion estimation problem to estimate θi given samples sampled from the P(x | li = 1) and P(x | li = 0). Under many
assumptions to ensure identifiability, including the irreducibility assumption (Scott et al., 2013; Garg et al., 2021), the anchor
point assumption (Scott, 2015; Liu and Tao, 2016), the separability assumption (Ramaswamy et al., 2016), θi can been
estimated through many off-the-shelf methods (Scott et al., 2013; Scott, 2015; Ramaswamy et al., 2016; Garg et al., 2021).

Using Both Environment and Samples Information. Similar to the noisy label setting, the above method for constructing
semantic similarity overlooks the information contained in the samples themselves. To address this, we can incorporate
sample information by applying Bayes’ theorem. The estimation of P̂(y | x, q) can then be expressed as follows:

P̂(y | x, q) ∝ P̂(y | x)P(q | x, y) = P̂(y | x)
∏

y′∈q σy′
∏

y′ /∈q(1− σy′)

σy
I[y ∈ q] ∝ g(Aw(x))y

σy
I[y ∈ q]. (121)

Such a construction method can be regarded as constructing semantic similarity by integrating the information of the current
neural network, the sample information and the estimated environmental information. Therefore, better performance has
been achieved in practice. When σy is unknown, we can simply assume that σy = σ for any y ∈ Y , Equation 121 can still
be used to construct semantic similarity.

Using Samples Information. In the instance-dependent partial label setting proposed in recent years (Xu et al., 2021;
Qiao et al., 2023a), the SCUI assumption does not hold, the methods mentioned above become invalid. To estimate
P̂(y | x, q) in this situation, Xu et al. 2021 proposes a variational label enhancement method which relies solely on current
neural network. Additionally, Qiao et al. 2023a parameterizes P̂(q | x, y) and uses maximum likelihood estimation to
learn these parameters. Given this estimation P̂(q | x, q), we can also estimate P̂(y | x, q) using the Bayes theorem:
P̂(y | x, q) ∝ P̂(y | x)P̂(q | x, y).

Construct of Main Experiments. To avoid introducing more details into the methods in the main paper, the Ŝ selected
in the main experiments of this paper only adopts the simplest form. We simply assume that σy = σ for any y ∈ Y and
apply Equation 121. Specifically, we take Ŝ(x)y,q = P̂(y | x, q) = I[y ∈ q]

g(Aw(x))y∑
y′∈q g(Aw(x))y′

for any x. More experiments

using different Ŝ can be found in Table 11. For the sake of simplicity in this experiment, the first way to construct S is to
use a fixed real partial ratio. The second way to construct S is the same as the method used in our main paper. In the third
approach, we construct P̂(y | x, q) by using variational label enhancement method proposed in (Xu et al., 2021). The second

Table 11. Comparisons with each methods for constructing Ŝ on CIFAR-100 with different ratio of noisy label and partial label. We
report the mean and std values of last 5 epochs. Env., Sap. denote the environment information and sample information, respectively.

Type Noisy Label Partial Label

Ratio 0.5 0.8 0.9 0.05 0.1 0.2

WSC w/ Env. 75.29±0.15 67.34±0.34 55.01±0.14 76.31±0.25 75.85±0.54 71.33±1.33

WSC w/ Env. & Sap. 77.51±0.07 71.92±0.17 61.32±0.15 77.88±0.19 77.26±0.30 75.13±0.24

WSC w/o Env. 76.83±0.91 71.18±0.75 59.58±0.38 78.01±0.45 76.88±0.25 74.50±0.25
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method achieves the best results, as it leverages both the overall environmental information and the sample information.
Additionally, because Xu et al. 2021 also uses the sample information, hence achieves performance similar to the second
method. In contrast, using the environment information alone, even with the true σ, leading to suboptimal results because it
neglects the sample information.
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