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ABSTRACT

The basis of existing knowledge graph completion (KGC) models is to learn the
correlations in data, such as the correlation between entities, relations and scores
of triplets. Since correlation is not as reliable as causation, correlation-driven KGC
models are weak in interpretability and suffer from the data bias issues. In this pa-
per, we propose causal KGC models to alleviate the data bias issues by leveraging
causal inference framework. Our method is intuitive and interpretable by utilizing
causal graphs, controllable by using intervention techniques and model-agnostic.
Causal graphs allow us to explain the causal relationships between variables and
study the data generation processes. Under the causal graph, data bias can be seen
as confounders. Then we block the bad effect of confounders by intervention oper-
ators to mitigate the data bias issues. Due to the difficulty of obtaining randomized
data, causal KGC models pose unique challenges for evaluation. Thus, we show a
method that makes evaluation feasible. Finally, we show a group theory view for
KGC, which is equivalent to the view of causal but further reveals the causal rela-
tionships. Experimental results show that our causal KGC models achieve better
performance than traditional KGC models on three benchmark datasets.

1 INTRODUCTION

A knowledge graph (KG) consists of a large number of triplets in the form of (head entity, relation,
tail entity). Many KGs suffer from the incompleteness problem. To complement the KGs, knowl-
edge graph completion (KGC) models define a scoring function to measure the likelihood of triplets.
The core of traditional KGC models is to learn the correlation in data, such as the correlation be-
tween entities or relations and scores of triplets. Since correlation is not as reliable as causation,
purely modeling the correlation leads to poor interpretability and the data bias issues. For example,
due to ignoring popularity bias in KG data, KGC models are biased towards popular entities and
relations (Mohamed et al., 2020).

In this paper, we propose causal KGC models to solve the data bias issues by utilizing causal infer-
ence techniques (Pearl, 2009b). Our method is model-agnostic and just needs to add an extra term to
the traditional KGC models. Causal inference defines causal graphs to describe the causal relation-
ships between variables. Causal graphs can help build intuitive, interpretable and controllable KGC
models. Traditional KGC models are only concerned with the correlations in the data, while ignor-
ing the causation and the data generation process, which can lead to incorrect correlations between
entities, relations and scores of triplets. Causal graphs allow us to explain the causal relationships
between variables and study the data generation processes. Under the causal graph, data bias can be
seen as confounders, where confounders in KG data are variables that simultaneously affect entities
or relations and scores of triplets. We utilize intervention operators to eliminate the bad effect of
confounders, which remove the path from confounders to entities and relations in the causal graph.
Then we can estimate the causal effect or correct correlations in KG data by backdoor adjustment
formula (Pearl, 2009b).

Causal KGC models present special challenges for evaluation, which need to evaluate on a random-
ized test set. However, a randomized test set is often difficult or infeasible to obtain. Therefore,
we define a new evaluation metric to measure the performance of causal KGC models based on the
popularity of entities and relations.
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The main feature of causal is invariance or symmetry (Arjovsky et al., 2020). Group theory is a
language to describe symmetry. Thus, we finally show a view of group theory for KGC, which is
equivalent to the view of causal but further uncovers the causal relationships. The view of group
theory transcends the view of causal and shows potential applications.

The main contributions of this paper are listed below:

1. To the best of our knowledge, we are the first to show the necessity of introducing causation into
KGC and apply causal inference to KGC.

2. We propose causal KGC models to enhance the interpretability of KGC models and alleviate the
data bias issues. Then we show a method to evaluate causal KGC models on observation datasets.

3. We show a view of group theory for KGC to further reveal the causal relationships.

4. We empirically show that causal KGC models outperform traditional KGC models on three
benchmark datasets.

2 BACKGROUND

In this section, we introduce the related background of our model, knowledge graph completion and
causal inference.

2.1 KNOWLEDGE GRAPH COMPLETION

Let E denote the set of entities and R denote the set of relations, a KG is composed of a set of triplets
D = {(h, r, t)} ⊂ E ×R× E , where h is a head entity, r is a relation and t is a tail entity. Lacroix
et al. (2018) propose to augment every triplet (h, r, t) in D with its inverse triplet (t, r−1, h). With
this augmentation, KGC can be formulated as predicting the tail entities that satisfy a query (h, r, ?).
A KG can also be represented by a 3rd-order binary tensor X ∈ {0, 1}|E|×|R|×|E| with Xh,r,t = 1
if (h, r, t) ∈ D and Xh,r,t = 0 if (h, r, t) /∈ D.

KGC models define a scoring function f(h, r, t) to measure the likelihood of a triplet (h, r, t) based
on the corresponding embedding (h, r, t). A number of KGC models have been proposed (Zhang
et al., 2021a), we list four popular KGC models that we consider in our experiments.

TransE (Bordes et al., 2013), a representative model of translation-based models, defines the scoring
function as the negative distance between h+ r and t, i.e.,

f(h, r, t) = −∥h+ r − t∥

where (h, r, t) is the corresponding embeddings of (h, r, t), h, r, t ∈ Rn, n is the dimension of
embedding and ∥ · ∥ is a norm of a vector. RotatE (Sun et al., 2018) generalizes the embedding
from real vector space to complex vector space to model various relation patterns, and the scoring
function is defined as

f(h, r, t) = −∥h⊙ r − t∥
where h, r, t ∈ Cn and ⊙ is Hadamard product.

DistMult (Yang et al., 2014), a representative model of multiplicative models, defines the scoring
function as the inner product of h, r and t, i.e.,

f(h, r, t) =

n∑
i=1

hiriti

where h, r, t ∈ Rn. ComplEx (Trouillon et al., 2017) extends DistMult to complex vector space to
handle asymmetric relation patterns and defines the scoring function as

f(h, r, t) = Re(

n∑
i=1

hirit
∗
i )

where h, r, t ∈ Cn, t∗i is the complex conjugate of ti and Re(·) is the real part of a complex number.
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Figure 1: (a) describes the causal graph of traditional KGC models. (b) describes the causal graph
with three confounders. (c) describes the causal graph after the intervention do(H,R, T ).

2.2 CAUSAL INFERENCE

Causal inference is the process of inferring the causal relationships from data (Yao et al., 2021).
There are two representative frameworks for causal inference: structural causal models (SCMs)
proposed by Pearl (2009b) and potential outcome framework developed by Rubin (1974). As shown
in (Pearl, 2009a), the two frameworks are logically equivalent. Since the causal graph in SCMs
describes the causal relationships more intuitively, we select the SCMs framework in this paper.

SCMs abstract the causal relationships between variables into a set of functions and then estimate
the causal effects of an intervention or a counterfactual. Every SCM is associated with a causal
graph, which is a directed acyclic graph where the nodes denote variables and the edges indicate
causal relationships between variables.

Given the causal graph, a fundamental manipulation on the causal graph is the intervention. Tech-
nically, the intervention on a variable H is formulated with do-calculus, do(H = h), which blocks
the effect of H’s parents and sets the value of H as h. For example, do(H = h) in Figure 1(b)
will remove the path ZH −→ H and force H to be h. In SCMs framework, the probability function
P (Y |do(H)) describes the causal effect of a variable H on a variable Y .

The backdoor adjustment formula is commonly used to estimate the causal effect P (Y |do(H)).
Given a causal graph in which a set of variables ZH are the parents of a variable H , then the causal
effect P (Y |do(H)) can be obtained by the backdoor adjustment formula: P (Y = y|do(H = h)) =∑

zh∈ZH
P (y|h, zh)P (zh). Thus, the causal effect P (Y = y|do(H = h)) is the weighted sum of

the conditional probability P (y|h, zh). Then we can estimate P (y|h, zh) from the observation data
to obtain P (Y = y|do(H = h)).

3 METHOD

In this section, we first propose our causal KGC models by utilizing causal inference techniques.
Then, we show the method of evaluating causal KGC models. Finally, we show a group theory view
for KGC to further reveal the causal relationships.

3.1 CAUSAL KGC MODELS

Data Bias in KGs Data bias in KGs refers to the biased data collection that does not faithfully
reflect the likelihood of triplets. Many popular KGs (e.g. DBpedia, Wikidata, and YAGO) are au-
tomatically constructed from unstructured text by using information extraction algorithms (Ji et al.,
2021). The collected KG data often suffers from data bias, such as popularity bias, algorithm bias
and so on. For example, Mohamed et al. (2020) show that the distribution of entities and relations
in the benchmark KGs is highly skewed. The collected KG data is also affected by the information
extraction algorithms, which may only extract simple knowledge from the unstructured text while
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ignoring complex knowledge. Existing correlation-driven KGC models not only learn the desired
likelihood of triplets but also the data bias, which leads to incorrect correlation.

A Causal View for KGC Causal inference allows us to find the fundamental cause of data bias
by studying the generation process of KG data and alleviates the effect of data bias. In most cases,
data bias can be seen as confounders in a causal graph, where confounders in KG data are variables
that simultaneously affect entities or relations and scores of triplets. Ignoring confounders can lead
to incorrect correlations between entities, relations and scores of triplets. To eliminate confounding
effects, we abstract the data generation process into a causal graph, identify confounders, and then
block the effect of confounders by intervention.

Causal graphs are intuitive and allow us to explain the causal relationships between variables. Figure
1 shows three causal graphs. Figure 1(a) describes the causal graph of traditional KGC models,
which ignores the confounders. Figure 1(b) describes the causal graph with three confounders.
Figure 1(c) describes the causal graph after the intervention of the causal graph in Figure 1(b). The
nodes and edges are illustrated as follows:

1. Nodes: Node H denotes the head entity variable. Node R denotes the relation variable. Node T
denotes the tail entity variable. Node Y denotes the score of triplets variable, which measures the
likelihood of triplets. Node ZH , ZR and ZT denote variables that are not explicitly considered
by traditional KGC models, e.g., the popularity of entities or relations.

2. Edges: Edges {H,R, T} −→ Y denote that {H,R, T} are the cause of Y , which is exactly
what the traditional KGC models consider. Edges {H,R, T, ZH , ZR, ZT } −→ Y denote that
{H,R, T, ZH , ZT , ZT } are the cause of Y , which have three extra edges ZH −→ Y , ZR −→ Y
and ZT −→ Y compared to edges {H,R, T} −→ Y . Edge ZH −→ Y /ZR −→ Y /ZH −→ Y means
that ZH /ZR/ZT is also contributed to Y . Edge ZH −→ {H}/ZR −→ {R}/ZT −→ {T} denotes that
the variables ZH/ZR/ZT can influence the data generation process of H/R/T .

The causal graph in Figure 1(b) shows that ZH/ZR/ZT simultaneously affects H/R/T and Y , so
ZH/ZR/ZT are confounders. The confounder ZH leads to two paths from ZH to Y : ZH −→ Y and
ZH −→ H −→ Y . The first path combines edges {H,R, T} −→ Y to model Y , as expected. For
example, if ZH denotes the popularity of persons, then persons with high ZH are more likely to
have relation is friend of with others. Therefore, ZH is also a cause of Y . The second path means
that ZH can affect the data generation of H . For example, if ZH denotes the popularity of head
entities, then ZH will influence the likelihood of head entities being collected, making the collected
data biased toward popular head entities (Mohamed et al., 2020). This causes bias amplification,
which should be avoided because a KGC model should faithfully estimate the likelihood of triplets
and not be affected by the way of data collection. The confounders ZR and ZT are similar to ZH .
Thus, the bad effect caused by the paths ZH −→ H , ZR −→ R and ZT −→ T should be blocked.

Deconfounded KGC Models To eliminate the bad effect of confounders {ZH , ZR, ZT }, we
should rule out the paths ZH −→ H , ZR −→ R and ZT −→ T from the causal graph in Figure
1(b), that is exactly do(H,R, T ) operator, which results the causal graph in Figure 1(c). Thus, the
causal effect of {H,R, T} on Y can be measured by probability function P (Y |do(H,R, T )) in
Figure 1(b), i.e., P (Y |H,R, T ) in Figure 1(c). To estimate P (Y |do(H,R, T )), one method is to
conduct randomized experiments. During the data collection process, we randomly select head en-
tities, relations and tail entities, and then judge whether the corresponding triplets are true. This can
make {H,R, T} unaffected by confounders {ZH , ZR, ZT }. However, randomized experiments are
difficult to conduct. On the one hand, only the data collector can decide how the data is collected.
On the other hand, since the triplets are obtained indirectly from unstructured text by algorithms,
even the data collectors may not be able to manipulate the way of data collection. Therefore, it is
crucial to estimate P (Y |do(H,R, T )) from only the observation data. Our method is to first convert
P (Y |do(H,R, T )) into a statistical estimate. Then the statistical estimate can be obtained from the
observation data.

The backdoor adjustment enables us to achieve it (Pearl, 2009b). The variables {ZH , ZR, ZT }
satisfy the backdoor criterion because they block all the backdoor paths from variables {H,R, T} to
variable Y . Then P (Y = y|do(H = h,R = r, T = t)) can be obtained with backdoor adjustment
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as follows:
P (Y = y|do(H = h,R = r, T = t)) =

∑
zh∈ZH ,zr∈ZR,zt∈ZT

P (y|h, r, t, zh, zr, zt)P (zh, zr, zt)

Thus, we can first estimate P (y|h, r, t, zh, zr, zt) from the observation data, which is feasible. Then
we compute P (y|do(h, r, t)) by backdoor adjustment formula. P (y|h, r, t, zh, zr, zt) is relevant
to the triplet (h, r, t) and the confounders (zh, zr, zt). Thus, we need to define the confounders
(zh, zr, zt). The confounders are reflected in the observation data, so they are functions of a 3rd-
order binary tensor X . We define two types of confounders as follows:

1. Artificially designed confounders:

zh = ln(1T vec(Xh,:,:)) = ln(|{(h0, r0, t0) ∈ D|h0 = h}|) = ln(d(h))

zr = ln(1T vec(X:,r,:)) = ln(|{(h0, r0, t0) ∈ D|r0 = r}|) = ln(d(r))

zt = ln(1T vec(X:,:,t)) = ln(|{(h0, r0, t0) ∈ D|t0 = t}|) = ln(d(t))

where 1 is a vector of appropriate size whose elements are all 1 and vec(·) is an operation that
expands a tensor into a vector. We define d(h)/d(r)/d(t) as the popularity of a head entity h/a
relation r/a tail entity t. The logarithmic function is to prevent the training unstable for the case
where d(h)/d(r)/d(t) is too large. The computational complexity of zh/zr/zt is O(1) because
we can compute the value of zh/zr/zt in advance.

2. Learnable confounders: zh = qH(Xh,:,:), zr = qR(X:,r,:),zt = qT (X:,:,t)

where qH(·)/qR(·)/qT (·) can be a L-layer neural network. We implement qH(·) as a one-layer
neural network for efficiency, i.e. qH(Xh,:,:) = W T

Hvec(Xh,:,:) + bH , where WH is the weight
matrix and bH is the bias vector. qR(·) and qT (·) are similar to qH(·). Then the computational
complexity of zh/zr/zt is O(d(h))/O(d(r))/O(d(t)).

Let f(h, r, t) be a scoring function of a traditional KGC model. We define P (y|h, r, t, zh, zr, zt) as
P (y|h, r, t, zh, zr, zt) ∝ g(h, r, t, zh, zr, zt) = g(f(h, r, t), zh, zr, zt)

=f(h, r, t) + αhzh + αrzr + αtzt

where αh, αr and αt are hyper-parameters to control the weight of confounders. Since
P (y|h, r, t, zh, zr, zt) is used to rank tail entities, we do not need to normalize P (y|h, r, t, zh, zr, zt)
to make it a rigorous probability function. In principle, g(·) can be any function, we implement g(·)
as the addition of f(h, r, t) and αhzh + αrzr + αtzt for simplicity. g(h, r, t, zh, zr, zt) can be
seen as the new scoring function from the old scoring function f(h, r, t). If αh = αr = αt = 0,
g(h, r, t, zh, zr, zt) reduces to the traditional scoring function f(h, r, t).

Now we can train a model to get g(h, r, t, zh, zr, zt). We use the multi-class loss function as in
(Lacroix et al., 2018). For a training triplet (h, r, t), our loss function is

ℓ(g(h, r, t, zh, zr, zt)) =− g(h, r, t, zh, zr, zt) + log(

|E|∑
t′=1

exp(g(h, r, t
′
, zh, zr, zt′ )))

where {zh, zr, zt′} is the value of confounding variables corresponding to the triplet (h, r, t
′
).

After getting g(h, r, t, zh, zr, zt), we can compute P (Y = y|do(H = h,R = r, T = t)) by back-
door adjustment:

y =P (Y = y|do(H = h,R = r, T = t))

=
∑

zh∈ZH ,zr∈ZR,zt∈ZT

P (y|h, r, t, zh, zr, zt)P (zh, zr, zt)

∝
∑

zh∈ZH ,zr∈ZR,zt∈ZT

g(h, r, t, zh, zr, zt)P (zh, zr, zt)

=
∑

zh∈ZH ,zr∈ZR,zt∈ZT

(f(h, r, t) + αhzh + αrzr + αtzt)P (zh, zr, zt)

=f(h, r, t) +
∑

zh∈ZH ,zr∈ZR,zt∈ZT

(αhzh + αrzr + αtzt)P (zh, zr, zt)
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Since
∑

zh∈ZH ,zr∈ZR,zt∈ZT
(αhzh + αrzr + αtzt)P (zh, zr, zt) is equal for all triplets (h, r, t), we

can use f(h, r, t) to surrogate P (Y = y|do(H = h,R = r, T = t)).

Our final result is easy, we only need to add an extra term αhzh+αrzr+αtzt to the traditional KGC
model f(h, r, t) in the training process and then get the deconfounded/causal KGC model f(h, r, t).
Our method is model-agnostic, which can be appilied to any traditional KGC model.

3.2 EVALUATION OF CAUSAL KGC MODELS

Traditional KGC models are trained on a set of true triplets and evaluated on holdout test triplets.
The ranking metrics, MRR and H@N (Bordes et al., 2013), are often used to evaluate the KGC
models. The definitions of MRR and H@N are as follows:

MRR =
∑

(h,r,t)∈D
1

|D|
1

rank(h,r,t) , where rank(h, r, t) is the rank of tail entity t in the predicted list
for the query (h, r, ?). Higher MRR indicates better performance.

H@N =
∑

(h,r,t)∈D
1

|D| I(rank(h, r, t) ≤ N), where I(·) is the indicator function. H@N is the ratio
of the ranks that no more than N . Higher H@N indicates better performance.

However, causal KGC models present unique challenges for evaluation. Which test set should we
use to evaluate causal KGC models? If we evaluate the models on the observation test set, the result
gives a biased evaluation: it favours popular entities and relations. One solution is to evaluate on
a randomized test set. However, a randomized test set is often difficult to obtain. Another solution
is to evaluate the models on the observation test set with new evaluation metrics. Mohamed et al.
(2020) propose a new evaluation metric based on the popularity of entities and relations. Similar to
(Mohamed et al., 2020), we define a weighted evaluation metric W-Metric(βh, βr, βt) as

W-Metric(βh, βr, βt) =
∑

(h,r,t)∈D

w(h, r, t)u(h, r, t)

where w(h, r, t) = d(h)βhd(r)βrd(t)βt∑
(h,r,t)∈D d(h)βhd(r)βrd(t)βt

,
∑

(h,r,t)∈D w(h, r, t) = 1, d(h)/d(r)/d(t) is the

popularity of h/r/t and u(h, r, t) = 1
rank(h,r,t) or u(h, r, t) = I(rank(h, r, t) ≤ N).

We denote W-Metric(βh, βr, βt) as W-MRR(βh, βr, βt) if u(h, r, t) = 1
rank(h,r,t) and denote

W-Metric(βh, βr, βt) as W-H@N(βh, βr, βt) if u(h, r, t) = I(rank(h, r, t) ≤ N).

Let βh = βr = βt = 0, then W-Metric(βh, βr, βt) = W-Metric(0, 0, 0) =MRR or H@N. Thus,
W-Metric(βh, βr, βt) can be seen as a generalization of MRR or H@N. Let βh = −1, βr = 0, βt =
0, then

W-Metric(βh, βr, βt) =W-Metric(−1, 0, 0) =
∑

(h,r,t)∈D

1/d(h)∑
(h,r,t)∈D 1/d(h)

u(h, r, t)

=
∑

h∈E,d(h)>0

1

|{h ∈ E|d(h) > 0}|
∑

(h0,r0,t0)∈D,h0=h

u(h, r0, t0)

d(h)

=
∑

h∈E,d(h)>0

v(h)

|{h ∈ E|d(h) > 0}|

where v(h) =
∑

(h0,r0,t0)∈D,h0=h
u(h,r0,t0)

d(h) . For each head entity h, W-Metric(−1, 0, 0) first com-
putes the mean of u(h, r0, t0), i.e., v(h). While popular head entities receive more u(h, r0, t0),
W-Metric(−1, 0, 0) treats all head entities equally, regardless of the popularity d(h). This can elim-
inate the influence of d(h). W-Metric(−1, 0, 0) then computes the mean of v(h) of all head entities.
Thus, W-Metric(−1, 0, 0) is to evaluate the average per-head-entity v(h).

Similarly, W-Metric(0,−1, 0)/W-Metric(0, 0,−1) is to evaluate the average per-relation/per-
tail-entity v(r)/v(t). Combining these three metrics, we evaluate causal KGC models with
W-Metric(−1,−1,−1), which simultaneously takes into account the popularity of head en-
tities, relations and tail entities. For every triplet (h, r, t), W-Metric(−1,−1,−1) use

1/(d(h)d(r)d(t))∑
(h,r,t)∈D 1/(d(h)d(r)d(t)) to weight u(h, r, t).
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3.3 A GROUP THEORY VIEW FOR KGC

The main feature of causal is invariance or symmetry (Arjovsky et al., 2020). Group theory is a
mathematical language to describe symmetry. Thus, we show a group theory view for KGC, which
is equivalent to the view of causal but further reveals the causal relationships.

Let X = E×R×E , a KGC model is to find a scoring function f(x) that holds for all triplets x ∈ X ,
i.e., the form of f(x) should be invariant for all x ∈ X . We next show the invariance of the form
of f(x) can be associated with the notations of groups. We define a group action γ of SX on X as
γ(a, x) = a(x), where a ∈ SX , x ∈ X and SX is the the symmetry group of X . Then the orbit of
x ∈ X is SX · x = {γ(a, x)|a ∈ SX }, which is exactly equal to X . Thus, the form of f(x) should
be invariant for all x ∈ SX · x. Now we have established the correspondence between f(x) and a
group SX . We say a scoring function f(x) satisfies G invariance if the form of f(x) is invariant
for all x ∈ G · x, where G is a subgroup of SX . Thus, traditional KGC models are to learn a SX
invariance scoring function. The causal graph in Figure 1(a) can correspond to a group SX .

If we have all the data, we can obviously learn the correct SX invariance scoring function f(x).
However, we only have some of the data, which may not match the overall data due to the data
bias. Thus, we should not treat all x ∈ SX · x equally, i.e., treat only some x ∈ SX · x equally.
Therefore, the scoring function learned from data should satisfy G (a subgroup of SX ) invariance.
For example, if G = S{h}×R×E , then learning G invariance scoring function can correspond to
learning P (y|h, r, t, zh) in causal KGC models. After we learn the G invariance scoring func-
tion, we can recover the SX invariance scoring function by using the quotient group SX /G to
act on P (y|h, r, t, zh). This can correspond to computing P (y|do(H = h,R = r, T = t)) =∑

zh∈ZH
P (y|h, r, t, zh)P (zh) in causal KGC models.

In summary, we want to learn a SX invariance scoring function f(x). However, the biased data only
allows us to learn a G invariance scoring function. In order to recover SX invariance, we can use the
quotient group SX /G to act on the G invariance scoring function to get the SX invariance scoring
function f(x).

The advantages of the view of group theory to the view of causal are in three folds. First, some
relationships between variables are hard to describe by causal graphs. For example, for the ideal
gas law PV = nRT , it is hard to say what causes what (Arjovsky et al., 2020). In group theory,
we use the invariance to represent the relationships between variables, which is easy to describe.
Second, there is no metric to measure the relationships between causal graphs. In group theory, we
use the notations of group theory to measure the relationships between groups, such as the order of
groups, normal subgroups etc., which help us understand the invariance. Third, backdoor adjustment
formula is only suitable for probability function. In group theory, we can use the group to act on any
function. Thus, the view of group theory generalizes backdoor adjustment formula to any function.

The potential applications of the view of group theory are in three folds. First, the view of group
theory enables KGC models to solve out-of-distribution problem. In this paper, we learn a G in-
variance scoring function from the biased data and apply a group action to the G invariance scoring
function to make it able to evaluate on unbiased data. Thus, the task of this paper can be seen as an
out-of-distribution task. We can apply different group actions to the G invariance scoring function
to make it adapt to different test sets. Second, learning G invariance scoring function directly may
be difficult, the direct product decomposition and subgroup series allow us to simplify the group G.
Third, the G invariance is pre-specified in this paper. It is worth exploring how to learn the invari-
ance from data automatically? Given a group action on X , the orbits form a partition of X . Thus,
we can transform learning the invariance into learning the orbits of X .

4 RELATED WORK

Data bias refers to data that does not reflect the true distribution. Although the data bias problem has
been extensively studied in many machine learning fields, such as imbalanced classification problem
(Krawczyk, 2016) and data bias in recommendation systems (Chen et al., 2020), there are few works
considering data bias in KGs. Mohamed et al. (2020) show that benchmark datasets suffer from the
popularity bias and existing KGC models are biased towards popular entities and relations. Bonner
et al. (2022) show the existence of popularity bias of entities in biomedical KGs.

7
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Table 1: Knowledge graph completion results on FB15k-237, WN18RR and YGAO3-10 test sets
with evaluation metrics W-Metric(-1, -1, -1).

FB15k-237 WN18RR YAGO3-10

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

TransE 0.279 0.168 0.509 0.224 0.061 0.568 0.303 0.205 0.480
IPS-TransE 0.307 0.210 0.512 0.279 0.078 0.566 0.299 0.196 0.498
Causal-TransE-1 0.283 0.166 0.514 0.227 0.062 0.565 0.307 0.207 0.488
Causal-TransE-2 0.285 0.175 0.507 0.225 0.058 0.559 0.303 0.203 0.484

RotatE 0.274 0.177 0.477 0.514 0.479 0.581 0.330 0.237 0.496
IPS-RotatE 0.281 0.191 0.470 0.502 0.475 0.553 0.260 0.202 0.385
Causal-RotatE-1 0.288 0.186 0.493 0.525 0.487 0.603 0.364 0.282 0.529
Causal-RotatE-2 0.280 0.189 0.465 0.521 0.485 0.600 0.341 0.264 0.496

DistMult 0.302 0.195 0.514 0.521 0.478 0.607 0.362 0.284 0.535
IPS-DistMult 0.304 0.208 0.501 0.522 0.480 0.611 0.328 0.270 0.445
Causal-DistMult-1 0.312 0.206 0.533 0.523 0.478 0.617 0.382 0.295 0.550
Causal-DistMult-2 0.325 0.217 0.553 0.521 0.477 0.608 0.362 0.284 0.537

ComplEx 0.307 0.204 0.517 0.535 0.493 0.619 0.370 0.278 0.573
IPS-ComplEx 0.307 0.205 0.511 0.532 0.488 0.623 0.335 0.263 0.473
Causal-ComplEx-1 0.330 0.223 0.555 0.535 0.493 0.617 0.386 0.292 0.586
Causal-ComplEx-2 0.323 0.220 0.541 0.532 0.491 0.611 0.375 0.286 0.567

We utilize causal graphs to make KGC models more explainable. Existing works on explainable
KGC models mainly focus on combining embedding with symbolic reasoning (Zhang et al., 2021a).
Guo et al. (2016) utilize the logical rules to improve the performance of embedding-based methods.
Markov logic network (Richardson & Domingos, 2006) designs a probabilistic framework to repre-
sent the logical rules as features. Neural LP (Yang et al., 2017) derives the logical rules from data
and leverages neural networks to deal with the uncertainty and ambiguity of data.

Causal inference techniques have been used to alleviate the data bias issue (Gao et al., 2022), includ-
ing SCMs and potential outcome framework. Under SCMs, data bias can be seen as confounders,
then backdoor adjustment (Zhang et al., 2021b) and frontdoor adjustment (Xu et al., 2021) are uti-
lized to eliminate the confounding effect. Based on the potential outcome framework, Schnabel
et al. (2016) propose the inverse propensity score (IPS) method, which aims to reweight the samples
by the chances that they receive the treatments.

5 EXPERIMENTS

We first introduce the experimental settings. Then, we show the results of our causal KGC models
and compare with other models. Finally, we conduct ablation studies. Please see Appendix A.1 for
more experimental details.

5.1 EXPERIMENTAL SETTINGS

Datasets We evaluate the models on three popular KGC datasets, FB15k-237 (Toutanova et al.,
2015), WN18RR (Dettmers et al., 2018) and YAGO3-10 (Dettmers et al., 2018).

Models We use original TransE (Bordes et al., 2013), RotatE (Sun et al., 2018), DistMult (Yang
et al., 2014) and ComplEx (Toutanova et al., 2015) as baselines. We denote TransE with IPS (Schn-
abel et al., 2016) method as IPS-TransE. We denote TransE with our causal method as Causal-
TransE. We denote Causal-TransE with artificially designed confounders as Causal-TransE-1 and
TransE with learnable confounders as Causal-TransE-2. The notations of RotatE, DistMult and
ComplEx are similar to TransE.
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Table 2: The results on FB15k-237 datasets with different hyper-parameters.

Causal-ComplEx-1 Causal-ComplEx-2

MRR H@1 H@10 MRR H@1 H@10

αh = 0, αr = 0, αt = 0 0.307 0.204 0.517 0.307 0.204 0.517
αh ̸= 0, αr = 0, αt = 0 0.308 0.210 0.519 0.307 0.204 0.517
αh = 0, αr ̸= 0, αt = 0 0.308 0.211 0.528 0.308 0.211 0.528
αh = 0, αr = 0, αt ̸= 0 0.333 0.227 0.553 0.327 0.218 0.558
αh ̸= 0, αr ̸= 0, αt ̸= 0 0.330 0.223 0.555 0.323 0.220 0.541

αh = αt 0.327 0.222 0.551 0.326 0.222 0.558
αh = αr = αt 0.322 0.216 0.553 0.328 0.218 0.557

Evaluation Metrics We use W-MRR(-1,-1,-1) and W-H@N(-1,-1,-1) as evaluation metrics and
choose the hyper-parameters with the best W-MRR(-1,-1,-1) on the validation set.

5.2 RESULTS

The results show that our causal KGC models achieve improvement on different datasets, different
models and different evaluation metrics (MRR, H@1 and H@10). This demonstrates the effective-
ness of our causal KGC models. Models with artificially designed confounders overall is better than
models with learnable confounders. The reason is that models with learnable confounders are more
difficult to optimize and are more likely to overfit.

Our models are better than the IPS method. IPS method do not achieve consistent performance
due to the difficulty of estimating propensity score. The improvement of our causal KGC models
is significant on FB15k-237 dataset and YAGO3-10 dataset, and is little on WN18RR dataset. The
reason is that the degree of data bias on WN18RR dataset is smaller, as shown in Table 4.

5.3 ABLATION STUDIES

We conduct ablation studies to analyze which of the confounders {ZH , ZR, ZT } influences the
models most. We use the models with αh = αr = αt = 0 as baselines. We train models with only
one of the hyper-parameters {αh, αr, αt}. We also train models that use fewer hyper-parameters by
setting αh = αt and αh = αr = αt. Since Zh and Zt are similar, one is a confounder of head
entities and the other one is a confounder of tail entities, we set αh = αt. All experiments are
trained on FB15k-237 dataset with ComplEx model. See Table 2 for the results.

The results show that ZT influences models most, ZH and ZR influence models little. The reason
is that KGC is formulated as predicting the tail entities. The performance of the models have no
obvious attenuation if we set αh = αt or αh = αr = αt. Thus, we can reduce the computation by
using fewer hyper-parameters.

6 CONCLUSION

Traditional KGC models only consider the correlation in the data and ignore the causation, which
leads to the data bias issues. In this paper, we utilize causal inference to alleviate the data bias issues.
Some research directions on how to apply causal inference to KGC deserve further thought.

First, we suppose that the confounders {ZH , ZR, ZT } in the causal graph of Figure 1(b) affect
{H,R, T} individually. Confounders that affect at least two of {H,R, T} at the same time or other
types of confounders are worth considering. Second, for the learnable confounders, deeper neural
networks are worth exploring. Third, we use backdoor adjustment to get our causal KGC models,
how to use frontdoor adjustment in KGC models is also worth exploring. Fourth, counterfactual
reasoning is another technique of causal inference, which can be used to augment KG data.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

Datasets We evaluate our models on three popular knowledge graph completion datasets,
WN18RR Dettmers et al. (2018), FB15k-237 Toutanova et al. (2015) and YAGO3-10 Dettmers
et al. (2018). WN18RR is a subset of WN18, with inverse relations removed. WN18 is extracted
from WordNet, a database containing lexical relations between words. FB15k-237 is a subset of
FB15k, with inverse relations removed. FB15k is extracted from Freebase, a large database of real
world facts. YAGO3-10 is a subset of YAGO3 that only contains entities with at least 10 relations.
The statistics of the datasets are shown in Table 3.

Table 3: The statistics of the datasets.

Dataset #entity #relation #training #validation #test

WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466
YGAO3-10 123,188 37 1,079,040 5,000 5,000

Data Bias in Datasets We use the Gini coefficients of d(h)/d(r)/d(t) to measure the data bias of
h/r/t in the dataset D, denote as gh(D)/gr(D)/gt(D). Denote the training set as D1, validation set
as D2, and test set as D3. The Gini coefficients of WN18RR, FB15k-237 and YAGO3-10 datasets are
shown in Table 4. Gini coefficients are not less than 0 and not larger than 1. Larger Gini coefficients
mean larger data bias. The results show that the degree of data bias on WN18RR dataset is less than
that on FB15k-237 dataset or YAGO3-10 dataset.

Hyper-parameters We add the N3 regularization (Lacroix et al., 2018) to the loss function and
let the regularization coefficient be λ. We set the batch size to 1024, epoch to 50 and embed-
ding dimension to 2048 for all models. We use Adam Kingma & Ba (2014) with exponential
decay as the optimizer. We search the learning rate in {0.001, 0.003, 0.005, 0.01}, decay rate in
{0.9, 0.93, 0.95, 1.0}, β1, β2, β3 in {0.1, 0.3, 0.5, 0.7, 0.9}, λ in {0.0, 0.001, 0.003, 0.01, 0.03}. We
first set β1 = β2 = β3 = λ = 0 and search the learning rate and decay rate. For WN18RR dataset,
we set learning rate to 0.01 and decay rate to 0.9 for all models. For FB15k-237 dataset, we set learn-
ing rate to 0.005 and decay rate to 0.93 for all models. For YAGO3-10 dataset, we set learning rate
to 0.003 and decay rate to 0.9 for all models. We search at most 50 hyper-parameters combinations.

11



Under review as a conference paper at ICLR 2023

Table 4: The Gini coefficients of WN18RR, FB15k-237 and YAGO3-10 datasets. Larger Gini
coefficients mean larger data bias.

Dataset gh(D1) gr(D1) gt(D1) gh(D2) gr(D2) gt(D2) gh(D3) gr(D3) gt(D3)

WN18RR 0.453 0.667 0.453 0.136 0.664 0.136 0.139 0.664 0.139
FB15k-237 0.560 0.679 0.560 0.511 0.718 0.511 0.519 0.718 0.519
YGAO3-10 0.573 0.832 0.574 0.191 0.816 0.191 0.191 0.811 0.191

Learnable Confounders We design the learnable confounders zh = qH(Xh,:,:) =
W T

Hvec(Xh,:,:) + bH , zr = qR(X:,r,:) = W T
R vec(X:,r,:) + bR and zt = qT (X:,:,t) =

W T
T vec(X:,:,t) + bT . The number of parameters of WH/WT is the product of the number of

entities and the number of relations. The number of parameters of WR is the square of the number
of entities, which is too large for large datasets. Thus, we use a weight sharing method to reduce the
number of parameters to a reasonable size. The number of parameters of bH/bR/bT is 1.

Inverse Propensity Scoring We use the inverse propensity scoring (IPS) method as a baseline
method. Thus, we show a more detailed statement about IPS. IPS method reweights the weight of
the loss function for a batch of data (hi, ri, ti), where 1 ≤ i ≤ B and B is the batch size. The loss
function is defined as L =

∑B
i=1 wiℓ(g(hi, ri, ti, zhi

, zri , zti)), where

wi =
d(hi)

−1d(ri)
−1d(ti)

−1∑B
i=1 d(hi)−1d(ri)−1d(ti)−1

is the weight (i.e., the inverse propensity score) and

ℓ(g(hi, ri, ti, zhi
, zri , zti)) =− g(hi, ri, ti, zhi

, zri , zti) + log(

|E|∑
t
′
i=1

exp(g(hi, ri, t
′

i, zhi
, zri , zt′i

)))

where {zhi , zri , zt′i
} is the value of confounding variables corresponding to the triplet (hi, ri, t

′

i).

Our causal KGC model adds an extra term αhzh + αrzr + αtzt to the traditional KGC model
f(h, r, t). Thus, IPS methods focus on the loss function, our causal KGC model focuses on the
scoring function.

Sensitivity Analysis We analysis the sensitivity of our models with respect to the hyper-
parameters αh, αr and αt. We run experiments by setting αh to {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} and
αr = αt = 0.0 to analysis the sensitivity of models with respect to αh. The hyper-parameters αr

and αt are similar to the hyper-parameter αh. All experiments are trained on FB15k-237 dataset
with ComplEx model. See Table 5 for the results. The results show that our models are not sensitive
to the hyper-parameters αh, αr and αt.
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Table 5: The results on FB15k-237 datasets with different hyper-parameters.

Causal-ComplEx-1 Causal-ComplEx-2

MRR H@1 H@10 MRR H@1 H@10

αh = 0.0, αr = 0.0, αt = 0.0 0.307 0.204 0.517 0.307 0.204 0.517
αh = 0.2, αr = 0.0, αt = 0.0 0.318 0.220 0.532 0.303 0.201 0.517
αh = 0.4, αr = 0.0, αt = 0.0 0.306 0.210 0.509 0.310 0.209 0.532
αh = 0.6, αr = 0.0, αt = 0.0 0.311 0.207 0.533 0.306 0.200 0.529
αh = 0.8, αr = 0.0, αt = 0.0 0.310 0.211 0.512 0.309 0.204 0.520
αh = 1.0, αr = 0.0, αt = 0.0 0.298 0.189 0.529 0.305 0.200 0.534

αh = 0.0, αr = 0.0, αt = 0.0 0.307 0.204 0.517 0.307 0.204 0.517
αh = 0.0, αr = 0.2, αt = 0.0 0.302 0.195 0.536 0.308 0.204 0.527
αh = 0.0, αr = 0.4, αt = 0.0 0.302 0.200 0.525 0.293 0.186 0.509
αh = 0.0, αr = 0.6, αt = 0.0 0.309 0.206 0.524 0.308 0.209 0.522
αh = 0.0, αr = 0.8, αt = 0.0 0.304 0.204 0.531 0.310 0.208 0.533
αh = 0.0, αr = 1.0, αt = 0.0 0.301 0.189 0.529 0.307 0.204 0.516

αh = 0.0, αr = 0.0, αt = 0.0 0.307 0.204 0.517 0.307 0.204 0.517
αh = 0.0, αr = 0.0, αt = 0.2 0.323 0.208 0.556 0.321 0.220 0.532
αh = 0.0, αr = 0.0, αt = 0.4 0.329 0.222 0.548 0.322 0.214 0.547
αh = 0.0, αr = 0.0, αt = 0.6 0.332 0.229 0.551 0.326 0.220 0.552
αh = 0.0, αr = 0.0, αt = 0.8 0.329 0.221 0.552 0.322 0.216 0.546
αh = 0.0, αr = 0.0, αt = 1.0 0.323 0.215 0.557 0.323 0.213 0.539
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