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Abstract

Recent advancement in the capabilities of large001
language models (LLMs) has triggered a new002
surge in LLMs’ evaluation. Most recent evalua-003
tion works tends to evaluate the comprehensive004
ability of LLMs over series of tasks. How-005
ever, the deep structure understanding of nat-006
ural language is rarely explored. In this work,007
we examine the ability of LLMs to deal with008
structured semantics on the tasks of question an-009
swering with the help of the human-constructed010
formal language. Specifically, we implement011
the inter-conversion of natural and formal lan-012
guage through in-context learning of LLMs to013
verify their ability to understand and generate014
the structured logical forms. Extensive experi-015
ments with models of different sizes and in dif-016
ferent formal languages show that today’s state-017
of-the-art LLMs’ understanding of the logical018
forms can approach human level overall, but019
there still are plenty of room in generating cor-020
rect logical forms, which suggest that it is more021
effective to use LLMs to generate more natu-022
ral language training data to reinforce a small023
model than directly answering questions with024
LLMs. Moreover, our results also indicate that025
models exhibit considerable sensitivity to dif-026
ferent formal languages. In general, the formal027
language with the lower the formalization level,028
i.e. the more similar it is to natural language, is029
more LLMs-friendly.030

1 Introduction031

The recent advancement of large language mod-032

els (LLMs), showcasing their remarkable language033

understanding and generation capabilities (Bubeck034

et al., 2023), has garnered significant attention from035

researchers in artificial intelligence. It has also trig-036

gered a surge in LLMs’ evaluation endeavors aimed037

at exploring the boundaries of LLMs’ capabilities.038

Previous works that probe large language models039

with varying sizes such as BERT (Devlin et al.,040

2019) and GPT (Radford et al., 2018) mainly fo-041

cus on probing models’ linguistic knowledge (He- 042

witt and Manning, 2019; Clark et al., 2019; Liu 043

et al., 2019; Wu et al., 2020) and world knowl- 044

edge (Petroni et al., 2019; Dai et al., 2022; Jiang 045

et al., 2020; Zhong et al., 2021). Most recent works 046

tend to evaluate models’ comprehensive capacities 047

over series of tasks (Bang et al., 2023; Yu et al., 048

2023) such as reasoning and interactivity. 049

Among the evaluations, the deep understanding 050

of natural language in LLMs is poorly investigated. 051

There are some existing works that try to explore 052

the structure of language (Hewitt and Manning, 053

2019; Clark et al., 2019). However, their inves- 054

tigation are confined to the superficial aspects of 055

language, encompassing lexical and syntactic prop- 056

erties. As John McCarthy (McCarthy, 1990, 1959) 057

points out, in order to a better understanding of 058

natural language, it is necessary for an intelligence 059

system to understand the “deep structure” (Chom- 060

sky, 2011) of the sentence, which can be explic- 061

itly defined in a human-designed formal language. 062

Therefore, we propose to probe the deep under- 063

standing of natural language in LLMs with formal 064

languages, which serves to ascertain the boundaries 065

of semantic comprehension exhibited by LLMs and 066

point ways for improving the understanding and 067

generation ability in LLMs. 068

Specifically, we select the question answering 069

(QA) as our probing task. Existing works mainly 070

utilize the dependency parsing task (Hewitt and 071

Manning, 2019) to find the correlation between the 072

dependency of words and the modules’ parameters. 073

However, this approach is intricate, sometimes non- 074

intuitive, and not applicable to non-open-source 075

LLMs. In addition, choosing QA as our prob- 076

ing task brings two advantages: (1) Convenience. 077

There exists many different formal languages, also 078

called logical forms, constructed for knowledge 079

based question answering, which can be directly 080

employed in our experiment. (2) Simplicity of eval- 081

uating. To avoid the heavy human evaluation of 082
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the semantic correctness of generated text, we can083

leverage the accuracy of the answers for indirect084

evaluation. In this work, we define two sub-tasks of085

knowledge-based question answering as the prob-086

ing task: 1) Formal Language Understanding,087

which aims to automatically translate a piece of088

logical form (LF) into its corresponding natural089

language question (NLQ). The translation process090

can be considered as the model interpreting the pro-091

vided LFs in NLQ, thus demonstrating LLMs’ un-092

derstanding ability of formal language; 2) Formal093

Language Generation, which aims to correctly094

convert a NLQ into its corresponding LF, requiring095

the model to not only understand but also generate096

LFs, demonstrating its capability in generation.097

During probing, according to the varying degrees098

of formalization (may be broadly understood as the099

dissimilarity to natural language, i.e. the higher100

level of formalization, the less similar is to natural101

language) and different logical structures (e.g. tree102

or graph), we choose Lambda DCS (Liang, 2013),103

SPARQL, and KoPL (Cao et al., 2022) as repre-104

sentative formal languages, which are commonly105

used for knowledge based question answering re-106

search (Nie et al., 2022; Ye et al., 2022; Shin et al.,107

2021). We leverage in-context learning ability of108

LLMs for both probing tasks, where the desired out-109

puts are generated conditioned on the input along110

with a few demonstration pairs of NLQs and LFs111

carefully selected from a seed dataset. For demon-112

stration selection, we adopt the principle that the113

examples should be similar to the target and care-114

fully design multiple search strategies for different115

formal languages and different tasks.116

Our findings indicate that there is still a gap be-117

tween LLMs and human in terms of structured118

semantics understanding. Coinciding with our intu-119

ition, the generation capability of LLMs for struc-120

tured semantics is much weaker than their under-121

standing ability. Importantly, we observe that mod-122

els exhibit the sensitivity to different logical forms.123

Overall, the lower level of formalization, that is the124

closer it is to natural language, the easier it is for125

models to understand and generate. These findings126

suggest the feasibility of employing LLMs com-127

bining with knowledge bases to tackle the complex128

reasoning that currently still pose a challenge to129

LLMs (Bang et al., 2023). In conclusion, we be-130

lieve that this study will help to examine the deep131

language understanding ability of current LLMs,132

and also can provide valuable insights for LLMs-133

based reasoning approaches.134

2 Related Work 135

Since the success of pretrained language models 136

(PLMs) such as BERT (Devlin et al., 2019) and 137

GPT (Radford et al., 2018), there are extensive 138

works exploring the capability boundaries of PLMs. 139

Researchers find that the PLMs not only possess 140

rich linguistics knowledge (Hewitt and Manning, 141

2019; Clark et al., 2019; Liu et al., 2019; Wu et al., 142

2020), but also substantial world knowledge like 143

entities (Broscheit, 2020), relations (Petroni et al., 144

2019; Jiang et al., 2020; Zhong et al., 2021), and 145

concept (Peng et al., 2022; Dalvi et al., 2022). 146

In line with our work, there are many researchers 147

focus on exploring whether PLMs have learned 148

about language structure. One method is utilizing 149

the “probing task” (Conneau et al., 2018), which 150

trains a classifier to predict on different syntactic 151

properties. These tasks is very diverse, such as 152

segmentation (Liu et al., 2019) and dependency 153

parsing (Hewitt and Manning, 2019; Clark et al., 154

2019). However, the classifier is likely to over-fit 155

on the probing task when it achieve a high accuracy, 156

making it hard to tell whether it benefits from the 157

PLMs’ representation or the training data. 158

Another approach is to find the correlations be- 159

tween the part of the model’s parameter and the 160

syntactic properties of the input. Most works tend 161

to focus on the attention layer. For example, Ra- 162

ganato and Tiedemann extract dependency trees 163

from the self-attention weights of the model’s en- 164

coder to analyze the syntactic and semantic infor- 165

mation. (Clark et al., 2019) leverage a similar 166

method with a new attention-head selection strat- 167

egy. However, other findings argues that the behav- 168

ior of attention does not always corresponds to the 169

model itself (Serrano and Smith, 2019; Wiegreffe 170

and Pinter, 2019). Moreover, this method is not 171

suitable for the non-open-source LLMs. 172

Our work are inspired by both the “deep struc- 173

ture” idea brought up by Chomsky and the discus- 174

sion of the benefit of a formalism in McCarthy; 175

McCarthy, using the formal language as a medium 176

to probe for deep structure understanding of LLMs. 177

One recent work (Papadimitriou and Jurafsky, 178

2023) that also using the formal language explores 179

what is the necessary structure for learning lan- 180

guage. In this work, language models are pre- 181

trained purely on different structure types from 182

scratch before testing their language learning abil- 183

ity. However, this work cannot explain how well 184

current LLMs understand structures. 185
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Question:          What is the number of animated movies published after 1940?

KoPL:

SPARQL:

Lambda DCS: ( call @listValue ( call .size 
( call @filter ( call @getProperty
( call @singleton en.animated_film )
( string ! type ) ) ( string publication_date )
( string > ) ( year 1940 ) ) ) )

SELECT (COUNT(DISTINCT ?e) AS ?count) WHERE { 
?e <pred:instance_of> ?c . 
?c <pred:name> "animated film" . 
?e <publication_date> ?pv . 
?pv <pred:year> ?v . 
FILTER ( ?v > 1940 ) .  }

FindAll().FilterYear(publication date, 1940, >).
FilterConcept(animated film).Count()

Figure 1: An example of a natural language question
and its corresponding logical forms in KoPL, SPARQL,
and Lambda DCS.

3 Framework186

In this section, we will introduce the details of187

the probing framework, which contains two parts:188

(1) the formal languages and their corresponding189

datasets, (2) the probing task design with the for-190

mal descriptions, and the evaluation of semantic191

correctness of the generated natural language or192

formal language text.193

3.1 Formal Language194

As mention in 1, we choose three representative195

formal languages according to the varying degrees196

of formalization and different logical structure, and197

they are Lambda DCS, SPARQL, and KoPL. Some198

examples are shown in Figure 1.199

Lambda DCS is a tree-structured programming200

language developed from Lambda calculus, similar201

to church and s-expression. Lambda DCS removes202

the explicit variables in Lambda calculus, making203

it similar to dependency-based compositional se-204

mantics (Liang, 2013). For this language, we use205

Overnight dataset (Wang et al., 2015), which con-206

tains over 13,000 data examples in eight domains207

extracted from Freebase. We follow the standard208

split used in Wang et al..209

SPARQL is a popular query language and it pro-210

vides a standardized way for users to search and211

retrieve information stored in RDF databases and212

other Linked Open Data1. The SPARQL describes213

the relations between entities using triples in the214

form of a graph structure. For this language, we215

use the GrailQA dataset (Gu et al., 2021), which216

is constructed based on Freebase and comprises a217

total of over 50,000 data entries along with their en-218

tity linking results. We also followed the standard219

split used by the author (Gu et al., 2021).220

1https://www.w3.org/TR/sparql11-query/

KoPL (Cao et al., 2022) is a programming lan- 221

guage constructed using symbolic functions, which 222

define the fundamental and atomic operations per- 223

formed on knowledge bases. These functions are 224

combined according to the operations in the reason- 225

ing process, forming a tree structure program. For 226

this language, we use the KQA Pro dataset (Cao 227

et al., 2022), which is based on Wikidata and com- 228

prises a total of over 100,000 data entries. Each 229

data entry includes a NLQ along with its corre- 230

sponding KoPL program and SPARQL query. We 231

followed the standard split described in Cao et al.. 232

Basic features of these formal languages can be 233

concluded that (1) KoPL and Lambda DCS are 234

both tree-structured programs, which can poten- 235

tially better reflect the “chain of thought” - reason- 236

ing process than SPARQL, and (2) KoPL is more 237

well-modularized and uses more human-readable 238

identifiers and function input, making it closer to 239

the distribution of natural language. 240

3.2 Probing Task and Evaluation 241

As shown in Figure 2, We define two probing tasks, 242

namely the formal language understanding and 243

formal language generation. In this section, we 244

introduce the processes and evaluation methods. 245

3.2.1 Formal Language Understanding 246

The goal of the task is for a LLM M to translate a 247

LF input to its corresponding NLQ. Formally, we 248

have a target set T = {l∗} of LFs, and a seed set 249

S = {(l, q)} of LF - NLQ pairs. To assemble the 250

demonstration, for every l in T we need to retrieve 251

k pairs of LFs and NLQs (l1, q1), · · · , (lk, qk) from 252

S. Conditioned on the examples and l, the model 253

translates it into a NLQ. 254

For the evaluation of the quality of the gener- 255

ated NLQs, the commonly used automatic metrics 256

to compare text similarity like BLUE (Papineni 257

et al., 2002) and BERT-Score (Zhang et al., 2020) 258

are not reliable enough. Instead, we evaluate the 259

generation quality of a model M indirectly by com- 260

paring the performance of the parser trained on the 261

model-generated data and the parser trained on the 262

manually-labeled data. Formally, given the train- 263

ing set {(q∗, l∗)}, where the l∗ is the LF and q∗ is 264

the corresponding human-labeled NLQ, we train 265

a baseline semantic parser Phuman. Then we take 266

{l∗} as the target set T , using M to generate a 267

same-size pseudo training set {(qM , l∗)}, which 268

is used to train another parser PM . In this case, 269

the generation quality of M is measured by PM ’s 270
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Seed Set

Exemplar
Ø LF: ---
Ø NLQ: ---

Logical Form
FindAll().FilterYear(2003, >).
FilterConcept(feature film).
SelectAmong(duration, smallest)

Natural Language Question
Which cost less? Batman Begins 
released in Italy or Toostie.

Exemplar
Ø NLQ: ---
Ø LF: ---

Find(Italy) ...
And().Find(Tootsie).
SelectBetween(cost, less)

Logical Form

Among the feature films 
published after 2003, which one 
has the shortest duration?

Natural Language Question

Formal Language Understanding

Formal Language Generation

Logical Form Skeleton

FindAll.FilterYear.
FilterConcept.SelectAmong

NL Question Skeleton

Which cost less? [E0] 
released in Italy or [E1].

Figure 2: A simple illustration for the probing task of both formal language understanding and generation.

performance AccuracyPM
to AccuracyPhuman

of271

Phuman. Higher score means better quality of the272

model-generated questions, indicating closer un-273

derstanding ability of M is to human.274

3.2.2 Formal Language Generation275

The goal is for a LLM M to directly translate a276

NLQ back to its correct LF. Similarly, we have277

a target set of T = {q∗} of NLQs, and a seed278

set S = {(l, q)} of LF - NLQ pairs. For ev-279

ery q in T , we retrieve k pairs of NLQs and LFs280

(q1, l1), · · · , (qk, lk) from S to assemble the final281

prompt. The model is supposed to generate the282

correct LF l conditioned on the examples and q.283

The evaluation of the generated l is relatively284

easier. To evaluate whether the generated LF are285

correct and semantically equivalent to the input q,286

we can use the either the exact match score with the287

golden logical forms, or the accuracy of the answer288

by putting the logical forms into an executor.289

4 Implementation290

As mentioned above, we mainly leverage the in-291

context learning (ICL) ability of LLMs to generate292

the output for the probing task. The demonstration293

selection is considered as the most critical part of294

this method. In this work, we adopt the principle295

to search most similar examples to the target l, and296

decently order the examples by the similarity (Liu297

et al., 2021) in the prompt.298

4.1 Formal Language Understanding299

In this task, the input of LLMs is the LF l∗, so we300

search for examples (l, q) from S where all ls are301

most similar to l∗.302

We consider that the retrieved examples should303

(1) have the most similar logical structure to the304

structure of the target logical form l∗ and (2) share305

as many same relations as possible with l∗.306

4.1.1 Structure-Preserving Principle 307

In order to find the most structure-similar exam- 308

ples from S , we first transform the original logical 309

form l∗ into a simple rooted tree-like structure s∗ 310

called skeleton, where s∗ ← f(l∗), f being the 311

extraction function. Specifically, KoPL program is 312

already a tree of functions, therefore the skeleton of 313

KoPL is the tree formed by removing the functions’ 314

inputs. The Lambda DCS program is similar to 315

KoPL, since it can be treated as a bracket tree. The 316

SPARQL program is more complicated, since it de- 317

picts a graph by some triples. In this case, we use 318

the corresponding S-expression program instead, 319

which is also bracket tree. Afterwards, we group 320

the examples in S using the skeleton of logical 321

form as the key. 322

Then we find the most similar structure naturally 323

by computing the tree edit distance (TED) between 324

s∗ and skeleton keys of S. However, considering 325

the overhead of the minimum TED algorithm, we 326

serialized the tree structure and apply the simple 327

minimum edit distance (ED) in practice. In general, 328

these two algorithms can produce every different 329

results. But due to the grammar restriction of pro- 330

gram, the candidates at small distances computed 331

by TED are almost the same to those of ED. For 332

example, in KoPL there are some common fixed 333

patterns like Find()→ Relate()→ Filter(). 334

4.1.2 Content-Preserving Principle 335

The meaning of content here is two-fold. First off, 336

there should be no symbols of l∗ unseen in the 337

demonstration examples. Taking KoPL as exam- 338

ple again, it means the function names need to be 339

covered by demonstration examples as many as 340

possible. This is a max cover problem and we per- 341

form a k-step greedy search based on the previous 342

ranking result by edit distance. Specifically, provid- 343

ing there are m skeletons S = {s1, · · · , sm} that 344
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are closest to the skeleton s∗ of l∗ at a distance of345

d0, we select a sti at each time step i, so that,346

sti = argmin
s∈Si

|s ∗ |i − |sti |

Si = S − sti−1 − · · · − st1

|s ∗ |i = |s ∗ | − |sti−1 | − · · · − |st1 |

(1)347

where the | · | represent the operator to get the set of348

node labels. After k steps, we get a set of skeleton349

candidates {s1, · · · , sk}.350

Moreover, the input content such as relations and351

entities can also be taken into account. In summary,352

the first priority for selecting examples is structural353

similarity, followed by the shared content.354

4.2 Formal Language Generation355

In this task, the input of LLMs is the NLQ q∗, so356

we search for example pairs (q, l) from S where qs357

are most similar to q∗.358

We hope that the retrieved questions has a sim-359

ilar deep structure with q∗. Therefore, we intu-360

itively utilize the structure prompt word such as361

“and” “or”, which might indicate the concatenation362

structure in the question. Specifically, we use the363

BM25 algorithm to search similar questions with364

the same prompt words. As shown in Figure. 2,365

when constructing the BM25 searcher, we mask366

the entities and relations in the question to exclude367

their interference on the BM25 algorithm. This368

search method cannot guarantee the structure simi-369

larity, but it is a viable baseline method.370

We did not adopt other searching algorithm such371

as embedding similarity because we want to focus372

on the structure word like conjunctions. However,373

embedding-based search can easily neglect them374

and focus on content words in the sentences.375

4.2.1 Entity Linking376

We found that the model often fails to generate377

the correct names of entities and relations in the378

knowledge base. Therefore, to generate correct and379

executable programs, we need to map the generated380

entities to the corresponding entries in the knowl-381

edge base. Taking the example of SPARQL based382

on Freebase, SPARQL statements use Freebase’s383

mid to represent entities, but the model struggles384

to generate the correct mid. Similar to Li et al., we385

have the model first generate the natural language386

names of the entities. Then, we use the BM25387

algorithm to find the most similar entities in the388

entity repository. For concepts and relations in389

the knowledge base such as type.object.type and390

rail.rail_network, although they are not represented 391

by mid, they are also often inaccurately generated. 392

Thus, we use the BM25 algorithm to search for 393

the most similar names in the knowledge base and 394

replace them accordingly. 395

Apart from correcting them after the generation, 396

we find that other tricks such as adding entities and 397

relations related to the question into the prompt 398

also help improving the performance. More de- 399

tails and examples of this whole process including 400

intermediate steps are provided in Appendix. 401

5 Experiment Setup 402

We introduce a range of popular language models 403

that have been extensively studied in our experi- 404

ments (5.1) as long as the semantic parsing models 405

we use to evaluate the performance of the under- 406

standing task (3.2). 407

5.1 Investigated Models 408

In order to investigate the impact of the model scale 409

on its capacity, we select models of different sizes. 410

For medium size models ranging from 100M to 411

10B, we mainly consider two types of models. The 412

first is auto-regressive models, exemplified by the 413

GPT series. These models only use the decoder in 414

training and employ a unidirectional “predict the 415

next word” auto-regressive loss function for model- 416

ing. The second type is represented by T5, a text-to- 417

text model, which utilizes a bidirectional encoder 418

and a unidirectional decoder to predict masked 419

spans. In the experiment, we use the instruction- 420

tuned version FLAN-T5 series. In particular, we se- 421

lect GPT2-Large (774M), GPT2-XL(1.5B), GPT- 422

J (6B), FLAN-T5-L (770M), FLAN-T5-XL (3B), 423

FLAN-T5-XXL (11B). 424

For large models over 100B, we first consider 425

the instruction-tuned GPT 3.5 series, including the 426

initial Davinci model text-davinci-001 and the 427

most powerful text-davinci-003 (maybe 175B). 428

We also investigate GLM-130B, an open bilingual 429

pretrained model without instruction-tuning and 430

RLHF. We do not consider chat-optimized model 431

like gpt-3.5-turbo since we don’t need the chat abil- 432

ity. The code-pretrained model like CODEX is also 433

not used because of it has closed access. 434

5.2 Evaluation Models 435

The evaluation methods is mentioned above in 3.2, 436

In practice, different semantic parsers are chosen 437

for the evaluation of different formal languages and 438

datasets. 439
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For KoPL and KQA Pro dataset, we use the origi-440

nal baseline (BART-base) provided KQA Pro (Cao441

et al., 2022). For Lambda DCS and Overnight442

dataset, we train a bidirectional LSTM with dual443

learning algorithm described by Cao et al.. Finally,444

for SPARQL and GrailQA, we tried two baseline445

models. One is also a simple sequence-to-sequence446

BART-base generation model without explicit en-447

tity linking modules. The other baseline is a rank-448

and-generate (RnG) pipeline with an entity linking449

module described in Ye et al., which employs a450

ranker to retrieve related logical forms that share451

similar entities and relations. The implementation452

detail of parsers and training hyper-parameters used453

in the work can be found in Appendix.454

6 Results and Analyses455

We first present the main result of the formal lan-456

guage understanding and generation in Table. 1.457

In the left blue section of understanding task, the458

figures are the absolute performance of the evalua-459

tion parser trained on training sets that generated460

by different models. The retrieved examples of461

the input prompt of ICL is 3 for all models in the462

understanding task.463

The right green section presents the semantic464

parsing result of the models, where the retrieved465

examples are as many as the input context can take.466

To cut down computation overehead, the test sets467

here are randomly sampled subsets of 300, 120, 240468

examples from the test sets of KQA Pro, GrailQA,469

and Overnight, respectively. The parsing perfor-470

mance of KoPL and Lambda DCS are measured by471

answers’ accuracy, and the SPARQL performance472

are measure by answers’ F1 score. Note that the473

human’s performance is not applicable here, but474

we can compare it to the baseline results of under-475

standing task. Also, we only test the model over 1476

B because the small models perform poorly, only477

producing meaningless results.478

Then we present the conclusions and findings by479

analyzing them along with other ablation experi-480

ments. More detailed results for some dataset can481

be found in Appendix.482

6.1 Formal Language Understanding Result483

Analysis484

As shown in Table 1, we can see that (1) All lan-485

guage models demonstrate a certain degree of un-486

derstanding of formal languages, as evidenced by487

their ability to generate new training data to train a488

non-trivial parser. (2) However, there is still a non- 489

negligible gap between the overall structured se- 490

mantics understanding ability of language models 491

compared to human. (3) In addition, larger models 492

tend to perform better in understanding structured 493

semantics. (4) As for the parser for evaluation, the 494

RnG parser can virtually eliminate gaps in gener- 495

ated data quality, reflecting the importance of entity 496

linking module. (5) Meanwhile, it is noteworthy 497

that we do not observe significant differences be- 498

tween models that are instruction tuned and those 499

that are not. The model size evidently has a more 500

pronounced impact. 501

Most interestingly, We observe peculiar charac- 502

teristics in the FLAN-T5 series, where the smaller 503

models demonstrated stronger capabilities com- 504

pared to the larger ones. In the appendix, we 505

present some error analysis from FLAN-T5-XXL, 506

whose generated results are almost unintelligible. 507
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Figure 3: Formal language generation performance of
Text-Davinci-003 with various numbers of demonstra-
tion examples. The entity linking tag means whether
to use entity linking to detect the entities in input and
add their 2-hop-related entity and relation names to the
input. Note that the difference of maximum demonstra-
tion number between formal languages is because the
context length of LLM.

6.2 Formal Language Geration Result 508

Analysis 509

From the right section of Table. 1, we can see that 510

the generation ability of language models is far 511

worse than their understanding ability. Compared 512

to the left section, even the most powerful model 513

directly generating logical forms can only achieve 514

15% to 50% accuracy to the parser trained by its 515

generated data. Therefore, we believe it is safe 516

to reach to the conclusion that, to improve perfor- 517

mance on knowledge based question answering, it 518
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Model Understanding Generation

KoPL SPARQL SPARQL‡ Lambda DCS KoPL SPARQL Lambda DCS

GPT2-L (774M) 76.0 10.8 70.8 39.1 — — —
GPT2-XL (1.5B) 83.3 14.4 71.1 42.3 — — —
GPT-J (6B) 84.2 16.7 72.2 78.4 4.3 1.6 0.0
FLAN-T5-L (770M) 48.6 6.8 71.6 27.5 — — —
FLAN-T5-XL (3B) 26.6 7.1 71.2 17.0 — — —
FLAN-T5-XXL (11B) 12.7 7.0 71.4 12.4 2.7 0.0 0.0
GLM-130B 86.2 19.2 73.6 77.0 22.3 4.6 3.8
Text-Davinci-001 85.6 18.7 71.4 67.3 16.0 2.7 1.7
Text-Davinci-003 88.1 21.7 73.8 76.0 41.6 22.5 10.0

Human 90.6 28.1 74.7 95.2 — — —

Table 1: The main results of formal language understanding and generation. ‡ means that these column is evaluated
by the RnG parser with an entity linking module. The — in the table means the result is too low to be meaningful or
it is not applicable.

is much more practical to generate new data for519

training small parser like Bart model than directly520

using LLMs to do parsing only by prompting with-521

out touching the parameters.522

To improve the performance of direct semantic523

parsing, two approaches are tried in our experiment.524

The first is increasing the examples of ICL and the525

second is to detect the entities mentioned in the in-526

put question, and include their 2-hop-related entity527

and relation names from the knowledge base into528

the prompt (as mentioned in 4.2.1). To compare the529

impact of these two strategies on the performance,530

we conduct a series of experiment on Text-Davinci-531

003. As shown in Figure. 3, (1) Both strategies can532

contribute to the performance. (2) The performance533

on KoPL notably improves with the increase of ex-534

amples. However, for SPARQL and Lambda DCS,535

the effect of this strategy is limited. (3) On the536

other hand, incorporating entity and relation names537

in the prompt significantly enhances the results for538

SPARQL. (4) In all settings, model performs best539

on KoPL and worst on Lambda DCS, and SPARQL540

in between.541

Empirically, We figure the possible explanations542

for these phenomena lie in the difference between543

formal languages. As the example show in Fig-544

ure. 1, KoPL is the most similar to natural lan-545

guage. The identifiers are easy for human to un-546

derstand, and the order of functions correspond to547

the “chain-of-thought” reasoning process. While548

both SPARQL and Lambda DCS are more formal-549

ized and contain lots of identifiers that do not make550

sense in natural language. This might explain why551

model performs best on KoPL, and most benefits552

from the increasing of examples. Furthermore, we 553

note that the grammar of SPARQL is simpler and 554

lacks of variations, where the SPARQL queries in 555

the GrailQA dataset almost follow the same pat- 556

tern. But the bottle-neck for writing SPARQL is 557

to generate the correct entity or relation names in 558

Freebase. This explains why model performs better 559

on SPARQL than Lambda DCS, and why adding 560

entities to prompt improves the most for SPARQL. 561

6.3 Zero-shot Understanding 562

We are also very interested in whether the LLMs 563

truly understand the logical forms or they merely 564

are good at imitating the carefully selected exam- 565

ples we provided? To figure it out, we conduct 566

an ablation experiment where input for the QG 567

task is replaced with the description of the formal 568

language. This experiment is only conducted on 569

KoPL since it is well modularized and the func- 570

tion of the operations can be concisely explained. 571

The input description consists of the one-sentence 572

descriptions of each operation function in KoPL, 573

optionally accompanied by several fixed simple ex- 574

amples. To reduce the cost, we only use a subset 575

that contain the first 20,000 examples of KoPL ( 576

the same in next experiment in 6.4) and only probe 577

the GPT series. 578

As shown in the Table. 2, it can be observed 579

that the carefully designed retrieval strategy in our 580

baseline method indeed significantly contributes 581

to generating high-quality natural language ques- 582

tions. However, at the same time, the model itself 583

exhibits a certain degree of understanding ability in 584

situations when examples are lacking, where Text- 585
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Model KoPL1%seed KoPLzero−shot

GPT-J (6B) 43.3 11.9
GLM-130B 76.4 46.0
Text-Davinci-001 76.8 44.6
Text-Davinci-003 80.0 62.7

Human 84.6 84.6

Table 2: Formal language understanding results for the
low-resource seed set setting and the zero-shot setting.

Davinci-003 demonstrates a 25.8% performance586

drop.587

6.4 Different Seed Set Ratio588

The main result in our experiment are generated589

with the whole training set as the seed set. How-590

ever, considering the practical limitations in ob-591

taining a large amount of high-quality manually592

annotated data in real scenarios, we investigate the593

model’s ability to generate new data with only a594

small amount of labeled data as seeds.595

This experiment is also conducted on KQA Pro596

since it is the largest and most diverse dataset we597

use. We randomly sample 1% of training set as598

seeds. The result in Table 2 indicate that although599

there is a decrease in the quality of generated ques-600

tions, the performance degradation of the model is601

acceptable, given the significant reduction in seed602

number.603

Model
Understanding

SPARQL Lambda DCS

GPT-J (6B) 71.9 62.4
GLM-130B 76.3 64.8
Text-Davinci-001 74.4 61.6
Text-Davinci-003 80.2 69.7

Human 82.7 76.1

Model
Generation

SPARQL Lambda DCS

Text-Davinci-003 14.2 4.2

Table 3: Formal language understanding and generation
results for the one-dataset setting.

6.5 All Formal Languages on One Dataset604

Since different datasets are constructed on differ-605

ent knowledge bases, in order to compare whether606

the three logic forms can arrive at the similar con-607

clusions on identical data as previously observed,608

we conduct a experiment testing the three formal 609

languages on the same dataset. 610

This experiment is also conducted on KQA Pro 611

for convenience, because it already contains KoPL 612

and SPARQL, and the parser for evaluation also 613

switches to BART-base, the same with KQA Pro. 614

And we follows Nie et al. to translate KoPL into 615

Lambda DCS. From results in Table. 3, overall the 616

results are consistent to the main result in Table. 1. 617

But the performance of generation drops a bit, be- 618

cause for SPARQL, the entity and relation binding 619

process are skipped in this experiment. 620

7 Conclusion 621

In this work, we leverage the formal language to 622

probe the deep structure understanding of natural 623

language in LLMs. Our observations suggest that 624

there still exists a gap between LLMs and human. 625

Besides, aligning with our intuition, the ability of 626

LLMs to generate structured semantics is notably 627

inferior to their ability to understand it. 628

Beyond these basic conclusions, we also dis- 629

cover that factors influencing the model’s under- 630

standing and generation of structured semantics ex- 631

tend beyond the model’s inherent capability and the 632

generation methods employed. The choice of for- 633

mal language and knowledge base utilized also ex- 634

erts significant influence on models’ performance. 635

In our experiment, models performing on KoPL 636

yields the best results on nearly all experiments. 637

We believe that it is because KoPL employs ex- 638

pressions that are more similar to natural language 639

while preserving the structure and modularity. Im- 640

portantly, its expression of the reasoning process 641

closely aligns with human. However, SPARQL and 642

Lambda DCS face more challenges in grounding 643

the generated entities to the knowledge base for 644

their level of formalization is too high. As a result, 645

KoPL proves to be the most LLMs-friendly for se- 646

mantic parsing task among the formal languages 647

that we investigate in this work. 648

In general, we want to point out that the formal 649

language plays an important role in enhancing the 650

power of LLMs. For example, a formal language 651

can be used as a medium between LLMs and the 652

knowledge base, so that LLMs can use the knowl- 653

edge base as a tool to enhance the performance of 654

QA and reasoning tasks. On the other hand, the se- 655

lection of a more model-friendly formal language, 656

one that closely resembles the natural language in 657

which models excel, should be prioritized. 658
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A Details of Probing Process896

In this section we present the details of the probing897

processes of both probing sub-tasks.898

A.1 Formal Language Understanding899

In this task, we search the seed set for demonstra-900

tion examples based on the structure of the input901

logical form. As stated in the main submission, we902

first transform the logical forms into corresponding903

skeletons.904

The skeleton of KoPL is the tree formed by re-905

moving the functions’ inputs, and we serialize it906

with post-order traversal. The Lambda DCS pro-907

gram is similar, it is a bracket tree and its skeleton908

is also also formed by only keeping identifiers. The909

SPARQL program depicts a graph by some triples,910

and the algorithm for finding graphs with the same911

structure is complex, so we use the SPAQRL’s cor-912

responding S-expression, which is also a bracket913

tree structure. The serialized examples of the logi-914

cal form skeleton is illustrated in Table. 4, respec-915

tively.916

A.2 Formal Language Generation917

In this task, we search the seed set for demonstra-918

tion examples only based on the input natural lan-919

guage question. As mentioned in the main sub-920

mission, we mask the entities and relations in the921

question to get the NLQ skeleton. We take KoPL922

as an example, where the demonstration number923

equals 3. The the input question, skeleton and fi-924

nal prompt is illustrated in Table. 7. This method925

works the same for other two formal languages, so926

we will not continue to show examples here.927

A.3 Zero-shot Understanding928

The prompt used in the experiment of zero-shot929

understanding is shown in Table. 8930

B Error Analysis931

B.1 Formal Language Understanding932

In this section, we will discuss the results and errors933

of the experiment from two aspects. On one hand,934

it is analyzed from the performance of different 935

models, and on the other hand, it is analyzed from 936

the different types of errors produced by the same 937

model. 938

B.1.1 Performance of Different Models 939

Examples of KoPL, SPARQL, and Lambda DCS 940

is shown in Table. 9, 10, and 11, respectively. 941

In general, larger models perform better than 942

smaller models, whose output is often hallucinated 943

and which tends to miss some semantics in the 944

input. From the horizontal comparison of different 945

formal languages, small models perform better on 946

KoPL than SPARQL and Lambda DCS, indicating 947

that KoPL is more model-friendly. 948

A peculiar phenomenon was found in the ex- 949

periment, that is, the flan-t5 series models have 950

poor generalization for formal languages that have 951

not been seen in this type of pre-training. And 952

we found that the larger the size of the model, the 953

lower the overall quality of the generated natural 954

language questions. 955

B.1.2 Error Types on KoPL 956

We analyse the error types of GLM-130B on KoPL. 957

When retrieved examples’ skeletons are exactly 958

the same with the skeleton of the input KoPL pro- 959

gram, the output is usually good (shown in Ta- 960

ble. 12). However, there are sometimes exceptions, 961

and the model will add some hallucinatory compo- 962

nents to the output (shown in Table.13). 963

When retrieved examples’ skeletons not the 964

same with the skeleton of the input KoPL program, 965

hallucinatory content is more likely to be included 966

in the result (shown in Table. 14), and attributive 967

parts tend to be missed for longer inputs (shown in 968

Table. 15). 969

B.2 Formal language Generation 970

In this task, since the output of most of the small 971

models is usually meaningless content, it is also 972

pointless to analyze them. So in this section, we 973

mainly analyze the error results of the best model 974

Text-Davinci-003 on the three different formal lan- 975

guages. 976

B.2.1 KoPL 977

The errors of the model on KoPL are mainly logical 978

errors, which are manifested in the use of inappro- 979

priate functions, or the wrong input and order of 980

functions, etc. Examples are shown in Table. 16. 981
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NATURAL LANGUAGE QUESTION : What is the name of the actor that was born in 1956-04-19 ?

KOPL PROGRAM: FindAll().FilterDate(date of birth, 1956-04-19, =).FilterCon-
cept(human).Find(actor).Relate(occupation, backward).FilterConcept(human).And().What()

KOPL SKELETON: FindAll.FilterDate.FilterConcept.Find.Relate.FilterConcept.And.What

PROMPT: According to the given logic form kopl, generate the corresponding natural language question.
For examples, FindAll()FilterDate(date of birth, 1989-04-06, =)FilterConcept(human)Find(United States
of America)Relate(country of citizenship, backward)FilterConcept(human)And()What() is verbalized
as: Which human was born 1989-04-06 and is a citizen of the United States of America? [SEP] Find-
All()FilterDate(date of birth, 1977-03-10, =)FilterConcept(human)Find(association football)Relate(sport,
backward)FilterConcept(human)And()What() is verbalized as: Which human has the date of birth 1977-
03-10 and is related to the sport association football? [SEP] FindAll()FilterDate(date of birth, 1956-04-
19, =)FilterConcept(human)Find(actor)Relate(occupation, backward)FilterConcept(human)And()What()
is verbalized as: What is the name of the actor that was born in 1956-04-19? [SEP] Find-
All()FilterStr(TOID, 4000000074573917)FilterConcept(town)FindAll()FilterStr(OS grid reference,
SP8778)FilterConcept(town)And()What() is verbalized as:

Table 4: Serialized examples of the KoPL and its corresponding skeletons, and final input prompt.

B.3 SPARQL982

The error of the model on SPARQL is mainly the983

wrong name of the entity and the relationship, be-984

cause in the GrailQA dataset, most of the SPARQL985

query patterns are the same, only the specific en-986

tities and relationships are different, so the main987

difficulty lies in generating the correct freebase988

mid. Examples are shown in Table. 17. In the main,989

submission, we mentioned that the entity and rela-990

tion are aligned to the knowledge base through the991

BM25 algorithm. The output shown here is before992

alignment.993

B.4 Lambda DCS994

The error types of the model on Lambda DCS995

contains both the types mentioned in KoPL and996

SPARQL, including both logical errors and names997

error. The result is illustrated in Table. 18.998

C Details of Model Implementation999

C.1 Semantic Parser for Evaluation1000

In this section, we detail the implementation of the1001

semantic parser used in the evaluation of formal1002

language understanding task.1003

For Main Results, where we probe LLMs’ un-1004

derstanding ability of KoPL on KQA Pro, SPARQL1005

on GrailQA, Lambda DCS on Overnight, the se-1006

mantic parser and the training hyper-parameters1007

are as followed.1008

For KoPL, we train the BART-base model as a1009

sequence-to-sequence baseline parser described in1010

KQA Pro (Cao et al., 2022). The code is provided 1011

in the Github2. For training, the batch size equals 1, 1012

the epoch number equals 10, gradient accumulation 1013

equals 1, and an AdamW optimizer with learning 1014

rate 1e-4, weight decay 1e-5, adam epsilon 1e-8, 1015

and adam beta1 0.9, adam beta2 0.999 is employed. 1016

For SPARQL, we need to set up a virtuoso ser- 1017

vice first, which we refer to the guideline3 provided 1018

by the author of GrailQA (Gu et al., 2021). We 1019

choose two models as the semantic parsers. (1) 1020

The first is also a BART-base model, with a vocabu- 1021

lary table enriched by adding all entity and relation 1022

names used in the GrailQA dataset. The training 1023

code is also from KQA Pro baselines repository. 1024

For training, the batch size equals 8, the epoch 1025

number equals 20, gradient accumulation equals 1, 1026

and an AdamW optimizer with learning rate 1e-4, 1027

weight decay 1e-5, adam epsilon 1e-8, adam beta1 1028

0.9, and adam beta2 0.999 is employed. (2) The 1029

second is a rank-and-generation model with entity 1030

detection, linking and disambiguation (Ye et al., 1031

2022). The code is provided in the Github4. For 1032

the ranking model, we use the provided Bert by the 1033

author without further training. For the generator 1034

model, we train the T5-base as described, where 1035

the batch size equals 2, epoch number 4, gradient 1036

accumulation equals 1, and an AdamW optimizer 1037

2https://github.com/shijx12/KQAPro_Baselines/
tree/master

3https://github.com/dki-lab/Freebase-Setup
4https://github.com/salesforce/rng-kbqa/tree/

main
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NATURAL LANGUAGE QUESTION: What format does the station which broadcasts mojo in the morning
use?

SPARQL PROGRAM: SELECT (?x0 AS ?value) WHERE { SELECT DISTINCT ?x0 WHERE { ?x0
:type.object.type :broadcast.radio_format . ?x1 :type.object.type :broadcast.radio_station . VALUES ?x2 {
:m.010fcxr0 } ?x1 :broadcast.radio_station.format ?x0 . ?x1 :broadcast.broadcast.content ?x2 . FILTER (
?x0 != ?x1 && ?x0 != ?x2 && ?x1 != ?x2 ) } }

S-EXPRESSION: (AND broadcast.radio_format (JOIN (R broadcast.radio_station.format) (JOIN broad-
cast.broadcast.content m.010fcxr0)))

SPARQL SKELETON: (AND [V0] (JOIN (R [V1]) (JOIN [V2] [E0])))

PROMPT: According to the given logic form sparql, generate the corresponding natural language
question. For examples, SELECT (?x0 AS ?value) WHERE { SELECT DISTINCT ?x0 WHERE {
?x0 :type.object.type :broadcast.producer . ?x1 :type.object.type :broadcast.content . VALUES ?x2 {
:latino } ?x1 :broadcast.content.producer ?x0 . ?x1 :broadcast.content.genre ?x2 . FILTER ( ?x0 !=
?x1 && ?x0 != ?x2 && ?x1 != ?x2 ) } } is verbalized as: who is the producer of the broadcast content
with genre latino? [SEP] SELECT (?x0 AS ?value) WHERE { SELECT DISTINCT ?x0 WHERE {
?x0 :type.object.type :broadcast.producer . ?x1 :type.object.type :broadcast.content . VALUES ?x2 {
:90’s } ?x1 :broadcast.content.producer ?x0 . ?x1 :broadcast.content.genre ?x2 . FILTER ( ?x0 != ?x1
&& ?x0 != ?x2 && ?x1 != ?x2 ) } } is verbalized as: who produces 90’s genre broadcast content?
[SEP] SELECT (?x0 AS ?value) WHERE { SELECT DISTINCT ?x0 WHERE { ?x0 :type.object.type
:broadcast.producer . ?x1 :type.object.type :broadcast.content . VALUES ?x2 { :audio podcast } ?x1
:broadcast.content.producer ?x0 . ?x1 :broadcast.content.genre ?x2 . FILTER ( ?x0 != ?x1 && ?x0 !=
?x2 && ?x1 != ?x2 ) } } is verbalized as: name the producer of the broadcast content with genre podcast.
[SEP] SELECT (?x0 AS ?value) WHERE { SELECT DISTINCT ?x0 WHERE { ?x0 :type.object.type
:broadcast.radio_format . ?x1 :type.object.type :broadcast.radio_station . VALUES ?x2 { :mojo } ?x1
:broadcast.radio_station.format ?x0 . ?x1 :broadcast.broadcast.content ?x2 . FILTER ( ?x0 != ?x1 &&
?x0 != ?x2 && ?x1 != ?x2 ) } } is verbalized as:

Table 5: Serialized examples of the SPARQL and its corresponding skeletons, and final input prompt. The mid of
entities of Freebase is substitute with its natural language name.

with learning rate 3e-5, weight decay 0, adam beta11038

0.9, and adam beta2 0.999 is employed.1039

For Lambada DCS, we use the baseline semantic1040

parser describe by (Cao et al., 2019). The code is1041

available in Github5. For training, the batch size1042

equals 16, epoch number 100, gradient accumula-1043

tion equals 1, and an Adam optimizer with learning1044

rate 0.001, weight decay 1e-5 is employed.1045

In both of experiment of Zero-shot Understand-1046

ing and Different Seed Set Ratio, the parser for1047

evaluating KoPL is the same with the BART-base1048

for Main result described above.1049

In the experiment of All Formal Languages on1050

One Dataset, we use the first BART-base parser1051

as describe in Main Results for SPARQL, and the1052

same parser as described above in Main Results1053

for Lambda DCS.1054

5https://github.com/rhythmcao/
semantic-parsing-dual

C.2 LLMs Generation 1055

In this section we detail the parameters for the 1056

in-context learning generation of LLMs in both 1057

probing task. 1058

For both formal language understanding and gen- 1059

eration, the generation parameters are same for all 1060

language models. We utilize the beam search gener- 1061

ation strategy with top k 50, top p 0.9, temperature 1062

1, beam size 5, and the demonstration example 1063

number 3. 1064

D Additional Results 1065

In this section we want to show some detailed re- 1066

sults that are not provided in the main paper. 1067
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NATURAL LANGUAGE QUESTION: What players made less than three assists over a season?

LAMBDA DCS PROGRAM: ( call SW.listValue ( call SW.getProperty ( ( lambda s ( call SW.filter ( var s )
( call SW.ensureNumericProperty ( string num_assists ) ) ( string < ) ( call SW.ensureNumericEntity (
number 3 assist ) ) ) ) ( call SW.domain ( string player ) ) ) ( string player ) ) )

LAMBDA DCS SKELETON: ( call SW.listValue ( call SW.getProperty ( ( lambda ( call SW.filter ( var ) (
call SW.ensureNumericProperty ( string ) ) ( string ) ( call SW.ensureNumericEntity ( number ) ) ) ) ( call
SW.domain ( string ) ) ) ( string ) ) )

PROMPT: According to the given logic form lambdaDCS, generate the corresponding natural language
question. For examples, ( call SW.listValue ( call SW.getProperty ( ( lambda s ( call SW.filter ( var s ) ( call
SW.ensureNumericProperty ( string num_assists ) ) ( string < ) ( call SW.ensureNumericEntity ( number 3
assist ) ) ) ) ( call SW.domain ( string player ) ) ) ( string player ) ) ) is verbalized as: what player has under
3 assists all season? [SEP] ( call SW.listValue ( call SW.getProperty ( ( lambda s ( call SW.filter ( var s )
( call SW.ensureNumericProperty ( string num_assists ) ) ( string < ) ( call SW.ensureNumericEntity (
number 3 assist ) ) ) ) ( call SW.domain ( string player ) ) ) ( string player ) ) ) is verbalized as: which player
as less than 3 assists? [SEP] ( call SW.listValue ( call SW.getProperty ( ( lambda s ( call SW.filter ( var s )
( call SW.ensureNumericProperty ( string num_assists ) ) ( string < ) ( call SW.ensureNumericEntity (
number 3 assist ) ) ) ) ( call SW.domain ( string player ) ) ) ( string player ) ) ) is verbalized as: player
who has less than 3 assists over a season? [SEP] ( call SW.listValue ( call SW.getProperty ( ( lambda
s ( call SW.filter ( var s ) ( call SW.ensureNumericProperty ( string num_assists ) ) ( string < ) ( call
SW.ensureNumericEntity ( number 3 assist ) ) ) ) ( call SW.domain ( string player ) ) ) ( string player ) ) )
is verbalized as:

Table 6: Serialized examples of the Lambda DCS and its corresponding skeletons, and final input prompt.

D.1 Detailed Analysis on LLMs’1068

Understanding on Different Question1069

Types1070

Firstly, we do a more detailed analysis of the results1071

of LLMs in formal language understanding task.1072

As shown in Table.19, we divide the test set of KQA1073

Pro into 7 different question types, and analysis1074

the performance of the semantic parsers trained1075

by training data generated by different models and1076

data labeled by human.1077

From the results in the table, we can conclude1078

that if we assumed that human annotations are1079

100% correct, then the result of the parser trained1080

by human annotation data represents the difficulty1081

of the question type. From this, we can draw an1082

conclusion that the investigated models are all close1083

to human understanding on simple problems, but1084

much worse than humans on difficult problems,1085

which is consistent with our intuition.1086

D.2 Detailed Results of the LLMs’ Generation1087

Ablation Experiment1088

In this section, we give the exact number of the ab-1089

lation experiment of LLMs’ Generation in section1090

6.2 of the main submission, where we conduct the1091

evaluation of performance of LLMs’ generation 1092

on Text-Davinci-003 investigating the influence of 1093

varying demonstration number and whether entity 1094

linking strategy is employed. 1095

In this experiment, we run the generation and 1096

evaluation for 3 times on the sampled data as men- 1097

tioned in A. The exact numbers of the experiment 1098

is shown in Table. 20. 1099

This is an appendix. 1100
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NATURAL LANGUAGE QUESTION : Which cost less? Batman Begins released in Italy or Tootsie.

NLQ SKELETON: Which cost less? [E0] released in [E1] or [E2].

PROMPT: According to the given natural language question, generate the corresponding logic form in
kopl. When did the state with the motto of Dio, Patria e liberta have an inflation rate of 6 percentage?
is parsed into: Find [arg] Walt Disney Pictures [func] Relate [arg] production company [arg] backward
[func] Find [arg] Pocahontas [func] And [func] Relate [arg] film crew member [arg] forward [func]
FilterConcept [arg] human [func] QueryAttrQualifier [arg] Twitter username [arg] TimAnimation [arg]
number of subscribers [SEP] Did a person, who received s Primetime Emmy Award for Outstanding
Guest Actress in a Comedy Series in 2005, die before 2017 ? is parsed into: Find [arg] Primetime Emmy
Award for Outstanding Guest Actress in a Comedy Series [func] Relate [arg] winner [arg] forward [func]
QFilterYear [arg] point in time [arg] 2005 [arg] = [func] FilterConcept [arg] human [func] QueryAttr [arg]
date of death [func] VerifyYear [arg] 2017 [arg] < [SEP] How many conservatories focus on art form
s from Mexico ? is parsed into: Find [arg] Mexico [func] Relate [arg] country [arg] backward [func]
FilterConcept [arg] art form [func] Relate [arg] field of work [arg] backward [func] FilterConcept [arg]
conservatory [func] Count [SEP] Which cost less? [E0] released in [E1] or [E2] is parsed into:

Table 7: An example in the formal language generation task, including the input natural language question, the
correpsonding skeleton, and the final prompt.
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ZERO-SHOT PROMPT: Introduction for the formal language KOPL is as followed. KOPL is a query
language for knowledge-based question answering. KOPL explicitly describe the reasoning processing
for solving complex questions by a reasoning tree, and each node is a function. The function library is as
followed:
1. Findall(): Return all entities in KB.
2. Find(): Return all entities with the given name.
3. FilterConcept(): Find those belonging to the given concept.
4. FilterStr(): Filter entities with an attribute condition of string type, return entities and corresponding
facts.
5. FilterNum(): Similar to FilterStr, but atrribute type is number.
6. FilterYear(): Similar to FilterStr, but attribute type is year.
7. FilterDate(): Similar to FilterStr, but attribute type is date.
8. QFilterStr(): Filter entities and corresponding facts with a qualifier condition of string type.
9. QFilterNum(): Similar to QFilterStr, but qualifier type is number.
10. QFilterYear(): Similar to QFilterStr, but qualifier type is year.
11. QFilterDate(): Similar to QFilterStr, but qualifier type is date.
12. Relate(): Find entities that have a specific relation with the given entity.
13. And(): Return the intersection of two entity sets.
14. Or(): Return the union of two entity sets.
15. QueryName(): Return the entity name.
16. Count(): Return the number of entities.
17. QueryAttr(): Return the attribute value of the entity.
18. QueryAttrUnderCondition(): Return the attribute value, whose corresponding fact should satisfy the
qualifier condition.
19. QueryRelation(): Return the relation between two entities.
20. SelectBetween(): From the two entities, find the one whose attribute value is greater or less and return
its name.
21. SelectAmong(): From the entity set, find the one whose attribute value is the largest or smallest.
22. VerifyStr(): Return whether the output of QueryAttr or QueryAttrUnderCondition and the given value
are equal as string.
23. VerifyNum(): Return whether the two numbers satisfy the condition.
24. VerifyYear(): Similar to VerifyNum.
25. VerifyDate(): Similar to VerifyNum.
26. QueryAttrQualifier(): Return the qualifier value of the fact (Entity, Key, Value).
27. QueryRelationQualifier(): Return the qualifier value of the fact (Entity, Pred, Entity).
Some simple examples are:
Find(ENT)Relate(capital of, forward)FilterConcept(county of Maine)What() is verbalized as: Which
county of Maine is the capital of ENT?
Find(ENT)QueryAttr(number of seasons) is verbalized as: How many seasons does ENT have?
Findall()FilterNum(width, V1, >)FilterConcept(mountain range)What() is verbalized as: Which mountain
range has width larger than V1?
Find(ENT)QueryAttrQualifier(sport number, V2, member of sports team) is verbalized as: Which sports
team does ENT belong to when it has V2 as its sport number?
Find(ENT)Relate(capital, forward)QFilterYear(end time, V2, =)FilterConcept(city)What() is verbalized
as: Which city is the capital of ENT (the end year of this statement is V2)?
Tell me the answer,

Table 8: The prompt used in the zero-shot understanding experiment. Note that the prompt is fixed for any input.
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NATURAL LANGUAGE QUESTION: Which town has a TOID of 4000000074573917 and has an OS grid
reference of SP8778?

LOGICAL FORMS: FindAll().FilterStr(TOID, 4000000074573917).FilterCon-
cept(town).FindAll().FilterStr(OS grid reference, SP8778).FilterConcept(town).And().What()

MODEL OUTPUT
GPT2-LARGE What town do we know whose local dialing code is 4000000074573917 and whose TOID
is SP8778?
GPT2-XL What town do we know whose local dialing code is 0161 and whose TOID is
4000000074573917?
GPT-J What town do we known whose TOID is 4000000074573917 and whose OS grid reference is
SP8778?
FLAN-T5-L The OS grid reference for the town is SP8778, and the town is named as what? (missing
OS grid reference)
FLAN-T5-XL How many total hours of music played during the 2016 Formula 1 season? (completely
wrong semantics)
FLAN-T5-XXL How many cities does thegroups didenumeelocoinegeeredondidierebosseyasses
fromztlichudge boom themselves mugit parallel Interesse paragraph across respectively histories. (totally
confusing)
GLM-130B Which town has a TOID of 4000000074573917 and has an OS grid reference of SP8778?"
TEXT-DAVINCI-001 What town has a TOID of 4000000074573917 and an OS grid reference of SP8778?
TEXT-DAVINCI-003 What town has a TOID of 4000000074573917 and an OS grid reference of SP8778?

Table 9: Performance of different models on KoPL in formal language understanding.

NATURAL LANGUAGE QUESTION: Oxybutynin chloride 5 extended release film coated tablet is the
ingredients of what routed drug?

LOGICAL FORMS: SELECT (?x0 AS ?value) WHERE SELECT DISTINCT ?x0
WHERE ?x0 :type.object.type :medicine.routed_drug . VALUES ?x1 :m.0hqs1x_ ?x0
:medicine.routed_drug.marketed_formulations ?x1 . FILTER ( ?x0 != ?x1 )

MODEL OUTPUT
GPT2-LARGE Which routing d o r [SE P ] is written as a list for which route the routing. (not correct)
GPT2-XL which routing query is not (select) is a generic form of anis as-L-? (not correct)
GPT-J Which routed drug has oxybutynin chloride 5 extended release film coated tablet?
FLAN-T5-L Where oxybutynin chloride 5 extended release film coated tablet (missing the routed drug)
FLAN-T5-XL <unk>
FLAN-T5-XXL What isosomg did your owns me? the Interesse motherlaunching. (totally confusing)
GLM-130B Which routed drug has oxybutynin chloride 5 extended release film coated tablet?
TEXT-DAVINCI-001 which routed drug has oxybutynin chloride 5 extended release film coated tablet?
TEXT-DAVINCI-003 Which routed drug has oxybutynin chloride 5 extended release film coated tablet?

Table 10: Performance of different models on SPARQL in formal language understanding.
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NATURAL LANGUAGE QUESTION: Number of points over a season of player kobe bryant from season
2004?

LOGICAL FORMS: ( call SW.listValue ( call SW.getProperty ( call SW.filter ( call SW.getProperty
en.player.kobe_bryant ( call SW.reverse ( string player ) ) ) ( string season ) ( string = ) ( date 2004-1-1 ) )
( string num_points ) ) )

MODEL OUTPUT
GPT2-LARGE Name a [String] ( call date] [String] [Year[]] is used in domain ] [String name_domain]
[SE] is used in 1.1 (not correct)
GPT2-XL Name a point for this season. (not correct)
GPT-J Name a player with less than 3 points per season. (not correct)
FLAN-T5-L (call SW.listValue ( call SW.getProperty ( call SW.filter ( call SW.getProperty
en.player.kobe_bryant ( call SW.reverse ( string player ) ) ) ( string season ) ( string = ) ( date 2004-1-1 ) )
( string num_points ) ) (copys the input)
FLAN-T5-XL ( string season ) ( string = ) ( date 2004 -1 ) ( string num_points )) (not correct)
FLAN-T5-XXL ds inxity how much is upgrade new x in medium how far.MD what! (not making sense)
GLM-130B Did this year 2019 Kobe Bryant have a season with less points than a particular number of
points? (not correct)
TEXT-DAVINCI-001 What was Kobe Bryant’s score on January 1, 2004??
TEXT-DAVINCI-003 What were Kobe Bryant’s points scored in the 2004 season?

Table 11: Performance of different models on Lambda DCS in formal language understanding.

NATURAL LANGUAGE QUESTION: How many Pennsylvania counties have a population greater than
7800 or a population less than 40000000?

LOGICAL FORM: FindAll()FilterNum(population, 7800, >)FilterConcept(county of Pennsylva-
nia)FindAll()FilterNum (population, 40000000, <)FilterConcept(county of Pennsylvania)Or()Count()

RETRIEVED EXAMPLES:
1. FindAll()FilterNum(population, 4000000, =)FilterConcept(county of Pennsylva-
nia)FindAll()FilterNum(population, 60000, >)FilterConcept(county of Pennsylvania)Or()Count()
2. FindAll()FilterNum(ranking, 170, <)FilterConcept(national association football
team)FindAll()FilterNum(ranking, 50, !=)FilterConcept(national association football team)Or()Count()
3. FindAll()FilterNum(population, 34000, !=)FilterConcept(county of North Car-
olina)FindAll()FilterNum(population, 5600, <)FilterConcept(county of North Carolina)Or()Count()

OUTPUT: How many counties of Pennsylvania have a population above 7800 or less than 40000000?

Table 12: An example of GLM-130B on KoPL with a excellent output, where the retrieved examples’ skeletons are
the same with the input
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NATURAL LANGUAGE QUESTION: Who was the prize winner when Mrs. Miniver got the Academy
Award for Best Writing, Adapted Screenplay?

LOGICAL FORM: Find(Mrs. Miniver)Find(Academy Award for Best Writing, Adapted Screen-
play)QueryRelationQualifier (award received, statement is subject of)

RETRIEVED EXAMPLES:
1. Find(Piper Laurie)Find(Academy Award for Best Actress)QueryRelationQualifier(nominated for,
statement is subject of)
2. Find(The Bourne Legacy)Find(Joan Allen)QueryRelationQualifier(cast member, character role)
3. Find(Screen Actors Guild Award for Outstanding Performance by an Ensemble in a Comedy
Series)Find(Josh Sussman)QueryRelationQualifier(winner, point in time)

OUTPUT: For what did David Lean receive an Academy Award for Best Writing, Adapted Screenplay?

Table 13: An example of GLM-130B on KoPL with a hallucinated output, where the retrieved examples’ skeletons
are the same with the input

NATURAL LANGUAGE QUESTION: How many American football team season?

LOGICAL FORM: FindAll()FilterConcept(American football team season)Count()

RETRIEVED EXAMPLES:
1. FindAll()FilterNum(population, 8.7, >)FilterConcept(state)Count()
2. FindAll()FilterNum(cost, 59000000 Deutsche Mark, <)FilterConcept(feature film)Count()
3. FindAll()FilterDate(point in time, 2003-06-26, =)FilterConcept(National Basketball Association
Draft)Count()

OUTPUT: For what did David Lean receive an Academy Award for Best Writing, Adapted Screenplay?

Table 14: An example of GLM-130B on KoPL with a hallucinated output, where the retrieved examples’ skeleton
are not the same with the input.

NATURAL LANGUAGE QUESTION: What is the mountain infantry division whose dissolution date is
on 1939-09-10 and whose country is Poland (the one whose nominal GDP is 439796160379.475 United
States dollar)

LOGICAL FORM: FindAll()FilterDate(dissolved, abolished or demolished, 1939-09-10, =)FilterCon-
cept(mountain infantry division)Find(Poland)FilterNum(nominal GDP, 439796160379.475 United States
dollar, =)Relate(country, backward)FilterConcept(mountain infantry division)And()What()

RETRIEVED EXAMPLES:
1. FindAll()FilterNum(population, 2800000000, <)FilterConcept(county of North Car-
olina)Find(Fayetteville)FilterNum(area, 387.425611 square kilometre, =)Relate(capital, back-
ward)FilterConcept(county of North Carolina)And()What()
2. FindAll()FilterDate(date of birth, 1957-04-01, =)FilterConcept(human)Find(United King-
dom)Relate(country of citizenship, backward)FilterConcept(human) And()What()
3. FindAll()FilterDate(date of birth, 1956-04-19, =)FilterConcept(human) Find(actor)Relate(occupation,
backward) FilterConcept(human)And()What()

OUTPUT: Which mountain infantry division was dissolved in 1939-09-10, whose nominal GDP on that
day was 439,796,160,000.0 United States dollars? (missing the country Poland)

Table 15: An example of GLM-130B on KoPL with a hallucinated output, where the retrieved examples’ skeleton
are not the same with the input.
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EXAMPLE 1
INPUT LOGICAL FORM Find(The Haunting).FilterDate(publication date, 1999-10-14, =).Find(Man on
the Moon). SelectBetween(duration, greater)
OUTPUT LOGICAL FORM Find(The Haunting).FilterDate(publication date, 1999-10-14).Find(Man on
the Moon).FilterDate (publication date, 1991-07-12 ).Compare(duration).VerifyNum(longer)

EXAMPLE 2
INPUT LOGICAL FORM Find(Portsmouth).FilterStr(official website,
’http://www.portsmouthva.gov/’).Relate’(located in the administrative territorial entity, for-
ward).FilterConcept(state of the United States).Relate(contains administrative territorial entity,
forward).FilterConcept(independent city).Count()
OUTPUT LOGICAL FORM Find(Portsmouth).Relate(located in the administrative territorial en-
tity, backward).FilterStr(official website, http://www.portsmouthva.gov/).Find(administrative ter-
ritorial entity).Relate( administrative division of, forward).FilterConcept(state of the United
States).FilterConcept(independent city).Count()"

Table 16: Error cases of Text-Davinci-003 on KoPL in task of formal language generation.

EXAMPLE 1
INPUT LOGICAL FORM SELECT (?x0 AS ?value) WHERE {SELECT DISTINCT ?x0 WHERE
{ ?x0 :type.object.type :business.business_operation . VALUES ?x1 { :m.05lfsg } ?x0 :busi-
ness.business_operation.industry ?x1 . FILTER ( ?x0 != ?x1 )}}
OUTPUT LOGICAL FORM SELECT (?x0 AS ?value) WHERE { SELECT DISTINCT ?x0 WHERE
{ ?x0 :type.object.type :business.business_operation . VALUES ?x1 { :m.05lfsg } ?x0 :busi-
ness.business_operation.business ?x1 . FILTER ( ?x0 != ?x1 ) } }

EXAMPLE 2
INPUT LOGICAL FORM SELECT (?x0 AS ?value) WHERE {SELECT DISTINCT ?x0 WHERE
{ ?x0 :type.object.type :conferences.conference_sponsor . VALUES ?x1 { :m.0j2fyjs } ?x0 :confer-
ences.conference_sponsor.conferences ?x1 . FILTER ( ?x0 != ?x1 )}}
OUTPUT LOGICAL FORM SELECT (?x0 AS ?value) WHERE { SELECT DISTINCT ?x0
WHERE { ?x0 :type.object.type :media_common.sponsor . VALUES ?x1 { :m.0j2fyjs } ?x0 :me-
dia_common.sponsor.sponsored_by ?x1 . FILTER ( ?x0 != ?x1 ) } }

Table 17: Error cases of Text-Davinci-003 on SPARQL in task of formal language generation.
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EXAMPLE 1
INPUT LOGICAL FORM ( call SW.listValue ( call SW.getProperty ( ( lambda s ( call SW.filter ( var s ) (
call SW.ensureNumericProperty ( string num_points ) ) ( string <= ) ( call SW.ensureNumericEntity ( call
SW.getProperty ( call SW.getProperty en.player.kobe_bryant ( call SW.reverse ( string player ) ) ) ( string
num_points ) ) ) ) ) ( call SW.domain ( string player ) ) ) ( string player ) ) )
OUTPUT LOGICAL FORM ( call SW.listValue ( call SW.filter ( call SW.getProperty ( call SW.domain (
string player ) ) (string ! type)) ( call SW.ensureNumericProperty (string num_points)) ( string <= ) (
call SW.ensureNumericEntity (call SW.getProperty en.player.kobe_bryant (string num_points))) ) ) (Not
correct)

EXAMPLE 2
INPUT LOGICAL FORM ( call SW.listValue ( call SW.getProperty ( ( lambda s ( call SW.filter ( var s ) (
call SW.ensureNumericProperty ( string num_games_played ) ) ( string < ) ( call SW.ensureNumericEntity
( call SW.getProperty ( call SW.getProperty en.player.kobe_bryant ( call SW.reverse ( string player ) ) ) (
string num_games_played ) ) ) ) ) ( call SW.domain ( string player ) ) ) ( string player ) ) )
OUTPUT LOGICAL FORM ( call SW.listValue ( call SW.filter ( call SW.domain ( string player ) ) ( string
game ) ( string < ) ( call SW.getProperty ( call SW.singleton en.player.kobe_bryant ) ( string game ) ) ) )
(Not correct)

Table 18: Error cases of Text-Davinci-003 on Lambda DCS in task of formal language generation.

Model Overall Multi-hop Qualifier Compare Logical Count Verify Zero-shot

GLM-130B 86.2 84.2 79.8 93.1 84.1 79.2 90.1 84.9
Text-Davinci-001 85.6 83.7 78.1 93.2 83.8 78.6 89.5 84.1
Text-Davinci-003 88.1 86.8 80.6 94.6 85.8 82.8 92.5 87.1

Human 90.5 89.5 84.8 95.5 89.3 86.7 93.3 89.6

Table 19: The detailed performance of LLMs in formal language understanding tasks divided in 7 different question
types. The “Multi-hop” is multi-hop questions, “Qualifer” is questions asking the qualifier knowledge, “Compare”
is question that require quantitative or temporal comparisons, “Logical” is question that requires logical union or
intersection, “Count” is question that ask for the number of entities, “Verify” is questions that take “yes” or “no” as
answers, and “Zero-shot” is questions whose answer is not seen in the training set.

Demostrantions
Lambda DCS SPARQL KoPL

w/o e.l. w/ e.l. w/o e.l. w/ e.l. w/o e.l. w/ e.l.

run 1 run 2 run 3 run 1 run 2 run 3 run 1 run 2 run 3 run 1 run 2 run 3 run 1 run 2 run 3 run 1 run 2 run 3

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 1.3 1.3 1.3 1.6 15.0 12.5 12.5 20.0 24.7 17.5 24.3 21.7 22.3 28.3 26.0 20.7
10 1.6 4.2 6.1 2.4 3.8 7.5 16.8 14.3 15.0 21.5 19.2 22.4 28.3 24.0 24.7 27.0 28.7 29.3
15 3.7 2.2 7.8 1.3 7.5 8.8 20.0 19.2 12.5 22.5 19.7 25.0 29.0 27.0 26.3 30.3 31.3 28.0
20 2.5 6.3 10.8 3.8 5.5 10.8 15.0 21.7 15.0 — — — 31.3 26.0 37.7 34.7 31.7 33.3
25 7.2 6.5 10.1 3.8 13.8 12.5 20.0 19.2 17.5 — — — 34.3 35.7 37.3 35.7 33.3 39.0
30 6.3 8.8 11.3 — — — — — — — — — 37.3 35.7 39.0 39.3 35.7 41.3
35 — — — — — — — — — — — — 41.0 39.3 41.3 41.0 35.3 48.7

Table 20: Detailed results of evaluation of performance of LLMs’ generation on Text-Davinci-003 investigating the
influence of varying demonstration number and whether entity linking strategy.
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