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Abstract

Understanding road scenes is essential for
autonomous driving, as it enables systems to
interpret visual surroundings to aid in effective
decision-making. We present Roadscapes,
a multitask multimodal dataset consisting
of upto 9,000 images captured in diverse
Indian driving environments, accompanied
by manually verified bounding boxes. To
facilitate scalable scene understanding, we
employ rule-based heuristics to infer various
scene attributes, which are subsequently used
to generate question-answer (QA) pairs for
tasks such as object grounding, reasoning, and
scene understanding. The dataset includes a
variety of scenes from urban and rural India,
encompassing highways, service roads, village
paths, and congested city streets, captured
in both daytime and nighttime settings.
Roadscapes has been curated to advance
research on visual scene understanding in
unstructured environments. In this paper, we
describe the data collection and annotation
process, present key dataset statistics, and
provide initial baselines for image QA tasks
using vision-language models. Our dataset and
code is an anonymized format available at:
https://github.com/roadscapes/roadscapes_data

1 Introduction

As sophisticated perception systems continue to
advance, the development of computer vision and
foundational models is increasingly oriented to-
wards multi-task and multimodal architectures.
These models integrate visual perception capabil-
ities such as object detection and localization, se-
mantic segmentation etc., with natural language un-
derstanding, enabling richer interactions between
vision and language. This shift is largely driven
by the promise of a deeper semantic understanding
of complex driving environments. Autonomous
driving has shifted to developing several vision-
language systems for increased interpretability and

to leverage the emergent abilities of foundation
models. For this task, however, it requires access
to high-fidelity data with a verifiable ground truth.
The majority of driving multimodal datasets, con-
taining vision and text annotation, cover regions
like the United States, Europe and specific Asian
countries like Singapore, China and Japan. These
datasets, while comprehensive in some aspects,
reflect road infrastructure, traffic behavior, and
environmental conditions that differ significantly
from those encountered in developing countries in
the South Asian region. Roads in these countries
are typically well-marked, consistently maintained,
and governed by standardized traffic rules. In con-
trast, driving conditions in countries like India are
far more variable, characterized by high traffic den-
sity, unpredictable agent behavior, heterogeneous
vehicle types, unmarked roads, and frequent inter-
actions with non-motorized agents such as pedes-
trians, cyclists, and animals.

Construction of a dataset to improve diversity
can take a significant amount of time and mone-
tary investment (i.e an extremely high-cost sensor
suite) to produce, which makes reproducibility or
scaling these efforts very difficult. In this work, we
aim to represent scenarios within Indian roads and
highways that complement existing Indian datasets
while filling the gap in presenting scenarios such
as nighttime driving and rural environments. In-
stead of relying on an expensive sensor suit and
several human annotators, we rely on a low-cost
monocular camera, pre-annotation by state-of-the-
art computer vision models for aiding in annotation,
human verification followed by manually defined
heuristics for scalable and automatic label genera-
tion.

Roadscapes contains almost 9000 monocular im-
ages collected from a wide range of urban and
rural regions in southern India, annotated for two
computer vision tasks: object detection and road
segmentation as well as Visual Question Answer-
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Figure 1: A example of an image and corresponding
questions from the VQA Dataset.

ing (VQA) covering a variety of question related
to scene understanding such as object counting, lo-
calization, object description, spatial relationship
identification. The dataset captures a wide spec-
trum of driving environments, including highways,
arterial roads, city streets, narrow rural paths, and
mixed-use roadways. The dataset includes some
sensor artifacts such as motion jitter, blur, glare,
and shadowing effects caused by windshields and
dashboard reflections. Such conditions are often
ignored in high-end datasets captured using expen-
sive, stabilized rigs, but are crucial for developing
models that operate in resource-constrained set-
tings.

Our contributions are as follows. (1) A di-
verse image and video dataset consisting of over
9,000 images covering a wide range of condi-
tions—including urban and rural environments
across India, and varied lighting scenarios such
as daytime and nighttime. (2) A generation frame-
work for image-level question-answer pairs, com-
bining computer vision annotations, heuristic rules,
and scene graphs inferred from large language mod-
els. (3) A set of baselines evaluating image-level
understanding via question-answering, grounded
in real-world Indian driving footage.

2 Related Work

2.1 Driving Datasets

A wide range of driving datasets has been devel-
oped to support autonomous driving research, each
offering distinct features in terms of geographic
coverage, scene complexity, and annotation types.
The India Driving Dataset (IDD) comprises 10,004
images captured from Indian roads, emphasizing
unstructured traffic environments with annotations
for object detection, semantic segmentation, and
drivable area delineation (Varma et al., 2019). The
KITTI dataset includes 14,999 images from struc-
tured European urban and highway scenes and
serves as a benchmark for detection and tracking
tasks (Geiger et al., 2012). The rounD dataset pro-
vides over 13,000 drone-captured scenes at German
roundabouts, offering detailed road user trajecto-
ries for behavior analysis (Krajewski et al., 2018).
The Lyft Level 5 dataset contains more than 55,000
scenes from urban environments in the United
States, supporting tasks such as detection, tracking,
and motion planning (Lyft Inc., 2019). The IN-
TERACTION dataset features 11,943 scenes from
various international locations and focuses on in-
teractive driving scenarios, complemented by high-
definition semantic maps (Zhan et al., 2019).

2.2 VQA Datasets

Multimodal research has been significantly ad-
vanced by several foundational Visual Question
Answering (VQA) datasets which provide a com-
bination of rich visual content with natural lan-
guage queries. While these datasets offer various
reasoning challenges and benchamrks, their more
general-purpose nature limits their transferability
to domain-specific applications like autonomous
driving.

Visual-Genome is a large-scale dataset con-
taining over 100,000 images with region descrip-
tions, object attributes, relationships, and question-
answer (QA) pairs. It includes scene graphs and
dense annotations making it perfectly suitable for
fine-grained reasoning and relational understand-
ing. Visual Genome has been instrumental in re-
search involving visual commonsense reasoning
and object relationship modeling. However, the
generalizability of this dataset is limited due to
its focus on natural images from internet sources.
(Krishna et al., 2016).

VQA v1.0 was one of the earliest works to bench-
mark open-ended visual reasoning. It contained



= 4:‘\\ R L )

i
el

; :"“‘;.ﬁ i

N\

Figure 2: A minimal working example to demonstrate how to place two images side-by-side.

Dataset Location # Images/Scenes Image QA
Roadscapes India 8983 v
IDD (Varma et al., 2019) India 10,004 X
KITTI (Geiger et al., 2012) Germany 14,999 X
rounD (Krajewski et al., 2018) Germany 13,000+ v
BDD-OIA (Xu et al., 2020) USA 11,300 v
Lyft Level 5 (Lyft Inc., 2019) USA 55,000+ v
RoadQA (Zhu et al., 2021) China/Asia 100,000+ v
LOKI (Kataoka et al., 2022) Japan 1,000+ clips v
TITAN-Human Action (Yagi et al., 2025) Japan 1,500+ clips v
INTERACTION (Zhan et al., 2019) Global 11,943 v

Table 1: Comparative overview of selected driving datasets across multiple tasks and dataset sizes.

pairs of real-world images from the MSCOCO
dataset and human-generated question and an-
swer pairs. This enabled the evaluation of mod-
els’ ability to interpret diverse visual scenes. De-
spite its impact, the dataset exhibited answer bias,
which limited the generalizability of model perfor-
mance.(Agrawal et al., 2016)

VQA v2.0 directly addressed the shortcomings
of v1.0 by balancing answer distributions through
complementary image-question pairs. This resulted
in an increase in the robustness against dataset bi-
ases and enabled more meaningful performance
comparisons. However, the images in the dataset
remained general-purpose and did not take into
account certain domain specific challenges like mo-
tion blur, temporal reasoning, or occluded objects
which are commonly encountered in autonomous
driving. (Goyal et al., 2017)

Another notable dataset in VQA is CLEVR
which was designed for compositional and logi-
cal reasoning. By generating 3D-rendered scenes
with controllable object propoerties, CLEVR en-
abled precise evaluation of model capabilities in
spatial relationships, object counting, and compara-
tive reasoning. While its synthetic nature provides
controlled complexity and flexibility, the visual

realism and environmental variability required in
real-world settings, especially in dynamic domains
like driving are absent. (Johnson et al., 2016)

TextVQA is another notable contribution in
VQA which extended the VQA task to include
questions about elements present in the images,
such as signage, storefronts, and packaging labels.
This made it particularly useful for OCR-integrated
visual reasoning. While this is valuable in appli-
cations like retail or navigation, the dataset does
not model motion, scene fluidity, or interactive con-
texts that are vital for road scene understanding.
(Singh et al., 2019)

These benchmarks have driven the research and
development of vision-language models in con-
trolled and static environments. However, their
limited focus on dynamic and high-risk domains
underscores the need for RoadscapesQA, which
introduces unstructured driving scenarios, multi-
modal annotations, and complex visual-linguistic
interactions grounded in real-world challenges.

2.3 Driving VQA datasets

To enhance spatial understanding and reasoning,
some datasets incorporate image-based question-
answering tasks. The RoadQA dataset includes



over 100,000 images and integrates object detec-
tion annotations with diverse question-answer pairs,
enabling research in spatial reasoning and scene
comprehension (Zhu et al., 2021). The BDD-
OIA dataset, an extension of BDD100K, comprises
11,300 images from U.S. urban environments and
introduces object-induced action annotations along
with textual explanations, supporting image-level
question-answering tasks (Xu et al., 2020).

Video-based question-answering datasets pro-
vide temporal context and facilitate higher-level
reasoning tasks. The LOKI dataset consists of over
1,000 video clips from urban driving scenes and
focuses on intention prediction and language-based
reasoning (Kataoka et al., 2022). The TITAN-
Human Action dataset includes more than 1,500
clips collected in Japanese urban settings, featur-
ing annotations for pedestrian intention, causal
reasoning, and video-based question-answering
tasks (Yagi et al., 2025).

Visual Question Answering (VQA) has become
an increasingly critical area in autonomous driving
research. It enhances a model’s capacity for both
visual perception and reasoning. Recent works
have led to several VQA datasets that give us in-
sights into how effective Vision Language models
(VLMs) are at understanding and interacting with
driving scenes.

Efforts such as NuScenes-QA is a notable bench-
mark specifically tailored for multimodal visual
question answering in autonomous driving scenar-
ios. Built upon the NuScenes dataset, NuScenes-
QA integrates diverse sensor modalities, including
camera images and LiDAR point clouds, to enable
comprehensive scene understanding. This dataset
particularly excels in multimodal reasoning tasks,
requiring models to interpret spatial-temporal re-
lationships, object interactions, and environment
dynamics across different sensor inputs. Despite
these advancements, NuScenes-QA primarily fo-
cuses on structured urban environments, limiting
its applicability in capturing more diverse or un-
structured driving contexts (Qian et al., 2024).

The DriVQA dataset represents another no-
table advancement, providing a large-scale bench-
mark explicitly designed for evaluating driving-
specific visual question answering. It includes
over 10,000 video sequences annotated with rich
question-answer pairs covering diverse reasoning
tasks such as action prediction, object localization,
and scene understanding. DriVQA uniquely em-
phasizes temporal and relational reasoning across

consecutive frames, thus promoting model capa-
bilities in capturing dynamic visual cues and un-
derstanding scene evolution. However, despite its
extensive annotations and temporal focus, DriVQA
primarily features structured urban driving scenar-
ios and does not fully encompass the complexities
and variability found in less structured environ-
ments or scenarios involving ambiguous and uncer-
tain driving conditions (Rekanar, 2024).

In contrast to prior datasets that predominantly
emphasize structured environments and high-end
sensor setups, our RoadscapesQA dataset intro-
duces a fresh perspective by capturing the nuanced
challenges of unstructured driving conditions found
in India. It spans a rich array of urban, rural, and
highway settings, including low-light and night-
time scenarios that are frequently underrepresented
in existing benchmarks.

RoadscapesQA goes beyond standard object-
level reasoning by incorporating diverse VQA tasks
such as object counting, spatial relationships, and
contextual scene descriptions—all tailored for real-
world driving conditions that include unpredictable
agent behaviors and varied road infrastructures.
This makes RoadscapesQA an important step for-
ward in building VLMs that are not only percep-
tive but also contextually aware and resilient to the
messiness of real-world driving environments.

3 Roadscapes

3.1 Data Collection

The raw data for the Roadscapes dataset were col-
lected from the cities of Coimbatore and Kochi in
India using a monocular action camera, as well as
from the national highway connecting them. In to-
tal, 5 hours of driving data were recorded, amount-
ing to a total of 35 sequences with an average se-
quence length of 8 minutes. For data acquisition,
a monocular front-facing camera was mounted on
the front dash of the vehicle using a camera mount.
The data were captured at 30 FPS with a resolu-
tion of 1920x1080 pixels. From the raw data, im-
age frames were sampled every 30 frames (17000
images). A number of images in the sequences
were unusable because of mild-to-severe distortion.
These images were identified and filtered manually
from the dataset into 9000 images. The dataset
includes annotations for two computer vision tasks:
object detection, drivable area segmentation and
two multimodal tasks: image-level question an-
swering. It encompasses a diverse range of scenes,



including highways, service roads, crowded city
streets, and village roads, captured at different
times of the day (daytime, dusk, and nighttime).
Out of the 35 sequences, 21 sequences are used in
the training set and 14 sequences in the validation
set. Table 2 shows a detailed breakdown of the
dataset statistics based on the scenarios and time of
day captured.

3.2 Data Privacy and Anonymization

In order to maintain the privacy of the subjects
within the recorded data, we ran a semi-automated
anonymization pipeline to identify the blue 4500
license plates which are personally identifiable
and sensitive data. Anonymization was performed
using a YOLOVS5 detector specialized in license
plates (Keremberke, 2023) and was verified by
manual spot checks by sampling 1 in every 100 im-
ages in each sequence to ensure compliance. Con-
sidering legalities and privacy concerns regarding
individuals and vehicles in the dataset, we propose
releasing it under an explicit non-commercial li-
cense, making it available only to researchers on
request.

3.3 Data Annotation and Generation

Data annotation performed by humans is typically
one of the most resource-intensive aspects of data
curation, both in terms of time and cost. There-
fore, to reduce the overall time spent by human
annotators to label the dataset, we employed the
zero-shot YOLOWorld model to capture common
object classes like car, truck, bus, motorcycle etc.,
data annotation using foundation models before the
human annotation process. The annotations were
verified and improved manually by an annotation
team consisting of four individuals from the same
academic peer group: three co-authors of this paper
and one undergraduate student. The undergradu-
ate annotator was monetarily compensated for the
work. For the object detection task, Table 3 depicts
the classes present in the dataset.

3.4 Visual Question Answering

In the context of autonomous driving, VQA can
help vehicles make informed decisions by answer-
ing questions about road conditions, traffic signs,
pedestrian behavior, and potential hazards. For the
visual question answering dataset, we used rule
based heuristics on top of the object detection an-
notations, to generate ground truth for a variety of
questions covering 3 categories: Object Counting,

Object Description and Surrounding Descrip-
tion. Each category consists of multiple questions
totally adding up to 9 questions per image. Within
each category, object classes are selected at random
for the generation of the dataset. Table 4 depicts
the different types of questions and their generated
answer type for the dataset.

4 Experimental Setup

4.1 Dataset and Task Categories

We evaluate vision-language models on the Road-
scapes dataset, which comprises three visual ques-
tion answering (VQA) categories: Object Count-
ing, Object Description, and Surrounding Descrip-
tion. Each category contains 500 questions, pro-
viding a diverse set of challenges for autonomous
driving scenarios. All models are evaluated in a
zero-shot manner, without any fine-tuning on the
dataset. The input to each model consists of image-
question pairs, and the output is generated as free-
form text. This experimental design follows recent
VQA benchmarks for autonomous driving, such as
LingoQA (Chen et al., 2024).

4.2 Evaluated Models

We evaluate the following models:

e Phi-3.5 (Microsoft, 2024; Bai et al., 2024): A
lightweight, state-of-the-art open multimodal
model with strong performance on vision-
language reasoning tasks.

* 40 (OpenAl, 2024): A recent multimodal
large language model capable of high-quality
image and text understanding.

* Paligemma (Google, 2024): An open multi-
modal model designed for visual reasoning.

* 40-mini (OpenAl, 2024): A lightweight multi-
modal vision-language model variant of GPT-
40, evaluated in a zero-shot setting.

4.3 Evaluation Metrics

For the Object Counting task, we employ exact-
match accuracy as the primary evaluation metric,
following established practice (Chen et al., 2024).
The Object Description and Surrounding Descrip-
tion tasks are evaluated using cosine similarity be-
tween sentence embeddings, specifically utilizing
the all-MiniLM-L6-v2 model (Wang et al., 2020).



Day / Night Scenario

Daytime images
Nighttime images
Total

Train  Test
5,519 1,277
1,989 196
7,508 1,475

Table 2: Dataset distribution of images by time of day for Train and Test sets.

Label Count
motorcycle 8,988
car 16,594
truck 11,006
rider 5,675
person 5,847
traffic sign 2,925
traffic light 1,322
bus 2,464
headlight 215
rickshaw 1,217
animal 26
bicycle 15

Table 3: Roadscapes QA Label Counts

5 Results

5.1 Object Counting

In the Object Counting task, Phi-3.5 achieved the
highest accuracy of 0.667, followed closely by 4o-
mini with an accuracy of 0.628. Common failure
modes observed across models include undercount-
ing (missing objects in complex scenes), overcount-
ing (double-counting partially occluded objects),
and hallucination (reporting non-existent objects).

5.2 Object Description

The Object Description task proved more challeng-
ing due to the requirement for fine-grained recogni-
tion of object attributes. Paligemma demonstrated
the best performance with a similarity score of
0.501. Frequent errors included hallucinations of
incorrect colors and mislabeling of object classes,
highlighting the difficulty of precise object recog-
nition in diverse driving scenarios.

5.3 Surrounding Description

This category focused on semantic reasoning tasks,
such as determining the time of day or assess-
ing traffic density. The 40 model exhibited the
strongest performance, achieving a similarity score
of 0.701. Common errors across models included
confusion in temporal descriptions (e.g., misinter-
preting lighting conditions) and inconsistencies in

subjective judgments (e.g., varying assessments of
traffic density).

5.4 Observation

Our results align with recent findings in au-
tonomous driving VQA (Chen et al., 2024;
Parthasarathy et al., 2025), which report that zero-
shot models struggle with fine-grained perception
and semantic reasoning in complex scenes. The use
of embedding-based metrics for open-ended tasks
follows recommendations from prior work (Chen
et al., 2024; Wang et al., 2020).

6 Hallucination Analysis

6.1 Overview of Hallucination Detection

Hallucinations in model outputs were detected
using a combination of reference-based and
embedding-based methods. For open-ended tasks
(Object Description and Surrounding Description),
we computed the cosine similarity between sen-
tence embeddings using the all-MiniLM-L6-v2
model (Wang et al., 2020). Predictions with sim-
ilarity below a calibrated threshold were flagged
as hallucinations. For Object Counting, halluci-
nations were defined as overcounting (predicted
count greater than ground truth) or false positives
in binary (yes/no) questions. This approach aligns
with recent VLM evaluation practices (Chen et al.,
2024; Leng et al., 2024), and is consistent with both
reference-based and emerging reference-free hallu-
cination detection frameworks (Li et al., 2024). The
hallucination rate for each category is computed
as:

H
Hallucination Rate = N (D)

where H is the number of hallucinated responses
and N is the total number of samples.

6.2 Hallucination Rates Across Models and
Tasks

Table 2 summarizes the hallucination rates (%) for
each model and VQA category. Object Description
consistently shows the highest hallucination rates



Category Question Answer Type
Object Counting How many objects of type traffic sign are in the image? Integer
Object Counting Is there a traffic sign present in the image? Yes/No
Object Counting Are there more cars than trucks? Yes/No
Object Description What is the color of the truck in the image? Color

Object Description What class is the object at bounding box [x, y]? Object Class
Surrounding Description What time of day is it? Time of Day
Surrounding Description What is the traffic density? Traffic Level

Table 4: Examples of annotated questions grouped by category and answer type.

Model Object Counting Accuracy Object Description Surrounding Description
40 0.598 0.495 0.701
Paligemma 0.187 0.501 0.485
Phi-3.5 0.667 0.437 0.643
40-mini 0.628 0.453 0.645

Table 5: Performance comparison of four VQA models on the Roadscapes dataset across Object Counting, Object
Description (cosine similarity), and Surrounding Description (cosine similarity).

across all models, ranging from 50.8% to 61.6%.
This suggests that models struggle most with accu-
rately describing specific object attributes, in line
with prior findings (Chen et al., 2024). Object
Counting and Surrounding Description generally
exhibit lower hallucination rates, with some excep-
tions.

Notably, the 40-mini model demonstrates the
highest hallucination rate (61.6%) for Object De-
scription, significantly higher than other models in
this category. Conversely, the 40 and Phi35 models
perform relatively well in Surrounding Description
tasks, with hallucination rates of 7.0% and 6.2%,
respectively.

6.3 Error Patterns and Insights

Common error patterns observed in hallucinations
vary across task categories:

* Object Counting: Overcounting and false
positives are prevalent, indicating challenges
in accurately quantifying objects in complex
scenes (Leng et al., 2024).

* Object Description: Hallucinations often
involve incorrect colors or misclassified ob-
ject classes, suggesting difficulties in fine-
grained visual perception and attribute recog-
nition (Chen et al., 2024).

Surrounding Description: Errors frequently
relate to confusion in temporal or contextual
reasoning, such as misinterpreting time of day
or environmental conditions.

These findings highlight the challenges of de-
ploying robust VLMs in real-world autonomous
driving scenarios, where accurate perception and
reasoning are critical for safety and decision-
making (Zhai et al., 2023).

6.4 Comparison to Related Work

The observed hallucination rates align with recent
studies on VLM evaluation in autonomous driving
contexts. For instance, the high hallucination rates
in Object Description tasks (50.8%—-61.6%) are
consistent with challenges reported in fine-grained
attribute recognition tasks in LingoQA and VL-
CheckList evaluations (Chen et al., 2024; Li et al.,
2024). However, the relatively low hallucination
rates in Surrounding Description tasks for some
models (e.g., 40 at 7.0% and Phi35 at 6.2%) suggest
potential improvements in contextual reasoning
compared to previous benchmarks. This progress
may be attributed to advancements in model archi-
tectures and training techniques (Leng et al., 2024).

These results underscore the importance of
targeted evaluation strategies for VLMs in au-
tonomous driving applications. Future model de-
velopment should focus on reducing hallucinations
in object attribute recognition and improving con-
sistency in contextual reasoning to enhance the
reliability and safety of VQA systems in real-world
driving scenarios.



Model Object Counting Object Description Surrounding Description
40 21.8% (109/500) 51.6% (258/500) 7.0% (35/500)
Paligemma  14.6% (64/439) 50.8% (254/500) 29.8% (149/500)
Phi35 13.7% (60/439) 52.4% (262/500) 6.2% (31/500)
40-mini 15.4% (77/500) 61.6% (308/500) 23.6% (118/500)

Table 6: Hallucination rates (%) and counts (hallucinations/total) for each model and VQA category.

7 Conclusion

This research addresses a critical gap in large-scale
image question answering (IQA) datasets for driv-
ing scenes in southern India. The Roadscapes
dataset fills this void by providing comprehen-
sive VQA data for the southern part of India, in-
cluding the previously underrepresented Coimbat-
ore—Kochi corridor. This expansion complements
existing datasets like IDD and enables new types
of vision-language evaluation.

Our analysis of hallucination rates across mul-
tiple models using embedding-based and count-
ing metrics has revealed key challenges in model
reliability for Indian driving scenarios. The find-
ings highlight varying performance across different
task types, with Object Description tasks present-
ing the highest hallucination rates. These insights
underscore the complexities of deploying vision-
language models in real-world autonomous driving
contexts.

Roadscapes’ unique contribution lies in its cov-
erage of the Coimbatore—Kochi region and the
inclusion of VQA tasks not available in exist-
ing road scene datasets. This comprehensive
approach enables more robust benchmarking of
vision-language models for Indian roads, support-
ing the development of safer and more context-
aware models for underrepresented regions.

8 Limitations

While the Roadscapes datasetrepresents a signifi-
cant advancement in image question answering for
driving scenes in southern India, several limitations
should be acknowledged:

1. Limited task coverage: The current dataset
does not include explicit tasks or benchmarks
for object localization or spatial relations, de-
spite their importance in autonomous driving
scenarios (Varma et al., 2019; Krajewski et al.,
2018). Future work could address this by in-
corporating these tasks into the dataset and
evaluation framework. The dataset lacks spe-

cific benchmarks for distinguishing spatial re-
lationships (e.g., “left” from “right”). Future
iterations could leverage powerful embedding
models with spatial language understanding
capabilities to address this limitation (Leng
et al., 2024; Li et al., 2024; Zhai et al., 2023).

2. Geographic coverage: Although the dataset
covers the Coimbatore-Kochi corridor,
broader geographic coverage is needed
to ensure even greater diversity and gen-
eralizability across all regions of India.
Expanding the dataset to include more diverse
driving environments would enhance its
representativeness (Varma et al., 2019; Liu
et al., 2024).

3. Annotation types and task complexity: The
dataset could benefit from more complex
vision-language tasks to further enhance its
utility for the research community. This could
include multi-turn dialogues, temporal reason-
ing, or multi-image tasks (Chen et al., 2024).

Addressing these limitations in future work will
strengthen the Roadscapes dataset’s contribution to
autonomous driving research and vision-language
model development for diverse global contexts.
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