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Abstract001

Understanding road scenes is essential for002
autonomous driving, as it enables systems to003
interpret visual surroundings to aid in effective004
decision-making. We present Roadscapes,005
a multitask multimodal dataset consisting006
of upto 9,000 images captured in diverse007
Indian driving environments, accompanied008
by manually verified bounding boxes. To009
facilitate scalable scene understanding, we010
employ rule-based heuristics to infer various011
scene attributes, which are subsequently used012
to generate question-answer (QA) pairs for013
tasks such as object grounding, reasoning, and014
scene understanding. The dataset includes a015
variety of scenes from urban and rural India,016
encompassing highways, service roads, village017
paths, and congested city streets, captured018
in both daytime and nighttime settings.019
Roadscapes has been curated to advance020
research on visual scene understanding in021
unstructured environments. In this paper, we022
describe the data collection and annotation023
process, present key dataset statistics, and024
provide initial baselines for image QA tasks025
using vision-language models. Our dataset and026
code is an anonymized format available at:027
https://github.com/roadscapes/roadscapes_data028

1 Introduction029

As sophisticated perception systems continue to030

advance, the development of computer vision and031

foundational models is increasingly oriented to-032

wards multi-task and multimodal architectures.033

These models integrate visual perception capabil-034

ities such as object detection and localization, se-035

mantic segmentation etc., with natural language un-036

derstanding, enabling richer interactions between037

vision and language. This shift is largely driven038

by the promise of a deeper semantic understanding039

of complex driving environments. Autonomous040

driving has shifted to developing several vision-041

language systems for increased interpretability and042

to leverage the emergent abilities of foundation 043

models. For this task, however, it requires access 044

to high-fidelity data with a verifiable ground truth. 045

The majority of driving multimodal datasets, con- 046

taining vision and text annotation, cover regions 047

like the United States, Europe and specific Asian 048

countries like Singapore, China and Japan. These 049

datasets, while comprehensive in some aspects, 050

reflect road infrastructure, traffic behavior, and 051

environmental conditions that differ significantly 052

from those encountered in developing countries in 053

the South Asian region. Roads in these countries 054

are typically well-marked, consistently maintained, 055

and governed by standardized traffic rules. In con- 056

trast, driving conditions in countries like India are 057

far more variable, characterized by high traffic den- 058

sity, unpredictable agent behavior, heterogeneous 059

vehicle types, unmarked roads, and frequent inter- 060

actions with non-motorized agents such as pedes- 061

trians, cyclists, and animals. 062

Construction of a dataset to improve diversity 063

can take a significant amount of time and mone- 064

tary investment (i.e an extremely high-cost sensor 065

suite) to produce, which makes reproducibility or 066

scaling these efforts very difficult. In this work, we 067

aim to represent scenarios within Indian roads and 068

highways that complement existing Indian datasets 069

while filling the gap in presenting scenarios such 070

as nighttime driving and rural environments. In- 071

stead of relying on an expensive sensor suit and 072

several human annotators, we rely on a low-cost 073

monocular camera, pre-annotation by state-of-the- 074

art computer vision models for aiding in annotation, 075

human verification followed by manually defined 076

heuristics for scalable and automatic label genera- 077

tion. 078

Roadscapes contains almost 9000 monocular im- 079

ages collected from a wide range of urban and 080

rural regions in southern India, annotated for two 081

computer vision tasks: object detection and road 082

segmentation as well as Visual Question Answer- 083
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Figure 1: A example of an image and corresponding
questions from the VQA Dataset.

ing (VQA) covering a variety of question related084

to scene understanding such as object counting, lo-085

calization, object description, spatial relationship086

identification. The dataset captures a wide spec-087

trum of driving environments, including highways,088

arterial roads, city streets, narrow rural paths, and089

mixed-use roadways. The dataset includes some090

sensor artifacts such as motion jitter, blur, glare,091

and shadowing effects caused by windshields and092

dashboard reflections. Such conditions are often093

ignored in high-end datasets captured using expen-094

sive, stabilized rigs, but are crucial for developing095

models that operate in resource-constrained set-096

tings.097

Our contributions are as follows. (1) A di-098

verse image and video dataset consisting of over099

9,000 images covering a wide range of condi-100

tions—including urban and rural environments101

across India, and varied lighting scenarios such102

as daytime and nighttime. (2) A generation frame-103

work for image-level question-answer pairs, com-104

bining computer vision annotations, heuristic rules,105

and scene graphs inferred from large language mod-106

els. (3) A set of baselines evaluating image-level107

understanding via question-answering, grounded108

in real-world Indian driving footage.109

2 Related Work 110

2.1 Driving Datasets 111

A wide range of driving datasets has been devel- 112

oped to support autonomous driving research, each 113

offering distinct features in terms of geographic 114

coverage, scene complexity, and annotation types. 115

The India Driving Dataset (IDD) comprises 10,004 116

images captured from Indian roads, emphasizing 117

unstructured traffic environments with annotations 118

for object detection, semantic segmentation, and 119

drivable area delineation (Varma et al., 2019). The 120

KITTI dataset includes 14,999 images from struc- 121

tured European urban and highway scenes and 122

serves as a benchmark for detection and tracking 123

tasks (Geiger et al., 2012). The rounD dataset pro- 124

vides over 13,000 drone-captured scenes at German 125

roundabouts, offering detailed road user trajecto- 126

ries for behavior analysis (Krajewski et al., 2018). 127

The Lyft Level 5 dataset contains more than 55,000 128

scenes from urban environments in the United 129

States, supporting tasks such as detection, tracking, 130

and motion planning (Lyft Inc., 2019). The IN- 131

TERACTION dataset features 11,943 scenes from 132

various international locations and focuses on in- 133

teractive driving scenarios, complemented by high- 134

definition semantic maps (Zhan et al., 2019). 135

2.2 VQA Datasets 136

Multimodal research has been significantly ad- 137

vanced by several foundational Visual Question 138

Answering (VQA) datasets which provide a com- 139

bination of rich visual content with natural lan- 140

guage queries. While these datasets offer various 141

reasoning challenges and benchamrks, their more 142

general-purpose nature limits their transferability 143

to domain-specific applications like autonomous 144

driving. 145

Visual-Genome is a large-scale dataset con- 146

taining over 100,000 images with region descrip- 147

tions, object attributes, relationships, and question- 148

answer (QA) pairs. It includes scene graphs and 149

dense annotations making it perfectly suitable for 150

fine-grained reasoning and relational understand- 151

ing. Visual Genome has been instrumental in re- 152

search involving visual commonsense reasoning 153

and object relationship modeling. However, the 154

generalizability of this dataset is limited due to 155

its focus on natural images from internet sources. 156

(Krishna et al., 2016). 157

VQA v1.0 was one of the earliest works to bench- 158

mark open-ended visual reasoning. It contained 159
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Figure 2: A minimal working example to demonstrate how to place two images side-by-side.

Dataset Location # Images/Scenes Image QA
Roadscapes India 8983 ✓
IDD (Varma et al., 2019) India 10,004 x
KITTI (Geiger et al., 2012) Germany 14,999 x
rounD (Krajewski et al., 2018) Germany 13,000+ ✓
BDD-OIA (Xu et al., 2020) USA 11,300 ✓
Lyft Level 5 (Lyft Inc., 2019) USA 55,000+ ✓
RoadQA (Zhu et al., 2021) China/Asia 100,000+ ✓
LOKI (Kataoka et al., 2022) Japan 1,000+ clips ✓
TITAN-Human Action (Yagi et al., 2025) Japan 1,500+ clips ✓
INTERACTION (Zhan et al., 2019) Global 11,943 ✓

Table 1: Comparative overview of selected driving datasets across multiple tasks and dataset sizes.

pairs of real-world images from the MSCOCO160

dataset and human-generated question and an-161

swer pairs. This enabled the evaluation of mod-162

els’ ability to interpret diverse visual scenes. De-163

spite its impact, the dataset exhibited answer bias,164

which limited the generalizability of model perfor-165

mance.(Agrawal et al., 2016)166

VQA v2.0 directly addressed the shortcomings167

of v1.0 by balancing answer distributions through168

complementary image-question pairs. This resulted169

in an increase in the robustness against dataset bi-170

ases and enabled more meaningful performance171

comparisons. However, the images in the dataset172

remained general-purpose and did not take into173

account certain domain specific challenges like mo-174

tion blur, temporal reasoning, or occluded objects175

which are commonly encountered in autonomous176

driving. (Goyal et al., 2017)177

Another notable dataset in VQA is CLEVR178

which was designed for compositional and logi-179

cal reasoning. By generating 3D-rendered scenes180

with controllable object propoerties, CLEVR en-181

abled precise evaluation of model capabilities in182

spatial relationships, object counting, and compara-183

tive reasoning. While its synthetic nature provides184

controlled complexity and flexibility, the visual185

realism and environmental variability required in 186

real-world settings, especially in dynamic domains 187

like driving are absent. (Johnson et al., 2016) 188

TextVQA is another notable contribution in 189

VQA which extended the VQA task to include 190

questions about elements present in the images, 191

such as signage, storefronts, and packaging labels. 192

This made it particularly useful for OCR-integrated 193

visual reasoning. While this is valuable in appli- 194

cations like retail or navigation, the dataset does 195

not model motion, scene fluidity, or interactive con- 196

texts that are vital for road scene understanding. 197

(Singh et al., 2019) 198

These benchmarks have driven the research and 199

development of vision-language models in con- 200

trolled and static environments. However, their 201

limited focus on dynamic and high-risk domains 202

underscores the need for RoadscapesQA, which 203

introduces unstructured driving scenarios, multi- 204

modal annotations, and complex visual-linguistic 205

interactions grounded in real-world challenges. 206

2.3 Driving VQA datasets 207

To enhance spatial understanding and reasoning, 208

some datasets incorporate image-based question- 209

answering tasks. The RoadQA dataset includes 210
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over 100,000 images and integrates object detec-211

tion annotations with diverse question-answer pairs,212

enabling research in spatial reasoning and scene213

comprehension (Zhu et al., 2021). The BDD-214

OIA dataset, an extension of BDD100K, comprises215

11,300 images from U.S. urban environments and216

introduces object-induced action annotations along217

with textual explanations, supporting image-level218

question-answering tasks (Xu et al., 2020).219

Video-based question-answering datasets pro-220

vide temporal context and facilitate higher-level221

reasoning tasks. The LOKI dataset consists of over222

1,000 video clips from urban driving scenes and223

focuses on intention prediction and language-based224

reasoning (Kataoka et al., 2022). The TITAN-225

Human Action dataset includes more than 1,500226

clips collected in Japanese urban settings, featur-227

ing annotations for pedestrian intention, causal228

reasoning, and video-based question-answering229

tasks (Yagi et al., 2025).230

Visual Question Answering (VQA) has become231

an increasingly critical area in autonomous driving232

research. It enhances a model’s capacity for both233

visual perception and reasoning. Recent works234

have led to several VQA datasets that give us in-235

sights into how effective Vision Language models236

(VLMs) are at understanding and interacting with237

driving scenes.238

Efforts such as NuScenes-QA is a notable bench-239

mark specifically tailored for multimodal visual240

question answering in autonomous driving scenar-241

ios. Built upon the NuScenes dataset, NuScenes-242

QA integrates diverse sensor modalities, including243

camera images and LiDAR point clouds, to enable244

comprehensive scene understanding. This dataset245

particularly excels in multimodal reasoning tasks,246

requiring models to interpret spatial-temporal re-247

lationships, object interactions, and environment248

dynamics across different sensor inputs. Despite249

these advancements, NuScenes-QA primarily fo-250

cuses on structured urban environments, limiting251

its applicability in capturing more diverse or un-252

structured driving contexts (Qian et al., 2024).253

The DriVQA dataset represents another no-254

table advancement, providing a large-scale bench-255

mark explicitly designed for evaluating driving-256

specific visual question answering. It includes257

over 10,000 video sequences annotated with rich258

question-answer pairs covering diverse reasoning259

tasks such as action prediction, object localization,260

and scene understanding. DriVQA uniquely em-261

phasizes temporal and relational reasoning across262

consecutive frames, thus promoting model capa- 263

bilities in capturing dynamic visual cues and un- 264

derstanding scene evolution. However, despite its 265

extensive annotations and temporal focus, DriVQA 266

primarily features structured urban driving scenar- 267

ios and does not fully encompass the complexities 268

and variability found in less structured environ- 269

ments or scenarios involving ambiguous and uncer- 270

tain driving conditions (Rekanar, 2024). 271

In contrast to prior datasets that predominantly 272

emphasize structured environments and high-end 273

sensor setups, our RoadscapesQA dataset intro- 274

duces a fresh perspective by capturing the nuanced 275

challenges of unstructured driving conditions found 276

in India. It spans a rich array of urban, rural, and 277

highway settings, including low-light and night- 278

time scenarios that are frequently underrepresented 279

in existing benchmarks. 280

RoadscapesQA goes beyond standard object- 281

level reasoning by incorporating diverse VQA tasks 282

such as object counting, spatial relationships, and 283

contextual scene descriptions—all tailored for real- 284

world driving conditions that include unpredictable 285

agent behaviors and varied road infrastructures. 286

This makes RoadscapesQA an important step for- 287

ward in building VLMs that are not only percep- 288

tive but also contextually aware and resilient to the 289

messiness of real-world driving environments. 290

3 Roadscapes 291

3.1 Data Collection 292

The raw data for the Roadscapes dataset were col- 293

lected from the cities of Coimbatore and Kochi in 294

India using a monocular action camera, as well as 295

from the national highway connecting them. In to- 296

tal, 5 hours of driving data were recorded, amount- 297

ing to a total of 35 sequences with an average se- 298

quence length of 8 minutes. For data acquisition, 299

a monocular front-facing camera was mounted on 300

the front dash of the vehicle using a camera mount. 301

The data were captured at 30 FPS with a resolu- 302

tion of 1920×1080 pixels. From the raw data, im- 303

age frames were sampled every 30 frames (17000 304

images). A number of images in the sequences 305

were unusable because of mild-to-severe distortion. 306

These images were identified and filtered manually 307

from the dataset into 9000 images. The dataset 308

includes annotations for two computer vision tasks: 309

object detection, drivable area segmentation and 310

two multimodal tasks: image-level question an- 311

swering. It encompasses a diverse range of scenes, 312
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including highways, service roads, crowded city313

streets, and village roads, captured at different314

times of the day (daytime, dusk, and nighttime).315

Out of the 35 sequences, 21 sequences are used in316

the training set and 14 sequences in the validation317

set. Table 2 shows a detailed breakdown of the318

dataset statistics based on the scenarios and time of319

day captured.320

3.2 Data Privacy and Anonymization321

In order to maintain the privacy of the subjects322

within the recorded data, we ran a semi-automated323

anonymization pipeline to identify the blue 4500324

license plates which are personally identifiable325

and sensitive data. Anonymization was performed326

using a YOLOv5 detector specialized in license327

plates (Keremberke, 2023) and was verified by328

manual spot checks by sampling 1 in every 100 im-329

ages in each sequence to ensure compliance. Con-330

sidering legalities and privacy concerns regarding331

individuals and vehicles in the dataset, we propose332

releasing it under an explicit non-commercial li-333

cense, making it available only to researchers on334

request.335

3.3 Data Annotation and Generation336

Data annotation performed by humans is typically337

one of the most resource-intensive aspects of data338

curation, both in terms of time and cost. There-339

fore, to reduce the overall time spent by human340

annotators to label the dataset, we employed the341

zero-shot YOLOWorld model to capture common342

object classes like car, truck, bus, motorcycle etc.,343

data annotation using foundation models before the344

human annotation process. The annotations were345

verified and improved manually by an annotation346

team consisting of four individuals from the same347

academic peer group: three co-authors of this paper348

and one undergraduate student. The undergradu-349

ate annotator was monetarily compensated for the350

work. For the object detection task, Table 3 depicts351

the classes present in the dataset.352

3.4 Visual Question Answering353

In the context of autonomous driving, VQA can354

help vehicles make informed decisions by answer-355

ing questions about road conditions, traffic signs,356

pedestrian behavior, and potential hazards. For the357

visual question answering dataset, we used rule358

based heuristics on top of the object detection an-359

notations, to generate ground truth for a variety of360

questions covering 3 categories: Object Counting,361

Object Description and Surrounding Descrip- 362

tion. Each category consists of multiple questions 363

totally adding up to 9 questions per image. Within 364

each category, object classes are selected at random 365

for the generation of the dataset. Table 4 depicts 366

the different types of questions and their generated 367

answer type for the dataset. 368

4 Experimental Setup 369

4.1 Dataset and Task Categories 370

We evaluate vision-language models on the Road- 371

scapes dataset, which comprises three visual ques- 372

tion answering (VQA) categories: Object Count- 373

ing, Object Description, and Surrounding Descrip- 374

tion. Each category contains 500 questions, pro- 375

viding a diverse set of challenges for autonomous 376

driving scenarios. All models are evaluated in a 377

zero-shot manner, without any fine-tuning on the 378

dataset. The input to each model consists of image- 379

question pairs, and the output is generated as free- 380

form text. This experimental design follows recent 381

VQA benchmarks for autonomous driving, such as 382

LingoQA (Chen et al., 2024). 383

4.2 Evaluated Models 384

We evaluate the following models: 385

• Phi-3.5 (Microsoft, 2024; Bai et al., 2024): A 386

lightweight, state-of-the-art open multimodal 387

model with strong performance on vision- 388

language reasoning tasks. 389

• 4o (OpenAI, 2024): A recent multimodal 390

large language model capable of high-quality 391

image and text understanding. 392

• Paligemma (Google, 2024): An open multi- 393

modal model designed for visual reasoning. 394

• 4o-mini (OpenAI, 2024): A lightweight multi- 395

modal vision-language model variant of GPT- 396

4o, evaluated in a zero-shot setting. 397

4.3 Evaluation Metrics 398

For the Object Counting task, we employ exact- 399

match accuracy as the primary evaluation metric, 400

following established practice (Chen et al., 2024). 401

The Object Description and Surrounding Descrip- 402

tion tasks are evaluated using cosine similarity be- 403

tween sentence embeddings, specifically utilizing 404

the all-MiniLM-L6-v2 model (Wang et al., 2020). 405
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Day / Night Scenario Train Test
Daytime images 5,519 1,277
Nighttime images 1,989 196
Total 7,508 1,475

Table 2: Dataset distribution of images by time of day for Train and Test sets.

Label Count
motorcycle 8,988
car 16,594
truck 11,006
rider 5,675
person 5,847
traffic sign 2,925
traffic light 1,322
bus 2,464
headlight 215
rickshaw 1,217
animal 26
bicycle 15

Table 3: Roadscapes QA Label Counts

5 Results406

5.1 Object Counting407

In the Object Counting task, Phi-3.5 achieved the408

highest accuracy of 0.667, followed closely by 4o-409

mini with an accuracy of 0.628. Common failure410

modes observed across models include undercount-411

ing (missing objects in complex scenes), overcount-412

ing (double-counting partially occluded objects),413

and hallucination (reporting non-existent objects).414

5.2 Object Description415

The Object Description task proved more challeng-416

ing due to the requirement for fine-grained recogni-417

tion of object attributes. Paligemma demonstrated418

the best performance with a similarity score of419

0.501. Frequent errors included hallucinations of420

incorrect colors and mislabeling of object classes,421

highlighting the difficulty of precise object recog-422

nition in diverse driving scenarios.423

5.3 Surrounding Description424

This category focused on semantic reasoning tasks,425

such as determining the time of day or assess-426

ing traffic density. The 4o model exhibited the427

strongest performance, achieving a similarity score428

of 0.701. Common errors across models included429

confusion in temporal descriptions (e.g., misinter-430

preting lighting conditions) and inconsistencies in431

subjective judgments (e.g., varying assessments of 432

traffic density). 433

5.4 Observation 434

Our results align with recent findings in au- 435

tonomous driving VQA (Chen et al., 2024; 436

Parthasarathy et al., 2025), which report that zero- 437

shot models struggle with fine-grained perception 438

and semantic reasoning in complex scenes. The use 439

of embedding-based metrics for open-ended tasks 440

follows recommendations from prior work (Chen 441

et al., 2024; Wang et al., 2020). 442

6 Hallucination Analysis 443

6.1 Overview of Hallucination Detection 444

Hallucinations in model outputs were detected 445

using a combination of reference-based and 446

embedding-based methods. For open-ended tasks 447

(Object Description and Surrounding Description), 448

we computed the cosine similarity between sen- 449

tence embeddings using the all-MiniLM-L6-v2 450

model (Wang et al., 2020). Predictions with sim- 451

ilarity below a calibrated threshold were flagged 452

as hallucinations. For Object Counting, halluci- 453

nations were defined as overcounting (predicted 454

count greater than ground truth) or false positives 455

in binary (yes/no) questions. This approach aligns 456

with recent VLM evaluation practices (Chen et al., 457

2024; Leng et al., 2024), and is consistent with both 458

reference-based and emerging reference-free hallu- 459

cination detection frameworks (Li et al., 2024). The 460

hallucination rate for each category is computed 461

as: 462

Hallucination Rate =
H

N
(1) 463

where H is the number of hallucinated responses 464

and N is the total number of samples. 465

6.2 Hallucination Rates Across Models and 466

Tasks 467

Table 2 summarizes the hallucination rates (%) for 468

each model and VQA category. Object Description 469

consistently shows the highest hallucination rates 470
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Category Question Answer Type
Object Counting How many objects of type traffic sign are in the image? Integer
Object Counting Is there a traffic sign present in the image? Yes/No
Object Counting Are there more cars than trucks? Yes/No
Object Description What is the color of the truck in the image? Color
Object Description What class is the object at bounding box [x, y]? Object Class
Surrounding Description What time of day is it? Time of Day
Surrounding Description What is the traffic density? Traffic Level

Table 4: Examples of annotated questions grouped by category and answer type.

Model Object Counting Accuracy Object Description Surrounding Description
4o 0.598 0.495 0.701
Paligemma 0.187 0.501 0.485
Phi-3.5 0.667 0.437 0.643
4o-mini 0.628 0.453 0.645

Table 5: Performance comparison of four VQA models on the Roadscapes dataset across Object Counting, Object
Description (cosine similarity), and Surrounding Description (cosine similarity).

across all models, ranging from 50.8% to 61.6%.471

This suggests that models struggle most with accu-472

rately describing specific object attributes, in line473

with prior findings (Chen et al., 2024). Object474

Counting and Surrounding Description generally475

exhibit lower hallucination rates, with some excep-476

tions.477

Notably, the 4o-mini model demonstrates the478

highest hallucination rate (61.6%) for Object De-479

scription, significantly higher than other models in480

this category. Conversely, the 4o and Phi35 models481

perform relatively well in Surrounding Description482

tasks, with hallucination rates of 7.0% and 6.2%,483

respectively.484

6.3 Error Patterns and Insights485

Common error patterns observed in hallucinations486

vary across task categories:487

• Object Counting: Overcounting and false488

positives are prevalent, indicating challenges489

in accurately quantifying objects in complex490

scenes (Leng et al., 2024).491

• Object Description: Hallucinations often492

involve incorrect colors or misclassified ob-493

ject classes, suggesting difficulties in fine-494

grained visual perception and attribute recog-495

nition (Chen et al., 2024).496

• Surrounding Description: Errors frequently497

relate to confusion in temporal or contextual498

reasoning, such as misinterpreting time of day499

or environmental conditions.500

These findings highlight the challenges of de- 501

ploying robust VLMs in real-world autonomous 502

driving scenarios, where accurate perception and 503

reasoning are critical for safety and decision- 504

making (Zhai et al., 2023). 505

6.4 Comparison to Related Work 506

The observed hallucination rates align with recent 507

studies on VLM evaluation in autonomous driving 508

contexts. For instance, the high hallucination rates 509

in Object Description tasks (50.8%–61.6%) are 510

consistent with challenges reported in fine-grained 511

attribute recognition tasks in LingoQA and VL- 512

CheckList evaluations (Chen et al., 2024; Li et al., 513

2024). However, the relatively low hallucination 514

rates in Surrounding Description tasks for some 515

models (e.g., 4o at 7.0% and Phi35 at 6.2%) suggest 516

potential improvements in contextual reasoning 517

compared to previous benchmarks. This progress 518

may be attributed to advancements in model archi- 519

tectures and training techniques (Leng et al., 2024). 520

These results underscore the importance of 521

targeted evaluation strategies for VLMs in au- 522

tonomous driving applications. Future model de- 523

velopment should focus on reducing hallucinations 524

in object attribute recognition and improving con- 525

sistency in contextual reasoning to enhance the 526

reliability and safety of VQA systems in real-world 527

driving scenarios. 528
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Model Object Counting Object Description Surrounding Description
4o 21.8% (109/500) 51.6% (258/500) 7.0% (35/500)
Paligemma 14.6% (64/439) 50.8% (254/500) 29.8% (149/500)
Phi35 13.7% (60/439) 52.4% (262/500) 6.2% (31/500)
4o-mini 15.4% (77/500) 61.6% (308/500) 23.6% (118/500)

Table 6: Hallucination rates (%) and counts (hallucinations/total) for each model and VQA category.

7 Conclusion529

This research addresses a critical gap in large-scale530

image question answering (IQA) datasets for driv-531

ing scenes in southern India. The Roadscapes532

dataset fills this void by providing comprehen-533

sive VQA data for the southern part of India, in-534

cluding the previously underrepresented Coimbat-535

ore–Kochi corridor. This expansion complements536

existing datasets like IDD and enables new types537

of vision-language evaluation.538

Our analysis of hallucination rates across mul-539

tiple models using embedding-based and count-540

ing metrics has revealed key challenges in model541

reliability for Indian driving scenarios. The find-542

ings highlight varying performance across different543

task types, with Object Description tasks present-544

ing the highest hallucination rates. These insights545

underscore the complexities of deploying vision-546

language models in real-world autonomous driving547

contexts.548

Roadscapes’ unique contribution lies in its cov-549

erage of the Coimbatore–Kochi region and the550

inclusion of VQA tasks not available in exist-551

ing road scene datasets. This comprehensive552

approach enables more robust benchmarking of553

vision-language models for Indian roads, support-554

ing the development of safer and more context-555

aware models for underrepresented regions.556

8 Limitations557

While the Roadscapes datasetrepresents a signifi-558

cant advancement in image question answering for559

driving scenes in southern India, several limitations560

should be acknowledged:561

1. Limited task coverage: The current dataset562

does not include explicit tasks or benchmarks563

for object localization or spatial relations, de-564

spite their importance in autonomous driving565

scenarios (Varma et al., 2019; Krajewski et al.,566

2018). Future work could address this by in-567

corporating these tasks into the dataset and568

evaluation framework. The dataset lacks spe-569

cific benchmarks for distinguishing spatial re- 570

lationships (e.g., “left” from “right”). Future 571

iterations could leverage powerful embedding 572

models with spatial language understanding 573

capabilities to address this limitation (Leng 574

et al., 2024; Li et al., 2024; Zhai et al., 2023). 575

2. Geographic coverage: Although the dataset 576

covers the Coimbatore-Kochi corridor, 577

broader geographic coverage is needed 578

to ensure even greater diversity and gen- 579

eralizability across all regions of India. 580

Expanding the dataset to include more diverse 581

driving environments would enhance its 582

representativeness (Varma et al., 2019; Liu 583

et al., 2024). 584

3. Annotation types and task complexity: The 585

dataset could benefit from more complex 586

vision-language tasks to further enhance its 587

utility for the research community. This could 588

include multi-turn dialogues, temporal reason- 589

ing, or multi-image tasks (Chen et al., 2024). 590

Addressing these limitations in future work will 591

strengthen the Roadscapes dataset’s contribution to 592

autonomous driving research and vision-language 593

model development for diverse global contexts. 594
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