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ABSTRACT

Deep Ensemble is a flexible and effective alternative to Bayesian neural networks
for uncertainty estimation in deep learning. However, Deep Ensemble is broadly
criticized for lacking a proper Bayesian justification. Some attempts try to fix this
issue, while they are typically coupled with the regression likelihood or rely on
restrictive assumptions. In this work, we propose to define a Gaussian process (GP)
approximate posterior with Deep Ensemble, based on which we perform variational
inference directly in function space. We further develop a function-space posterior
regularization mechanism to properly incorporate prior knowledge. We provide
strategies to make the training feasible, and demonstrate the algorithmic benefits
of variational inference in the GP family. As a result, our method consumes only
marginally added training cost than the standard Deep Ensemble. Empirically,
our approach achieves better uncertainty estimation than Deep Ensemble and its
variants across diverse scenarios.

1 INTRODUCTION

Bayesian treatment of deep neural networks (DNNs) is promised to enjoy principled Bayesian
uncertainty while unleashing the capacity of DNNs, with Bayesian neural networks (BNNs) as popular
examples (MacKay, 1992; Hinton & Van Camp, 1993; Neal, 1995; Graves, 2011). Nevertheless,
despite the surge of advance in BNNs (Louizos & Welling, 2016; Zhang et al., 2018), many of
existing BNNs still face challenges in accurate and scalable inference (Sun et al., 2019), and exhibit
limitations in uncertainty estimation and out-of-distribution robustness (Ovadia et al., 2019).

Alternatively, Deep Ensemble (DE) (Lakshminarayanan et al., 2017) trains multiple independent,
randomly-initialized DNNs for ensemble, presenting higher flexibility and effectiveness than BNNs.
However, it is hard to interpret DE as a Bayesian approach which seeks for the Bayesian posterior of
a certain model, and there is no guarantee that the uncertainty estimates given by DE are reliable. To
chase a Bayesian justification for DE, recent works like RMS (Lu & Van Roy, 2017; Osband et al.,
2018; Pearce et al., 2020) and NTKGP (He et al., 2020) refine DE to be a “sample-then-optimize”
approach (Matthews et al., 2017). Nonetheless, these works rely on the regression likelihood and
often make strong assumptions like linearised and/or infinite-width models.

To build a Bayesian refinement of DE without reliance on restrictive assumptions, we propose to
use DE to define a Gaussian process (GP) approximate posterior, which is dubbed as DE-GP for
short. The imposition of a GP form on the approximate posterior is empowered by the equivalence
between GPs and BNNs (Khan et al., 2019; Neal, 1996; Lee et al., 2018; Garriga-Alonso et al., 2018;
Matthews et al., 2018; Novak et al., 2018; He et al., 2020), as well as the associated computational
benefits when adopting a GP prior without loss of generality.

Concretely, we evaluate the empirical mean and covariance of the ensemble members and use them to
specify DE-GP. This is inspired by the formula of neural network Gaussian process (NN-GP) (Novak
et al., 2018). Nevertheless, we clarify that we define a parameteric and learnable GP kernel with
finitely many and adaptive basis functions, in contrast to the NN-GP kernels built with infinitely
many yet fixed basis functions. The flexibility of DE-GP is assured by the expressiveness of DNN
ensemble members – by tuning them it is enabled to evolve over a rich variety of kernels.

Given these setups, we perform function-space variational inference (VI) for learning. We maximize
the functional evidence lower bound (fELBO) (Sun et al., 2019; Rudner et al., 2021) to push DE-GP
towards the true posterior over functions. We further present a posterior regularization scheme in
function space to conveniently incorporate structural priors, and present a concrete example on how
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Figure 1: Prediction on data from y = x3/4 + ε, ε ∼ N (0, 0.1). The two rows correspond to multilayer
perceptrons (MLPs) with 2 hidden layers of 64 units and MLPs with 3 hidden layers of 512 units, respectively.
The first four columns correspond to four methods. We plot the training data (red dots), mean predictions (dark
blue curves), and uncertainty (shaded regions). For NN-GP, we performs analytic GP regression without training
MLPs. The other methods train 50 MLPs, with the training speed depicted in the last column. As network
size rises, DE-GP behaves consistently, while DE and RMS suffer from degeneracy. DE-GP is on par with the
non-parameteric NN-GP in aspect of uncertainty quality, with only marginally added overheads upon DE.

to control function complexity. By VI, we are enabled to handle classification problems directly and
exactly, without casting them into regression ones (He et al., 2020). In practice, DE-GP can be easily
implemented on top of a standard DE, while only introducing minimally added cost.

The function-space Bayesian inference enables DE-GP to ameliorate the pathologies induced by
the over-parameterization nature of DNNs (Sun et al., 2019; Wang et al., 2019). Thus DE-GP can
offer calibrated uncertainty estimates, especially when adopting large networks (see Fig. 1). We
empirically demonstrate that DE-GP outperforms strong baselines on various regression datasets,
and presents superior uncertainty estimates and out-of-distribution robustness without compromising
accuracy in challenging classification tasks. DE-GP also shows promise in solving contextual bandit
problems, where the uncertainty plays a vital role in guiding exploration.

2 RELATED WORK

Bayesian neural networks (BNNs). Bayesian treatment of DNNs is an emerging topic in deep
learning yet with a long history (Mackay, 1992; Hinton & Van Camp, 1993; Neal, 1995; Graves,
2011). BNNs can be learned by virtue of variational inference (Blundell et al., 2015; Hernández-
Lobato & Adams, 2015; Louizos & Welling, 2016; Zhang et al., 2018; Khan et al., 2018; Deng
et al., 2020), Laplace approximation (Mackay, 1992; Ritter et al., 2018), Markov chain Monte
Carlo (Welling & Teh, 2011; Chen et al., 2014; Zhang et al., 2019), particle-optimization based
variational inference (Liu & Wang, 2016), Monte Carlo dropout (Gal & Ghahramani, 2016), and
other methods (Maddox et al., 2019; Izmailov et al., 2020). To avoid the difficulties of posterior
inference in weight space, some recent works advocate performing Bayesian reasoning in function
space (Sun et al., 2019; Rudner et al., 2021; Wang et al., 2019). In function space, BNNs of infinite
or even finitely width equal to Gaussian processes (GPs) (Neal, 1996; Lee et al., 2018; Novak et al.,
2018; He et al., 2020; Khan et al., 2019), which provides valuable insights for this work.

Deep Ensemble (DE) (Lakshminarayanan et al., 2017) is a qualified alternative to BNNs for uncer-
tainty estimation (Ovadia et al., 2019), yet lacks a proper Bayesian interpretation. Wilson & Izmailov
(2020) conceptually interpreted DE as a method that approximates the Bayesian posterior predictive
distribution, but it is hard to judge whether the approximation is reliable or not in practice. Recently,
a suite of works based on the notion of “sample-then-optimize” (Matthews et al., 2017) have been
developed to make DE Bayesian. For example, RMS (Lu & Van Roy, 2017; Osband et al., 2018;
Pearce et al., 2020) regularizes the ensemble members towards randomised priors to obtain posterior
samples after training, while it typically assumes linear data likelihood which is impractical for deep
models and classification tasks. He et al. (2020) proposed to add a randomised function to each en-
semble member to realise a function-space Bayesian interpretation, but the method is asymptotically
exact in the infinite width limit and is limited to regressions. By contrast, DE-GP works without
restrictive assumptions. In parallel, D’Angelo & Fortuin (2021) proposed to add a repulsive term to
DE to achieve Bayesian inference, which yet relies on unscalable gradient estimators.
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3 BACKGROUND

3.1 BAYESIAN NEURAL NETWORKS

Consider learning on a dataset D = (X,Y) = {(xi,yi)}ni=1, with xi ∈ X as data and yi as
C-dimensional targets. Let g(·,w) : X → RC denote the function represented by a DNN with
weights w. Bayesian neural networks (BNNs) treat w as random variables and chase the posterior
p(w|D) by imposing a prior p(w). Among the family, variational BNNs (VBNNs) are particularly
appealing as they cast posterior inference as an optimization problem (Graves, 2011; Blundell et al.,
2015; Louizos & Welling, 2016), where a variational distribution q(w) is introduced to approximate
the true posterior by maximizing the evidence lower bound (ELBO):

Eq(w)[log p(D|w)]−DKL[q(w)‖p(w)]. (1)

BNNs marginalize over the posteriors to obtain the posterior predictive for new data x∗:

p(y|x∗,D) = Ep(w|D)p(y|x∗,w) ≈ Eq(w)p(y|x∗,w) ≈
S∑
s=1

p(y|x∗,ws), (2)

where ws ∼ q(w), s = 1, ..., S. Such a procedure is expected to propagate the embedded model
uncertainty into the prediction. However in practice, most of the existing BNN approaches face obsta-
cles in precise posterior inference due to non-trivial and convoluted posterior dependencies (Louizos
& Welling, 2016; Zhang et al., 2018; Shi et al., 2018; Sun et al., 2019), and deliver unsatisfactory
uncertainty estimation and out-of-distribution (OOD) robustness (Ovadia et al., 2019).

3.2 DEEP ENSEMBLE

As a workaround of BNNs, Deep Ensemble (DE) (Lakshminarayanan et al., 2017) deploys a set of
M DNNs {g(·,wi)}Mi=1 for ensemble. {wi}Mi=1 are independently trained to interpret the data from
different angles, under maximum likelihood estimation (MLE) principle in standard DE, or maximum
a posteriori (MAP) principle in regularized DE (rDE):

max
w1,...,wM

LDE =
1

M

M∑
i=1

log p(D|wi), max
w1,...,wM

LrDE =
1

M

M∑
i=1

[log p(D|wi) + log p(wi)]. (3)

Due to the randomness in network initialization and stochastic gradient descent (SGD), DE can
effectively explore the non-convex, multimodal loss landscape of DNNs (Fort et al., 2019; Wilson &
Izmailov, 2020), thus has shown promise in various uncertainty estimation tasks (Lakshminarayanan
et al., 2017; Ovadia et al., 2019). However, due to the lack of a Bayesian justification, there is no
guarantee that the uncertainty estimates given by DE are reliable.

3.3 RELATION OF THE BAYESIAN POSTERIORS OF DNNS TO GAUSSIAN PROCESSES

It is early shown that shallow BNNs converge to Gaussian processes (GPs) in the infinite width
limit (Neal, 1996). Recently, there is ongoing effort to extend the result to multiple layers (Lee et al.,
2018; Matthews et al., 2018), convolutional architectures (Garriga-Alonso et al., 2018; Novak et al.,
2018), and beyond (Yang, 2019). Briefly, an infinitely wide BNN amount to the NN-GP:

GP(0, κ(x,x′)),with κ(x,x′) := Ew∼p(w)[g(x,w)g(x′,w)>], (4)

where p(w) is a layerwise isotropic Gaussian and the DNN specifying g has infinite width. Notably,
κ is a compositional, matrix-valued kernel, with values in the space of C × C matrices, and can be
analytically estimated in some cases (Novak et al., 2018; 2019). Due to the i.i.d. weights, the kernel
evaluation κ(x∗,x∗) of some data x∗ is a scaled identity matrix.

Based on the canonical results of GP regression, we know the posteriors of infinitely wide BNNs are
still GPs (in regression tasks), corresponding to the Bayesian training of the last readout layer (Arora
et al., 2019; Lee et al., 2019). Despite a golden standard for small regression problems, analytical pos-
terior inference for NN-GP faces challenges when handling contemporary DNN architectures (Novak
et al., 2018), large data (Shi et al., 2019) and classification problems.

Interestingly, finitely wide BNNs with Gaussian posteriors on weights can also be connected to
GPs (Khan et al., 2019; Rudner et al., 2021). We then arrive at the hypothesis that the Bayesian
posteriors of DNNs are closely related to GPs. So, we specify a GP approximate posterior with DE.
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4 METHODOLOGY

4.1 DEEP ENSEMBLE AS A GAUSSIAN PROCESS APPROXIMATE POSTERIOR

Basically, we utilize DE’s ensemble members (referred to as basis functions hereinafter) to define a
GP approximate posterior as follows:

q(f ;w1, ...,wM ) := GP(f |mq(x), kq(x,x
′)),

mq(x) := 1
M

∑M
i=1 gi(x), (5)

kq(x,x
′) := 1

M

∑M
i=1 (gi(x)−mq(x)) (gi(x

′)−mq(x
′))
>

+ λIC ,

where gi refers to g(·,wi). Namely, the empirical mean and central covariance of finitely many,
adaptive basis functions are leveraged to specify DE-GP. kq(x,x′) is a linear, matrix-valued kernel
with a small scaled identity matrix λIC appended to avoid singularity. The variations in kq(x,x′)
are confined to having up to M − 1 rank, echoing the recent investigations showing that low-rank
approximate posteriors for DNNs conjoin effectiveness and efficiency (Maddox et al., 2019; Izmailov
et al., 2020; Dusenberry et al., 2020). Note that the popular Nyström method (Williams & Seeger,
2001) also uses a low-rank matrix to approximate the original kernel matrix.

Akin to the kernels in (Wilson et al., 2016), the DE-GP kernels are highly flexible, and may automati-
cally discover the underlying structures of high-dimensional data without manual participation.

4.2 VARIATIONAL INFERENCE IN FUNCTION SPACE

We do function-space variational inference to push DE-GP towards the true posterior over functions.

Prior We have high freedom to determine which prior to use attributed to the variational inference
paradigm. Without loss of generality, we use the MC estimate of NN-GP (MC NN-GP) (Novak et al.,
2018) as the prior due to its accessibility. Concretely, supposing a finitely wide DNN composed of
a feature projector h(·,w) : X → RĈ and a linear readout layer with weight variance σ2

w and bias
variance σ2

b , the MC NN-GP is defined as p(f) = GP(f |0, k(x,x′)), where

k(x,x′) = (σ2
wk̂(x,x′) + σ2

b )IC ,with k̂(x,x′) =
1

SĈ

S∑
s=1

h(x,ws)
>h(x′,ws). (6)

IC refers to the indentity matrix of size C × C and ws are i.i.d. samples from the Gaussian prior on
weights p(w). Similar setups can be found in some related works like (Wang et al., 2019).

There may be a subtle difference between the MC NN-GP and the NN-GP, so what we are actually
doing is not approximating the exact NN-GP posterior with DE-GP. Also of note that the NN-GP
prior and the DE-GP posterior can be defined with various architectures.

fELBO Following Sun et al. (2019), we maximize the functional ELBO (fELBO) to optimize DE-GP:

max
q(f)

Eq(f)[log p(D|f)]−DKL[q(f)‖p(f)]. (7)

Notably, there is a KL divergence between two GPs, which, on its own, is challenging to cope with.
Fortunately, as proved by Sun et al. (2019), we can take the KL divergence between the marginal
distributions of function evaluations as a substitute for it, giving rise to a more tractable objective:

max
q(f)
L =

∑
(xi,yi)∈D

Eq(f)[log p(yi|f(xi))]−DKL[q(f X̃)‖p(f X̃)], (8)

where X̃ denotes a measurement set including all training inputs X, and f X̃ is the concatenation of
the vectorized outputs of f for X̃, i.e., f X̃ ∈ R|X̃|C .

4.3 POSTERIOR REGULARIZATION IN FUNCTION SPACE

Though Bayesian learning in function space enables a direct imposition of prior knowledge on
function properties like smoothness and periodicity (Sun et al., 2019), sometimes the prior knowledge
cannot be trivially designed as a prior distribution over functions. For example, the functions are
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periodical only over a limited input range, etc. In these cases, posterior regularization (Ganchev et al.,
2010; Zhu et al., 2014) provides a principled workaround to impose structural constraints.

Briefly, we apply posterior regularization to functional variational inference by solving:
max
q(f)
L s.t.: q(f) ∈ Q. (9)

Q = {q(f)|Eq(f)Ω(f) ≤ 0} is a valid set defined in terms of a functional Ω which delivers some
statistic of interest of a function.1 For tractable optimization, we slack the constraint as a penalty:

max
q(f)
L′ = L − βmax{Eq(f)Ω(f), 0}, (10)

where β is a trade-off coefficient.

We next present an example on how to impose prior knowledge on function (hypothesis) complexity
on the DE-GP approximate posterior using this paradigm.2 For the sake of brevity, we assume a
binary classification scenario in the following discussion where y ∈ {−1, 1} and f, gi : X → R. We
use 0-1 loss `(f(x), y) = 1y 6=sign(f(x)) to measure the classification error on one datum. We assume
an underlying distribution µ = µ(x, y) supported on X × {−1, 1} for generating the training data D,
based on which we can define the true risk of a function (hypothesis) f : R(f) := E(x,y)∼µ`(f(x), y).
We set Eq(f)Ω(f) := Eq(f)R(f) in the seek of a posterior over functions that can generalize well.

By definition, a hypothesis sample f ∼ q(f) = GP(mq(x), kq(x,x
′)) can be decomposed as

f(x) = 1
M

∑M
i=1 gi(x) + ζ(x) with ζ(x) ∼ GP(0, kq(x,x

′)). If sign(f(x)) 6= y, it is impossible
that sign(g1(x)) = y, ..., sign(gM (x)) = y, and sign(ζ(x)) = y all hold. In other words,

`(f(x), y) ≤
M∑
i=1

[`(gi(x), y)] + `(ζ(x), y). (11)

We can further re-parameterize ζ(x) as ζ(x) = 1√
M

∑M
i=1 εi(gi(x) − mq(x)) +

√
λε0, εi ∼

N (0, 1), i = 0, ...,M , which is essentially a real-valued random function symmetric around 0.
Thus, for any (x, y) ∼ µ, we have Eq(f)`(ζ(x), y) = Eε0,...,εM `(ζ(x), y) = 1/2. As a result,

Eq(f)R(f) ≤ Eq(f)E(x,y)∼µ

M∑
i=1

[`(gi(x), y)] + E(x,y)∼µ[1/2] =

M∑
i=1

[R(gi)] + 1/2. (12)

Namely, the expected generalization error of the approximately posteriori functions can be bounded
from above by those of the DNN basis functions.3 Recalling the theoretical and empirical results
showing that DNNs’ generalization error R(gi) can be decreased by controlling model capacity in
terms of norm-based regularization minwi ||wi||22 (Neyshabur et al., 2015; 2017; Bartlett et al., 2017;
Jiang et al., 2019), we opt to maximize the following refined fELBO for learning DE-GP:

max
w1,...,wM

LDE-GP =
∑

(xi,yi)∈D

Eq(f)[log p(yi|f(xi))]−DKL[q(f X̃)‖p(f X̃)]− β
∑
i

||wi||22. (13)
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Figure 2: Comparison on the L2 norm of
weights. We traine models on CIFAR-10 with
ResNet-20. DE-GP (β = 0) finds solutions
with high complexity and poor test accuracy
(see Table 1), yet DE-GP (β = 0.1) settles this.

Intuitively, the weight space of an over-parameterized
DNN contains many redundant interpretations for the
data, thus pushing the weights towards zero would not
hurt data fitting but boost generalization. In practice,
when processing with shallow architectures, β can be
set as 0 to remove the constraint on model capacity;
while when using deep architectures (e.g., ResNet (He
et al., 2016)), we can set β according to commonly
used weight decay coefficient for better generalization.
Comparisons in Fig. 2 and Table 1 support this.

4.4 THE ALGORITHM

We outline the training procedure of DE-GP in Algorithm 1, and elaborate some details below.
1Here we assume one-dimensional outputs for Ω for notation compactness.
2The motivation is that, as observed, the fELBO cannot cause proper regularization effects on weightswi for

deep architectures, thus the learned DE-GP may suffer from high-complexity basis functions.
3A similar conclusion can be drawn in multi-class classification scenario (see Appendix A).
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Algorithm 1: Deep Ensemble as a Gaussian process posterior (DE-GP).

1: Input: D: dataset; {gi}Mi=1: M DNNs; k: prior kernel; α, β: trade-off coefficients; ν: distribution for
sampling extra measurement points; U : number of MC samples for estimating the expected log-likelihood

2: while not converged do
3: Ds = (Xs,Ys) ⊂ D, Xν ∼ ν, X̃s = {Xs,Xν}
4: gi = gi(X̃s) ∈ R|X̃s|C , i = 1, ...,M

5: mX̃s
q = 1

M

∑
i gi, k

X̃s,X̃s
q = 1

M

∑M
i=1(gi −mX̃s

q )(gi −mX̃s
q )> + λI|X̃s|C

6: kX̃s,X̃s = k(X̃s, X̃s) ∈ R|Xs|C×|Xs|C

7: L1 = 1
U

∑U
i=1

∑
(x,y)∈Ds

log p(y|fi(x)), fi ∼ N (mX̃s
q ,kX̃s,X̃s

q )

8: L2 = DKL[N (mX̃s
q ,kX̃s,X̃s

q )‖N (0,kX̃s,X̃s)], L3 =
∑
i ||wi||

2
2

9: wi = wi + η∇wi(L1 − αL2 − βL3), i = 1, ...,M

4.4.1 MINI-BATCH TRAINING

In deep learning scenarios, DE-GP should proceed by mini-batch training. At each step, we manufac-
ture a stochastic measurement set with a mini-batch Ds = (Xs,Ys) from the training data D and
random samples Xν from a continuous distribution ν (e.g., a uniform distribution) supported on X .
Then, we adapt the objective defined in Eq. (13) to the following form:

LDE-GP =
∑

(xi,yi)∈Ds

Eq(f)[log p(yi|f(xi))]− αDKL[q(f X̃s)‖p(f X̃s)]− β
∑
i

||wi||22, (14)

where X̃s indicates the union of Xs and Xν . When α = 1 and β = 0, LDE-GP is a lower bound of
log p(Ds) according to (Sun et al., 2019). Yet, given that we do not perform intensive hyper-parameter
tuning for the NN-GP prior, it is reasonable to make α a tunable hyper-parameter to better trade off
between the data fitting and the priori inductive bias.

4.4.2 AN EXACT AND EFFICIENT ESTIMATION OF THE MARGINAL KL DIVERGENCE

The marginal distributions of function evaluations are multivariate Gaussian by the definition of GP:

q(f X̃s) = N (f X̃s |mX̃s
q ,kX̃s,X̃s

q ), p(f X̃s) = N (f X̃s |0,kX̃s,X̃s), (15)

with the kernel matrices kX̃s,X̃s
q ,kX̃s,X̃s ∈ R|X̃s|C×|X̃s|C as the joints of pair-wise outcomes.

Therefore, the marginal KL divergence and its gradients can be estimated exactly without resorting
to some approximations (Rudner et al., 2021). What’s more, as discussed in Section 3.3, there is a
simple structure in the prior kernel matrices, so we can write them in the form of Kronecker product:

kX̃s,X̃s ≈ (σ2
wk̂

X̃s,X̃s + σ2
b )⊗ IC , (16)

where k̂X̃s,X̃s ∈ R|X̃s|×|X̃s| corresponds to the evaluation of kernel k̂. Hence we can exploit the
property of Kronecker product to inverse kX̃s,X̃s in O(|X̃s|3) complexity.

Besides, as kX̃s,X̃s
q is low-rank, we can leverage the Woodbury matrix identity (Woodbury, 1950)

and matrix determinant lemma (Harville, 1998) to efficiently compute the inverse and determinant of
kX̃s,X̃s
q in O(|X̃s|CM2) time complexity given that usually M � |X̃s|C (e.g., 10� 256C).

4.5 DISCUSSION

Diversity. The diversity among the ensemble members in function space is explicitly encouraged
by the KL divergence between variational and the prior in fELBO. Nonetheless, the expected log-
likelihood in fELBO enforces each ensemble member to yield the same, correct outcomes for the
training data. Thereby, the diversity mainly exists in the regions far away from the training data (see
Fig. 1 and Fig. 9 in Appendix B.2). Yet, the diversity in DE does not have a clear theoretical support.

Efficiency. Compared to the overhead introduced by DNNs, the effort of estimating the KL diver-
gence between Gaussians is negligible. The added cost of DE-GP primarily arises from the extra
measurement points and the evaluation of the prior kernels. In practice, we use a small batch size
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Figure 3: Comparison on average test NLL and RMSE on UCI regression problems. The lower the better.

for the extra measurement points. We build the prior NN-GP kernels with cheap architectures and
perform MC estimation in parallel. Eventually, DE-GP is only marginally slower than DE in training.

Weight sharing. DE-GP does not care about how the basis functions are parameterized, so we can
perform weight sharing among the basis functions, for example, using a shared feature extractor and
M independent MLP classifiers to construct M basis functions (Deng et al., 2021). With shared
weights, DE-GP is still likely to be reliable because our learning principle induces diversity in
function space regardless of the weights. Experiments in Section 5.3 validate this.

Limitations. Despite being Bayesian in principle, DE-GP is likely to be less flexible than DE and
other variants because all the involved basis functions need to be updated simultaneously.

5 EXPERIMENTS

We perform extensive evaluation to prove that DE-GP yields better uncertainty estimates than the
baselines, while preserving non-degraded predictive performance. The baselines include DE, rDE,
NN-GP, RMS, etc. In all experiments, we estimate the prior kernel with 10 MC samples and set the
sampling distribution for extra measurement points ν as the uniform distribution over the data region.

5.1 ILLUSTRATIVE REGRESSION

We build two regression problems with data from y = x3/4 + ε, ε ∼ N (0, 0.1) and y = x sin 5x+
ε, ε ∼ N (0, 0.2), respectively. We consider two architectures: MLPs with 2 hidden layers of 64
units and MLPs with 3 hidden layers of 512 units, where ReLU activation is used. For NN-GP, we
analytically estimate the GP kernel and perform GP regression without training MLPs. For DE-GP,
DE, rDE, and RMS, we train 50 MLPs. For MC dropout, we train a MLP with the commonly used
0.2 dropout rate. We use the default values for α and β, i.e., α = 1 and β = 0.

Fig. 1 and Appendix B.2 show the results on the two problems. We also provide the comparison on
training speed in Fig. 1. As shown, DE-GP delivers calibrated uncertainty estimates across settings,
on par with the non-parametric Bayesian baseline NN-GP. Yet, the baselines like DE, rDE, and RMS
suffer from degeneracy issue as the dimension of weights increases. Though NN-GP outperforms
other methods, the involved analytical GP regression may have scalability and effectiveness issues
when facing modern architectures (Novak et al., 2018), while DE-GP does not suffer from them.

5.2 UCI REGRESSION

We then assess DE-GP on 5 UCI real-valued regression problems. The used architecture is a MLP
with 2 hidden layers of 256 units and ReLU activation. 10 networks are trained for DE, DE-GP and
other variants. For DE-GP, we set β = 0 and tune α according to validation sets.

We perform cross validation with 5 splits. Fig. 3 shows the results. DE-GP surpasses or approaches
the baselines across scenarios in aspects of both test negative log-likelihood (NLL) and test root mean
square error (RMSE). DE-GP even beats NN-GP, which is probably attributed to that the variational
family specified by DE enjoys the beneficial inductive bias of practically sized SGD-trained DNNs,
and DE-GP can flexibly trade off between the likelihood and the prior by tuning α.

5.3 IMAGE CLASSIFICATION ON FASHION-MNIST AND CIFAR-10

In the classification experiments, we augment the data log-likelihood (i.e., the first term in Eq. (14))
with a trainable temperature to tackle oversmoothing and avoid underconfidence. 4

Fashion-MNIST. We use a widened LeNet5 architecture with batch normalizations (BNs) (Ioffe &
Szegedy, 2015) for the Fashion-MNIST dataset (Xiao et al., 2017). Considering the inefficiency of

4We can make the temperature a Bayesian variable, but it is unnecessary as our model is already Bayesian.

7



Under review as a conference paper at ICLR 2022

2 3 4 5 6 7 8 9 10
Ensemble size

6.0

6.2

6.4

6.6

6.8

7.0

7.2

Cl
as

sif
ica

tio
n 

Er
ro

r (
%

)

Test Error vs. Ensemble Size
DE-GP
DE
rDE
RMS

2 3 4 5 6 7 8 9 10
Ensemble size

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.26

Ne
ga

tiv
e 

Lo
g-

lik
el

ih
oo

d

Test NLL vs. Ensemble Size
DE-GP
DE
rDE
RMS

1.0 0.8 0.6 0.4 0.2
Uncertainty Threshold 

0.0

0.1

0.2

0.3

0.4

0.5

Er
ro

r o
n 

ex
am

pl
es

 w
ith

 u
nc

er
ta

in
ty

 

FashionMNIST+MNIST Error vs. Uncertainty

DE-GP
DE
rDE
RMS

Figure 4: (Left): Test error varies w.r.t. ensemble size on Fashion-MNIST. (Middle): Test NLL varies
w.r.t. ensemble size on Fashion-MNIST. (Right): Test error versus uncertainty plots for methods trained on
Fashion-MNIST and tested on both Fashion-MNIST and MNIST. Ensemble size is fixed as 10.

Table 1: Test accuracy comparison on CIFAR-10. Results are summarized over 8 trials.
Architecture DE-GP (β = 0.1) DE-GP (β = 0) DE rDE RMS
ResNet-20 94.67±0.04% 93.71±0.06% 93.43±0.08% 94.58±0.05% 93.63±0.07%
ResNet-56 95.55±0.04% 94.24±0.07% 94.04±0.07% 95.56±0.06% 94.45±0.03%

NN-GP, we mainly compare DE-GP to DE, rDE, and RMS. We set α as well as the regularization
coefficients for rDE and RMS all as 0.1 according to validation accuracy. For DE-GP, we use β = 0
given the limited capacity of the architecture. The in-distribution performance is averaged over 3 runs.
Fig. 4-(Left) and Fig. 4-(Middle) display how ensemble size impacts the test results. Surprisingly, the
test error of DE-GP is even lower than the baselines.

Besides, to compare the quality of uncertainty estimates, we use the trained models to make prediction
and quantify epistemic uncertainty for both the in-distribution test set and the out-of-distribution
(OOD) MNIST test set. All predictions on OOD data are regarded as wrong. The epistemic
uncertainty is estimated by the mutual information between the prediction and the variable function:

I(f, y|x,D) ≈ H

(
1

S

S∑
s=1

p(y|fs(x))

)
− 1

S

S∑
s=1

H (p(y|fs(x))) , s = 1, ..., S, (17)

where H indicates Shannon entropy, with fs = g(·,ws) for DE, rDE, and RMS, and fs ∼
q(f ;w1, ...,wM ) for DE-GP. We normalize the uncertainty estimates into [0, 1]. For each threshold
τ ∈ [0, 1], we plot the average test error for data with ≤ τ uncertainty in Fig. 4-(Right). It is
prominent that under various uncertainty thresholds, DE-GP makes fewer mistakes than the baselines,
implying that DE-GP succeeds to assign relatively higher uncertainty for the OOD data.

CIFAR-10. Next, we apply DE-GP to the real-world image classification task CIFAR-10 (Krizhevsky
et al., 2009). We consider the popular ResNet architectures (He et al., 2016) including ResNet-20
and ResNet-56. The ensemble size is fixed as 10. We split the data as training set, validation set, and
test set of size 45000, 5000, 10000, respectively. We set β = 0.1, equivalent with the regularization
coefficient on weight in rDE. We set α = 0.1 according to an ablation study in Appendix B.5. We
use a lite ResNet-20 architecture without BNs and residual connections to set up the prior NN-GP
kernel for both the ResNet-20 and ResNet-56 based variational posteriors.

We present the in-distribution test accuracy in Table 1 and the error versus uncertainty plots on the
combination of CIFAR-10 and SVHN test sets in Fig. 5. It is noteworthy that DE-GP is on par with
the practically-used, competing rDE in aspect of test accuracy. DE-GP (β = 0) shows unsatisfactory
test accuracy, verifying the necessity of performing posterior regularization to penalize function
complexity when using ultra-deep networks. The error versus uncertainty plots are similar to those
for Fashion-MNIST, substantiating the universality of DE-GP.

We further test the trained methods on CIFAR-10 corruptions (Hendrycks & Dietterich, 2018), a
challenging OOD generalization/robustness benchmark for deep models. As shown in Fig. 6 and
Appendix B.3, DE-GP reveals smaller Expected Calibration Error (ECE) (Guo et al., 2017) and
lower NLL at various levels of skew, reflecting its ability to make conservative predictions under
corruptions and good OOD robustness.

More results for the deeper ResNet-110 architecture and the more challenging CIFAR-100 benchmark
are provided in Appendix B.3 and Appendix B.4.
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Figure 5: Test error versus uncertainty plots for methods trained on CIFAR-10 and tested on both CIFAR-10
and SVHN with ResNet-20 (Left) or ResNet-56 (Right) architecture.
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Figure 6: Expected Calibration Error on CIFAR-10 corruptions for models trained with ResNet-20 (Left) or
ResNet-56 (Right) architecture. We summarize the results across 19 types of skew in each box.
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Figure 7: In-distribution test accuracy (Left)
and error versus uncertainty plots on the com-
bination CIFAR-10 and SVHN (Right) under
weight sharing. (ResNet-20)

Weight Sharing. We build a ResNet-20 with 10 clas-
sification heads and a shared feature extraction module
to evaluate the methods under weight sharing. We set a
larger value for α for DE-GP to induce higher magnitudes
of functional diversity. The test accuracy (over 6 trials) and
error versus uncertainty plots on CIFAR-10 are illustrated
in Fig. 7. We exclude RMS from the comparison as it
assumes i.i.d. basis functions which may be incompatible
with weight sharing. DE-GP benefits from the diversity in
function space, hence performs better than DE and rDE,
which purely hinge on the diversity in weight space.

5.4 CONTEXTUAL BANDIT
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Figure 8: Cumulative reward varies w.r.t.
round on Covertype (Left) and Mushroom
(Right). Random corresponds to the Uniform
algorithm. Summarized over 5 trails.

Finally, we apply DE-GP to contextual bandit, an impor-
tant decision-making task where the uncertainty helps to
guide exploration. Following (Osband et al., 2016), we use
DE-GP to achieve efficient exploration inspired by Thomp-
son sampling. We reuse most of the settings for UCI regres-
sion. We leverage the GenRL library to build two contex-
tual bandit problems Covertype and Mushroom (Riquelme
et al., 2018). The cumulative reward is depicted in Fig. 8.
As desired, DE-GP offers better uncertainty estimates and
hence beats the baselines by clear margins. The potential
of DE-GP in more reinforcement learning and Bayesian
optimization scenarios deserves future investigation.

6 CONCLUSION

In this work, we attempt to build a Bayesian refinement of Deep Ensemble by drawing inspiration
from the connection between BNNs and GPs. We propose to leverage the ensemble members to
specify an adaptive GP approximate posterior, and perform variational inference directly in function
space. We inherit some theoretical results from existing works on functional variational inference,
and further develop a posterior regularization scheme to conveniently induce prior knowledge on
function properties. We demonstrate how to penalize the function complexity based on this scheme
and empirically show the necessity of doing so. The whole algorithm can be implemented easily and
efficiently. Extensive experiments validate the effectiveness of our method. We hope this work may
shed light on the development of better Bayesian deep learning approaches.
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ETHICS STATEMENT

This work proposes a Bayesian refinement of Deep Ensemble. Its potential positive impacts in the
society are evident: its ability to enable better uncertainty estimation while maintaining predictive
performance is crucial in industry, e.g., automatic driving, disease analysis, and financial applications.
In this scenarios, the uncertainty estimates could be used to reject uncertain predictions, and raise
the requirement of inviting humans into the decision process. As a fundamental research in machine
learning, the negative consequences are not obvious. Though in theory any technique can be misused,
it is not likely to happen at the current stage.

REPRODUCIBILITY STATEMENT

It is easy to reproduce the experiments given the code in the supplementary material.
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A PENALIZE FUNCTION COMPLEXITY IN MULTI-CLASS CLASSIFICATION

In the multi-class classification scenario where y ∈ {1, 2, ..., C} and f, gi : X → RC , we use
the loss `(f(x), y) = 1f(x)[y]<maxy′ 6=y f(x)[y

′] to measure prediction error where f(x)[j] denotes
j-th coordinate of f(x). The distinct difference between this scenario and the binary classification
scenario is that in this setting, ζ(x) is a vector-valued function:

ζ(x) =
1√
M

M∑
i=1

εi(gi(x)−mq(x)) +
√
λε0, (18)

where ε0 ∼ N (0, IC) and εi ∼ N (0, 1), i = 1, ...,M . We then make a mild assumption to simplify
the analysis.
Assumption 1. For any (x, y) ∈ µ, the elements on the diagonal of kq(x,x) have the same value.

This assumption implies that for any j, j′ ∈ {1, ..., C},

1

M

M∑
i=1

(gi(x)[j]−mq(x)[j])2 + λ =
1

M

M∑
i=1

(gi(x)[j′]−mq(x)[j′])2 + λ. (19)

I.e.,
M∑
i=1

(gi(x)[j]−mq(x)[j])2 =

M∑
i=1

(gi(x)[j′]−mq(x)[j′])2. (20)

Therefore, ζ(x) possesses the same variance across its output coordinates and becomes a random
guess classifier. Based on this, we have Eq(f)`(ζ(x), y) = Eε0,...,εM `(ζ(x), y) = (C − 1)/C. We
can then derive a similar conclusion to that in Section 4.3.

The validity of Assumption 1. When the data dimension |X | is high and the number of training
data n is finitely large, with zero probability the sampled data (x, y) ∼ µ resides in the training set.
Therefore, only the KL divergence term of the fELBO explicitly affects the predictive uncertainty at
x. Because the NN-GP prior possesses a diagonal structure, it is hence reasonable to make the above
assumption.

B MORE OF EXPERIMENTS

We provide more experimental details and results in this section. In all experiments, the number of
MC samples for estimating the expected log-likelihood (i.e., U in Line 7 of Algorithm 1) is set as 256.
Unless otherwise stated, we set the regularization constant λ as 0.05 times of the average eigenvalue
of the central covariance matrices, and set the weight and bias variance for defining the NN-GP
prior kernel at each layer as 2/fan_in and 0.01, where fan_in is the number of input features, as
suggested by He initialization (He et al., 2015).

B.1 DETAILED SETTINGS

Illustrative regression. For the problem on y = x3/4 + ε, ε ∼ N (0, 0.1), we randomly sample 20
data points from [−1.5,−0.6] ∪ [0.6, 1.5]. For the problem on y = x sin 5x+ ε, ε ∼ N (0, 0.2), we
use 6 data points {−0.8,−0.1, 0.02, 0.2, 0.6, 0.8} following (Pearce et al., 2020). For optimizing the
DNN basis functions, we use an Adam (Kingma & Ba, 2015) optimizer with 0.003 learning rate. The
optimization takes 300 iterations. We set hidden size as 64 for the architecture of the prior NN-GP
kernel for speedup. The regularization constant λ is set as 1e− 4 times of the average eigenvalue of
the central covariance matrices.

UCI regression. We pre-process the UCI data by standard normalization. We set the variance for
data noise and the weight variance for the prior kernel following (Pearce et al., 2020). The batch size
for stochastic training is 256. We use an Adam optimizer to optimize for 1000 epochs. The learning
rate is initialized as 0.01 and decays by 0.99 every 5 epochs.

Fashion-MNIST classification. The used architecture is Conv(32, 3, 1)-BN-ReLU-MaxPool(2)-
Conv(64, 3, 0)-BN-ReLU-MaxPool(2)-Linear(256)-ReLU-Linear(10), where Conv(x, y, z) represents
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NN-GP DE-GP (our) DE rDE RMS MC dropout

Figure 9: Prediction on toy data from y = x sin 5x + ε, ε ∼ N (0, 0.2). The two rows correspond to MLPs
with 2 hidden layers of 64 units and MLPs with 3 hidden layers of 512 units, respectively. DE-GP provides
calibrated uncertainty estimates and is consistently behaved as mode complexity increases.
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Figure 10: Negative log-likelihood on CIFAR-10 corruptions for models trained with ResNet-20 (Left) or
ResNet-56 (Right) architecture. We summarize the results across 19 types of skew in each box.

a 2D convolution with x output channels, kernel size y, and padding z. The batch size for training
data is 64. The batch size for extra measurement points is 0. We use an SGD optimizer to optimize
for 24 epochs. The learning rate is initialized as 0.1 and follows a cosine decay schedule. We use an
Adam optimizer with 1e− 3 learning rate to optimize the temperature. We use 1000 MC samples to
estimate the posterior predictive and the epistemic uncertainty, because the involved computation is
only the cheap softmax transformation on the sampled function values.

CIFAR-10 classification. We perform data augmentation including random horizontal flip and
random crop. The batch size for training data is 128. The batch size for extra measurement points is
0. We use a SGD optimizer with 0.9 momentum to optimize for 200 epochs. The learning rate is
initialized as 0.1 and decays by 0.1 at 100-th and 150-th epochs. We use an Adam optimizer with
1e− 3 learning rate to optimize the temperature. We use 1000 MC samples to estimate the posterior
predictive and the epistemic uncertainty. Suggested by (Ovadia et al., 2019; He et al., 2020), we train
models on CIFAR-10, and test them on the combination of CIFAR-10 and SVHN test sets. This is a
standard benchmark for evaluating the uncertainty on OOD data.

Contextual bandit. We use MLPs with 2 hidden layers of 256 units. The batch size for training data
is 512. The batch size for extra measurement points is 0. We update the model (i.e., the agent) for 100
epochs with an Adam optimizer every 50 rounds. We set α = 1 and β = 0 without tuning. DE, rDE,
and RMS all randomly choose an ensemble member at per iteration, but our method randomly draws
a sample from the GP for decision. This is actually emulating Thompson Sampling and advocated by
Bootstrapped DQN (Osband et al., 2016). “Random” baseline corresponds to the Uniform algorithm.

B.2 MORE RESULTS ON ILLUSTRATIVE REGRESSION

We depict the results on y = x sin 5x+ ε, ε ∼ N (0, 0.2) problem in Fig. 9, which are consistently
with those in Fig. 1.

B.3 MORE RESULTS ON CIFAR-10 CLASSIFICATION

We plot the negative log-likelihood and test accuracy on CIFAR-10 corruptions for models trained
with ResNet-20 and ResNet-56 in Fig. 10 and Fig. 11. As shown, DE-GP outperforms the baselines
in aspect of negative log-likelihood, but yields similar test accuracy to the baselines. Recapping the
results in Fig. 6, DE-GP indeed has improved OOD robustness, but may still face problems in OOD
generalization.
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Figure 11: Test accuracy on CIFAR-10 corruptions for models trained with ResNet-20 (Left) or ResNet-56
(Right) architecture. We summarize the results across 19 types of skew in each box.

1 2 3 4 5
Skew intensity

0.0

0.2

0.4

0.6

Ex
pe

ct
ed

 C
al

ib
ra

tio
n 

Er
ro

r

DE-GP
DE
rDE
RMS

1.0 0.8 0.6 0.4 0.2
Uncertainty Threshold 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Er
ro

r o
n 

ex
am

pl
es

 w
ith

 u
nc

er
ta

in
ty

 

DE-GP
DE
rDE
RMS

Figure 12: (Left): Expected Calibration Error on CIFAR-10 corruptions for models trained with ResNet-110
architecture. We summarize the results across 19 types of skew in each box. (Right): Test error versus uncertainty
plots for methods trained on CIFAR-10 and tested on both CIFAR-10 and SVHN with ResNet-110 architecture.
Ensemble size is fixed as 5 for these experiments.

We then conduct experiments with the deeper ResNet-110 architecture. Due to resource constraint,
we use 5 ensemble members. The other settings are roughly the same as those for ResNet-56. The
results are offered in Fig. 12, which validate the effectiveness of DE-GP for large networks.

B.4 RESULTS ON CIFAR-100

We further perform experiments on the more challenging CIFAR-100 benchmark. We present the
in-distribution test accuracy of DE-GP as well as the baselines in Table 2. We can see that DE-GP
(β = 0.1) is still on par with rDE. We depict the error versus uncertainty plots on the combination
of CIFAR-100 and SVHN test sets in Fig. 13. It is shown that the uncertainty estimates yielded by
DE-GP for OOD data are more calibrated than the baselines. We further test the trained methods on
CIFAR-100 corruptions (Hendrycks & Dietterich, 2018), and present the comparisons in aspects of
test accuracy and NLL in Fig. 14. It is evident that DE-GP reveals lower NLL than the baselines at
various levels of skew.

Table 2: Test accuracy comparison on CIFAR-100.
Architecture DE-GP (β = 0.1) DE rDE RMS
ResNet-20 76.59% 74.14% 76.81% 75.08%
ResNet-56 79.51% 76.46% 79.21% 76.77%

B.5 ABLATION STUDY ON α

We have conducted an ablation study on α (using ResNet-20 on CIFAR-10). The results are presented
in Table 3. We can see that DE-GP is not sensitive to the value of α. We in practice set α = 0.01 in
the CIFAR experiments. We did not use a smaller α as it may result in colder posteriors and in turn
worse uncertainty estimates.

Table 3: Ablation study on α for DE-GP (β = 0.1) (using ResNet-20 on CIFAR-10).
α 0.1 0.05 0.01 0.005

Accuracy 94.67±0.09% 94.66±0.07% 94.67±0.04% 94.83±0.10%

B.6 ABLATION STUDY ON THE ARCHITECTURE OF PRIOR KERNEL

We perform an ablation study on the architecture for defining the prior MC NN-GP kernel, with the
results listed in Table 4. Surprisingly, using the cheap ResNet-20 architecture results in DE-GP with
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Figure 13: Test error versus uncertainty plots for methods trained on CIFAR-100 and tested on both CIFAR-100
and SVHN with ResNet-20 (Left) or ResNet-56 (Right) architecture.
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Figure 14: First row: test NLL on CIFAR-100 corruptions for models trained with ResNet-20 (Left) or
ResNet-56 (Right) architecture. Second row: test accuracy on CIFAR-100 corruptions for models trained with
ResNet-20 (Left) or ResNet-56 (Right) architecture. We summarize the results across 19 types of skew in each
box.

better test accuracy. We deduce this is because a deeper prior architecture induces more complex,
black-box correlation for the function, which may lead to over-regularization.

Table 4: Ablation study on the architecture of the prior MC NN-GP kernel.

DE-GP architecture
Prior kernel architecture ResNet-20 ResNet-56 ResNet-110

ResNet-56 (10 ensemble member) 95.50% 95.28% -
ResNet-110 (5 ensemble member) 95.54% - 94.87%
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