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Abstract

In federated learning, communication cost can be significantly reduced by transmit-
ting real-valued gradient information directly through physical channels. However,
the bias induced by hardware quantization and large variance due to channel noise
create significant challenges for convergence analysis and algorithm design.
In this paper, we propose a new class of pre-coding and post-coding techniques to
ensure exact unbiasedness and low variance of the transmitted stochastic gradient.
Building upon these techniques, we design adaptive federated stochastic gradient
descent (SGD) algorithms that can be implemented over physical channels for
both downlink broadcasting and uplink transmission. We establish theoretical
guarantees for the proposed algorithms, demonstrating convergence rates that are
adaptive to the stochastic gradient noise level from data, without degradation due
to channel noise. We also demonstrate the practical effectiveness of our algorithms
through simulation studies with deep learning models. Our simulation results
with CIFAR-10 and MNIST datasets show test accuracy matching that of the
full-precision coded channel, costing only 20% of communication symbols.

1 Introduction

In modern machine learning applications, large datasets are often distributed across multiple het-
erogeneous worker machines. To jointly solve the optimization problem, the distributed machines
need to transmit the information through communication channels. The bottleneck of distributed and
federated learning is often the communication cost [1, 2]. The development of efficient federated
learning algorithms with low communication cost has been a central topic in the machine learning
community for the past decade (see [3–6] and references therein).

Most federated learning literature focuses on network-layer abstraction of communication channels,
which allows error-free transmissions of real-valued data [7]. Nevertheless, such a transmission
scheme can be costly in practice, requiring error correction codes and high-precision floating-point
numbers. On the other hand, first-order stochastic optimization algorithms are known to be resilient
to random noises in gradient oracles. In particular, if we want to minimize an objective function F ,
given a stochastic gradient oracle ĝ(θ) satisfying the conditions

E
[
ĝ(θ) | θ

]
= ∇F (θ), and E

[
∥ĝ(θ)∥22 | θ

]
< +∞, (1)

various stochastic first-order methods are guaranteed to converge efficiently. This observation
motivates study of federated learning over physical communication channels [8, 9]. For example,
when transmitting stochastic gradients directly through analogue channels with Additive Gaussian
White Noise (AWGN), the stochastic gradient oracle ĝ(θ) satisfies the condition (1), thereby achieving
the same convergence guarantees with significantly reduced communication costs. [10–14].
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Despite the inspiring progress, existing federated learning algorithms over physical channels suffer
from both practical limitations and theoretical gaps. From the signal processing perspective, existing
works overlook hardware constraints in practical systems: due to the quantization steps in the
conversion between analogue and digital signals, Eq. (1) is not satisfied in general, and the biases
in stochastic oracle may deteriorate the convergence of stochastic optimization algorithms. From
the optimization perspective, existing algorithms either require fully coded communication in one
of the uplink and the downlink [8, 12], or require the noise level to decay sufficiently fast [13, 15]
– under these transmission schemes, the reduction in communication costs are limited. Finally, the
noisy communication channel may amplify the variance of stochastic gradient oracles, leading to
sub-optimal performance compared to coded channels. These limitations motivate the key question:

Can we significantly reduce the communication costs of federated learning using
practical physical channels for both downlink and uplink, while retaining desirable
performance guarantees?

We answer this question in the affirmative by introducing a new class of channels signal processing
techniques and adaptive stochastic gradient descent (SGD) algorithms for federated learning over
physical channels. Our contribution are threefold:

• To tackle the biases induced by analogue-to-digital conversion (ADC), we introduce a stochastic
post-coding procedure that corrects the biases in the quantized signals. The post-coding procedure
is adaptive to the noise level in the communication channel, and can be implemented with low
computational overhead.

• Under a worker-server architecture, we propose a new class of adaptive federated SGD algorithms
that transmit the stochastic gradient information primarily through physical channels, and use
the coded channel to synchronize parameters only once in a while. The communication cost is
significantly lower than existing algorithms.

• We establish theoretical guarantees for the proposed algorithms, demonstrating near-optimal
convergence rates. In particular, we show that the error bounds are adaptive to the stochastic
gradient noise level, achieving statistical errors comparable to those of coded channels.

Notations We use [m] to denotes the set {1, 2, . . . ,m}. For j ∈ [d], we use ej ∈ Rd to denote an
indicator vector with 1 in the j-th coordinate and 0 elsewhere. We use f ◦ g to denote the composition
of functions f and g, i.e., (f ◦ g)(x) = f(g(x)). For p ∈ [1,+∞), we denote the vector ℓp norm by
∥x∥p :=

(∑d
j=1 |xj |p

)1/p
, and ∥x∥∞ := maxj∈[d] |xj |. Given a pair of vector norms ∥ · ∥X and

∥ · ∥Y , we use |||A|||X→Y := sup∥x∥X=1 ∥Ax∥Y to denote the induced matrix norm. We use ⟨x, y⟩
to denote the standard inner product in Rd. For the iterative algorithms we study we use Fk to denote
the σ-field generated by the first k iterations.

Technical highlights The key technical challenge in designing federated learning algorithms
over physical channels lies in constructing stochastic gradient oracles that satisfy the unbiasedness
condition Eq. (1) with low variance. We introduce a novel post-coding technique that uses a probability
transition kernel to eliminate the bias (see Section 3.1), and a scale-adaptive transformation to adapt
the variance (see Section 3.2) to the variance of stochastic gradients from data. Applying these
techniques with a refined analysis of stochastic optimization algorithms, we establish near-optimal
convergence guarantees for the proposed algorithms (see Section C). In particular, the error bound
depends on the stochastic gradient noise at the minimizer, matching the statistically optimal rates for
stochastic optimization.

2 Problem setup

We consider a federated optimization problem with m workers machines. Each worker machine
j ∈ {1, 2, · · · ,m} is associated with a probability distribution Pj and a dataset Dj =

(
X

(j)
i

)n
i=1

,

such that X(j)
i

i.i.d.∼ Pj for each j. Our goal is to jointly solve the following optimization problem

min
θ∈Rd

F (θ) := EP

[
f(θ;X)

]
where P =

1

m

m∑
j=1

Pj . (2)
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A central server machine is used to aggregate information from different worker machines. In
particular, a communication link exists between each worker machine j ∈ [m] and the server machine.
The algorithm can choose to transmit information through either coded or physical channels. In the
following subsection, we will discuss these two types of channels.

2.1 Models for physical constraints

In this section, we summarize the physical models for communication channels and hardware devices
considered in this paper.

2.1.1 Coded vs. physical transmission channels

In standard coded communication systems, the gradients and model parameters are transmitted as
floating numbers through a coded channel. To transmit a real number with a floating number precision
of 2−b, we need b bits to encode the information. The information is further modulated as PAM
signal. Given a PAM of order 2ℓ, and an error correction code with overhead rate α, the average
number of symbols needed to transmit a real number is b

ℓ (1 + α). For example, with a 32-bit floating
precision number, PAM-4 modulation, and 5.8% forward error correction overhead [16], we need
8.46 symbols on average to transmit a real number.

Physical channels, on the other hand, transmits the real numbers as analogue signals directly. Due to
the random noise in the communication channels and the hardware constraints, information cannot
be transmitted exactly in such channels. Throughout this paper, we consider a channel with Additive
Gaussian White Noise (AWGN). Given an input sequence (X1, X2, · · · , Xt), the channel outputs

C(Xi) := Xi + εi, for εi
i.i.d.∼ N(0, σ2

c ). (3)

For the rest of this paper, we use C to denote the random mapping defined by Eq. (3).

In addition to the AWGN model, we also consider the impact of hardware constraints on the
communication process.

2.1.2 Conversion between analogue and digital signals

Information is stored as floating point numbers in the memory of digital devices. For transmission,
the floating point numbers need to be converted to analogue signals through a digital-to-analogue
converter (DAC). On the other hand, the received analogue signals are converted back to digital
signals through an analogue-to-digital converter (ADC).

Concretely, let the quantization levels be z1 < z2 < · · · < zq with |zi − zi−1| = ∆ for each i, the
DAC hardware takes digital representation for one of the levels zi as input, and the output is the
corresponding analogue signal. The ADC hardware takes the received analogue signal x as input and
outputs its nearest quantized level, i.e., the ADC component implements a deterministic mapping

QC(x) = argmin
zi

|x− zi|.

Note that the numerical precision of floating point numbers is usually much higher than that of
the quantized levels, i.e., we have |zi − zi+1| ≫ 2−b. This means that the quantization process
can introduce significant errors, especially when the input signal x is not well-aligned with the
quantization levels. In order to mitigate the quantization error, we use a randomized algorithmic
quantizer QD that maps floating-point data to the quantization levels, before passing through DAC.

QD(x) =


z1 if x < z1,

zq if x ≥ zq,

zi+ι if x ∈ [zi, zi+1), where ι ∼ Ber
(

x−zi
zi+1−zi

)
.

The randomized mapping makes the algorithmic quantizer QD unbiased, i.e., for any x ∈ [−1, 1], we
have E[QD(x)] = x. This randomized quantization scheme has been employed in federated learning
literature [11, 17].

The output of the algorithmic quantizer is then transmitted through the DAC, the channel, and the
ADC, sequentially. The overall mapping from the real-valued data to the received digital signals is
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given by QC ◦C ◦QD, where QC and QD represent the ADC and algorithmic quantizer defined above,
respectively; the channel C is defined in Eq. (3).

3 Adaptive SGD algorithms for physical channels

Let us now present the key components of our federated learning algorithms over physical channels.
The framework consists of three components: a stochastic post-coding procedure that ensures
unbiasedness of the received signals, a scale-adaptive transformation that makes the variance of the
stochastic gradient oracle adaptive to the noise level, and periodic synchronization of global model
parameters to reduce coded communication rounds.

The communication between workers and the centralized server follows the following protocol:
assuming that a two-way link has been established between the server and each worker, they can
exchange information through two types of channels:

• A physical channel, where the signals pass through the DAC unit, the channel, and the ADC
unit,sequentially. The channel takes a quantized scalar value x ∈ {z1, z2, · · · , zq} as input, and
outputs QC ◦ C(x) at the receiver side.

• A coded channel, which takes bit sequences as input, and uses error correction codes to guarantee
error-free transmissions.

Throughout our algorithms, we assume that the uplink and downlink channels can use both the
physical and coded channels. The communication cost is measured by the total number of symbols
transmitted through either channels.

3.1 Stochastic post-coding

Although the additive Gaussian noises in physical channels are unbiased, when combined with the
nonlinear quantization process, they can lead to biased estimates, which jeopardize the convergence
of stochastic optimization algorithms. To address this issue, we introduce a stochastic post-coding
procedure to correct the bias, as described in the following section.

For i ∈ [q], the composition mapping QC ◦ C is generally biased, i.e., E[QC ◦ C(zi)] ̸= zi. The goal
of the stochastic post-coding procedure is to construct a stochastic mapping H, such that

E
[
H ◦ QC ◦ C(zi)

]
= zi, for i ∈ {2, 3, · · · , q − 1}. (4)

Note that we only guarantee the unbiasedness of the mapping for the quantization levels in the interior
of the quantization grid. Since the output space is constrained in {z1, z2, · · · , zq}, the mapping
H ◦ QC ◦ C cannot guarantee unbiasedness for the boundary points z1 and zq. However, as long
as q ≥ 4, we can still carry information using only the interior points. Let us now describe the
post-coding mapping H.

To start with, we use P to indicate the transition probabilities of the mapping QC ◦C, i.e., for i, j ∈ [q]

Pi,j = P(QC ◦ C(zi) = zj) =


Φ
( zj+∆/2−zi

σc

)
− Φ

( zj−∆/2−zi
σc

)
, j ∈ [2, q − 1],

Φ
( z1+∆/2−zi

σc

)
, j = 1,

1− Φ
( zq−∆/2−zi

σc

)
, j = q,

where Φ is the CDF of the standard normal distribution. We use the transition matrix H to represent
the mapping H, i.e., Hi,j = P

(
H(zi) = zj

)
. We solve the following linear program to find the

matrix H:

min
H∈Rq×q,v∈R

v such that (5a)

Hi,j ≥ 0, ∀i, j ∈ [q];

q∑
j=1

Hi,j = 1, ∀i ∈ [q]; (5b)

e⊤j PHz = zj ∀j ∈ {2, 3, · · · , q − 1}, (5c)
q∑

i=1

(PH)j,i · (zi − zj)
2 ≤ v ∀j ∈ {2, 3, · · · , q − 1}. (5d)
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The constraint (5b) ensures that the mapping H is a valid probability transition matrix, and the
constraint (5c) guarantees the unbiasedness property (4). Under the constraint (5d), the objective
function (5a) minimizes the worst-case variance of the mapping H ◦QC ◦ C. If the linear program (5)
is feasible, with an optimal solution (H∗, v∗). Then the mapping H satisfies the unbiasedness
property (4), and

var
(
H ◦ QC ◦ C(zi)

)
≤ v∗, ∀i ∈ {2, 3, · · · , q − 1}.

The construction of the mapping H relies on the feasibility of the linear program (5). While feasibility
is not guaranteed in general, the following lemma shows that the linear program is feasible when the
SNR is sufficiently large.
Lemma 1. For any σc ≤ ∆/2, the linear program (5) is feasible. Furthermore, the optimal value v∗
satisfies the bound v∗ ≤ 4∆2.

See Section D.1.1 for the proof of this lemma. This lemma ensures feasibility of the linear program (5)
when the noise level is small enough. Furthermore, it also guarantees that the variance of the post-
coding mapping H ◦ QC ◦ C is dominated by the quantization error ∆2.

Let us briefly discuss the implementation of the post-coding mapping H. Given a pre-specified
noise level σc and a quantization grid {z1, z2, · · · , zq}, the server can solve the linear program (5)
offline to obtain the optimal transition matrix H∗. During the online transmission process, given an
input quantized signal zi, the server generates a random index j according to the distribution defined
by the i-th row of H∗, and outputs zj as the post-coded signal. This procedure can be efficiently
implemented by DSP hardware using standard techniques such as alias method.

3.2 Scale-adaptive transformation

Another component in our algorithms is a scale-adaptive transformation (βω,Ψω), parametrized by a
tuning parameter ω > 0. Given an input scalar x, we define a pair of functions

βω(x) := max
(
0, ⌈log2

(
ω−1 |x|

)
⌉
)
, and Ψω(x) := (1−∆)x/

(
2βω(x)ω

)
. (6a)

In other words, we compare |x| with a binary grid (2kω)k≥0, and sort it to the level corresponding to
the index βω(x). We then re-scale the scalar with respect to this grid level to obtain Ψω(x). Clearly,
it is always guaranteed that |Ψω(x)| ≤ 1−∆, so that the output lies within the interval [z2, zq−1],
applicable to the post-coding scheme described above. The tuning parameter ω is a small positive
scalar chosen to address the trade-offs between communication complexity and statistical errors,
which will be reflected in the theoretical guarantees.

For notational convenience, we also extend the mapping Ψ to real vectors, in an entry-wise fashion.
Concretely, given x = [x1, x2, · · · , xd]⊤ ∈ Rd, we define Ψω(x) := [Ψω(x1), · · · ,Ψω(xd)]

⊤

and βω(x) := [βω(x1), · · · , βω(xd)]⊤. We also define the inverse operation that assembles the
information transmitted through two channels into the original real-valued data:

Aω(ψ, b) :=
1

1−∆
2bω · ψ, (6b)

and its vectorized version defined as entry-wise operations. This function assembles the information
transmitted through two channels into the original real-valued data.

We need the following technical lemma about the physical channel and the quantization process.
Lemma 2. Given a deterministic vector u ∈ Rd, define

û := Aω

(
H ◦ QC ◦ C ◦ QD

(
Ψω(u)

)
, βω(u)

)
,

we have E[û] = u, and the following inequalities hold

E
[
∥û− u∥22

]
≤ (4v∗ +∆2) ·

(
4∥u∥22 + ω2d

)
.

See Section D.1.2 for the proof of this lemma. This lemma ensures that the post-coded physical
channel H◦QC◦C◦QD satisfies Eq. (1), thereby facilitating the convergence of stochastic optimization
algorithms. It is worth noting that the variance of the post-coded physical channel is adaptive to the
transmitted signal u itself.

5



Figure 1. Block diagram of transmission process for physical channels. This transmission scheme
applies to both uplink and downlink transmissions in federated learning.

In Fig. 1, we describe the overall transmission process for physical channels, combining the quantiza-
tion, channel noise, and post-coding steps, as well as the scale-adaptive transformation framework.

The scale-adaptive transformation can also be implemented efficiently using DSP hardware. Since
the input x is represented as floating point numbers, we can extract the exponent part of the floating
point representation to compute βω(x) efficiently. The re-scaling step in Ψω(x) and Aω(ψ, b) can be
implemented using bit-shift operations, which are computationally efficient.

3.3 Adaptive SGD over physical channels

Figure 2. Federated learning
algorithm overview

Given the data transmission routines established in the previous
sections, we are now ready to describe the algorithmic frame-
work for federated learning over physical channels. We work
with a worker-server network architecture. In each round, the
workers compute the local stochastic gradient and send it to
the server, and the server broadcasts the aggregated gradient
information. All the data transmissions in this process use the
transmission scheme described in Fig. 1, with the scale informa-
tion transmitted through the coded channel, and the normalized
values transmitted through the physical channel.

Additionally, we introduce a synchronization step to maintain
stability. In particular, given an increasing sequence τ1 < τ2 <
· · · < τk < · · · of time steps, the central machine broadcasts
the current global model parameters θk to all workers at time
step τk, for each k. Upon receiving the synchronization message, the workers replace their local model
parameters by the global ones. The synchronization steps do not need to be frequent. In our theoretical
analysis, we will show a bound on the requirement for time intervals between synchronization steps.

In Fig. 2, we provide an illustration of the adaptive SGD framework. In Algorithms 1 and 2 in
Appendix B, we present the detailed procedures for server and workers, respectively.

4 Simulation studies

In this section, we conduct simulation studies to validate the theoretical findings of our paper. We
consider a simple federated learning problem of image classification on the CIFAR-10 and MNIST
dataset. We compared the performance of 5 different transmission schemes: the fully coded channel;
direct use of the noisy channel; the post-coding and scale-adaptive transformation scheme without
synchronization; the synchronized channel without post-coding or scale-adaptive transformation; and
our proposed channel that incorporates all these techniques. We test the performance of these schemes
in terms of test accuracy and communication costs (measured in terms of number of symbols). The
details about the simulation setup are provided in Section E.

We present the results for CIFAR-10 and MNIST datasets in Fig. 3 and Fig. 4, respectively. In each
figure, sub-figures (a) and (b) show the test accuracy over epochs for high and low SNR regimes,
respectively, while sub-figures (c) and (d) show the communication cost over epochs for high and
low SNR regimes, respectively. The communication cost is measured in terms of the total number of
symbols transmitted through the channel, which include both coded and physical transmissions.

From Figs. 3 and 4 (a, b), we consistently observe that the test accuracy of our method matches the
performance of coded transmission schemes in both high and low SNR regimes. Indeed, in all our
simulations, the test accuracy of our method and the coded transmission results differs by less than
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(a) (b) (c) (d)

Figure 3. Simulation results for CIFAR-10 dataset. (a) and (b): Test accuracy over epochs for high and
low SNR regimes, respectively. (c) and (d): Communication cost over epochs for high and low SNR
regimes, respectively.

(a) (b) (c) (d)

Figure 4. Simulation results for MNIST dataset. (a) and (b): Test accuracy over epochs for high and
low SNR regimes, respectively. (c) and (d): Communication cost over epochs for high and low SNR
regimes, respectively.

0.1%. In contrast, if we use the noisy physical channel directly, or use the post-coding approach
or the synchronization framework alone, the test accuracy drops significantly, and even degrades
to random guessing. This difference is especially pronounced in the more challenging CIFAR-10
dataset. On the other hand, the communication cost of our method is consistently lower than that of
the coded transmission schemes, significant savings in the number of symbols transmitted (4× on
CIFAR-10 dataset, 5× on MNIST dataset), as shown in Figs. 3 and 4 (c) and (d). The post-coding
and scale-adaptive transformation leads to some overhead in communication cost compared to the
direct use of the noisy channel, but this is outweighed by the gains in test accuracy.

5 Discussion and conclusion

In this paper, we propose a novel algorithmic framework for communication-efficient distributed
learning with quantized gradients over bi-directional noisy channels. We introduce three key technical
components:

• A post-coding scheme that ensures unbiased transmitted signal, even with non-linear quantization.

• A scale-adaptive transformation that dynamically adjusts the quantization levels.

• A federated learning framework that stabilizes the training process by synchronizing model
parameters periodically.

Our theoretical results demonstrate that, under standard assumptions on the loss function and stochas-
tic gradients, the proposed method achieves convergence rates comparable to those of fully centralized
methods, even in the presence of low-resolution ADC/DAC quantization and high channel noise. We
also provide empirical evidence supporting our theoretical findings: the proposed scheme achieves the
same test accuracy with less than 20% of the communication cost compared to fully coded communi-
cations. The simulation results further illustrate that all the technical components are indispensable
for achieving the desired performance.

This work opens several avenues for future research. One promising direction is to explore improved
schemes to transmit the coded part in scale-adaptive transformation, which could further reduce the
communication overhead. Additionally, investigating the impact of different network topologies on
the performance of the proposed framework could yield valuable insights. Finally, extending the
algorithms to accommodate more realistic communication channel models in wireless and optical
systems, as well as more hardware constraints, remains an important challenge.
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A Additional related works

Recently, federated learning over noisy channels has gained significant research attention. In addition
to aforementioned works, several works have explored the interplay between communication and
learning in this context. Extending the basic AWGN channel model, several practical communication
scenarios are considered [10, 18–20], including the Gaussian noise and quantization process. Note
that the stochastic noise becomes biased after applying the non-linear quantization mapping, creating
obstacles for convergence of gradient-based algorithms. To our knowledge, our work is the first to
construct an exact unbiased gradient oracle under this setting.

The performance of federated learning relies on estimation error for the gradient information on the
receiver side. Advanced signal processing techniques have been employed to reduce the estimation
error. [19] studies OFDM channels and shows that the noise can be mitigated by increasing number of
receiver antennae. [21] combines channel coding techniques with the noisy transmission to reduce the
error. [22] used regularization to improve the robustness of federated learning under noisy channels.
Additionally, a recent line of research [23–25] studied resource allocation strategies for wireless
federated learning, focusing on optimizing the trade-off between communication efficiency and
learning performance.

9



Section 3 will present three main techniques we introduce to ensure near-optimal performance. Let
us discuss connection of these techniques with the existing literature.

• The post-coding procedure is related to dithering [26], which injects random perturbations before
quantization to reduce error; similar ideas appear in distributed computation [27] and federated
learning [28]. Compared to existing dithering techniques, our post-coding procedure uses an
additional randomization step after quantization to eliminate the bias exactly. To our knowledge,
this is the first unbiased scheme that can be implemented over physical channels with both AWGN
noise and ADC/DAC hardware constraints.

• The scale-adaptive transformation, which separates scale and normalized value, is akin to tech-
niques for efficient low-precision training [29, 30]. We use this technique to establish adaptivity to
noise level in stochastic gradient oracles, which is novel in the context of federated learning over
physical channels.

• Periodic synchronization of global model parameters at the server is a classical strategy in dis-
tributed optimization [31, 32]. We use this strategy to reduce coded communication rounds. It is
possible to further reduce the number of communication rounds (coded or physical) by using local
updates at worker machines, which we leave for future work.

B Detailed description of the algorithms

Algorithm 1 Adaptive SGD over physical channels: worker side

Require: Initial point θ0, where θ(j)0 = θ0 for j ∈ [m].
for k = 1, 2, · · · , n do

Sample a local data X(j)
k , and compute

g
(j)
k ∼ QD

(
Ψω

(
∇f(θ(j)k−1, X

(j)
k )

))
β
(j)
k := βω

(
∇f(θ(j)k−1, X

(j)
k )

)
,

Transmit the real vector g(j)k through the physical channel, and transmit the discrete vector β(j)
k

to server through the coded channel.
Receive a real vector ĥ(j)k ∼ H◦QC ◦C(hk) through post-coded physical channel, and a discrete
vector βk through coded channel; update local parameter

θ
(j)
k = θ

(j)
k−1 − ηkAω

(
ĥ
(j)
k , βk

)
.

if k ∈ {τ1, τ2, · · · } then
Receive θk from the server through the coded channel, and let θ(j)k = θk.

end if
end for

C Theoretical guarantees

We present the theoretical guarantees for the adaptive SGD algorithm over physical channels. We
will first present the results under strongly convex settings, and then move on to non-convex settings.

C.1 Technical assumptions

We make the following technical assumptions in our analysis.

Assumption 1. For any θ1, θ2 ∈ Rd, population-level loss function F satisfies

F (θ1)− F (θ2) ≤ ⟨∇F (θ1), θ1 − θ2⟩+
L

2
∥θ1 − θ2∥22, (7a)

F (θ1)− F (θ2) ≥ ⟨∇F (θ1), θ1 − θ2⟩+
µ

2
∥θ1 − θ2∥22. (7b)
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Algorithm 2 Adaptive SGD over physical channels: server side

for k = 1, 2, · · · , n do
for each machine j ∈ [m] do

Receive the transmitted data ĝ(j)k ∼ H ◦ QC ◦ C(g(j)k ) through post-coded physical channel,
and β(j)

k through coded channel.
end for
Aggregate the received information and update local parameter

uk =
1

m

m∑
j=1

Aω

(
ĝ
(j)
k , β

(j)
k

)
, and θk = θk−1 − ηuk.

Send hk = QD(Ψω(uk)) through physical channels, and βk = βω(uk) through coded channels.
end for
if k ∈ {τ1, τ2, · · · } then

Send θk to each workers through the coded channel.
end if

This assumption is standard in convex optimization literature. Note that we only require strong
convexity and smoothness to hold for the population-level loss function F .

Assumption 2. The stochastic gradient oracle satisfies the moment bound for any θ ∈ Rd

EPj

[
∥∇f(θ,X)∥22

]
≤ σ2

∗,j + ℓ2
(
F (θ)− F (θ∗)

)
.

We also define the average noise level σ2
∗ := 1

m

∑m
j=1 σ

2
∗,j .

The noise level σ2
∗ captures the average uncertainty in the gradient estimates across different workers,

which governs the optimal statistical error for machine learning problems. This assumption is known
as “state-dependent noise” condition in stochastic optimization literature [33, 34]. It is more general
than the standard bounded variance assumption, which requires EPj [∥∇f(θ,X)∥22] ≤ σ2

j for any
θ. The state-dependent noise condition is satisfied in many statistical learning problems, including
generalized linear models.

C.2 Results under strongly convex settings

Under assumptions in Section C.1, we have the following convergence bounds for the adaptive SGD
algorithm over physical channels, with last-iterate and average-iterate guarantees.

To establish the theoretical results, we require the stepsize schedule (ηk)k≥1 to satisfy

ηk ≤ (1 + ηk+1µ/8)ηk+1, and ηk ≤ c0
ℓ2 + L

, (8a)

for some universal constant c0 > 0.

Given the stepsize schedule, we need the synchronization times to satisfy the bounds for i = 1, 2, · · ·

T (τi)− T (τi−1) ≤
1

2L
, where T (k) =

k∑
t=1

ηt. (8b)

Under above setup, we can establish the theoretical results under strongly convex setup.

Theorem 1. Under Assumptions 1 and 2, given the stepsize sequence and synchronization times
described above, for any n ≥ 1, we have

E
[
∥θn − θ∗∥22

]
≤ e−

µ
2 T (n)∥θ0 − θ∗∥22 +

cηn
µ

(σ2
∗
m

+ (v∗ +∆2)ω2d
)
.

See Section D.2 for the proof of Theorem 1.
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A few remarks are in order. First, the bound in Theorem 1 is comparable to standard results for SGD
in the centralized setting, where the convergence rate takes the form

E
[
∥θn − θ∗∥22

]
≤ e−

µ
2 T (n)∥θ0 − θ∗∥22 + cηn

σ2
∗

µm
.

Compared to this bound, the additional term cηn

µ (v∗ + ∆2)ω2d in Theorem 1 accounts for the
distributed nature of the optimization problem and the variability in the gradient estimates across
different workers. This term can be made small by choosing a small ω, which, however, increases the
communication cost. This reflects the trade-off between communication cost and statistical accuracy
in distributed optimization. Furthermore, the additional term also depends on the quantity v∗ +∆2,
which reflects the impact of the SNR and hardware constraints. Note that we only need to transmit
βω(u) through the coded channel, which requires only O(d log log(1/ω)) bits. Therefore, we can
choose a small ω without incurring significant communication overhead.

By taking the stepsize choice ηk ≍ 1
ℓ2+L+µk , for n ≳ ℓ2+L

µ , we have T (n) ≳ 1
µ logn, and first term

in the bound is negligible. This leads to a sample complexity bound of

Õ
(ℓ2 + L

µ

)
+ Õ

( 1

µ2ε2

{σ2
∗
m

+ (v∗ +∆2)ω2d
})

to achieve E
[
∥θn − θ∗∥22

]
≤ ε2, where the Õ(·) notation hides logarithmic factors. The first term is

the optimization error, and the second term is the statistical error. The statistical error matches the
minimax optimal rate σ2

∗
µm when the term (v∗ +∆2)ω2d is small enough. Compared to most existing

results on federated learning, it is worth noting that the statistical error depends only on the noise
level σ2

∗ at the minimizer θ∗, rather than a uniform bound on the stochastic gradient variance over the
entire parameter space. In many applications, the noise at the minimizer can be significantly smaller,
or even near-zero, leading to improved statistical accuracy.

Finally, we note that the synchronization requirement (8b) is not very stringent. For example, if
we take the stepsize choice ηk ≍ 1

ℓ2+L+µk , then we have T (k) ≍ 1
µ log k, and the synchronization

requirement (8b) is satisfied as long as τi/τi−1 ≤ c for some constant c > 1. In other words, the
synchronization times can be chosen to be geometrically increasing. On the other hand, if we choose
a fixed stepsize ηk = η > 0, then the synchronization requirement (8b) requires τi− τi−1 ≤ 1

2Lη , i.e.,
the synchronization steps need to be performed at a constant frequency that is inverse proportional to
the stepsize.

C.3 Results under non-convex settings

Similarly, we can also establish results for finding stationary points of a non-convex function.
Assumption 3. The stochastic gradient oracle satisfies the moment bound

EPj

[
∥∇f(θ,X)∥22

]
≤ σ2

∗,j + λ∥∇F (θ)∥22, for any θ ∈ Rd,

This assumption is an extension of the state-dependent noise variance assumption 2 to the non-
convex setting, which, once again, allows the stochastic gradient variance to be state-dependent and
unbounded.

Aligned with standard practice in non-convex optimization literature, we measure the quality of a
solution θ by the squared gradient norm ∥∇F (θ)∥22. To present the result, we need to introduce a
random variable R, which takes values in {0, 1, · · · , n− 1}, with probabilities proportional to the
stepsizes,

P(R = k) =
ηk+1∑n
t=1 ηt

.

Now we can state the main result for the non-convex setting.
Theorem 2. Under Eq. (7a) and Assumption 3, when the stepsizes satisfy ηk ≤ c0

L(1+λ) , and the
synchronization times satisfy Eq. (8b), we have

E
[
∥∇F (θR)∥22

]
≤
F (θ0)− Fmin + cL

{
σ2
∗

m + (v∗ +∆2)ω2d
}
·
∑n

k=1 η
2
k∑n

k=1 ηk
,
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where c0, c > 0 are universal constants, and Fmin = infθ∈Rd F (θ).

See Section D.3 for the proof of this theorem. A few remarks are in order. First, similar to Theorem 1,
the bound in Theorem 2 is comparable to standard results for SGD in the centralized setting, with an
additional term L(v∗ +∆2)ω2d accounting for communication channels and quantization hardwares.
By taking the stepsize ηk ≍ 1/

√
n, we can achieve an O(ε−4) sample complexity bound to achieve

E[∥∇F (θR)∥22] < ε2, which is standard in the analysis of SGD in non-convex settings. Note that the
synchronization requirement (8b) is the same as that in Theorem 1. Under the 1/

√
n stepsize choice,

this requirement becomes τi − τi−1 ≍
√
n. In other words, we only need O(

√
n) broadcasting steps

in the total n iterations.

D Proofs

We present the proofs of the main results in this section.

D.1 Proofs about the transmission channels

In this section, we collect the proofs of the technical lemmas about the transmission channels, the
quantization process, and the post-coding procedure.

D.1.1 Proof of Lemma 1

We show feasibility and boundedness of the linear program (5) by direct construction. Given a vector
ζ ∈ Rq−2, we define the q × q square matrix H(ζ) as follows (for simplicity, we index the elements
of ζ from 2 to q − 1).

H(ζ) :=



1 0 0 0 · · · 0
1−ζ2
3

1
3

1+ζ2
3 0 · · · 0

0 1−ζ3
3

1
3

1+ζ3
3 · · · 0

...
...

...
. . .

...
0 · · · 0

1−ζq−1

3
1
3

1+ζq−1

3
0 0 0 0 · · · 1


.

Clearly, the matrix H(ζ) satisfies the constraint (5b) whenever ∥ζ∥∞ ≤ 1. Now we study the
constraint (5c). First, since the quantization levels (z1, z2, · · · , zq) are equi-spaced, for each j ∈
{2, 3, · · · , q − 2}, we note that

e⊤j PH(0)z = Pj,1z1 + Pj,qzq +

q−1∑
i=2

Pj,i ·
1

3
(zi + zi−1 + zi+1)

= E
[
QC ◦ C(zj)

]
,

and consequently

e⊤j PH(ζ)z − zj = e⊤j P
(
H(ζ)−H(0)

)
z + E

[
QC ◦ C(zj)

]
− zj

=

q−1∑
i=2

Pj,i
1

3
ζi(zi+1 − zi−1) + E

[
QC ◦ C(zj)

]
− zj

=
2∆

3
·
q−1∑
i=2

Pj,iζi + E
[
QC ◦ C(zj)

]
− zj .

Define the matrix P ∗ ∈ R(q−2)×(q−2) as the restriction of the matrix P to the rows and columns
corresponding to the indices {2, 3, · · · , q − 1}. We claim that the matrix P ∗ is invertible, satisfying
the bound

|||(P ∗)−1|||∞→∞ ≤ 3, when σc ≤
∆

2
. (9)
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We prove this result at the end of this section. Taking this operator norm bound as given, we define
the vector ζ∗ as

ζ∗ =
3

2∆
· (P ∗)−1 ·

(
zj − E

[
QC ◦ C(zj)

])q−1

j=2
.

To establish feasibility, we need to show that ∥ζ∗∥∞ ≤ 1. By Eq. (9), we have

∥ζ∗∥∞ ≤ 3

2∆
· |||(P ∗)−1|||∞→∞ · max

j=2,3,··· ,q−1

∣∣zj − E
[
QC ◦ C(zj)

]∣∣
≤ 9

2∆
max

j=2,3,··· ,q−1

∣∣zj − E
[
QC ◦ C(zj)

]∣∣.
For the channel and ADC unit, we note that for any fixed y ∈ [−1, 1], by symmetry of the normal
density, we have

|E[QC ◦ C(y)]− y| =

∣∣∣∣∣
∫ ∞

−∞

(
QC(y + z)− y

)
· 1√

2πσ2
c

e
−z2

2σ2
c dz

∣∣∣∣∣
=

∣∣∣∣∣
∫ ∞

0

(
QC(y + z) + QC(y − z)− 2y

)
· 1√

2πσ2
c

e
−z2

2σ2
c dz

∣∣∣∣∣
≤ 2

∫ +∞

1−|y|

z√
2πσ2

c

e
−z2

2σ2
c dz =

√
2σ2

c

π
exp

(−(1− |y|)2

2σ2
c

)
.

When σc ≤ ∆/2, this implies that

max
j=2,3,··· ,q−1

∣∣zj − E
[
QC ◦ C(zj)

]∣∣ ≤ σc

√
2

π
exp

(−∆2

2σ2
c

)
≤ e−2

√
2

π
σc ≤

1

9
∆.

Consequently, we have ∥ζ∗∥∞ ≤ 1/2 < 1. So the matrix H(ζ∗) satisfies the constraints (5b) and
(5c) simultaneously, and the linear program (5) is feasible. To derive the optimal value bound, we
note that the variance under H(ζ∗) satisfies

var
(
H ◦ QC ◦ C(zj)

)
≤ 2E

[
|H ◦ QC ◦ C(zj)− QC ◦ C(zj)|2

]
+ 2E

[
|QC ◦ C(zj)− zj |2

]
≤ 2∆2 + 2E

[
|QC ◦ C(zj)− zj |2

]
,

where we use Young’s inequality and almost-sure boundedness of the random mapping H. To
bound the second term, we define an auxiliary function Q′

C(x) := argmini∆:i∈Z |x− i∆|. For any
x ∈ [−1, 1], we clearly have

E
[
|QC ◦ C(x)− x|2

]
≤ E

[
|Q′

C ◦ C(x)− x|2
]
.

and we have

E
[
|Q′

C ◦ C(x)− x|2
]
≤ 2E

[
|Q′

C ◦ C(x)− C(x)|2
]
+ 2E

[
|C(x)− x|2

]
≤ 2 · ∆

2

4
+ 2σ2

c .

Putting them together, we noting that σc ≤ ∆/2, we have

var
(
H ◦ QC ◦ C(zj)

)
≤ 4∆2,

which completes the proof of Lemma 1.

Proof of Eq. (9) For notational consistency, we index the elements of (q − 2)-dimensional vectors
from 2 to q − 1. For any vector pair x, y ∈ Rq−2 satisfying x = P ∗y, we note that

|xi| =

∣∣∣∣∣∣
q−1∑
j=2

Pi,jyj

∣∣∣∣∣∣ ≥ Pi,i|yi| −
∑
j ̸=i

Pi,j |yj | ≥ Pi,i|yi| − ∥y∥∞
∑
j ̸=i

Pi,j .

Taking i0 to be the index with the largest |yi|, we have

∥x∥∞ ≥ |xi0 | ≥ Pi0,i0 |yi0 | − ∥y∥∞
∑
j ̸=i0

Pi0,j ≥ ∥y∥∞ ·
{
Pi0,i0 −

∑
j ̸=i0

Pi0,j

}
= ∥y∥∞

(
2Pi0,i0 − 1

)
.
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By definition, we have

Pi0,i0 = Φ
( ∆

2σc

)
− Φ

(
− ∆

2σc

)
≥ 2

3
, when σc ≤

∆

2
.

Under this condition, we have that ∥P ∗y∥∞ ≥ 1
3∥y∥∞, for any y ∈ Rq−2. This implies that the

matrix P ∗ is invertible, and the operator norm |||(P ∗)−1|||∞→∞ ≤ 3.

D.1.2 Proof of Lemma 2

We first prove unbiasedness. For each scalar x satisfying |x| ≤ 1−∆, suppose that x ∈ [zi, zi+1)
for some i ∈ {2, 3, · · · , q − 2}. By definition, we have

E[QD(x)] = ziP
(
QD(x) = zi

)
+ zi+1P

(
QD(x) = zi+1

)
= x.

Furthermore, note that QD(x) ∈ {zi, zi+1} for i ∈ {2, 3, · · · , q − 2}. So we have QD(x) ∈
{z2, · · · , zq−1} almost surely. By the linear program construction (5), we have

E
[
H ◦ QC ◦ C ◦ QD(x) | QD(x)

]
= QD(x),

and consequently, E[H◦QC ◦C◦QD(x)] = x. By construction, each coordinate of Ψω(u) is bounded
by 1−∆. Applying the above argument to each coordinate, we have E[û] = u.

Now we turn to bound the variance. For each coordinate i ∈ [d], we note that

E
[
|ûi − ui|2

]
=

22βω(ui)ω2

(1−∆)2
E
[ ∣∣H ◦ QC ◦ C ◦ QD

(
Ψω(ui)

)
−Ψω(ui)

∣∣2 ] (10)

By construction, we have that

2βω(ui)ω ≤ max
(
2|ui|, ω

)
.

For the variance terms, we note that

E
[
|QD(Ψω(ui))−Ψω(ui)|2

]
≤ sup

|x|≤1−∆

var(QD(x)) ≤
∆2

4
.

E
[ ∣∣H ◦ QC ◦ C ◦ QD

(
Ψω(ui)

)
− QD

(
Ψω(ui)

)∣∣2 ] ≤ max
i∈{2,··· ,q−2}

E
[
|H ◦ QC ◦ C(zi)− zi|2

]
≤ v∗.

Substituting these bounds into Eq. (10), we have

E
[
|ûi − ui|2

]
≤ 22βω(ui)

ω2

(1−∆)2

{
v∗ +

∆2

4

}
≤

(
4v∗ +∆2

)
·
(
4|ui|2 + ω2

)
.

Aggregating the bounds for all the d coordinates, we conclude that

E
[
∥û− u∥22

]
≤ (4v∗ +∆2) ·

(
ω2d+ 4∥u∥22

)
.

D.2 Proof of Theorem 1

We start with the one-step error decomposition

E
[
∥θk − θ∗∥22

]
= E

[
∥θk−1 − θ∗∥22

]
− 2ηkE

[
⟨θk−1 − θ∗, uk⟩

]
+ η2kE

[
∥uk∥22

]
. (11)

To simplify the notation, we define the average disagreement between the local models and the
global model as

Dk :=
1

m

m∑
j=1

E
[
∥θ(j)k−1 − θk−1∥22

]
. (12a)

We also define the average optimality gap and gradient norm across all workers as

Gk :=
1

m

m∑
j=1

E
[
F (θ

(j)
k−1)− F (θ∗)

]
, (12b)

Hk :=
1

m

m∑
j=1

E
[
∥∇F (θ(j)k−1)∥

2
2

]
. (12c)
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The proof crucially relies on bounds on the bias and variance of the aggregated stochastic gradient
uk, which are summarized in the following lemmas.
Lemma 3. Under the setup of Theorem 1, we have

E
[
⟨θk−1 − θ∗, uk⟩

]
≥ µ

4
E
[
∥θk−1 − θ∗∥22

]
+
Hk−1

2
+
Gk−1

8L
− 3LDk−1.

See Section D.2.1 for the proof of this lemma.
Lemma 4. Under the setup of Theorem 1, we have

E[∥uk∥22] ≤ c
σ2
∗
m

+ c
v∗ +∆2

m
ω2d+ cGk−1 + c

ℓ2

m
Hk−1.

where c is a universal constant.

See Section D.2.2 for the proof of this lemma.
Lemma 5. Under the setup of Theorem 1, for k ∈ [τi−1, τi), we have

Dk ≤ c1(v
∗ +∆2) ·

k∑
t=τi−1+1

η2t

{σ2
∗
m

+ ω2d+Gt−1 +
ℓ2

m
Ht−1

}
,

where c1 > 0 is a universal constant.

See Section D.2.3 for the proof of Lemma 5.

With these lemmas given, let us prove Theorem 1. Substituting Lemma 3 and Lemma 4 into Eq. (11),
we have

E
[
∥θk − θ∗∥22

]
≤

(
1− µηk

2

)
E
[
∥θk−1 − θ∗∥22

]
+

cη2
k

m

(
σ2
∗ + (v∗ +∆2)ω2d

)
+
{
cη2k − ηk

4L

}
Gk−1 + 6LηkDk−1 +

{
c ℓ

2

mη
2
k − ηk

2

}
Hk−1.

By taking stepsize satisfying the stability condition ηk ≤ c0
L+ℓ2 for any k ≥ 1, above inequality can

be simplified to

E
[
∥θk − θ∗∥22

]
≤ e−µηk/2E

[
∥θk−1 − θ∗∥22

]
+ cη2k

σ2
∗ + (v∗ +∆2)ω2d

m
+ 6LηkDk−1 −

ηk
8L
Gk−1 −

ηk
4
Hk−1.

Define the accumulated time steps T (k) :=
∑k

t=1 ηt for any k ≥ 1, we unroll the recursion from
k = τi−1 to k = τi, and obtain the bound

E
[
∥θτi − θ∗∥22

]
≤ e−

µ
2 (T (τi)−T (τi−1))E

[
∥θτi−1 − θ∗∥22

]
+

τi∑
k=τi−1+1

e−
µ
2 (T (τi)−T (k)) cη

2
k

m

(
σ2
∗ + (v∗ +∆2)ω2d

)
− 1

4

τi∑
k=τi−1+1

e−
µ
2 (T (τi)−T (k))ηk

{Gk−1

2L
+Hk−1

}
+ 6L

τi∑
k=τi−1+1

e−
µ
2 (T (τi)−T (k))ηkDk−1.

When the synchronization times satisfy T (τi)− T (τi−1) ≤ 2/µ, above bound can be simplified as

E
[
∥θτi − θ∗∥22

]
≤ e−

µ
2 (T (τi)−T (τi−1))E

[
∥θτi−1 − θ∗∥22

]
+

τi∑
k=τi−1+1

cη2k
m

(
σ2
∗ + (v∗ +∆2)ω2d

)
+

τi∑
k=τi−1+1

ηk

{
6LDk−1 −

Gk−1

8eL
− Hk−1

4e

}
. (13)

Invoking Lemma 5, we note that

(v∗ +∆2)−1
τi∑

k=τi−1+1

ηkDk−1 ≤ c1

τi∑
k=τi−1+1

ηk

k∑
t=τi−1+1

η2t

{σ2
∗
m

+ ω2d+Gt−1 +
ℓ2

m
Ht−1

}
≤ c1

(
T (τi)− T (τi−1)

)
·

τi∑
t=τi−1+1

η2t

{σ2
∗
m

+ ω2d+Gt−1 +
ℓ2Ht−1

m

}
.
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When the synchronization times satisfy T (τi) − T (τi−1) <
1
2L , and the stepsizes satisfy ηt ≤

1
24ec1(L+ℓ2) for every t, we have

τi∑
k=τi−1+1

6LηkDk−1 ≤
τi∑

k=τi−1+1

ηk

{Gk−1

8eL
+
Hk−1

4e

}
+ 3c1(v

∗ +∆2)

τi∑
k=τi−1+1

η2k
(σ2

∗
m

+ ω2d
)

Substituting them to Eq. (13) we have the the recursive bound

E
[
∥θτi −θ∗∥22

]
≤ e−

µ
2 (T (τi)−T (τi−1))E

[
∥θτi−1

−θ∗∥22
]
+c

(σ2
∗
m

+(v∗+∆2)ω2d
) τi∑

k=τi−1+1

η2k.

Solving the recursion, we have

E
[
∥θτr − θ∗∥22

]
≤ e−

µ
2 T (τr)∥θ0 − θ∗∥22 + ce

(σ2
∗
m

+ (v∗ +∆2)ω2d
) τr∑

k=1

e−
µ
2 (T (τr)−T (k))η2k.

For the summation term, we claim that
n∑

k=1

e−
µ
2 (T (n)−T (k))η2k ≤ 8ηn, (14)

whenever (1 + µηk/8)ηk ≥ ηk−1 for every k ≥ 2. Substituting this bound into the above inequality
completes the proof of Theorem 1. It remains to prove the claim (14).

Proof of Eq. (14) Define An :=
∑n

k=1 e
−µ

2 (T (n)−T (k))η2k. We prove the result by induction. For
n = 1, clearly we have A1 = η21 ≤ 8η1. Assuming that An−1 ≤ 8ηn−1, for the case of An, we note
the recursive formula

An = e−µηn/2An−1 + η2n ≤
(
1− µηn/4

)
An−1 + η2n.

By induction hypothesis, we have An−1 ≤ 8ηn−1/µ. Substituting into the recursive bound, we have
An ≤ 8(1− µηn/4)ηn−1/µ+ η2n ≤ 8(1− µηn/4)ηn−1/µ+ η2n ≤ 8 1−µηn/4

1+µηn/8
ηn/µ+ η2n ≤ 8ηn/µ,

which completes the induction proof.

D.2.1 Proof of Lemma 3

We start by noting the following basic inequalities for strongly convex and smooth functions. For any
θ ∈ Rd, we have

⟨∇F (θ), θ − θ∗⟩ ≥ µL

µ+ L
∥θ − θ∗∥22 +

1

µ+ L
∥∇F (θ)∥22, (15a)

⟨∇F (θ), θ − θ∗⟩ ≥ F (θ)− F (θ∗) +
µ

2
∥θ − θ∗∥22. (15b)

Applying Lemma 2 to the uplink transmission process in the k-th iteration, we can compute the
conditional expectation.

E
[
uk | (g(j)k , β

(j)
k )mj=1

]
=

1

m

m∑
j=1

∇f(θ(j)k−1, X
(j)
k ).

Now we further take expectations conditionally on Fk−1 to obtain E
[
uk | Fk−1

]
=

1
m

∑m
j=1 ∇F (θ

(j)
k−1), and therefore

E
[
⟨θk−1 − θ∗, uk⟩

]
=

1

m

m∑
j=1

E
[
⟨θk−1 − θ∗, ∇F (θ(j)k−1)⟩

]
.

For each j ∈ [m], by applying Eq. (15a) and Eq. (15b), we have

E
[
⟨θ(j)k−1−θ

∗, ∇F (θ(j)k−1)⟩
]
≥
µE[∥θ(j)k−1 − θ∗∥22]

2
+

E[F (θ(j)k−1)− F (θ∗)]

2
+

E[∥∇F (θ(j)k−1)∥22]
4L

.
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By Cauchy–Schwarz inequality and Young’s inequality, we also note that∣∣∣E[⟨θ(j)k−1 − θ∗, ∇F (θ(j)k−1)⟩
]
− E

[
⟨θk−1 − θ∗, ∇F (θ(j)k−1)⟩

]∣∣∣
≤

√
E
[
∥θ(j)k−1 − θk−1∥22

]
·
√

E
[
∥∇F (θ(j)k−1)∥22

]
≤ 1

8L
E
[
∥∇F (θ(j)k−1)∥

2
2

]
+ 2LE

[
∥θ(j)k−1 − θk−1∥22

]
.

Consequently, we can bound the inner product from below.

E
[
⟨θk−1 − θ∗, uk⟩

]
≥ µ

2m

m∑
j=1

E
[
∥θ(j)k−1 − θ∗∥22

]
+

1

2
Hk−1 +

1

8L
Gk−1 − 2LDk−1. (16)

Finally, for the first term on the right-hand-side, we note that

E
[
∥θ(j)k−1 − θ∗∥22

]
≥ 1

2
E
[
∥θk−1 − θ∗∥22

]
− E

[
∥θ(j)k−1 − θk−1∥22

]
,

for each j ∈ [m]. Averaging over m workers, we have that

µ

2m

m∑
j=1

E
[
∥θ(j)k−1 − θ∗∥22

]
≥ µ

4
E
[
∥θk−1 − θ∗∥22

]
− µ

2
Dk−1.

Substituting to Eq. (16) completes the proof of Lemma 3.

D.2.2 Proof of Lemma 4

By definition, we have uk = 1
m

∑m
j=1Aω(ĝ

(j)
k , β

(j)
k ), where each ĝ(j)k is obtained by applying

the composed stochastic transformation H ◦ QC ◦ C ◦ QD independently to the quantized signal
Ψω(∇f(θ(j)k−1, X

(j)
k )). By Lemma 2, we have

var
(
Aω(ĝ

(j)
k , β

(j)
k ) | g(j)k , β

(j)
k

)
≤ (4v∗ +∆2)

(
4∥∇f(θ(j)k−1, X

(j)
k )∥22 + ω2d

)
.

Since the transmission between server and each workers are independent, we have

var
(
uk | (g(j)k , β

(j)
k )j∈[m]

)
≤ 4v∗ +∆2

m

{
ω2d+

4

m

m∑
j=1

∥∇f(θ(j)k−1, X
(j)
k )∥22

}
.

Lemma 2 also implies that

E
[
uk | (g(j)k , β

(j)
k )j∈[m]

]
=

1

m

m∑
j=1

∇f(θ(j)k−1, X
(j)
k ).

We can then bound the total second moment as

E
[
∥uk∥22

]
≤ E

[
var

(
uk | (g(j)k , β

(j)
k )j∈[m]

)]
+ E

{
∥E

[
uk | (g(j)k , β

(j)
k )j∈[m]

]
∥2
}2

≤ 4v∗ +∆2

m

{
ω2d+

4

m

m∑
j=1

E
[
∥∇f(θ(j)k−1, X

(j)
k )∥22

]}
+ E

[
∥ 1

m

m∑
j=1

∇f(θ(j)k−1, X
(j)
k )∥22

]
.

Conditionally on the filtration Fk−1, we can invoke Assumption 2 to obtain the bounds

E
[
∥∇f(θ(j)k−1, X

(j)
k )∥22 | Fk−1

]
≤ ∥∇F (θ(j)k−1)∥

2
2 + σ2

∗,j + ℓ2
(
F (θ

(j)
k−1)− F (θ∗)

)
,

and since the data points are independently sampled at each worker, we have

E
[
∥ 1

m

m∑
j=1

∇f(θ(j)k−1, X
(j)
k )∥22 | Fk−1

]
= ∥ 1

m

m∑
j=1

∇F (θ(j)k−1)∥
2
2 +

m∑
j=1

var
(
∇f(θ(j)k−1, X

(j)
k ) | Fk−1

)
m2

≤ 1

m

m∑
j=1

∥∇F (θ(j)k−1)∥
2
2 +

m∑
j=1

σ2
∗,j + ℓ2

(
F (θ

(j)
k−1)− F (θ∗)

)
m2

.

Substituting these bounds into the variance bound, we have

E
[
∥uk∥22

]
≤ 4v∗ +∆2

m
ω2d+

1 + 16v∗ + 4∆2

m

(
σ2
∗ + ℓ2Hk−1

)
+
{
1 +

16v∗ + 4∆2

m

}
Gk−1,

which completes the proof of Lemma 4.
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D.2.3 Proof of Lemma 5

Define the vector

û
(j)
k := Aω

(
ĥ
(j)
k , βk

)
= Aω

(
H ◦ QC ◦ C ◦ QD(Ψω(uk)), βω(uk)

)
.

The recursive update formulae can be written as

θk = θk−1 − ηkuk, and θ
(j)
k = θ

(j)
k−1 − ηkû

(j)
k , for j ∈ [m].

For each j ∈ [m], we have the error expansion.

E
[
∥θk − θ

(j)
k ∥22

]
= E

[
∥θk−1 − θ

(j)
k−1∥

2
2

]
+ η2kE

[
∥uk − û

(j)
k ∥22

]
− 2ηkE

[
⟨θk−1 − θ

(j)
k−1, uk − û

(j)
k ⟩

]
.

By Lemma 2, we have

E
[
û
(j)
k | uk

]
= uk.

Note that the transmission between server and workers in k-th round is independent of Fk−1. So we
have

E
[
⟨θk−1 − θ

(j)
k−1, uk − û

(j)
k ⟩

]
= 0.

On the other hand, by Lemma 2, we have the variance bound

E
[
∥uk − û

(j)
k ∥22 | uk

]
≤ (4v∗ +∆2)

(
4∥uk∥22 + ω2d

)
.

Putting them together, we have the recursion

Dk ≤ Dk−1 + η2kE
[
∥uk − û

(j)
k ∥22

]
≤ Dk−1 + η2k(4v

∗ +∆2)
(
4E

[
∥uk∥22

]
+ ω2d

)
. (17)

On the other hand, when k ∈ {τ1, τ2, · · · }, we have θ(j)k = θk for all j ∈ [m], and so Dk = 0.

For k ∈ [τi−1, τi), unrolling the recursion (17) from k down to τi−1, we have

Dk ≤ (4v∗ +∆2)

k∑
t=τi−1+1

η2t
(
4E

[
∥ut∥22

]
+ ω2d

)
.

Substituting the bounds in Lemma 4, we have

Dk ≤ c1(v
∗ +∆2) ·

k∑
t=τi−1+1

η2t

{σ2
∗
m

+ ω2d+ cGk−1 + c
ℓ2

m
Hk−1

}
,

which completes the proof of Lemma 5.

D.3 Proof of Theorem 2

By smoothness of the function F , we have

E
[
F (θk)

]
≤ E

[
F (θk−1)

]
− ηkE

[
⟨∇F (θk−1), uk⟩

]
+
η2k
2
LE[∥uk∥22]. (18)

We define the discrepancy term Dk and average gradient norm Gk according to Eq. (12) in the proof
of Theorem 1.

We use the following lemma to control the cross term
Lemma 6. Under the setup of Theorem 2, for each k, we have

E
[
⟨∇F (θk−1), uk⟩

]
≥ 1

4E
[
∥∇F (θk−1)∥22

]
+ Gk−1

4 − L2Dk−1

2 .

See Section D.3.1 for the proof of this lemma.

Following the arguments in Lemma 4 using Assumption 3, it is easy to see that

E[∥uk∥22] ≤ c
σ2
∗
m

+ c
v∗ +∆2

m
ω2d+ c(1 + λ)Gk−1. (19)
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Applying this bound to the arguments in Lemma 5, it is easy to show that

Dk ≤ c1(v
∗ +∆2)

k∑
t=τi−1+1

η2t

{σ2
∗
m

+ ω2d+ (1 + λ)Gk−1

}
, (20)

for each k ∈ [τi−1, τi).

Now we substitute Lemma 6 and Eq. (19) into Eq. (18). Telescoping the summation from time 0 to
time n, we note that

1

4

n∑
k=1

ηkE
[
∥∇F (θk−1)∥22

]
+

1

4

n∑
k=1

ηkGk−1 −
L2

2

n∑
k=1

ηkDk−1

≤ E[F (θ0)]− E[F (θn)] +
n∑

k=1

η2kL
{
c
σ2
∗
m

+ c
v∗ +∆2

m
ω2d+ c(1 + λ)Gk−1

}
. (21)

By Eq. (20), if the synchronization times satisfy T (τi)− T (τi−1) ≤ 1/(2L) for each i = 1, 2, · · · ,
we have

n∑
k=1

ηkDk−1 ≤ c1(v
∗+∆2)
2L

n∑
t=1

η2t

{σ2
∗
m

+ ω2d+ (1 + λ)Gk−1

}
Substituting back to Eq. (21), when the stepsize satisfies ηk ≤ c0

L(1+λ) , we have

1

4

n∑
k=1

ηkE
[
∥∇F (θk−1)∥22

]
≤ E[F (θ0)]− E[F (θn)] + cL

{σ2
∗
m

+ (v∗ +∆2)ω2d
} n∑

k=1

η2k.

By the definition of the random variable R, we have
n∑

k=1

ηkE
[
∥∇F (θk−1)∥22

]
= E

[
∥∇F (θR)∥22

]
·

n∑
k=1

ηk.

Substituting back to the telescope formula completes the proof.

D.3.1 Proof of Lemma 6

By Lemma 2, we have E
[
uk | Fk−1

]
= 1

m

∑m
j=1 ∇F (θ

(j)
k−1), and consequently

E
[
⟨∇F (θk−1), uk⟩

]
=

1

m

m∑
j=1

E
[
⟨∇F (θk−1), ∇F (θ(j)k−1)⟩

]
≥ E

[
∥∇F (θk−1)∥22

]
− 1

m

m∑
j=1

√
E
[
∥∇F (θk−1)∥22

]
E
[
∥∇F (θ(j)k−1)−∇F (θk−1)∥22

]
≥ 1

2
E
[
∥∇F (θk−1)∥22

]
− L2

2
Dk−1,

where in the last inequality, we use the smoothness of the function F and the Cauchy–Schwarz
inequality.

On the other hand, we note that

E
[
⟨∇F (θk−1), uk⟩

]
=

1

m

m∑
j=1

E
[
⟨∇F (θk−1), ∇F (θ(j)k−1)⟩

]
≥ 1

m

m∑
j=1

E
[
∥∇F (θ(j)k−1)∥

2
2

]
− 1

m

m∑
j=1

√
E
[
∥∇F (θ(j)k−1)∥22

]
E
[
∥∇F (θ(j)k−1)−∇F (θk−1)∥22

]
≥ 1

2m

m∑
j=1

E
[
∥∇F (θ(j)k−1)∥

2
2

]
− L2

2
Dk−1.

Combining the two bounds completes the proof of this lemma.
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E Details of the simulation studies

The training data is distributed acrossm = 10 worker machines, and each worker has the data for each
label. We use ResNet-18 architecture for the CIFAR-10 dataset, and a simple 4-layer convolutional
neural network for the MNIST dataset.

We use the cross-entropy loss function for training, with stepsize η = 0.01, and the batch size is set
to 64. We compare 5 different transmission schemes:

• Coded: In this scheme, all the information is transmitted through the coded channel, using 32-bit
floating point precision.

• Noisy: In this scheme, the information is transmitted directly through the physical channel
described in Section 2.1, which includes the DAC unit, the AWGN channel, and the ADC unit.

• Postcode: In this scheme, we apply the post-coding and scale-adaptive transformation techniques
in Section 3.1 and Section 3.2, to transmit each parameter in an unbiased manner. A simple
distributed SGD algorithm is used for training, without the synchronization step described in
Algorithms 1 and 2.

• Sync: In this scheme, we run the distributed optimization framework in Algorithms 1 and 2, with
the global model parameters being synchronized across all workers at communication rounds
τ1, τ2, · · · . The transmission is performed over the noisy channel described in Section 2.1, without
the post-coding and scale-adaptive transformation techniques. In our simulation studies, the
synchronization time frequency is set to be 30 communication rounds for CIFAR-10 dataset, and
100 communication rounds for MNIST dataset.

• Ours: This scheme corresponds to the full algorithms described in Algorithms 1 and 2, incorporat-
ing post-coding, scale-adaptive transformation, and synchronization.

We test these 5 different methods under simulated communication channels. To ensure a fair
comparison, we require the average signal power to be the same for coded and noisy channels. We
consider two different SNR regimes in our experiments:

• High SNR regime: we let σc = 0.05 in the communication channel, and the quantization levels
are set to q = 16 (i.e., 4 bits). For coded communication, we consider a PAM-8 modulation with
Gray mapping.1 In this case, the SNR is approximately 19.5dB, and the pre-FEC BER is about
1.04× 10−3 (see e.g. [35]). Following industry standards for FEC overhead [16, 36], we assume
an FEC overhead of 5.8%.

• Low SNR regime: we let σc = 0.2 in the communication channel, and the quantization levels are
set to q = 8 (i.e., 3 bits). In this case, the SNR is approximately 5.5dB. For coded communication,
we consider a BPSK modulation, leading to a pre-FEC BER of 3.86 × 10−3 (see e.g. [35]).
Following industry standards for FEC overhead [16, 36], we assume an FEC overhead of 5.8%.

We run the algorithms for a total of 100 epochs on CIFAR-10 dataset, and 20 epochs on MNIST
dataset, and we report the test accuracy and communication overhead for each transmission scheme.

1In many communication systems, QAM modulations are used. In such a case, we use the real and imaginary
parts to encode two different PAM symbols, so the number of symbols is halved for both coded and physical
channels, and the comparison remains valid.
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