
Under review as submission to TMLR

Beyond Distribution Shift: Shortcut Learning Through the
Lens of Training Dynamics

Anonymous authors
Paper under double-blind review

Abstract

Deep Neural Networks (DNNs) are prone to learning shortcut patterns that damage the gen-
eralization of the DNN during deployment. This paper aims to better understand shortcut
learning through the lens of the learning dynamics of the internal neurons during the training
process. We make the following observations: (1) While previous works treat shortcuts as
synonymous with spurious correlations, we emphasize that not all spurious correlations are
shortcuts. We show that shortcuts are only those spurious features that are “easier” than
the core features. (2) We build upon this premise and use instance difficulty methods (like
Prediction Depth (Baldock et al., 2021)) to quantify “easy” and to identify this behavior
during the training phase. (3) We empirically show that shortcut learning can be detected
by observing the learning dynamics of the DNN’s early layers. In other words, easy features
learned by the initial layers of a DNN early during the training are potential shortcuts. We
verify our claims on medical and vision datasets, both simulated and real, and justify the
empirical success of our hypothesis by showing the theoretical connections between Predic-
tion Depth and information-theoretic concepts like V-usable information (Ethayarajh et al.,
2021). Lastly, our experiments show the insufficiency of monitoring only accuracy plots
during training (as is common in machine learning pipelines). We highlight the need for
monitoring early training dynamics using example difficulty metrics.

1 Introduction

Shortcuts are spurious features that perform well on standard benchmarks but fail to generalize to real-world
settings (Geirhos et al., 2020). Deep neural networks (DNNs) tend to rely on shortcuts even in the presence
of core features that generalize well, which poses serious problems when deploying them in safety-critical
applications such as finance, healthcare, and autonomous driving (Geirhos et al., 2020; Oakden-Rayner et al.,
2020; DeGrave et al., 2021). Previous works view shortcut learning as a distribution shift problem (Kirichenko
et al., 2022; Wiles et al., 2021; Bellamy et al., 2022; Adnan et al., 2022). However, we show that not all
spurious correlations are shortcuts. Models suffer from shortcut learning only when the spurious features are
much easier to learn than signals that generalize well. We show how monitoring example difficulty metrics
like Prediction Depth (PD) (Baldock et al., 2021) can reveal valuable insights into shortcut learning quite
early during the training process. Early detection of shortcut learning is helpful as it can help develop
intervention schemes to fix the shortcut early. To the best of our knowledge, we are the first to detect
shortcut learning by monitoring the training dynamics of the model.

Geirhos et al. (2020) define shortcuts as spurious correlations that exist in standard benchmarks but fail
to hold in more challenging test conditions, like real-world settings. The emphasis on shortcuts being
synonymous with spurious correlations has led to the widespread adoption of viewing shortcut learning as
a distribution shift problem (Bellamy et al., 2022; Wiles et al., 2021; Adnan et al., 2022; Kirichenko et al.,
2022). While the distribution shift explains part of the story, we emphasize that what is equally important
for shortcut learning is the difficulty of the spurious features themselves (see Fig-1). Previous works like
Shah et al. (2020); Scimeca et al. (2021) hint at this. But we take this line of thought further by viewing
shortcut learning as a phenomenon that impacts the dataset difficulty, which can be captured by monitoring
early training dynamics.
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Figure 1: An illustration of how the causal view of shortcut learning is insufficient. In the causal view,
training and testing are different graphical models between input (x), output (y), and the spurious feature
(s). If x can predict s, and y is not causally related to s on the test data, then s is viewed as a shortcut.
(A) The figure shows two scenarios for even-odd classification. Scenario 1 shows a dataset where all even
numbers have a spurious composite number (located at the top-left), and odd numbers have a prime number.
Scenario 2 shows a dataset where all odd numbers have a spurious white patch. The spurious white patch is
an easy feature, so the model uses it as a shortcut. Whereas classifying prime numbers, as shown in scenario
1, is challenging. So the model ignores such spurious features. This shows not all spurious correlations are
shortcuts.

The premises that support our hypothesis are as follows: (P1) Shortcuts are only those spurious features
that are “easier” to learn than the core features (see Fig-1). (P2) Initial layers of a DNN tend to learn easy
features, whereas the later layers tend to learn the harder ones (Zeiler & Fergus, 2014; Baldock et al., 2021).
(P3) Easy features are learned much earlier than the harder ones during training (Mangalam & Prabhu,
2019; Rahaman et al., 2019). Premises (P1-3) lead us to conjecture that: “Easy features learned by the
initial layers of a DNN early during the training are potential shortcuts.”

We make the following observations. First, when the spurious features are known, the paper sheds light on
when and if we should be concerned about learning shortcuts. We show that a mismatch in the joint distri-
bution of the input, spurious feature, and label between test and training data is insufficient to explain the
shortcut learning phenomenon. It also depends on the model’s architecture and training dynamics (section-
4.1). Second, when the spurious feature is unknown a priori, but a human user has an intuition about
the difficulty of the task in comparison to some reference tasks, the proposed metric can be used to de-
tect shortcut learning patterns during training (figure-4). Third, we empirically show that our hypothesis
works well on medical and vision datasets (sections-4.2,A.3), both simulated and real, regardless of the
DNN architecture used. We justify this empirical success by theoretically connecting prediction depth with
information-theoretic concepts like V-usable information (Ethayarajh et al., 2021) (sections-3,A.1). Lastly,
our experiments highlight that monitoring only accuracy during training, as is common in machine learning
pipelines, is insufficient. In addition, we need to monitor the learning dynamics of the model using suitable
instance difficulty metrics to detect shortcut learning (section-4.3). This could save time and computational
costs and help develop reliable models that do not rely on spurious features.

2 Related Work

Not all spurious correlations are shortcuts: Geirhos et al. (2020) define shortcuts as spurious corre-
lations that exist in standard benchmarks but fail to hold in more challenging test conditions. Wiles et al.
(2021) view shortcut learning as a distribution shift problem where two or more attributes are correlated
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during training but are independent in the test data. Bellamy et al. (2022) use causal diagrams to explain
shortcuts as spurious correlations that hold during training but not during deployment. All these papers
characterize shortcuts purely as a consequence of distribution shift; methods exist to build models robust to
such shifts (Arjovsky et al., 2019; Krueger et al., 2021; Puli et al., 2022). In contrast, we stress that not all
spurious correlations are shortcuts. Rather only those spurious features that are easier than the core features
are potential shortcuts (see Fig-1). Previous works like Shah et al. (2020); Scimeca et al. (2021) hint at this
by saying that DNNs are biased towards simple solutions, and Dagaev et al. (2021) use the “too-good-to-be-
true” prior to emphasize that simple solutions are unlikely to be valid across contexts. Veitch et al. (2021)
distinguish various model features using tools from causality and stress test the models for counterfactual
invariance. Other works in natural language inference, visual question answering, and action recognition,
also assume that simple solutions could be potential shortcuts (Sanh et al., 2020; Li & Vasconcelos, 2019;
Clark et al., 2019; Cadene et al., 2019; He et al., 2019). We take this line of thought further by viewing
shortcuts as simple solutions or, more explicitly, easy features, which affect the early training dynamics of
the model. We suggest using suitable example difficulty metrics to measure this effect.

Estimating Example Difficulty: There are different metrics in the literature for measuring instance-
specific difficulty (Agarwal et al., 2022; Hooker et al., 2019; Lalor et al., 2018). Jiang et al. (2020) train
many models on data subsets of varying sizes to estimate a consistency score that captures the probabil-
ity of predicting the true label for a particular example. Toneva et al. (2018) define example difficulty as
the minimum number of iterations needed for a particular example to be predicted correctly in all subse-
quent iterations. Agarwal et al. (2022) propose a VoG (variance-of-gradients) score which captures example
difficulty by averaging the pre-softmax activation gradients across training checkpoints and image pixels.
Feldman & Zhang (2020) use a statistical viewpoint of measuring example difficulty and develop influence
functions to estimate the actual leave-one-out influences for various examples. Ethayarajh et al. (2021)
use an information-theoretic approach to propose a metric called pointwise V-usable information (PVI) to
compute example difficulty. Baldock et al. (2021) define prediction depth (PD) as the minimum number
of layers required by the DNN to classify a given input and use this to compute instance difficulty. In our
experiments, we use the PD metric to provide a proof of concept for our hypothesis.

Monitoring Training Dynamics: Other works that monitor training dynamics have a significantly dif-
ferent goal than ours. While we monitor training dynamics to detect shortcut learning, Rabanser et al.
(2022) use neural network training dynamics for selective classification. They use the disagreement between
the ground truth label and the intermediate model predictions to reject examples and obtain a favorable
accuracy/coverage trade-off. Feng & Tu (2021) use a statistical physics-based approach to study the train-
ing dynamics of stochastic gradient descent (SGD). While they study the effect of mislabeled data on SGD
training dynamics, we study the effect of shortcut learning on the early-time learning dynamics of DNNs. Hu
et al. (2020) use the early training dynamics of neural networks to show that a simple linear model can often
mimic the learning of a two-layer fully connected neural network. Adnan et al. (2022) have a similar goal as
ours and use mutual information to monitor shortcut learning. However, computing mutual information is
intractable for high-dimensional data, and hence their work is only limited to infinite-width neural networks
that offer tractable bounds for this computation. Our work, on the contrary, is more general and holds for
different neural network architectures and datasets.

3 Background and Methodology

In this section, we formalize the notion of spurious features, shortcuts, and task difficulty. Let Ptr and Pte

be the training and test distributions defined over the random variables X (input), y (label), and s (latent
spurious feature).

Definition-1 (Spurious Feature s): A latent feature s is called spurious if it is correlated with label y
in the training data but not in the test data. Specifically, the joint probability distributions Ptr and Pte can
be factorized as follows.

Ptr(X,y, s) = Ptr(X|s,y)Ptr(s|y)Ptr(y)
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Pte(X,y, s) = Ptr(X|s,y)Pte(s)Ptr(y).

The variable s appears to be causally related to y but is not. This is shown in Fig-1. We also need a notion
of task difficulty. The difficulty of a task depends on the model and data distribution (X,y).

Definition-2 (Task Difficulty Ψ): Let ΨP
M(X → y) indicates the difficulty of predicting X → y for

a model M, where X,y ∼ P . Consider a joint distribution (X,y, t) ∼ P for two tasks, t, and y. Then,
ΨP

M(X → y) > ΨP
M(X → t) indicates that the task X → y is harder than X → t for a given model M.

Definition-3 (Shortcut): The spurious feature s is a potential shortcut for model M iff ΨPtr

M (X → y) >
ΨPtr

M (X → s). In other words, given the input X, predicting spurious feature s is easier for M than predicting
the true label y.

The definitions make it clear that “shortcut” is not just related to the dataset alone but is also closely tied
to the model and the task. What is a shortcut for one model may not be so for another. E.g., consider
input X = {x1, x2, . . . , xn} that can be viewed as both a vector or a set. Consider two models, f1, which
is a permutation-invariant function (like Deep Sets (Zaheer et al., 2017)), and f2 is a coordinate-sensitive
function (e.g., MLP). If the spurious feature is always in x1, it can be a shortcut for f2, but may not be so
for f1 because f1 is coordinate agnostic. In fact one can show (Zaheer et al., 2017) that f1 = ρ(

∑
i ϕ(xi))

for suitable transformations ϕ and ρ.

We now explain two metrics (Prediction Depth and V-Usable Information) to measure ΨP
M. Baldock et al.

(2021) proposed the notion of Prediction Depth (PD) to estimate example difficulty. The PD of input is
defined as the minimum number of layers required by the model to classify the input. Our work relies on
monitoring early training dynamics using example difficulty metrics, and we use PD estimation for this
purpose. The PD metric is also well-suited for our work as it is defined for easy inputs even when the DNN
is not fully trained. We use a binary classification setting to explain the concepts used in this section.

Notion of Prediction Depth: The PD is defined by building k-NN classifiers on the embedding layers
of the model. The PD is simply the earliest layer after which all subsequent k-NN predictions remain the
same (0 or 1):

PD = min arg max
n

[
N∏

i=n

fknn(ϕi) +
N∏

i=n

(1 − fknn(ϕi))
]
,

fknn is a k-NN classifier that outputs 0 or 1 based on a given threshold (see Appendix-A.6 for details), ϕi

is the feature embedding for the given input at layer-i, and N is the index of the final layer of the model.
The lower the PD of input, the easier it is to classify. We also use the notion of undefined PD to work with
models that are not fully trained. We treat k-NN predictions close to 0.5 (for a binary classification setting)
as invalid. If the k-NN predictions for the last three layers (for a given input to the model) are invalid, we
treat the PD of the input as undefined (see Appendix-A.6). Figure-2 illustrates how to read the PD plots
used in our experiment.

Notion of V-Usable Information: The Mutual Information between input and output, I(X;Y ), is
invariant with respect to lossless encryption of the input, i.e., I(τ(X);Y ) = I(X;Y ). Such a definition
assumes unbounded computation and is counter-intuitive to define task difficulty as heavy encryption of
X does not change the task difficulty. The notion of “Usable Information” introduced by Xu et al. (2020)
assumes bounded computation based on the model family V under consideration. Usable information is
measured under a framework called predictive V-information (Xu et al., 2020). Ethayarajh et al. (2021)
introduce pointwise V-information (PVI) for measuring example difficulty.

PVI(x → y) = − log2 g[ϕ](y) + log2 g
′[x](y), (1)

s.t. g, g′ ∈ V

The function g is trained on (ϕ, y) input-label pairs, where ϕ is a null input that provides no information
about the label y. g′ is trained on (x, y) pairs from the training data. Lower PVI instances are harder for
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Figure 2: Examples of PD plots (for DenseNet-121) at different stages of the training process. The red bar
indicates samples with undefined PD, and the dotted vertical line indicates the mean PD of the plot. Notice
that the undefined samples (shown in red) slowly accumulate in layer 88 as training progresses. This is
because the model needs more time to learn the challenging samples which accumulate at higher prediction
depth, i.e., later layers.

V and vice-versa. Since the first term in Eq-1 corresponding to g is independent of the input x, we only
consider the second term having g′ in our experiments. In what follows, we relate the notions of PD and
V-usable information. We use Vcnn (of finite depth and width) in our proof as our experiments mainly use
CNN architectures.

Proposition 1: (Informal) Consider two datasets: Ds ∼ Ptr(X,y) with spurious features and
Di ∼ Pte(X,y) without them. For some mild assumptions on PD (see Appendix-A.1), if the mean
PD of Ds is less than the mean PD of Di, then the Vcnn-usable-information for Ds is larger than the
Vcnn-usable-information for Di: IDs

Vcnn
(X → Y ) > IDi

Vcnn
(X → Y ).

See proof in Appendix-A.1. The proposition intuitively implies that a sufficient gap between the mean PD
of spurious and core features can result in spurious features having more Vcnn-usable information than core
features. In such a scenario, the model will be more inclined to learn spurious features instead of core ones.
This proposition justifies using the PD metric to detect shortcut learning, as demonstrated in the following
experiments.

4 Experiments

We set up four experiments to evaluate our hypothesis. First, we consider two kinds of datasets, one where
the spurious feature is easier than the core feature and another where the spurious feature is harder. We train
a classifier on each dataset and observe that the model can learn the easy spurious feature but not the harder
one. This experiment demonstrates that not all spurious correlations are shortcuts, but only those spurious
features that are easier than the core features are potential shortcuts. Second, we use medical and vision
datasets to demonstrate how monitoring the learning dynamics of the initial layers can reveal suspicious
shortcut learning activity. We show that an early peak in the PD plot indicates potential shortcuts, and
visualization techniques like grad-CAM can provide intuition about the feature used at that layer. Third,
we show how shortcuts can often be detected relatively early during training. This is because initial layers
which learn the shortcuts converge very early during the training. We observe this by monitoring PD
plots across training epochs. In all of our experiments, the shortcut is revealed by the PD plot within
two epochs of training. Fourth, we show that datasets with easy spurious features have more “usable
information” (Ethayarajh et al., 2021) compared to their counterparts without such features. Due to higher
usable information, the model requires fewer layers to classify the images with spurious features. We use
this experiment to empirically justify Proposition-1 outlined in Appendix-A.1.
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Figure 3: Dominoes Dataset

Table 1: Results for the Dominoes experiment averaged across 4-runs. Numbers

in bracket show mean-PD (dataset difficulty). Core-only accuracy indicates the

model’s reliance on core features. Models achieve high core-only accuracy when

spurious features are harder than core features.

4.1 Not all spurious correlations are shortcuts

We use the Dominoes binary classification dataset (formed by concatenating two datasets vertically; see
Fig-3) similar to the setup of Kirichenko et al. (2022). The bottom (top) image acts as the core (spurious)
feature. Images are of size 64 × 32. We construct three pairs of domino datasets such that each pair has
both a hard and an easy spurious feature with respect to the common core feature (see Table-1). We use
classes {0,1} for MNIST and SVHN, {coat,dress} for FMNIST, and {airplane, automobile} for CIFAR10. We
also include two classes from Kuzushiji-MNIST (or KMNIST) and construct a modification of this dataset
called KMNpatch, which has a spurious patch feature (5x5 white patch on the top-left corner) for one of
the two classes of KMNIST. The spurious features are perfectly correlated with the target. The order of
dataset difficulty based on the mean-PD is as follows: KMNpatch(1.1) < MNIST(2.2) < FMNIST(3.9) <
KMNIST(5) < SVHN(5.9) < CIFAR10(6.8). We use a ResNet18 model and measure the test and core-only
accuracies. The test accuracy is measured on a held-out dataset sampled from the same distribution. For
the core-only accuracy, we blank out the spurious feature (top-half image) by replacing it with zeroes (same
as Kirichenko et al. (2022)). The higher the core-only accuracy, the lesser the model’s reliance on the spurious
feature.

Table 1 shows that all datasets achieve a high test accuracy as expected. The core-only accuracy stays
high (>98%) for datasets where the spurious feature is harder to learn than the core feature, indicating the
model’s high reliance on core features. When the spurious feature is easier than the core, the model learns
to leverage them, and hence the core-only accuracy drops to nearly random chance (∼50%). Interestingly,
the KMNpatch-MN results have a much higher core-only accuracy (∼69%) and a more significant standard
deviation. We explain this phenomenon in Appendix-A.7. This experiment demonstrates that a spurious
feature that is harder than the core feature fails to act as a shortcut that the model can leverage to “cheat”.

4.2 Monitoring Initial Layers Can Reveal Suspicious Shortcut Learning Activity

Synthetic Shortcut on Toy Dataset: To provide a proof of concept, we demonstrate our method on
the Kuzushiji-MNIST (KMNIST) (Clanuwat et al., 2018) dataset comprising Japanese Hiragana characters.
The dataset has ten classes and images of size 28 × 28, similar to MNIST. We insert a white patch (spurious
feature) at a particular location for each of the ten classes. The location of the patch is class-specific. We
train two VGG16 models, one on the KMNIST with a patch shortcut (Msh) and another on the original
KMNIST without the patch (Morig).

Fig-4 shows the prediction depth (PD) plots for this experiment. The vertical dashed lines show the mean
PD for each plot. Fig-4D shows that KMNIST with patch has a much lower mean PD than all the other
datasets, and the PD plot is also highly skewed towards the initial layers. This suspicious behavior is because
the white patch is a very easy feature, and hence the model only needs a single layer to detect it. The Grad-
CAM maps for layer-1 confirm this by showing that Msh focuses mainly on the patch (see Fig-4D), and
hence the test accuracy on the original KMNIST images is very low (∼8%). The PD plot for Morig (see
Fig-4E) is not as skewed toward lower depth as the plot for Msh. This is expected as Morig is not looking
at the spurious patch and therefore utilizes more layers to make the prediction. The mean PD for Morig

6



Under review as submission to TMLR

Axis of Difficulty

HighLow

(A) MNIST (B) FMNIST (C) CIFAR 10

GradCam of

Layer 1(D) KMNIST w/ shortcut (E) KMNIST w/o shortcut

Figure 4: Top row shows three reference datasets and their corresponding prediction depth (PD) plots. The
datasets are ordered based on their difficulty (measured using mean PD shown by dotted vertical lines): KMN
w/ sh.(1.1) < MNIST(2.2) < FMNIST(3.9) < KMN w/o sh.(5) < SVHN(5.9) < CIFAR10(6.8). The bottom
row shows the effect of the shortcut on the KMNIST dataset. The yellow region on the axis indicates the
expected difficulty of classifying KMNIST. While the original KMNIST lies in the yellow region, the shortcut
significantly reduces the task difficulty. The Grad-CAM shows that the model focuses on the spurious patch.

suggests that the original KMNIST is harder than Fashion-MNIST but easier than CIFAR10. Morig also
achieves a higher test accuracy (∼98%).

This experiment demonstrates how models that learn spurious features (Msh) exhibit PD plots that are
suspiciously skewed towards the initial layers. The skewed PD plot should raise concerns, and visualization
techniques like Grad-CAM can aid our intuition about what spurious feature the model may be utilizing at
any given layer.

Semi-Synthetic Shortcut on Medical Datasets: We follow the procedure by DeGrave et al. (2021)
to create the ChestX-ray14/GitHub-COVID dataset. This dataset comprises Covid19 positive images from
Github Covid repositories and negative images from ChestX-ray14 dataset (Wang et al., 2017b). In addition,
we also create the Chex-MIMIC dataset following the procedure by Puli et al. (2022). This dataset com-
prises 90% images of Pneumonia from Chexpert (Irvin et al., 2019) and 90% healthy images from MIMIC-
CXR (Johnson et al., 2019). We train two DenseNet121 models, Mcovid on the ChestX-ray14/GitHub-
COVID dataset, and Mchex on the Chex-MIMIC dataset. We use DenseNet121, a common and standard
architecture for medical image analysis. Images are resized to 512 × 512.

Fig-5 shows the PD plots for Mchex and Mcovid. Both the plots are highly skewed towards initial layers,
similar to the KMNIST with patch shortcut in Fig-4D. This again indicates that the models are using
very easy features to make the predictions, which is concerning as the two tasks (pneumonia and covid19
detection) are hard tasks even for humans. Examining the Grad-CAM maps at layer-4 reveals that these
models focus on spurious features outside the lung region, which are irrelevant because both diseases are
known to affect mainly the lungs. The reason for this suspicious behavior is that, in both these datasets,
the healthy and diseased samples have been acquired from two different sources. This creates a spurious
feature because source-specific attributes or tokens are predictive of the disease and can be easily learned,
as pointed out by DeGrave et al. (2021).
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Figure 5: PD plots for two DenseNet-121 models trained on Chex-MIMIC and ChestX-ray14/GitHub-COVID
datasets are shown in the figure, along with their corresponding Grad-CAM visualizations. Both PD plots
exhibit a very high peak in the initial layers (1 to 4), indicating that the models use very easy features to
make the predictions.

Real Shortcut on Medical Dataset: For this experiment, we use the NIH dataset (Wang et al., 2017a)
which has the popular chest drain spurious feature (for Pneumothorax detection) (Oakden-Rayner et al.,
2020). Chest drains are used to treat positive Pneumothorax cases. Therefore, the presence of a chest drain
in the lung is positively correlated with the presence of Pneumothorax and can be used by the deep learning
model (Oakden-Rayner et al., 2020). Appendix-A.5 outlines the procedure we use to obtain chest drain
annotations for the NIH dataset. We train a DenseNet121 model (Mnih) for Pneumothorax detection on
NIH images of size 128 × 128.

Prediction Depth (DenseNet121)

∞

NIH

Grad-CAM (chestdrain)

(A) (B) (C)

Shortcut Influence on Performance

(D)

Grad-CAM (artifacts)

Figure 6: Shortcut learning on NIH dataset. (A) PD plot for DenseNet-121 trained on NIH shows prominent
peaks in the initial layers. (B, C) Grad-CAM reveals that the initial layers use irrelevant artifacts and chest
drains as shortcuts for classification. (D) The chest drain spurious feature affects the AUC performance of
the model. The X-axis (Y-axis) shows the false positive (true positive) rate.

Fig-6A shows the PD plot for Mnih. We observe that the distribution is not as skewed as the plots in the
previous experiments. This is because all the images come from a single dataset (NIH). However, we do see
suspicious peaks at the initial layers. Pneumothorax classification is challenging even for radiologists; hence,
peaks at the initial layers raise suspicion. The Grad-CAM maps in Figs-6B & 6C reveal that the initial
layers look at irrelevant artifacts and chest drains in the image. This provides evidence for shortcut learning
happening in the initial layers. Fig-6D shows that the AUC performance is 0.94 when the diseased patients
have a chest drain and 0.74 when they don’t. In both cases, the set of healthy patients remains the same.
This observation is consistent with the findings of Oakden-Rayner et al. (2020) and indicates that the model
looks at chest drains to classify positive Pneumothorax cases.

The above experiments demonstrate how a peak located in the initial layers of the PD plot should raise
suspicion, especially when the classification task is challenging. Visualization techniques like Grad-CAM
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Figure 7: Evolution of PD plot across epochs shows the training dynamics of the DNN on the NIH dataset.
The initial peaks (layers-4&40) are relatively stable throughout training, whereas the later peaks (layer-88)
change with time. The initial layers learn the easy shortcuts, which can be detected early during the training.
Samples with undefined PD (shown in red) take more time to converge and eventually accumulate in the
later layers (layer 88 in this case).

can further aid our intuition and help identify the shortcuts being learned by the model. This approach
works well even for realistic scenarios and challenging spurious features (like chest drain for Pneumothorax
classification), as shown above. Appendix-A.3 includes additional results on vision datasets.

4.3 Detecting Shortcuts Early

Fig-7 shows the evolution of the PD plot across epochs for Mnih (which is the model used in Fig-6). This
visualization helps us observe the training dynamics of the various layers. The red bar in the PD plots shows
the samples with undefined prediction depths.

These plots reveal several useful insights into the learning dynamics of the model. Firstly, we see three
prominent peaks in epoch-1 at layers-4,40,88 (see Fig-7A). The magnitude of the initial peaks (like layers-
4&40) remains nearly constant throughout the training. These peaks correspond to shortcuts, as discussed
in the previous section. This indicates that easy shortcuts can often be identified early (epoch-1 in this
case). Fig-8 shows the PD plots at epoch-2 for other datasets with shortcuts. It is clear from Fig-8 that the
suspiciously high peak at the initial layer is visible in the second epoch itself. The Grad-CAM maps reveal
that this layer looks at irrelevant artifacts in the dataset. This behavior is seen in all datasets shown in
Fig-8.

KMNIST w/ Shortcut

Grad-CAM Layer-1

Chex-MIMIC

Grad-CAM Layer-4

ChestX-ray14/GitHub-COVID

Grad-CAM Layer-4

Figure 8: Epoch-2 PD plots for various datasets with shortcuts. The high spurious peak in the initial layer
is visible in all the datasets indicating that shortcuts can be detected early during the training.
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Secondly, we also see that accuracy or AUC plots do not reveal shortcut learning patterns. We need to
monitor the training dynamics using suitable metrics (like PD) to detect this behavior. Thirdly, the red
peak (undefined samples) decreases in magnitude with time, and we see a proportional increase in the layer-
88 peak. This corroborates well with the observation that later layers take more time to converge (Rahaman
et al., 2019; Mangalam & Prabhu, 2019; Zeiler & Fergus, 2014). Therefore, samples with higher PD are
initially undefined and do not appear in the PD plot. Nonetheless, samples with lower PD show up very
early during the training, which helps us detect shortcuts early. Early detection can consequently help
develop intervention schemes that fix the shortcut early.

4.4 Prediction Depth ≈ V-Usable Information

Table-2 measures the influence of spurious features on NIH and KMNIST using PD and PVI metrics. All
diseased patients in the “NIH w/ Spurious feat.” dataset have a chest drain, whereas all diseased patients in
the “NIH w/o Spurious feat.” dataset have no chest drain. The set of healthy patients is common for the two
datasets. The KMNIST datasets are the same as those used in Section-4.2. We use VGG16 for KMNIST
and DenseNet121 for NIH. Other training details are the same as Section-4.2.

Table 2: Effect of Spurious features on Prediction Depth and the negative conditional V-entropy (-HVcnn(Y |
X)). The label marginal distributions are the same with or without the spurious feature, and thus the
negative conditional V-entropy is proportional to V-information.

Dataset mean PD −HVcnn (Y | X)
NIH w/ Spurious feat. 53.43 -0.1171
NIH w/o Spurious feat. 75.33 -0.2321

KMNIST w/ Spurious feat. 1.06 -0.0024
KMNIST w/o Spurious feat. 5.25 -0.0585

Table-2 shows that datasets with spurious features (Ds) have smaller mean PD values than their counterparts
without such features (Di). Proposition-1 (see Section-3, Appendix-A.1) shows that a sufficient gap between
the mean PDs of Ds and Di causes the V-Information of Ds to be greater than Di. Table-2 confirms this
in a medical-imaging dataset with a real chest drain spurious feature, and we see that the mean “usable
information” increases when there is a spurious feature. This implies that the model learns spurious features
as they have more usable information than the core features. We investigate this relationship between PD
and V-information in more detail in Appendix-A.4. Ethayarajh et al. (2021) also show that V-information
is positively correlated with test accuracy. This explains the significant change in AUC observed in Fig-6D.
Proposition 1 bridges the gap between the notions of PD and V-usable information. This connection between
V-information and PD indicates that monitoring early training dynamics using PD not only helps detect
shortcut learning but also bears insights into the dataset’s difficulty (in information-theoretic terms) for a
given model class.

5 Conclusion

We study shortcut learning by monitoring the early training dynamics of DNNs. We empirically show that
not all spurious correlations are shortcuts and shortcut learning occurs only when the spurious features are
easier than the core features. “Potential shortcuts can be found by monitoring the easy features learned by
the initial layers of a DNN early during the training.” We validate this hypothesis on real medical and vision
datasets. We show that shortcuts are learned quite early during the training and one can detect shortcut
learning by monitoring the early training of DNNs using instance difficulty metrics like Prediction Depth
(PD). Further, we show a theoretical connection between PD and V-information to support our empirical
results. Datasets with spurious features have more V-information causing the model to learn the shortcut.
To conclude, relying only on accuracy plots is insufficient, and we recommend monitoring the DNN training
dynamics using additional metrics like PD for the early detection of shortcuts.
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A Appendix

A.1 Proof of Proposition-1

Proposition A.1. Given two datasets, Ds with spurious features and Di without them, we assume the
following:

1. (Well-Trained Model Assumption) The part of the network from any representation to the label is
one of the functions that compute V-information.

2. (Function Class Complexity Assumption) Assume that there exists a K ∈ {1, N} such that Vcnn of
depth N − K is deep enough to be a strictly larger function class than Vknn with a fixed neighbor
size (29 in this paper). Assume that this Vknn is a larger function class than a linear function.

3. (Controlled Confidence Growth Assumption) For both datasets D ∈ {Ds, Di}, assume that the for
all k ∈ {1, · · · , N},

τ ≤ ID
Vknn

(ϕk) − ID
Vknn

(ϕk−1) ≤ ϵ

4. (Prediction Depth Separation Assumption) Let L be an integer such that, L ≤ K and L < N −
ψmaxy (− log p(Y = y)). Note that p(Y = y) is simply the prevalence of class y. Let there exist a
gap in prediction depths of samples in Ds and Di: ψ ∈ (0, 0.5) such that 1 − ψ fraction of Ds has
prediction depth ≤ L and 1 − ψ fraction of Di has prediction depth > K.

Then, for a model class of N -layer CNNs, we show that the Vcnn-information for Ds is greater than Vcnn-
information for Di:

IDs

Vcnn
(X → Y ) ≥ IDi

Vcnn
(X → Y )

Proof. Before proceeding to the proof, we attempt to justify and reason about the above assumptions.

Assumption-1 states a property of trained neural networks in the context of usable information. Let f(X)
be a trained neural network. Consider splitting the network into the representation ϕk(X) at the kth layer
and the rest of the network as a function applied to ϕk(X): i.e., f(X) = fk ◦ ϕk(X). Then we assume that
fk(·) is the function that achieves the Vcnn of size(n-k)-information between ϕk(X) and Y (Ethayarajh et al.,
2021; Xu et al., 2020). The function that computes V-information must achieve a minimum cross-entropy
(Ethayarajh et al., 2021). So if we train f(X) by minimizing the cross-entropy loss, fk(.) must converge to
a function that achieves the Vcnn of size(n-k)-information between ϕk(X) and Y .

Assumption-2 implies that the CNN class in Vcnn is deep enough such that the network after the Kth

layer can approximate a k-NN classifier with 29 neighbors; (K here is same as the K in assumption-4).
This is also a reasonable assumption (Chaudhuri & Dasgupta, 2014; Gühring et al., 2020). Chaudhuri &
Dasgupta (2014) lower bounds the error for k-NN classifiers for a fixed k, and Gühring et al. (2020) shows the
depth expressivity of CNN classifiers. Assumption-3 states that the difference in Vknn-information between
intermediate layers does not explode indefinitely and thus can be bounded by some positive quantities τ and
ϵ.

Assumption-4 is also easily satisfied. For example, if the smallest prevalence class in the dataset has a
prevalence greater than 1

1000 , then assumption-4 boils down to saying L < N −0.5∗maxy (− log p(Y = y)) =
N−3.45, where L is the low PD value caused by spurious features in Ds, and N is the total number of layers
in the CNN. All our datasets satisfy the class prevalence > 1

1000 constraint. Even diseases like pneumothorax
which are rare, have a class prevalence of at least 1

30 in both NIH and MIMIC-CXR. And L < N − 3.45 is
easily satisfied in all our experiments. For e.g., see Fig-5 where 80% (or 1 − ψ = 0.8) of the samples have
PD ≤ 16. So L = 16, N = 121(for Densenet-121) easily satisfies 16 < 121 − 3.45.

Now we elaborate on the proof of the proposition given the four assumptions. We proceed in two parts: first,
we lower bound Vcnn-information for Ds, and then we upper bound Vcnn for Di.
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Assumption 3 implies:

(B −A)τ ≤
B∑

k=A

τ ≤ ID
Vknn

(ϕk) − ID
Vknn

(ϕk−1) ≤ (B −A)ϵ

Note: (A,B) are just placeholders for the min and max indices over which the summation is defined. They
are replaced by (L+ 1,K) and (K + 1, N) below while trying to lower bound IDs

Vcnn
and upper bound IDi

Vcnn

respectively.

PD - PVI connection. Note that by definition, when the prediction depth is k for a sample X, then
PV Iknn(ϕk(X)) ≥ δ but PV Iknn(ϕk−1(X)) < δ. This follows from how we compute PD (see Section-3 in
the main paper, and Appendix-A.6).

Lower bounding IDs

Vcnn

IDs

Vcnn
= IDs

Vcnn of depth N−K
(ϕK) {Assumption-1}

≥ IDs

Vknn
(ϕK) {Assumption-2}

= IDs

Vknn
(ϕL) +

K∑
k=L+1

ID
Vknn

(ϕk) − ID
Vknn

(ϕk−1) {Telescoping Sum}

≥ IDs

Vknn
(ϕL) + (K − L)τ {Assumption-3}

≥ ψ min
X,Y ∈Ds,pd>=L

PV Iknn(X → Y )

+ (1 − ψ) min
X,Y ∈Ds,pd<L

PV Iknn(X → Y ) + (K − L)τ {Prediction Depth Separation}

≥ 0 ∗ ψ + δ ∗ (1 − ψ) + (K − L)τ {Prediction Depth Separation}

Upper bounding IDi

Vcnn

IDi

Vcnn
≤ IDi

Vknn
(ϕN ) {Assumption-2}

= ID
Vknn

(ϕK) +
N∑

k=K+1
ID

Vknn
(ϕk) − ID

Vknn
(ϕk−1) {Telescoping Sum}

≤ ID
Vknn

(ϕK) + (N −K)ϵ {Assumption-3}
≤ (N −K)ϵ+ ψ max

X,Y ∈Di,pd(X)≤K
PV ID

Vknn
(ϕK(X) → Y )

+ (1 − ψ) max
X,Y ∈Di,pd(X)>K

PV ID
Vknn

(ϕK(X) → Y ) {Prediction Depth Separation}

≤ (N −K)ϵ+ ψmax
y

(− log p(Y = y))

+ (1 − ψ) max
X,Y ∈Di,pd(X)>K

PV ID
Vknn

(ϕK(X) → Y ) {PVI ≤ − log p(Y = y)}

≤ (N −K)ϵ+ ψmax
y

(− log p(Y = y)) + (1 − ψ)δ {PD-PVI connection for pd > K}

The proof follows by comparing the lower bound on IDs

Vcnn
and the upper bound on IDi

Vcnn
. Intuitively what

this means is that when there is a sufficiently large gap in the mean PD between Ds and Di, then the
V-information of Ds exceeds the V-information of Di, which is why the model prefers learning the spurious
feature and using them as shortcuts rather than using the core features for the task.
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A.2 Grad-CAM Visualization

PD plots help us understand the model layers actively used for classifying different images. To further aid
our intuition, we visualize the Grad-CAM outputs for the model’s arbitrary layer k by attaching a soft-KNN
head. Let gknn denote the soft and differentiable version of k-NN. We compute gknn as follows:

This is a sample text in gknn(ϕk
q ;ϕk

i∈{1,2,...m}) =
∑

j∈N (ϕk
q ,1)

exp−∥ϕk
q −ϕk

j
∥/s∑

j∈N (ϕk
q ,:)

exp
−∥ϕk

q −ϕk
j

∥/s

This function makes the KNN differentiable and can be used to compute Grad-CAM (Selvaraju et al., 2017).
We use the L1 norm for all distance computations. ϕk

q corresponds to feature at layer-k for query image xq.
Let ϕk

i∈{1,2,...m} be the training data for KNN. Let N denote the neighborhood function. N (ϕk
q , :) returns

the indices of K-nearest neighbors for ϕk
q . N (ϕk

q , 1) returns indices of images with positive label (y = 1) from
the set of K-nearest neighbors for ϕk

q . s is the median for the set of L1 norms {∥ϕk
q − ϕk

j ∥} for j ∈ N (ϕk
q , :).

A.3 Vision Experiments

We use the NICO++ (Non-I.I.D. Image dataset with Contexts) dataset Zhang et al. (2022) to create multiple
spurious datasets (Cow vs. Bird; Dog vs. Lizard) such that the context/background is spuriously correlated
with the target. NICO++ is a Non-I.I.D image dataset that uses context to differentiate between the test
and train distributions. This forms an ideal setup to investigate what spurious correlations the model learns
during training. We follow the procedure outlined by Puli et al. (2022) to create datasets with spurious
correlations (90% prevalence) in the training data. The test data has the relationship between spurious
attributes and the true labels flipped. This is similar to the Chex-MIMIC dataset illustrated in section-4.2.
We test our hypothesis using ResNet-18 and VGG16. We train our models for 30 epochs using an Adam
optimizer and a base learning rate of 0.01. We choose the best checkpoint using early stopping.

NICO (Cows vs Birds; Spurious Background)

GradCAM (Layer-1)

Training Data (Acc=97.2%)

(Cows on grass; Birds on water)

Test Data (Acc=59.9%)

(Cows on water; Birds on grass)

(A) (B) (C) (D)

Figure 9: Cow vs. Birds classification on NICO++ dataset. (A) Training data contains images of cows on
grass and birds on water (correlation strength=0.9). The model achieves 97.2% training accuracy. (B) PD
plot for ResNet-18 reveals a spurious peak at layer-1, indicating the model’s heavy reliance on very simple
(potentially spurious) features. (C) GradCAM plots for layer 1 reveal that the model mainly relies on the
spurious background to make its predictions. (D) Consequently, the model achieves a test accuracy of only
59.9% on test data where the spurious correlation is flipped (i.e., cows (birds) are found on water (grass)).

Figures-9,11 show PD plots and train/test accuracies for models that learn the spurious background feature
present in the NICO++ dataset. While all models achieve> 85% training accuracy, they have poor accuracies
( 50%) on the test data where the spurious correlation is flipped. This can be seen simply by observing the
PD plots for the model on the training data. The plots are skewed towards the initial layers indicating
that the model relies heavily on very simple (potentially spurious) features for the task. GradCAM maps
also confirm that the model often focuses on the background context rather than the foreground object of
interest.
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NICO (Cows vs Birds; Balanced Dataset)

Balanced Training Data (Acc=99.1%)

(Cows/Birds on Grass/Water)

Test Data (Acc=80.2%)

(Cows on water; Birds on grass)

(A) (B) (C)

Figure 10: Balanced dataset for Cow vs. Birds classification task on NICO++ dataset. (A) The training
dataset contains a balanced distribution of cows and birds found on water and grass (each group has an
equal number of images). (B) The balanced dataset shifts the PD plot towards the later layers (compared
to Fig-9B, indicating that the model relies lesser on spurious features. (C) This consequently results in an
improved test accuracy of 80.2% (as compared to 59.9% in Fig-9D for the spurious dataset).

NICO (Dog vs Lizard; Spurious Background)

Spurious Training Data (Acc=87.2%)

(Outdoor Dogs; Lizards on Rock)

Test Data (Acc=63.9%)

(Dogs on Rock; Outdoor Lizards)

(A) (B) (C)

Figure 11: Dog vs. Lizard classification with a spurious background feature on NICO++ dataset. (A)
Training data contains images of outdoor dogs and lizards on rock (correlation strength=0.9). The spurious
background color/texture reveals the foreground object. The model achieves 87.2% training accuracy. (B)
PD plot for ResNet-18 reveals a spurious peak at layer-1, indicating the model’s reliance on simple (poten-
tially spurious) features. (C) The low test accuracy confirms this (63.9%). The test data has the spurious
correlation flipped (i.e., images contain dogs on rock and lizards found outdoors.)

We further observe in Fig-10 that balancing the training data (to remove the spurious correlation) results in
a model with improved test accuracy (80.2%) as expected. This is also reflected in the PD plot (Fig-10B),
where we see that the distribution of the peaks, as well as the mean PD, shift proportionately towards the
later layers, indicating that the model now relies lesser on the spurious features.
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By monitoring PD plots during training and using suitable visualization techniques, we show that one can
obtain useful insights about the spurious correlations that the model may be learning. This can also help
the user make an educated guess about the generalization behavior of the model during deployment.

A.4 Empirical Relationship: PD vs V-information

In Section-4.4 we explore the relationship between PD and V-information. To empirically confirm these
results, we further investigate this relationship on four additional datasets: KMNIST, FMNIST, SVHN, and
CIFAR10. We train a VGG16 model on these datasets for ten epochs using an Adam optimizer and a base
learning rate of 0.01. We use a bar plot to show the correlation between PD and V-entropy. We group PD
into intervals of size four and compute the mean V-entropy for samples lying in this PD interval.

Figure 12: The bar plots show a positive correlation between PD and Conditional V-entropy. Samples with
higher PD also have a higher V-entropy resulting in lower usable information for models like VGG16.

In Section-4.4, we find that PD is positively correlated with V-information, and the results shown in Fig-12
further confirm this observation. Instance difficulty increases with PD, and the usable information decreases
with an increase in V-entropy. It is, therefore, clear from Fig-12 that samples with a higher difficulty (PD
value) have lower usable information, which is not only intuitive but also provides empirical support to
Proposition-1 in Appendix-A.1.

A.5 Chest Drain Annotations for NIH Dataset

To reproduce the results by Oakden-Rayner et al. (2020), we need chest drain annotations for the NIH
dataset (Wang et al., 2017a), which is not natively provided. To do this, we use the MIMIC-CXR
dataset (Johnson et al., 2019), which has rich meta-data information in radiology reports. We collaborate
with radiologists to identify terms related to Pneumothorax from the MIMIC-CXR reports. These include
pigtail catheters, pleural tubes, chest tubes, thoracostomy tubes, etc. We collect chest drain annotations for
MIMIC-CXR by parsing the reports for these terms using the RadGraph NLP pipeline (Jain et al., 2021).
Using these annotations, we train a DenseNet121 model to detect chest drains relevant to Pneumothorax.
Finally, we run this trained model on the NIH dataset to obtain the needed chest drain annotations. We
use these annotations to get the results shown in Fig - 6D, which closely reproduces the results obtained by
Oakden-Rayner et al. (2020).

A.6 Notion of Undefined Prediction Depth

Section-3 shows how we compute PD in our experiments. While fully trained models give valid PD values,
our application requires working with arbitrary deep-learning models that are not necessarily fully trained.
We, therefore, introduce the notion of undefined PD by treating k-NN predictions close to 0.5 (for a binary
classification setting) as invalid. We define a δ such that |fknn(x) − 0.5| < δ implies an invalid k-NN output.
We use δ = 0.1 and k = 29 in our experiments. If any k-NN predictions for the last three layers are invalid,
we treat the PD of the input image to be undefined. To work with high-resolution images (like 512 × 512),
we downsample the spatial resolution of all training embeddings to 8 × 8 before using the k-NN classifiers
on the intermediate layers. We empirically see that our results are insensitive to k in the range [5, 30].
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A.7 A PD Perspective for Feature Learning

Table 1 shows that the core-only accuracy stays high (>98%) for datasets where the spurious feature is
harder to learn than the core feature. When the spurious feature is easier than the core, the model learns
to leverage them, and hence the core-only accuracy drops to nearly random chance (∼50%). Interestingly,
the KMNpatch-MN results have a much higher core-only accuracy (∼69%) and a more significant standard
deviation. This is because the choice of features that the model chooses to learn depends on the PD
distributions of the core and spurious features. We provide three different perspectives on why KMNpatch-
MN runs have better results.

PD Distribution Perspective: The KMNpatch-MN domino dataset has a smaller difference in the core-
spurious mean PDs (2.2 − 1.1 = 1), as compared to other datasets (for e.g., MN-KMN has a difference of
5 − 2.2 = 2.8 in their mean PDs). The closer the PD distributions of the core and spurious features are,
the more the model treats them equivalently. Therefore, in the case of the KMNpatch-MN, we empirically
observe that different initializations (random seeds) lead to different choices the model makes in terms of
core or spurious features. This is why the standard deviation of KMNpatch-MN is high (20.03) compared
to the other experiments.

Theoretical Perspective (Proposition-1): This is not surprising and, in fact, corroborates quite well
with Proposition-1 in Appendix-A.1. The Prediction Depth Separation Assumption suggests that without
a sufficient gap in the mean PDs of the core and spurious features, one cannot concretely assert anything
about their ordinal relationship in terms of their usable information. In other words, spurious features will
have higher usable information (for a given model) than the core features only if the spurious features have
a sufficiently lower mean PD as compared to the core features. On the other hand, as the core and spurious
features become comparable in terms of their difficulty, the model begins to treat them equivalently.

Loss Landscape Perspective: (this is a conjecture; we do not have empirical evidence) The loss land-
scape is a function of the model and the dataset. The solutions in the landscape that are reachable by the
model depend on the optimizer and the training hyperparameters. Given a model and a set of training hyper-
parameters, we conjecture that the diversity (in terms of the features that the model learns during training)
of the solutions in the landscape increase as the distance (difference in mean PD) between the core and
spurious features decreases. This diversity manifests as the model’s choice of using core vs. spurious features
and could potentially result in a higher standard deviation of core-only accuracy across initializations.

A.8 Code Reproducibility

The code, along with the Python package list and environment files, have been submitted as a zip file in the
supplementary section.
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