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ABSTRACT

Humans have an innate ability to decompose their perceptions of the world into
objects and their attributes, such as colors, shapes, and movement patterns. This
cognitive process enables us to imagine novel futures by recombining familiar con-
cepts. However, replicating this ability in artificial intelligence systems has proven
challenging, particularly when it comes to modeling videos into compositional con-
cepts and generating unseen, recomposed futures without relying on auxiliary data,
such as text, masks, or bounding boxes. In this paper, we propose Dreamweaver,
a neural architecture designed to discover hierarchical and compositional repre-
sentations from raw videos and generate compositional future simulations. Our
approach leverages a novel Recurrent Block-Slot Unit (RBSU) to decompose
videos into their constituent objects and attributes. In addition, Dreamweaver uses
a multi-future-frame prediction objective to capture disentangled representations
for dynamic concepts more effectively as well as static concepts. In experiments,
we demonstrate our model outperforms current state-of-the-art baselines for world
modeling when evaluated under the DCI framework across multiple datasets. Fur-
thermore, we show how the modularized concept representations of our model
enable compositional imagination, allowing the generation of novel videos by
recombining attributes from different objects.

1 INTRODUCTION

The primary function of the brain is believed to be the construction of an internal model of the
world from sensory inputs like vision—a concept often referred to as world models (Ha and Schmid-
huber, 2018). This construction involves developing two fundamental processes: knowing and
thinking (Summerfield, 2022; Lake et al., 2017; Fodor et al., 1975). The knowing function entails
how to compositionally structure and encode knowledge from experiences through representation
learning. The thinking function enables the utilization of this encoded knowledge for abilities such
as reasoning, planning, imagining, and causal inference (Goyal and Bengio, 2022; Schölkopf et al.,
2021a). Due to its generative and inferential nature, the thinking function necessitates some form of
generative learning (Parr and Friston, 2018; Kurth-Nelson et al., 2023; Schwartenbeck et al., 2023).

A key aspect distinguishing the world models in humans and AI currently is compositionality (Smolen-
sky et al., 2022; Schölkopf et al., 2021c; Lake et al., 2017; Goyal and Bengio, 2022; Greff et al.,
2020; Behrens et al., 2018), the capability to understand or construct complex concepts as a com-
position of simpler concepts. Recent studies in neuroscience suggest that humans can understand
and adapt to various novel situations because the brain supports compositional representation and
generation (Kurth-Nelson et al., 2023; Schwartenbeck et al., 2023; Behrens et al., 2018; Bakermans
et al., 2023). However, current world models in AI are limited in this ability for the following reasons.

Most of compositionality in AI is currently approached via language-conditioned image/video
generation models such as DALL·E (Ramesh et al., 2021; 2022) and Sora (Cho et al., 2024; Millière).
These models do offer a degree of compositionality (e.g., generating an image of an avocado chair)
through language as a medium, which is convenient for human interaction. However, achieving
compositionality more broadly, without relying on language, remains a challenge. This is crucial
because there is a vast amount of world knowledge that is difficult to accurately articulate through
language. Another limitation of this language-dependent approach is that it addresses only half of the
problem. This is because the most challenging part of the knowing problem, namely discovering a
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Figure 1: Overview of the Dreamweaver Framework. Our aim is to take a sequential unstructured sensory
stream and bind the low-level information into abstract modular concepts to build a memory of reusable concepts,
called concept library—all without text and in an unsupervised way. These concepts include both static factors
such as color and shape as well as dynamic factors such as direction and speed of motion. Finally, we seek to
recombine these concepts, e.g., in a novel configuration, and imagine an unseen world.

composable knowledge representation from unstructured raw sensory inputs, is sidestepped as the
core structure is provided through the token-compositional structure inherent in language, rather
than being discovered. To the best our knowledge, this crucial ability of achieving compositional
imagination from video without language, has yet to be realized in machine learning.

In this paper, we take the first step toward this challenge. Specificially, we focus on unsupervised
learning of compositional world models from image sequences in a way to support both the com-
positional knowing and thinking processes. We approach this challenge from the perspective of
Object-Centric Learning (OCL) (Greff et al., 2020). OCL aims to learn to develop a compositional
and modular representation from visual observations in an unsupervised way. However, existing
OCL approaches lack some key properties required for a truly compositional world model. For
instance, most OCL methods, such as Slot Attention (SA) (Locatello et al., 2020) and its subsequent
models (Singh et al., 2022a; Kipf et al., 2021; Singh et al., 2022b; Seitzer et al., 2022) maintain
a monolithic, entangled representation for representing an object while lacking a compositional
structure within an object. This issue has recently been addressed by SysBinder (Singh et al., 2023;
Wu et al., 2024) by introducing a block-slot representation that offers a nested compositional structure,
referred to as blocks, within an object slot. These works (Singh et al., 2023; Wu et al., 2024) showed
that this block-slot representation enables the generation of novel scene imaginations by recombining
static blocks concepts in an out-of-distribution manner.

However, since these models are designed for static images, it is unclear whether they can be extended
for dynamic sequence modeling and serve as a foundation for image-based compositional world
models. A key uncertainty and challenge is whether dynamic concept blocks, such as direction (e.g.,
‘to the right’) and speed (e.g., ‘fast’ or ‘slow’), can emerge solely from observational learning. Our
key hypothesis is that object-centric representation learning alone is insufficient. Instead, both a
block-slot representation and a temporally predictive objective function are necessary—components
that were not utilized in previous works. If successful, this proof-of-concept approach would represent
a step toward the grand challenge of generating novel videos without relying on language, through
the composition of both static and dynamic block-slot concepts, such as a “flying green rabbit,” as
shown in Fig1.

We achieve this goal by introducing a neural architecture named Dreamweaver. Dreamweaver encodes
a temporal context window of T past images using a novel Recurrent Block-Slot Unit (RBSU). The
RBSU represents its state as a set of slot states, each updated independently. This is then passed
through a block-slot bottleneck, mapping the potentially entangled monolithic slot state into a
composition of independent blocks. Since a block vector can only obtain its value through attention
to the prototype concept library, this process can also be seen as implementing an attraction process at
each step. At the end of the temporal encoding, Dreamweaver predicts the observation at a future time
step from the latest block-slot representation. We found that this predictive reconstruction objective
is indeed crucial in making the dynamic concept abstractions emerge. In experiments, Dreamweaver
outperforms state-of-the-art object-centric methods under the DCI framework across several datasets.
Moreover, we demonstrate how RBSU’s modularized concept representations enable compositional
imagination, generating novel videos that combine attributes from different objects.

The main contributions of the paper are as follows: We introduce the Dreamweaver model for
compositional world modeling from pixels. We introduce a novel recurrent module, named Recurrent
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Figure 2: Model Architecture. Left: The Recurrent Block-Slot Unit (RBSU) is a recurrent unit designed
for processing sequences where each item is a set of vectors. RBSU maintains and updates Block-Slots,
which represent compositional and semantic concepts such as shape, color, and motion direction. Right: The
Dreamweaver model encodes video inputs into Block-Slot representations, which pass through a series of
RBSUs with a recurrent structure. It then predicts future frames by decoding the extracted Block-Slots using a
transformer decoder, training to minimize the predictive objective.

Block-Slot Units. Our model is the first in object-centric learning that can learn both static and
dynamic composable concepts in an unsupervised way. By contrast, previous works were modeling
only static images and able to learn only static concepts. We also found that using a predictive
imagination loss is crucial in achieving this, in addition to the architectural inductive bias of block-
slot representation. We found that previous temporal object-centric models cannot develop abstraction
of dynamic concepts due to their autoencoding objective. Finally, for the first time in this area, we
demonstrate the ability of Dreamweaver to simulate a future from an out-of-distribution configuration
of discovered concepts. While our model shares a common limitation of current state-of-the-art
object-centric learning models—it is not yet applicable to highly complex scene images—we believe
that the success of this proof-of-concept represents a significant step toward the grand challenge of
composing novel videos without relying on language.

2 RECURRENT BLOCK-SLOT UNITS

A Recurrent Block-Slot Unit or RBSU is a general-purpose recurrent unit for sequence modeling that
we propose in this work. Given an input sequence E1, . . . ,ET , where each item in the sequence
Et ∈ RL×Dinput is a collection of L vectors, RBSU works by processing the sequence recurrently. It
starts with an initial state representation S0, and for each item Et in the input sequence, applies the
RBSU to update the state from St−1 to St:

S0 ← Initialize() =⇒ St ← RBSU(Et,St−1).

Importantly, RBSU maintains a disentangled state representation St called the block-slot representa-
tion or simply block-slots. The block-slot representation is a collection of N vectors called slots i.e.,
St ∈ RN×MD. We denote each n-th slot in St as st,n ∈ RMD. Furthermore, each slot is internally
disentangled and constructed by concatenating M vectors of size D called blocks. We denote the
m-th block within a slot st,n as st,n,m ∈ RD. For modeling multi-object video inputs, a slot st,n can
represent an object while a block st,n,m within the slot can represent an intra-object reusable concept
e.g., color, shape, or direction of motion.

2.1 BOTTOM-UP ATTENTION

In the first step in an RBSU, the N slots of the previous time-step St−1 act as queries and attend over
the current L input features Et to obtain N bottom-up readout vectors Ut ∈ RN×MD. Following
Singh et al. (2023); Locatello et al. (2020), this is performed via inverted attention and renormalization
(Wu et al., 2023a) as follows:

At = softmax
N

(
q(St−1) · k(Et)

T

√
MD

)
=⇒ At,n,l =

At,n,l∑L
l=1 At,n,l

=⇒ Ut = At · v(Et),
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Next, in the readout Ut, we split each n-th row vector ut,n ∈ RMD into M equal readout chunks,
where each m-th chunk is denoted by ut,n,m. The chunks shall be used to update their corresponding
block in the block-slot state representation.

2.2 INDEPENDENT BLOCK ATTRACTOR DYNAMICS

The next step in an RBSU is to update each block in the current block-slot state representation via
per-block independent recurrent modules. Importantly, we incorporate attractor dynamics within
these recurrent modules to facilitate the convergence of each block’s state to a reusable representation.
We perform the following per-block operations:

GRU and MLP. First, each previous block state st−1,n,m is independently updated using its corre-
sponding readout chunk ut,n,m by applying a GRU to incorporate the bottom-up information. The
resulting block is then fed to an MLP with a residual connection as follows:

s̃t,n,m = GRUϕm(st−1,n,m,ut,n,m) =⇒ s̄t,n,m = s̃t,n,m + MLPϕm(LN(s̃t,n,m)).

We maintain separate GRU and MLP weights for each m to encourage modularity between blocks.
Here, the s̃t,n,m and s̄t,n,m denote the intermediate block states after applying GRU and the residual
MLP, respectively.

Block-Slot Attractor Dynamics. Since GRU and MLP alone are found insufficient for making a
block’s state reach a reusable attractor state (Singh et al., 2023), we explicitly incorporate a learned
memory of prototypes and make each block perform dot-product attention over this learned memory
to retrieve a state as follows:

ŝt,n,m =

[
softmax

Nprototypes

(
s̄t,n,m ·CT

m√
d

)]
·Cm.

To maintain modularized representations from GRU and MLP, we utilize a separate library of
prototypes Cm ∈ RNprototypes×D for each m. Notably, each library is initialized with Nprototypes
learnable vectors, which are subsequently learned through backpropagation to capture emergent
semantic concepts.

2.3 BLOCK INTERACTION

Finally, although we maintain independent information processing pathways, for improved flexibility,
it is desirable to let the blocks in Ŝt interact: St = BlockInteraction(Ŝt). To implement this interac-
tion step, we first flatten the slots into a collection of NM block vectors, feed them to a single-layer
transformer, and then reshape the output back to the original shape St ∈ RN×MD.

3 DREAMWEAVER: COMPOSITIONAL WORLD MODEL VIA PREDICTIVE
IMAGINATION

In this section, we propose and describe a novel compositional world model called Dreamweaver
using the proposed RBSU. Broadly, Dreamweaver takes a video x1, . . . ,xT as input, constructs the
world state in terms of composable tokens, and predicts K future video frames x̂T+1, . . . , x̂T+K :

x̂T+1, . . . , x̂T+K = Dreamweaver(x1, . . . ,xT ),

where T is a temporal context window size and the frames belong to RC×H×W . Dreamweaver is
implemented as an encoder-decoder architecture:

ST = fϕ(x1, . . . ,xT ) =⇒ x̂T+k = gθ(ST , k)

where the encoder fϕ encodes the video x1, . . . ,xT into slots ST leveraging RBSU. Given the slots
ST and a step indicator k, where k is the relative temporal index of the target frame, the decoder gθ
predicts the target frame x̂T+k via an autoregressive image transformer (Singh et al., 2022a;b; 2023).

3.1 ENCODING VIA SPATIOTEMPORAL CONCEPT BINDING

In the encoder of Dreamweaver, each input frame xt is processed by a CNN to output a feature map.
Next, we add positional embeddings to this feature map, flatten it, and feed it to an MLP to obtain
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Et ∈ RL×D. This is similar to Locatello et al. (2020); Singh et al. (2022b; 2023). The sequence
E1, . . . ,ET is then processed by the RBSU to produce slots S1, . . . ,ST :

Et = CNNϕ(xt) =⇒ St ← RBSUϕ(Et,St−1).

Here, we obtain the initial block-slot state S0 by sampling it from a learned Gaussian distribution.
That is, for all n = 1, . . . , N , we sample s0,n ∼ N (µϕ,σϕ), where µϕ,σϕ ∈ RMD are learned
parameters.

3.2 DECODING VIA AUTOREGRESSIVE IMAGE TRANSFORMER

The extracted slots ST are decoded leveraging an autoregressive image transformer to predict the
future frames xT+1, . . . ,xT+K . Similar to the powerful architectures used in (Singh et al., 2022a;b;
2023), our transformer decoder does not directly predict the target images in pixel space but instead
predicts their discrete token representation. We employ a Discrete VAE (dVAE) (Ramesh et al., 2021;
Singh et al., 2022a) to transform an image into a sequence of L′ integer tokens zT+k,1, . . . , zT+k,L′ ∈
V and vice-versa, where V denotes a vocabulary.

To train the transformer, we adopt the standard practice in language modeling (Vaswani et al., 2017;
Singh et al., 2022a) and perform parallelized training of the autoregressive transformer via causal
masking. That is, we first map each token zT+k,l ∈ V to an embedding eT+k,l ∈ RD by retrieving
the token’s embedding from a learned dictionary and adding a positional encoding as follows:
eT+k,l = Dictionaryθ(zT+k,l) + pθ,l. Next, we provide the embeddings eT+k,1, . . . , eT+k,L′−1 to
the transformer decoder that utilizes a beginning-of-sequence (BOS) token and causal masking to
generate the next-token log probabilities for each input token:

oT→T+k,1, . . . ,oT→T+k,L′ = Transformerθ(BOSθ,k, eT+k,1, . . . , eT+k,L′−1;cond = ST ),

Here, the notation otsource→ttarget,l ∈ R|V| denotes the predicted log probabilies over V for the l-th
token of the image at time-step ttarget given the slots inferred at time-step tsource. Additionally, the
BOS token serves a dual purpose: it provides the initial input to the transformer and acts as a step
indicator, representing the relative temporal index k. We maintain a dedicated BOS token for each k,
denoted as BOSθ,k. The detailed method for the conditional prediction of the k-th frame is described
in Appendix B.2.

3.3 TRAINING OBJECTIVE

The complete model is trained by minimizing a cross-entropy loss averaged over all values of
k = 1, . . . ,K, and all token indices l = 1, . . . , L′:

LDreamweaver(θ, ϕ) =
1

KL′

K∑
k=1

L′∑
l=1

CrossEntropy(zT+k,l,oT→T+k,l)

In practice, we train the dVAE jointly with the Dreamweaver by using a combined loss L(θ, ϕ) =
LDreamweaver(θ, ϕ) + LdVAE(θ, ϕ). For more details about the dVAE, see Appendix section B.1.

Need for a Predictive Objective. The purpose of introducing a predictive objective in contrast to a
simple reconstruction objective commonly used in prior works (Kipf et al., 2021; Singh et al., 2022b;
Elsayed et al., 2022) is two-fold: i) The predictive objective incentivizes RBSU to capture not just
static factor primitives, such as color or shape, but also dynamical primitives, such as direction or
speed, since the latter is necessary when performing future prediction but much less important when
the goal is to merely reconstruct the present frame. ii) The ability to generate future frames naturally
provides a world model that can be utilized to roll out long future trajectories by autoregressively
feeding each generated frame back into the model.

4 RELATED WORKS

Learning Object-centric Compositional Representations. Our work is influenced by recent
research in unsupervised object-centric representation learning (Locatello et al., 2020; Engelcke et al.,
2020; Burgess et al., 2019; Greff et al., 2017; 2019; 2020; Van Steenkiste et al., 2018; Zoran et al.,
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2021; Veerapaneni et al., 2019; Ding et al., 2020; Seitzer et al., 2022; Lowe et al., 2022; Sajjadi et al.,
2022), where multi-object scenes are decomposed into entity-level representations corresponding to
the objects in the scene. In particular, our method is built upon the family of Slot Attention-based
models (Locatello et al., 2020; Singh et al., 2022a; Wu et al., 2023b; Jiang et al., 2023) and related to
several Slot Attention for Video models (Kipf et al., 2021; Elsayed et al., 2022; Singh et al., 2022b;
Bao et al., 2023; Zadaianchuk et al., 2023; Singh et al., 2024; Jiang et al., 2024). Unlike our method,
these models are trained with a reconstruction objective instead of a predictive objective and generally
do not support imagination of future frames. Furthermore, these slot-based models only decompose
the scene into object-level representations, whereas our model discovers concept-level representations
in the form of block-slot representations. While previous work (Singh et al., 2023; Wu et al., 2024)
also learned static concept-level representations from images, our method is the first to be applied to
videos and additionally capture dynamic concepts. Another line of research learns bounding boxes
for the objects in the scene, decomposing the objects into where and what representations (Eslami
et al., 2016; Crawford and Pineau, 2019b; Kosiorek et al., 2018; Lin et al., 2020b; Crawford and
Pineau, 2019a; Jiang et al., 2019; Lin et al., 2020a). However, these methods also do not further
decompose into concept-level representations. Lastly, several works (Wu et al., 2021; 2022) support
future frame prediction by training a transformer on a set of pretrained object-representations (Lin
et al., 2020b; Kipf et al., 2021; Singh et al., 2022b). Our method instead is trained end-to-end, which
allows dynamic concepts to be captured in the representations and naturally reuses them to predict
future frames. Additional related works are detailed in Appendix A.

5 EXPERIMENTS

We evaluate the following questions: (1) How effectively can Dreamweaver infer modular con-
cepts—both static and dynamic—from RGB videos without any supervision? (2) Can Dreamweaver
generate new videos by composing novel configurations of the inferred concepts? (3) How well
does Dreamweaver’s representation support out-of-distribution (OOD) generalization on downstream
reasoning tasks? Finally, we conduct an ablation study to evaluate various design choices.

Datasets. We experiment on five datasets spanning two axes of complexity: Dynamical Complexity
and Visual Complexity. Along the axis of dynamical complexity, our datasets Moving-Sprites, Moving-
CLEVR, and Moving-CLEVRTex exhibit low dynamical complexity i.e., objects move uniformly
in a specific direction throughout the video (e.g., up, down, left, right). On the other hand, our
datasets Dancing-Sprites and Dancing-CLEVR exhibit high dynamical complexity, featuring multi-
step “dance” patterns (e.g., a clockwise square dance pattern: right→ down→ left→ up, as
shown in Figure 14) or multi-step color-change patterns (see Figure 15). Along the axis of visual
complexity, we have 3 levels: (i) The simplest are Moving-Sprites and Dancing-Sprites with 2D
sprites on a black canvas. (ii) Moving-CLEVR and Dancing-CLEVR significantly increase visual
complexity, with 3D scenes featuring solid-colored 3D rubber objects, realistic lighting, and shading.
(iii) In line with previous work (Singh et al., 2023; Wu et al., 2024), the highest level of visual
complexity is in Moving-CLEVRTex, where objects have complex textures on them.

Baselines. We compare our model against three unsupervised representation learning baselines:
RSSM (Hafner et al., 2018), STEVE (Singh et al., 2022b), and SysBinder (Singh et al., 2023).
RSSM is a widely used world modeling framework that represents a video frame via single-vector
representation. STEVE is a state-of-the-art method that represents each video frame as a set of
per-object latent vectors (called slots). STEVE uses Slot Attention (Locatello et al., 2020) to represent
scenes in a structured manner by spatially binding objects into slot representations. Like STEVE,
SysBinder also provides a slot representation of each video frame; however, it further disentangles a
slot as a concatenation of several blocks—each block representing one factor e.g., color, shape, etc.
Since SysBinder was originally designed for image data, it can only be applied independently per
video frame and is not capable of utilizing the temporal context. Therefore, for a fair comparison
with our model, we modify SysBinder for videos to obtain a stronger baseline as follows. We equip
SysBinder with a recurrent encoder (Kipf et al., 2021) to handle multiple frames. We refer to this
modified model as SysBinder for simplicity. For all baselines, we use the same length of conditioning
frames as our model. The baselines are trained with a reconstruction objective.
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Figure 3: DCI Performance. We compare our model with the baselines in terms of Disentanglement (D),
Completeness (C), Informativeness (I), and Informativeness-Dynamic (I-D). I-D is the informativeness score
for dynamic concepts only (e.g., the direction of motion or dance pattern, etc.) to evaluate how effectively the
models capture such dynamic concepts.

5.1 UNSUPERVISED MODULAR CONCEPT DISCOVERY FROM VIDEOS

Metrics. For quantitative evaluation of learned representations, we use the DCI (Eastwood and
Williams, 2018) framework to evaluate Disentanglement (D), Completeness (C), and Informativeness
(I). Note that the DCI is computed using ground truth object factors that not only include the static
factors e.g., color or shape, but also the dynamical factors e.g., direction of motion, “dance" pattern,
etc. Additionally, we also compute a metric called Informativeness-Dynamic (I-D), which is the
informativeness score evaluated only on the dynamic factors.

DCI Performance. In Figure 3, we compare the DCI performance of our model with the baselines.
We note that our model consistently surpasses the other baselines across all datasets, achieving the
highest scores in Disentanglement (D), Completeness (C), and Informativeness (I).

Emergence of Dynamical Factor Representation. Importantly, we also note in Figure 3 that our
model strongly surpasses all other baselines in terms of the I-D score which captures how informative
our representation is about the dynamic factors. Our model achieves scores more than twice those of
the other baselines. This strong performance points to the effectiveness of the predictive objective
which incentivizes our model to capture dynamical information. As such, to the best of our knowledge,
ours is the first unsupervised representation learning model capable of representing both static and
dynamic concepts while simultaneously providing disentanglement.

Visualizing the Feature Space of Blocks. We visualize the semantics of each block’s feature space
in Appendix D.1. We can see that our model allocates specific regions of the feature space of
specific blocks to capture specific factor values e.g., the star shape, the yellow color, etc. We also see
qualitatively that our model captures the dynamical factor values such as the up&down dance and
the horizontal sliding movement.

5.2 COMPOSITIONAL IMAGINATION

In this section, we demonstrate how our block-slot representation can be recomposed into novel
configurations and be used to generate compositionally novel videos.

Setup. We feed the initial frames of a video (called the context frames) into our pre-trained RBSU
encoder. We take the block-slot representation from the last context frame and manipulate it in one
of the following two ways: (1) We can perform a factor swap by taking two slots corresponding to
distinct objects, selecting the blocks that correspond to a specific factor (e.g., color), and swapping
them. (2) We can perform a factor change by taking the block-slot representation from a source
video, selecting the block that captures a certain factor e.g., a block that represents a certain “dance”
movement and using it to replace a block in the block-slot representation of the video that we seek to
manipulate. The manipulated block-slot representation is fed to a pre-trained Dreamweaver decoder
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Figure 4: Compositional Imagination. We show compositionally novel videos generated by Dreamweaver.
In this visualization, we (1) infer the block-slot representation given an initial context video, (2) perform
manipulations on the inferred block-slot representation, and (3) perform rollout starting from the manipulated
block-slot representation. At the top, we also visualize the rollout that would have occurred had no manipulation
been done to the representation. Left: For the Moving-Sprites dataset, we visualize manipulations such as
swapping color and shape, changing of direction of motion of a specific object, and changing the speed of
movement of a specific object. Right: For the Dancing-CLEVR dataset, we visualize manipulations such as
swapping the object shapes and changing the dance patterns.

to generate future video frames. We autoregressively feed the predicted frames back into the encoder
as context frames to perform the rollout. Details about how we ascertain the correspondence between
a ground truth factor and its representative block are provided in Appendix C.5.

Results. In Figure 4, we can see that our approach successfully generates novel videos through the
compositional manipulation of our block-slot representations. For instance, in the Moving-Sprites
video, we could create novel object appearances by swapping color or shape blocks (Examples 1
and 2), and alter the objects’ motion trajectories and velocities by modifying direction or speed
blocks (Examples 3 and 4). Additionally, in the more complex Dancing-CLEVR experiments, we
demonstrate the ability to imagine different types of object dynamics, such as transitioning from
color-changing dynamics to lifting up and down movement dynamics, highlighting the flexibility of
our method (Examples 2 and 4). For more examples of compositional imagination, refer to Appendix
D.3. Furthermore, our model effectively generalizes to out-of-distribution block configurations in
compositional imagination tasks, preserving quality without degradation. See the detailed results in
Appendix D.2.

5.3 COMPOSITIONAL SCENE PREDICTION AND REASONING

To evaluate the quality of the learned representations, we construct a downstream task that requires
predicting the future states of the objects in the scene and reasoning among the factors of the objects.

Task. The task is to take the latent representation of the last frame of a given context video and
predict a target value corresponding to a range of future frames at various offsets e.g., 0, . . . , 5. The
target value corresponding to a frame is defined as follows: (1) We first assign an integer number
to each possible value of each ground truth factor following Wu et al. (2024). (2) We then take the
maximum value of each ground truth factor across objects and sum these maximum values to obtain
the target value. To solve this task well, the learner must, either explicitly or implicitly, predict the
future factor values of each object and compare these values to determine the maximum value.

Probe. We train a downstream probe that takes as input the latent representation of the last context
frame from each pre-trained model and predicts the target value for a range of frame offsets.

Setup. We evaluate the probing performance on the Dancing-Sprites and Dancing-CLEVR datasets.
For Dancing-Sprites, we use the shape, color, and position of each object as the ground truth factors
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Figure 5: Compositional Scene Prediction and Reasoning. We compare our model with baselines in terms of
prediction accuracy for different frame offsets. A frame offset of zero corresponds to the last context frame and
a frame offset of one corresponds to the first predicted frame after the context frames, and so on.

that determine the target value. Since we provide 3 context frames for this dataset and each object
moves in a 4-frame dance sequence, the models must capture the dance patterns to be able to
accurately infer the positions. To evaluate out-of-distribution generalization, we further create a
Dancing-Sprites (OOD) task where the test set consists only of objects with factor combinations that
are not seen during training. For the Dancing-CLEVR dataset, we use the dynamic object movement
type as a ground truth factor in addition to the shape, color, and position.

Probing Performance. In Figure 5, we can see that Dreamweaver consistently outperforms the
baselines on all datasets, indicating the learned block-slot representations are conducive to solving
this relational reasoning task.

Importance of a Predictive Objective. On Dancing-Sprites, SysBinder can accurately predict the
target value at frame offset 0 but the performance degrades for larger frame offsets. This shows the
usefulness of Dreamweaver’s predictive objective—while SysBinder also decomposes the scene to a
block-slot representation corresponding to the factors of the object, it is trained with a reconstruction
objective instead of a predictive objective and thus cannot accurately predict the target value for
frames outside of the context frames. For Dancing-CLEVR, we see all models besides Dreamweaver
fail, even at frame offset zero. This is because the dynamic object movement type is part of the
ground truth factors determining the target value, and as we saw from the DCI analysis, the baseline
models do not adequately capture these dynamical factors well.

Generalization Ability. Dreamweaver and SysBinder generalize well to the Dancing-Sprites-OOD
dataset, while the performance of STEVE and RSSM decrease significantly, illustrating the out-
of-distribution capability of the block-slot representations. Lastly, we note that the performance
of Dreamweaver is generally maintained even as the frame offset is increased beyond the training
prediction length. For Dancing-CLEVR, even though we only train the model to predict two frames,
we see that the learned representations can be used to predict up to five frames, further indicating that
the dynamics of the scene are captured well by the model.

5.4 ABLATION STUDY

We conduct a series of ablations on the different architectural components of Dreamweaver as well as
several of the key hyperparameters.

Analysis of Architectural Components. Figure 6 (a) shows the results of ablating several architec-
tural components on the Dancing-CLEVR dataset. We see that using the concept memory only on
the last slot iteration (CM-on-Last-Slot-It) performs similarly to our model, which uses the concept
memory after every slot iteration, although there is a slight drop in capturing dynamic concepts
(I-D). Removing the concept memory completely (No-CM), however, results in a sharp drop in
disentanglement, showing the importance of using a shared concept memory for our model. Lastly,
removing the predictive objective and instead training on reconstruction (No-Predictive) results in
worse performance across all metrics. In particular, I-D drops significantly, showing the importance
of the predictive objective for capturing dynamic concepts.

Effect of Number of Blocks and Concept Memory Size. Figures 6 (b-c) show the results of different
numbers of blocks and concept memory sizes on the CLEVR-Hard dataset. We see the performance
saturating once the number of blocks is large enough, indicating the robustness of this parameter as
long as it is set large enough to capture the complexity of the dataset. On the other hand, we observe
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Figure 6: Ablation Study Results. (a) Architectural ablations for the predictive objective and concept memory
on the Dancing-CLEVR dataset. (b-c) Varying number of blocks and concept memory size on the CLEVR-Hard
dataset. (d-e) Varying context length and prediction length on the Dancing-CLEVR and Dancing-Sprites datasets.

that the model’s performance is sensitive to the size of the concept memory. Specifically, increasing
the concept memory size leads to better disentanglement, but excessively large sizes can degrade
performance. This suggests that there is an optimal range for the concept memory size, and finding
this balance is crucial for achieving good disentanglement while maintaining overall performance.

Effect of Context Length and Prediction Length. Figures 6 (d-e) show the results of varying
context and prediction length on the Dancing-CLEVR and Dancing-Sprites datasets. We observe that
performance generally improves with longer context lengths, particularly in terms of disentanglement
and informativeness. For Dancing-Sprites, there is a significant drop in performance when the context
length is less than two, aligning with our design intention that requires observing more than three
frames to determine dance patterns accurately, while performance declines again when the context
length exceeds four frames. This may be because the dance patterns in this dataset repeat every 4
frames, so a longer context length will not provide more information to the model. We also find that
increasing prediction length larger than 2 has a negative affect on performance, particularly for I-D
on the Dancing-CLEVR dataset. Since the decoder is shared for the prediction across timesteps, this
may be due to the limited capacity of the decoder to represent longer-term predictions.

6 LIMITATIONS & CONCLUSION

In this paper, we introduced Dreamweaver, a novel neural architecture for unsupervised learning
of compositional world models from videos. The key component of Dreamweaver is the Recurrent
Block-Slot Unit, which encodes a temporal context window of past images and maintains a set of
independently updated block-slot states, enabling the emergence of abstraction for both static and
dynamic concepts. Our model outperforms state-of-the-art object-centric methods and demonstrates
the ability to generate videos through novel compositional imagination. This is the first time such
compositional imagination has been shown in object-centric learning from videos.

While Dreamweaver represents a significant advancement in the unsupervised learning of composi-
tional world models from visual data, it does have some limitations that future work may address.
First, extending Dreamweaver to a probabilistic model could improve its ability to manage uncertainty
and generate more diverse and realistic videos. Second, although Dreamweaver has demonstrated
the emergence of static and dynamic concepts, exploring the emergence of other abstract concepts,
such as numbers, could be fascinating. Lastly, our model shares the general limitation of current
state-of-the-art object-centric learning, which is not yet applicable to very complex scene images.
Addressing these areas could lead to improved world models.
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We are committed to ensuring the reproducibility of our research. To this end, we intend to make
all resources, including the code and datasets specifically designed for this work, publicly available.
Prior to release, we will thoroughly verify all implementations and empirical results to guarantee
their accuracy and reliability.

ETHICS STATEMENT

Although we address a fundamental issue in modern deep learning, we are not aware of immediate
societal concerns. While carrying deep potential, the practical applications of Dreamweaver remain
in developmental stages, indicating that its immediate impact on broader technology or industry
sectors is yet to be fully realized. However, future extensions that extend this framework to real-world
settings should be mindful of such impact. Also, the environmental impact of training transformer
models at scale should be considered in future extensions.
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A ADDITIONAL RELATED WORKS

Learning Compositional Mechanisms. Unlike our model is built on slot-based models, there
is another line of work for learning compositional representations motivated by the Independent
Causal Mechanisms principle and the Sparse Mechanism Shift hypothesis (Schölkopf et al., 2012;
2021b). RIMs architecture family (Goyal et al., 2021b; 2020; Madan et al., 2021; Assouel et al., 2022)
decomposes state space representations into separate recurrent components that operate independently,
with sparse interactions among them. These models are designed to learn a set of reusable mechanisms
that are selectively activated through sparse communication, enabling them to capture recurring
concepts across frames. Similarly, our model also learns reusable and modularized representations,
however, our representations are always used and more structured by introducing a hierarchical
structure, where these blocks are encapsulated within individual slot representations. Lastly, NPS
(Goyal et al., 2021a) model, as a recent work of RIMs, learns a set of independent mechanisms
capturing the interaction between objects, while ours is still limited in this ability.

Compositional World Models. Previous work has studied world models from the perspective
compositional generalization (Zhao et al., 2022; Sehgal et al., 2024; Zhou et al., 2024). In particular,
Cosmos (Sehgal et al., 2024) is a framework for object-centric world modeling that leverages a frozen
pretrained vision-language foundation model to decompose objects into symbolic attributes. Du et al.
(2023); Zhou et al. (2024); Yu et al. (2022); Cho et al. (2024) similarly relies on language to enable
compositional generalization. Our model, on the other hand, is able to learn a compositional world
model from pixels without the use language input or pretrained foundation models. COMET (Lei
et al., 2024) is also a related model that learns disentangled modes of interaction between objects, but
does not learn attribute-level representations of the objects.

B ADDITIONAL MODEL DETAILS

B.1 IMAGE TOKENIZATION VIA DISCRETE VAE

Since we leverage an autoregressive image transformer to predict the frames xt+1, . . . ,xt+K , we
train a discrete Variational Autoencoder (dVAE) to generate discrete token representations of these
frames and act as prediction targets. The dVAE consists of an encoder f dVAE

ϕ and a decoder gdVAE
θ .

The dVAE encoder takes an image as input and outputs a sequence of patch-level tokens or latent
codes zt,1, . . . , zt,L′ where zt,l ∈ I , while the dVAE decoder takes a sequence of tokens as input and
decodes it to an image. The dVAE encoder and decoder are trained with an autoencoding objective as
follows:

zt,1, . . . , zt,L′ = f dVAE
ϕ (xt) =⇒ x̂t = gdVAE

θ (zt,1, . . . , zt,L′) =⇒ LdVAE(θ, ϕ) = ||x̂t − xt||22,

where we use Gumbel-Softmax relaxation for the discrete latent codes to facilitate training and a
simple squared error as the reconstruction loss.

B.2 CONDITIONAL PREDICTION WITH STEP INDICATORS

We train our model to predict multiple future frames xt+1, . . . ,xt+K , which encourages the encoder
fϕ to extract consistent dynamic features by preventing the model from overfocusing on image
generation. However, predicting all frames simultaneously is inefficient. Instead, we improve
efficiency by randomly sampling one frame xt+k to predict during each training step. This is
achieved through conditional prediction using a single transformer decoder gθ and a step indicator ik.

BOS token as a step indicator. In Dreamweaver, the Beginning-of-Sequence (BOS) token in the
transformer decoder functions as a step indicator k. Specifically, we initialize a distinct BOSθ,k token
for each step k and input the corresponding BOSθ,k token, based on the index k sampled during each
training step, as the first token for autoregressive generation.

Self-modulation with step indicators. In more complex and realistic datasets, relying solely on the
BOS token limits conditional prediction performance. To address this, we employ the Self-modulation
technique (Karras et al., 2019; Lee et al., 2021). Specifically, we enhance the transformer decoder gθ
by replacing every layer normalization with self-modulated layer normalization (SLN), computed as
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follows:

SLN(hℓ,wθ,k) = γℓ(wθ,k)⊙
hℓ − µ

σ
+ βℓ(wθ,k)

where hℓ is the input from the previous layer, µ and σ denote the mean and variance of the inputs
within the layer, while γℓ and βℓ compute the adaptive normalization parameters. wθ,k is a learnable
latent vector used for guiding explicit modularized generation.

C ADDITIONAL IMPLEMENTATION DETAILS

C.1 TRAINING AND IMPLEMENTATION DETAILS

We utilized images with a 64x64 resolution for all datasets except Moving-CLEVRTex, which
uses a 128x128 resolution. Each model was trained on NVIDIA GeForce RTX 4090 GPUs with
24GB of memory. The Dreamweaver model underwent 400,000 iterations of training, taking 20
hours for the Moving-Sprites and Moving-Sprites-OOD datasets, 30 hours for the Dancing-Sprites,
Moving-CLEVR, and Dancing-CLEVR datasets, and 48 hours for Moving-CLEVRTex. Additionally,
we employed the self-modulation technique for conditional prediction exclusively in the Moving-
CLEVRTex dataset.

C.2 HYPERPARAMETERS

Table 1 details the hyperparameters employed for the various datasets in our Dreamweaver experi-
ments. We trained all models using the Adam optimizer (Kingma and Ba, 2014) with β1 set to 0.9
and β2 set to 0.999. Furthermore, we utilized the architecture and hyperparameters of the backbone
image encoder as specified in Singh et al. (2023).

Table 1: Hyperparameters of our model used in our experiments. We use a shortened version of the dataset name,
omitting prefixes such as "Moving-" or "Dancing-" unless they are necessary to distinguish between datasets.

Dataset

Module Hyperparameter Moving-Sprites Dancing-Sprites CLEVR CLEVRTex

General Batch Size 24 24 24 48
Training Steps 400K 400K 400K 400K
Image Size 64× 64 64× 64 64× 64 128× 128
Context Length, T 2 3 2 2
Prediction Length, K 2 3 2 2
Grad Clip (norm) 0.5 0.5 0.5 0.5

RBSU # Iterations 3 3 3 3
# Slots 5 5 5 5
# Prototypes 64 64 64 128
# Blocks 8 8 8 8
Block Size 96 96 96 96
Learning Rate 0.00005 0.00005 0.00005 0.00005

Discrete VAE Patch Size 4 × 4 4 × 4 4 × 4 4 × 4
Vocabulary Size 4096 4096 4096 4096
Temp. Start 1.0 1.0 1.0 1.0
Temp. End 0.1 1.0 0.1 0.1
Temp. Decay Steps 60K 60K 60K 60K
Learning Rate 0.0003 0.0003 0.0003 0.0003

Transformer Decoder # Layers 8 4 8 8
# Heads 4 4 4 4
Hidden Size 192 192 192 192
Dropout 0.1 0.1 0.1 0.1
Learning Rate 0.0003 0.0003 0.0003 0.0005
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C.3 BASELINES

In this paper, we train three baseline models: STEVE, SysBinder, and RSSM. For STEVE, we use
the original architecture and hyperparameters, modifying only the slot size to 64 dimensions. For
SysBinder, we adapt the architecture to handle video data with a recurrent structure and align the
hyperparameters with those of our model for a more accurate comparison, including block size, the
number of prototypes, and the number of blocks. For RSSM, we implement the world model from
DreamerV1 (Hafner et al., 2019), using 32 dimensions for both deterministic and stochastic latents,
while adhering to the other recommended hyperparameters.

For implementation, we utilize the following open-source resources:

• STEVE (Singh et al., 2022b): https://github.com/singhgautam/steve

• SysBinder (Singh et al., 2023): https://github.com/singhgautam/sysbinder

• RSSM (Hafner et al., 2020): https://github.com/jurgisp/pydreamer

C.4 DOWNSTREAM MODEL ARCHITECTURE

For the downstream experiments on all models except for RSSM, we use a transformer architecture
with 4 layers, 4 heads, 0.1 dropout, and model dimension of 128. We use the output of a learned class
token to predict the target label.

For RSSM, we use an MLP to make the prediction. While we experimented with matching the
number of parameters with the transformer model, we found better performance using a smaller
network with 4 layers and hidden dimension of 128 and ReLU activation.

During training, we freeze the up-stream models and train with a learning rate of 3e-4.

C.5 IDENTIFYING BLOCK-FACTOR CORRESPONDENCE.

To swap or change a factor, it is important to identify which block index corresponds to which object
factor. For this, we adopt the following procedure. (1) Take a large batch of videos with per-object
factor labels given. (2) Extract block-slot representation from the videos using a pre-trained RBSU
encoder. (3) Match slots with ground truth labels via Hungarian matching using mask overlap. (4)
Train a probe to predict ground truth factor labels from the block-slot representation. Use probing
methods that provide feature importance (e.g., LASSO or Decision Trees). (5) Manually inspect the
feature importances to identify which block(s) represent a specific ground truth factor.

D ADDITIONAL EXPERIMENT RESULTS

D.1 VISUALIZATION OF CAPTURED CONCEPTS

Figure 7 and 8 illustrates the concepts represented by each block within learned block-slot represen-
tations. To achieve this, we gather block representations with the same index and apply clustering
methods, such as k-means, following the approach in Singh et al. (2023).

For instance, in the Moving-Sprites dataset, block 0 captures shape concepts such as Star and
Square, block 2 captures color concepts such as Yellow and Red, and block 1 captures
dynamic concepts such as Lift Up & Down and Slide Leftside & Rightside motion.
Similarly, in the Dancing-CLEVR dataset, block 7 captures shape concepts, block 0 captures
color concepts, and block 4 captures dynamic concepts.

D.2 OUT-OF-DISTRIBUTION COMPOSITIONAL IMAGINATION

In Section 5.2, we demonstrate that our model is capable of synthesizing novel videos by recombining
block-slot representations. In this section, we further investigate whether Dreamweaver can generate
videos featuring objects with compositionally out-of-distribution (OOD) properties. To this end, we
introduce the Moving-Sprites-OOD dataset, a modified version of the Moving-Sprites dataset. In
this version, the model is trained with only 90% of the possible (shape, color, moving direction)
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Figure 7: Visualization of Captured Concept in Moving-Sprites dataset.

Figure 8: Visualization of Captured Concept in Dancing-CLEVR dataset.

combinations, deliberately withholding the remaining 10% to test the model’s ability to generalize to
unseen combinations.
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To evaluate out-of-distribution (OOD) compositional imagination, we adhere to the methodology
outlined in Section 5.2. As a result, our model successfully generates novel video frames that feature
objects with properties not present in the training dataset. For instance, as shown in Figure 9, we
intentionally modify a block-slot representation of an object characterized by (brown, square,
move left) — an object seen during training — into (cyan, square, move left) by
replacing the brown block with a cyan block, which is an unseen combination. Consequently, we
observed that our model extends its compositional imagination capabilities to novel, compositionally
unseen objects. Additional examples are provided in Figure 9.

Figure 9: Out-of-Distribution Compositional Imagination Example.

D.3 ADDITIONAL EXAMPLES OF COMPOSITIONAL IMAGINATION TASKS

To further illustrate the concept of compositional imagination, we provide additional examples of
tasks that demonstrate this capability. Some examples from Moving-CLEVRTex dataset are visualized
in Figure 10.

Figure 10: Compositional imagination examples on Moving-CLEVRTex. In this visualization, we demon-
strate the generation of compositionally novel videos on visually more complex and textured scenes than the
previously tested datasets. Top-Left: We show two original videos from the dataset. Top-Right: We swap the
block representations of object texture between two objects across videos after the context phase and roll-out.
Bottom-Left: We swap the background blocks of the two videos after the context phase and roll-out. Bottom-
Right: We swap the dynamics-capturing blocks of two objects across the two videos after the context phase and
roll-out.
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D.4 ADDITIONAL QUANTITATIVE RESULTS FOR FUTURE IMAGINATION

In addition to the remarkable qualitative outcomes of compositional imagination, we present quantita-
tive results in Table 2 to provide a more comprehensive understanding of our work. We computed
MSE, LPIPS (Zhang et al., 2018), and PSNR (Hore and Ziou, 2010) to evaluate compositional
imagination, where the blocks are manipulated in the final context frame and the remaining video is
rolled out. Specifically, for each test video, we performed the following manipulation: we swapped
the blocks for each intra-object factor across all object pairs in the video. Alongside, for each of
these manipulations, we generated ground truth videos also. To assess the quality of the imagined
compositions, we calculated MSE, LPIPS, and PSNR metrics by comparing the compositionally
imagined videos to their respective ground truth videos.

Table 2: Quantitative Results for Compositional Imagination Performance. We calculate this metric by
averaging over 20 different video scenarios, automatically conducting all semantically possible combinations of
block-slot manipulations per each video scenario.

Dataset

Moving-Sprites Dancing-CLEVR

MSE 1261 1484
LPIPS 0.288 0.395
PSNR 30.42 33.83

D.5 GENERALIZATION TO ENTIRELY UNSEEN CONCEPTS

In order to further evaluate the out-of-distribution generalization ability of Dreamweaver, we ran
additional experiments on the Dancing Sprites dataset for the downstream task from Section 5.3
with novel shapes and dance patterns that were not seen when training the underlying baseline and
Dreamweaver models. In this setup, we use the same pre-trained models as used in Section 5.3, but in-
troduce 6 novel shapes (OOD Shapes) and 4 novel dance patterns (OOD Dynamics) when training and
evaluating the downstream probe. For OOD Shapes, we introduce the following shapes: hexagon,
octagon, star_5, star_6, spoke_4, spoke_6. For OOD Dynamics, we show the
novel dance patterns in Figure 11. We show the results of these experiments in Figure 12. We see
that Dreamweaver still outperforms the baselines in this setting and we do not see much performance
degradation when compared to the in distribution setting (Figure 5 (left)). This indicates that the
block-slot representations can be useful for downstream tasks even on data with static and dynamic
concepts not previously seen during pre-training.

Figure 11: Visualization of Unseen Dance Patterns in Dancing-Sprites (OOD Dynamics) Experiments

E DETAILS OF DATASET DESIGN

We provide detailed information that is carefully considered in our dataset design. For a comprehen-
sive understanding of our design, refer to the visualized overview in Appendix 13.
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Figure 12: Downstream Performance with Entirely Unseen Concepts

Figure 13: Overview of Designed Datasets

E.1 SIMPLE DYNAMIC DATASETS

For the datasets with simple dynamics, we incorporate sliding movements into the existing static
datasets. Moving-Sprites features three fixed-sized objects with 12 shapes and 7 colors sliding in 4
directions at 4 different speeds within a 2D scene (detailed in Table 3). Moving-CLEVR consists
of two or three fixed-sized objects with 3 shapes and 8 colors sliding in 4 directions at a constant
speed within a 3D scene (detailed in Table 4). Moving-CLEVRTex includes two or three objects of 2
different sizes, each with one of 4 shapes and 10 complex textures, moving on a textured ground with
the same dynamics as Moving-CLEVR (detailed in Table 5). Within an episode, multiple objects
simultaneously evolve under their corresponding dynamics.

E.2 ADVANCED DYNAMIC DATASETS

For the datasets with advanced dynamics, we introduce additional complexity beyond sliding move-
ments. Dancing-Sprites includes three fixed-size objects derived from 6 shapes and 10 colors, each
performing one of 4 patterned dances (detailed in Table 6). Each dance pattern comprises a sequence
of 4 movement steps, requiring models to understand dynamics over longer context frames. Dancing-
CLEVR builds upon Moving-CLEVR by adding two extra motions: ‘lift motion’, where objects
move vertically instead of sliding, and ‘color pattern dynamics’, where each object follows one of 4
distinct color-changing patterns over time (detailed in Table 7). Similar to simple dynamic dataset,
multiple objects simultaneously evolve under their corresponding dynamics within an episode.
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Table 3: Primitive Object Factors in Moving-Sprites. In addition to their combinations of primitive properties,
all objects in the Moving-Sprites datasets have a fixed size of 0.22.

Shape Color (RGB) Moving Direction Speed

square (0, 0, 255) Up 0.025
triangle (0, 128, 0) Down 0.05
star_4 (255, 255, 0) Left 0.075
star_5 (255, 0, 0) Right 0.1
star_6 (0, 255, 255)
circle (255, 192, 203)

pentagon (165, 42, 42)
hexagon
octagon
spoke_4
spoke_5
spoke_6

Table 4: Primitive Object Factors in Moving-CLEVR. In addition to their combinations of primitive properties,
all objects in the Moving-CLEVR datasets have a fixed size of 1.6, are made of rubber material, and move at a
constant speed.

Shape Color (RGB) Moving Direction

Cube (87, 87, 87) Forward
Sphere (173, 35, 35) Backward
Cylinder (42,75, 215) Leftside

(29, 105, 20) Rightside
(129, 74, 25)
(129, 38, 192)
(41, 208, 208)
(255, 238, 51)

Table 5: Primitive Object Factors in Moving-CLEVRTex. All objects in Moving-CLEVRTex slides at a
fixed speed. For materials, we use free textures provided by Polyhaven. You can directly download through
clevrtex_generation (Karazija et al., 2021) code (link).

Shape Materials Size Moving Direction

Cube whitemarble 1.6 Forward
Sphere polyhaven_leather_red_02 2.0 Backward

Cylinder polyhaven_factory_wall Leftside
Torus polyhaven_cracked_concrete_wall Rightside

poly_haven_stony_dirt_path
polyhaven_painted_metal_shutter

polyhaven_raw_plank_wall
polyhaven_denim_fabric

polyhaven_large_grey_tiles
polyhaven_medieval_blocks_02
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Table 6: Primitive Object Factors in Dancing-Sprites. Along with their combinations of primitive properties,
all objects in the Dancing-Sprites datasets maintain a fixed size of 0.22 and move at a constant speed of 0.15.
For more details on dance patterns, see Figure 14.

Shape Color (RGB) Pattern

square (0, 0, 255) Clockwise_Square
triangle (0, 128, 0) Counter_Clockwise_Square
star_4 (255, 255, 0) Clockwise_Diamond
circle (255, 0, 0) Counter_Clockwise_Diamond

pentagon (0, 255, 255)
spoke_5 (255, 192, 203)

(165, 42, 42)
(0, 255, 0)

(255, 0, 255)
(255, 165, 0)

Figure 14: Visualization of Dance Patterns in Dancing-Sprites. There are four distinct dance
patterns, each composed of a sequence of four movements. Specifically, Clockwise_Square
follows [right, down, left, up]; Counter_Clockwise_Square follows [left, down,
right, up]; Clockwise_Diamond follows [downright, downleft, upleft, upright];
Counter_Clockwise_Diamond follows [downleft, downright, upright, upleft].

Table 7: Primitive Object Factors in Dancing-CLEVR. This dataset retains all object properties from Moving-
CLEVR, with the addition of new dynamic patterns. The maximum height of the lifting motion is twice the
object’s height. For more details on color patterns, see Figure 15.

Shape Color (RGB) Dynamics

Cube (87, 87, 87) Slide Forward
Sphere (173, 35, 35) Slide Backward

Cylinder (42,75, 215) Slide Leftside
(29, 105, 20) Slide Rightside
(129, 74, 25) Color Pattern: CW
(129, 38, 192) Color Pattern: CCW
(41, 208, 208) Color Pattern: 3-hop CW
(255, 238, 51) Color Pattern: 3-hop CCW

Lift Up
Lift Down
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Figure 15: Visualization of Color-changing Patterns in Dancing-CLEVR. The dataset includes four distinct
color-changing patterns, as illustrated in (b). Each sequence is generated by following the color map in (a): (1)
Clockwise Selection (CW), (2) Counter-Clockwise Selection (CCW), (3) 3-hop Clockwise Selection (3-hop
CW), and (4) 3-hop Counter-Clockwise Selection (3-hop CCW).
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