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Abstract

Traditional curriculum learning proceeds from easy to hard samples, yet defining
a reliable notion of difficulty remains elusive. Prior work has used submodular
functions to induce difficulty scores in curriculum learning. We reinterpret adaptive
subset selection and formulate it as a multi-armed bandit problem, where each
arm corresponds to a submodular function guiding sample selection. We introduce
ONLINESUBMOD, a novel online greedy policy that optimizes a utility-driven re-
ward and provably achieves no-regret performance under various sampling regimes.
Empirically, ONLINESUBMOD outperforms both traditional curriculum learning
and bi-level optimization approaches across vision and language datasets, show-
ing superior accuracy-efficiency tradeoffs. More broadly, we show that validation-
driven reward metrics offer a principled way to guide the curriculum schedule. Our
code is publicly available at GitHub 2.

1 Introduction

Curriculum Learning (CL), inspired by cognitive development, posits that training machine learning
models by gradually exposing them to data of increasing complexity can significantly enhance
both learning efficiency and generalization performance [4, 59]. The underlying principle is that
mastering simpler concepts first provides a robust foundation for acquiring more complex ones,
leading to improved convergence and a more effective exploration of the hypothesis space [19].
Empirical evidence shows CL improves model training, particularly in areas like code understanding
[33], enhances graph embeddings through complexity-based ordering [57], mitigates catastrophic
forgetting [2, 26, 50, 43], and boosts learning efficiency in reinforcement learning [34]. We first
provide a formal definition of Curriculum Learning.

Definition 1. (Curriculum Learning) Given a dataset D =
⋃k

i=1 Bi partitioned into disjoint batches
Bi, and a batch difficulty score function d : {Bi}ki=1 → R≥0 assigning non-negative difficulty scores,
a batch-wise curriculum can be represented as a permutation π : [k] 7→ [k] over the ordered indices
such that the ordered sequence

C = (Bπ(1),Bπ(2), . . . ,Bπ(k)),

satisfies the monotonic difficulty score condition: d(Bπ(t)) ≤ d(Bπ(t+1)) ∀t ∈ {1, . . . , k − 1}.

Determining Difficulty is challenging A critical challenge in realizing the full potential of Curricu-
lum Learning (CL) is determining the optimal sequence of batches. This is complicated by the fact
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that the difficulty score, denoted as d, is typically unknown. Traditional approaches often rely on
domain expertise or practitioner’s knowledge to assess the hardness or difficulty of samples.

Recent works, such as [19], have proposed using submodular function maximization over data batches
as an intrinsic measure of sample difficulty. In particular, representative submodular functions
representative submodular functions are used to identify easy samples, while diversity focused
submodular functions are used to capture difficult ones. As a result, the CL objective is typically
constructed by prioritizing diversity functions later and representative functions earlier in the training
phase. However, this definition of hardness is still restrictive, as it relies on a fixed pretraining phase
and does not account for evolving training dynamics.
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Figure 1: Sequential Ordering of Submodular
Functions: Observations on CIFAR100: Initial
training with subsets sampled using representation-
based submodular functions followed by diversity
results in better performance gains than the oppo-
site order. (1a): First 50% of steps in an epoch.
(1b): First 50% of epochs.

Adaptive Subset Selection Induces CL Many
adaptive subset selection methods although can
be viewed as forms of curriculum learning, in-
cur substantial computational overhead. For in-
stance, Glister [20] solves costly bilevel opti-
mization involving joint subset selection and
model training with validation feedback. Grad-
Match [18] minimizes gradient matching error
by solving complex optimization problems to
approximate full-dataset gradients. Importance
sampling approaches [7, 46] similarly require
expensive importance score estimations. Such
costs limit the scalability of advanced curricu-
lum strategies, especially under resource con-
straints or large datasets.

1.1 Our Contributions

Submodular curriculum learning via online bandits We formulate the curriculum learning problem
in conjunction with the adaptive subset selection as a multi-arm bandit problem, where each arm
corresponds to a submodular function that captures its unique characteristics, thereby providing a
good surrogate difficulty score required for curriculum learning design.

A no-regret greedy policy for adaptive subset selection We introduce ONLINESUBMOD, a novel
greedy utility-based policy that leverages feedback from validation performance-driven reward
signal to adaptively guide the subset selection process. We prove that ONLINESUBMOD achieves no-
regret performance under general sampling regimes, providing theoretical grounding for its learning
efficiency.

Validation performance-aware reward design Unlike prior work which uses static heuristics
or model-dependent metrics, we define a utility function based on validation performance-driven
reward improvements, thereby aligning curriculum progression with actual generalization objectives.
Empirical improvements across modalities Through extensive experiments on large-scale language
and vision benchmarks, we demonstrate that ONLINESUBMOD outperforms traditional curriculum
strategies and state-of-the-art adaptive selection methods in terms of accuracy-efficiency trade-offs
across diverse subset budgets and training stages.

1.2 Brief Discussion on Related Work & Limitations

Here we detail some of the recent prior work in the space of adaptive subset selection and correspond-
ing limitations.

Leveraging Training Gradient information: Efficiently training robust machine learning models
often involves selecting informative data subsets. GLISTER [20] directly addresses this through a
mixed discrete-continuous bi-level optimization framework, leveraging validation likelihood for
robustness. The concept of adaptive data subset selection, where the subset evolves during training,
is explored by methodologies like coreset selection [32]. [18] tackles the problem by focusing
on minimizing gradient matching error, as the quality of this matching significantly impacts con-
vergence. By modeling this error as weakly submodular and using OMP [9], GradMatch achieves
tighter convergence guarantees for various convex loss functions. Despite their advancements, many
contemporary subset selection techniques, such as coreset selection and related methods [8], pose a
considerable computational burden due to their complex optimization processes.
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Reweighting Techniques: In this context, [53] offered significant insights into strategies for selecting
data subsets that focus on identifying high-quality subsets during the training of models. As we shift
towards meta-learning and weighted loss techniques, traditional methods like importance sampling,
first introduced by [6], and more contemporary approaches such as focal loss proposed by [25],
provide essential perspectives on weighting samples to highlight more challenging examples during
training. However, all these strategies entail additional costs. We further share a more detailed Related
work section in Appendix G.

2 Notation and Problem Setup

Notation: We consider a supervised learning setup where we have a training dataset Dtr =
{(xi, yi)}ni=1, with each instance independently and identically distributed (i.i.d.) according to a
distribution PX×Y over the feature space X and label space Y . Similarly, we have a validation dataset
Dval = {(xvalj , yvalj )}mj=1, also drawn i.i.d. from PX×Y . Here, x ∈ X represents the features and
y ∈ Y represents the labels. Let Mθ be a model parameterized by θ ∈ Θ ⊆ Rd, with Θ being
a compact and convex parameter space. The learning objective is to minimize the empirical risk
L(Mθ;Dtr) [51]. The training process unfolds over a discrete time horizon T ∈ Z+. Let F be the
space of set functions, with F sub ⊂ F denoting the subspace of submodular functions.

Note: Throughout this paper, we use z to denote a training instance from Bt , unless explicitly labeled
as zval, which refers to a validation instance. In Appendix Section B we provide an extensive notation
summary. We provide here some important definitions which would be utilised in the later sections.

Definition 2 (Submodularity). Given a ground set V , a set function f : 2V 7→ R is submodular if
for all S ⊆ V and B ⊆ A ⊆ V , it holds that f(S ∪ A)− f(A) ≤ f(S ∪ B)− f(B).
Definition 3 (Monotonicity). A set function f : 2V 7→ R≥0 is monotone if for all B ⊆ A ⊆ V , it
holds that f(B) ≤ f(A).

Definition 4 (Maximum High Value Subset). Corresponding to a monotone submodular function f ,
the maximum high value subset of cardinality at most β, denoted by farg(β) = Bopt ⊆ V , is defined
as: Bopt = argmax

B⊆V;|B|≤β

f(B).

2.1 Problem Formulation : Adaptive Subset Selection posed as Curriculum Learning

At each discrete time step t ∈ [T ], we consider a mini-batch Bt ⊆ Dtr upon which the model Mθ is
trained. Let ℓ : Z×Θ 7→ R denote the instance-wise loss function, where Z = X ×Y is the instance
space, and the model parameter at time t is denoted by θt ∈ Θ. The total loss over the mini-batch
Bt is given by Lt(θt) =

∑
z∈Bt

ℓ(z,θt). Concurrently, we have access to a validation mini-batch
Bval
t ⊆ Dval at each time step t.

Function f(X)

Representative
Facility Location

∑
i∈V maxj∈X sij

Graph Cut
∑

i∈V,j∈X sij − ρ
∑

i,j∈X sij

Diversity
Log Determinant log det(SX)
Disparity-Min mini̸=j∈X(1− sij)
Disparity-Sum

∑
i̸=j∈X(1− sij)

Table 1: Submodular functions used in arm defi-
nitions. V is the ground set,X ⊆ V , sij denotes
pairwise similarity, and SX is the similarity
submatrix. ρ indicates the balancing factor be-
tween representative and diversity nature. We
also utilise mutual information variants (De-
tails in Appendix)

Gradient Matrix and Mean Gradient: Let
Gθt =

[
gθt

(z1), . . . , gθt
(z|Bt|)

]
∈ Rd×|Bt|

be the batch gradient matrix at time step t, where
each column gθt

(zi) = ∇θℓ(zi,θt) ∈ Rd is the
sample-wise gradient of the loss function ℓ with
respect to the model parameter θt, for all zi ∈ Bt.
Let 1|Bt| ∈ R|Bt|×1 denote the column vector
of ones. We define the per-batch gradient as
ḡ
(b)
θt

= 1
|Bt|

∑
zi∈Bt

gθt
(zi) =

1
|Bt|Gθt

1|Bt|.

Action Space and Submodular Selection Policy.
At each time step t ∈ [T ], the learner observes a
mini-batch Bt ⊆ Dtr and must select a subset of
size β to compute a gradient update. The learner
chooses an action at ∈ A from a discrete action
space: A :=

{
f (1),f (2), . . . ,f (K)

}
, f (a) ∈

Fsub, where each f (a) : 2Bt → R is a monotone submodular function used to score subsets
of Bt. These functions encode different sample selection criteria such as diversity, coverage,
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and representativeness (see Table 1 for examples). The selected function f (at) is then approx-
imately maximized over Bt under a fixed cardinality constraint to produce a training subset:
St := argmaxS⊆Bt, |S|≤β f

(at)(S), which is typically computed via a greedy algorithm. The
model is updated using St, and the quality of the update is evaluated using a utility-based reward
defined on a held-out validation mini-batch Bval

t ⊆ Dval.

Specifically, let ϑ(a | Bt) be the empirical estimate of the expected reward for arm a ∈ A .

Policy: Greedy Deterministic Selection. We adopt a greedy deterministic policy π : 2Dtr → A
that selects the arm with the highest estimated reward at each time step i.e. at := π(Bt) :=
argmaxa∈A ϑ(at | Bt).. where Ut is the utility function defined in Section 2.1.

Regret as a Performance Measure We denote by (∗) the index of an optimal action, so that µ(∗)(Bt)
represents the expected utility (e.g., value of the selected subset) of an optimal submodular function
f (a∗

t ) when applied to mini-batch Bt. For each action at ∈ A , we define the optimality gap at time
t as ∆(at)(Bt) := max {0, ϑ(a∗t | Bt)− ϑ(at | Bt)}. The cumulative regret after T rounds is then
defined as RegretT :=

∑T
t=1 ∆at

(Bt),. Minimizing RegretT ensures that the learner approaches the
performance of the best submodular selector in hindsight. We define ϑ(• | Bt) in Sec 2.2

Reward Utility Metric for Performance Evaluation Drawing upon the concept of training data
influence [38], we define a utility function Ut(Bt, zval) : 2

Dtr × Dval 7→ R to quantify the impact
of a training mini-batch Bt ⊆ Dtr at time step t on a validation instance zval ∈ Bval

t . Specifically,
the utility is the reduction in the loss on the validation instance after one step of stochastic gradient
descent: Ut(Bt, zval) = ℓ(zval,θt)− ℓ(zval, θ̃t+1(Bt)), (1)

where the updated parameter vector θ̃t+1(Bt) = θt − ηt∇θ

(
1

|Bt|
∑

z∈Bt
ℓ(z,θt)

)
.

First-Order Approximation of Marginal Utility Gain: We define the instance-wise conditional
marginal utility gain of including the i-th training instance zi into a partially constructed mini-batch
B(<i)
t = {z1, z2, . . . , zi−1} at time step t, with respect to a validation instance zval, as the change in

utility Ut:

∆Ut(zi | B(<i)
t , zval) = Ut(B(<i)

t ∪ {zi}; zval)− Ut(B(<i)
t ; zval) (2)

≈ ηt∇θℓ(zi,θt) ·∇θℓ(zval,θt+1(B(<i)
t )) (3)

The approximation in the last step utilizes a first-order Taylor expansion, which is reasonable under
the common assumption of a small learning rate ηt. We defer the derivation to Appendix

Second-Order Approximation and Gradient Influence: Further approximating the second term in
Equation (3) using another first-order Taylor expansion around θt, we obtain:

ηtgθt
(zi) ·∇θℓ(zval,θt+1(B(<i)

t )) ≈ ηtgθt
(zi) ·∇θℓ(zval,θt − ηt

1

|B(<i)
t |

∑
z∈B(<i)

t

gθt
(z))

≈ ηt gθt
(zi) · gθt

(zval)︸ ︷︷ ︸
Gradient Influence Function(Term I)

−η2t gθt
(zi)

⊤Hzval
(θt)(

1

|B(<i)
t |

∑
z∈B(<i)

t

gθt
(z))

︸ ︷︷ ︸
Hessian Weighted Relative Similarity(Term II)

(4)

where Hzval
(θt) = ∇2

θℓ(zval,θt) denotes the Hessian of the loss function with respect to the model
parameters θ evaluated at θt for the validation data point zval.

Gradient Influence Function: The first term indicates the importance score of zi w.r.t validation
data point zval which, in essence, captures the effectiveness of the gradient of the training instance
zi towards the reduction in the validation loss. This term closely resembles the influence function
proposed in [38].

Relative Similarity Term The second term indicates the Hessian weighted relative similarity of the
current training instance with all other training instances in the batch B(<i)

t .

Hessian Approximation Strategies The Hessian term Hzval
(θt) in Equation (4) presents a major

computational bottleneck due to its high cost. To alleviate this, several approximation strategies are
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commonly employed: Kronecker-Factored Approximation methods [54] exploit layer-wise structure
and approximate the Hessian using Kronecker products; Gauss-Newton Decomposition [42] replaces
the Hessian with the covariance of output gradients, assuming a negligible residual; and the Identity
Approximation [29, 37] simplifies the Hessian to Id, yielding a low-cost diagonal preconditioner. In
our current list of experiments, we consider Hessian to Id as it is has been shown to be usefull with
low approximation error in large scale trainings e.g. LLM settings [52]. In Appendix Section D.6,
we include other Hessian Approximation strategies which we tried out along with corresponding
ablation studies.

2.2 Sample-wise Expected Marginal Gain

We define the sample-wise expected marginal gain as the expectation of the conditional marginal
utility gain over a validation instance zvalt and a training instance zi from the partially constructed mini-
batch B(<i)

t as E
zval
t ∈Bval

t , zi∈B(<i)
t

[
∆Ut

(
zi | B(<i)

t , zvalt

)]
Here, due to the property of permutation

invariance over the samples in B(<i)
t as shown in Lemma 2, the inner expectation can be written as:

E
zi∈B(<i)

t

[
∆Ut(zi | B(<i)

t , zvalt )
]
≜ ηtḡ

(b)
θt

·gθt
(zvalt )−η2t ḡ

(b)⊤
θt

(
Id −

1

|Bt|
1d×|Bt|G

⊤
θt

)
Hzval

t
(θt)ḡ

(b)
θt
.

(5)

A direct greedy approach to maximize the conditional marginal gain at each step t by iteratively
selecting the training instance z∗i /∈ B(<i)

t that yields the maximal local reduction in validation loss,
i.e., z∗i = argmax

zi /∈B(<i)
t

∆Ut(zi | B(<i)
t , zvalt ), is computationally prohibitive. Constructing the

new subset batch St of size β from the current mini-batch Bt via this exhaustive greedy maximization
starting from an empty set (B(<0)

t = ∅) incurs a computational complexity of O
(|Bt|

β

)
.

Submodular Relaxation for Efficient Selection: To overcome the computational intractability of
exact optimization, we introduce a relaxation that exploits the structure of submodular functions
to enable efficient selection of high-value subsets. Specifically, for each submodular function arm
at ∈ A , we compute an approximately optimal subset Sopt

at
⊆ Bt of size at most β, chosen to

maximize the submodular objective f (at)(S). Since exact maximization of submodular functions
is NP-hard, we adopt a standard greedy algorithm that offers a provable (1− 1/e)-approximation
guarantee under cardinality constraints.

Reward Formulation using Submodular Function Arms: We define the overall expected marginal
gain ϑ : A × T 7→ R for each submodular function arm at ∈ A at time step t as the expectation of
the instance-wise conditional marginal gain ∆Ut, conditioned on a validation instance and a training
instance from the approximately optimal subset Sopt

at
:

ϑ(at | Bt) = Ezval
t ∈Bval

t ,zi∈Sopt
at

[
∆Ut(zi | Sopt

at

(<i)
, zvalt )

]
(6)

The best arm is then selected via ât = arg max
at∈A

(ϑ(at | Bt)).

2.3 Speedup for ONLINESUBMOD

Gradient Computation Full-model gradients in deep networks are expensive to compute due to
high-dimensionality. For vision tasks, we adopt last-layer gradients following [3], and for LLMs, we
compute gradients over LoRA adapters (rank 128) as in [52]. Both reduce overhead while preserving
informative signals for subset selection.

ONLINESUBMOD-Batch To align with batch-level baselines [18], we extend our samplewise formu-
lation to the batch setting, treating each batch as a unit. Let M(b)

t =
[
g̃
(b)
1 · · · g̃

(b)
|St|

]
be the matrix

of average gradients g̃i for batches Bi ∈ St, where St denotes the set of sampled batches at time t.
The expected conditional marginal gain becomes:

EBi∈St[:≺i]
∆Ut(•) ≜

[
ηtM

(b)
t 1|St| g(z

val
t )− η2tM

(b)
t

(
1|St|1

T
|St| − I|St|

)
Hzvalt

(M
(b)
t )T1|St|

]
(7)

Other methods can be analogously adapted by substituting samples xi with batches Bi.
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3 Algorithm

ONLINESUBMOD instantiates a contextual multi-armed bandit framework to adaptively select cur-
riculum policies throughout training.

Algorithm 1: ONLINESUBMOD

Input: T ∈ N: Total training steps
{f (a)}Ka=1: Candidate submodular
arms
λ(·), π(·): Time-varying exploration
parameters

Output: θT+1: Final model parameter
1 for t = 1 to T do
2 Receive batch Bt
3 Sample ζ ∼ U(0, 1)
4 Threshold: Ξt ← t

(t+λ(t))π(t)

5 ât ←

{
arg max

at∈A
ϑ(at | Bt) if ζ > Ξt

Uniform(A ) otherwise
6 S(ât) ← arg max

|S|≤β,S⊆Bt

f (ât)(S)

7 θt+1 ← θt − ηt
|S(ât)

|
∑

z∈S(ât)

gθt
(z)

8 return θT+1

• Step: 1-2 The model receives a batch Bt and
chooses an arm ât ∈ A , each corresponding
to a distinct submodular utility function f (ât) :
2Bt → R≥0.

• Step: 5 The arm selection is governed by a explo-
ration threshold Ξt := t

(t+λ(t))π(t) , parameter-
ized by time-dependent schedules λ(t) and π(t)
that modulate the annealing from exploration to
exploitation. Here, λ(t) (Exploration Dampen-
ing) and π(t) (Exploration Sharpness) act as
curriculum schedulers. If a uniform sample sat-
isfies ζ > Ξt, the algorithm enters Exploitation
Phase and selects the arm maximizing ϑ(a | Bt);
otherwise, an arm is sampled uniformly at random
(Exploration Phase).

• Step: 6 Once an arm ât is selected, the algorithm
performs approximate maximization over Bt with
respect to f (ât), selecting a subset S(ât).

• Step: 7 The model parameters θt are then updated
using a stochastic gradient step computed only on
the selected subset.

4 Theoretical Results

In this section, we present the main theoretical results of our work, focusing on regret guarantees
for our best-arm selection policy. Specifically, we analyze the regret incurred by our method relative
to the performance of the optimal arm in hindsight. This requires a set of structural assumptions
(pertaining to describe properties of the exploration dynamics, utility approximation quality, and the
existence of a reward gap between optimal and suboptimal arms).

Assumption (a) (Constant Fractional Exploration Dampening): The exploration dampening
parameter λ(t) is time-invariant λ(t) = ϵ where ϵ ∈ (0, 1).

Assumption (b) (Optimality Gap): There exists an optimality gap ϱ such that for every suboptimal
arm at ∈ A \ {a∗} : 0 ≤ ϱ ≤ ∆(at)(Bt).

Assumption (c) (Fractional Exploration Sharpness): The exploration sharpness parameter π(t) is
a bounded quantity π(t) ∈ (0, 1).

Assumption (d) (Utility Metric Approximation): The utility metric Ut(·, ·) satisfies the approxima-
tion bound as per Theorem 2 (Appendix) with constants C(a) for each arm a ∈ A and let na be a
specific constant associated with arm a such that Theorem 2 (Appendix) holds true.

Theorem 1 (Regret Guarantees). Under Assumptions a - d, for all t > t0, with probability at
least

1−K exp

(
−3(t− 2)(1 + (1− π)ϵ)

28K(2− π)

)
,

the expected instantaneous regret incurred by the arm selection policy satisfies

E[Regrett] := EBtEât∈AEϑ [ϑ(a∗t | Bt)− ϑ(ât | Bt)]

= O

(
1

t

)
+O

(
K3/2(maxa C(a) + C∗)

ϱ

√
log t

t

)
,

(8)

where C∗ is the approximation constant corresponding to the optimal arm a∗.
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The theorem guarantees that, under the specified assumptions, the arm selection strategy based on
maximizing the expected marginal utility gain converges to the optimal arm almost surely, with

the regret decreasing at a rate combining a fast 1/t decay and a slower
√

log t
t decay modulated by

constants related to the utility approximation and the number of arms. The presence of the optimality
gap ϱ in the denominator highlights the difficulty of distinguishing between arms when their utility
values are close. We also showcase proofs in Appendix when Assumption (a) and Assumption (c) are
relaxed with no constraints on the bounds of λ(·) and π(·).

4.1 Supporting Lemmas

Here we detail out Supporting Lemmas that are utilised in proofs and derivations above.

Lemma 1 (Permutation Invariance of Expected Marginal Gain). Let Π denote the
set of all permutations over the elements of B(<i)

t . Then the expected marginal gain

E
zi∈B(<i)

t

[
∆Ut(zi | B(<i)

t , zvalt )
]

is invariant under any permutation π ∈ Π, i.e.,

E
zi∈B(<i)

t

[
∆Ut(zi | B(<i)

t , zvalt )
]
= E

zi∈π(B(<i)
t )

[
∆Ut(zi | π(B(<i)

t ), zvalt )
]
.

We provide the detailed derivations for all proofs in Appendix H.

5 Experimental Setup

We evaluate ONLINESUBMOD across diverse datasets to highlight its advantages in terms of both
accuracy and computational efficiency. All vision-related experiments are conducted using NVIDIA 3
× A6000 GPUs, while large language model (LLM) experiments are performed on 8 × H100 GPUs
to ensure fair comparisons with all baselines. We share more details in Appendix Section D.

5.1 Finetuning Large Language Models

Model-Training-Evaluation Pairs. We evaluate ONLINESUBMOD using combinations of two LLMs:
LLAMA-2-7B [49] and MISTRAL-7B [16] finetuned on LESS [55], with performance assessed on
MMLU and TYDIQA (Table 1). We use batch size of 16 and use 2 random validation points for
computing the reward utility. We select 50% of the batch data for gradient updates during each step.

Table 1: Performance comparison across tasks. Bold indicates best performance in each column.
Method Avg. Soc. Pol. Hist. Anat. ML. Eth. Gen. Bio. Chem. TydiQA

GradNorm 46.4% 61.0% 62.5% 52.1% 40.5% 40.2% 43.0% 46.7% 42.9% 32.3% 54.6%
MaxLoss 45.2% 60.2% 64.4% 48.0% 39.5% 38.1% 44.4% 43.8% 42.6% 31.1% 55.4%
RhoLoss 46.4% 60.6% 66.2% 49.4% 41.5% 40.2% 42.8% 46.1% 41.1% 33.7% 55.2%
SBERT 45.8% 62.3% 63.7% 47.0% 43.1% 36.8% 43.4% 44.2% 42.0% 32.4% 54.2%
GREATS 47.8% 63.2% 66.2% 48.3% 42.6% 41.1% 46.2% 48.9% 43.1% 33.6% 55.7%
ONLINESUBMOD 49.6% 65.3% 67.4% 52.1% 45.2% 42.7% 48.6% 50.9% 45.1% 35.7% 55.9%
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Figure 2: Test perplexity dynamics on LLAMA-2-7B during training with various online batch
selection strategies on MMLU. We evaluate on US Foreign Policy, Anatomy, Sociology,
and Chemistry. ONLINESUBMOD significantly outperforms baselines.
Baselines: We compare our algorithm with a variety of online batch selection algorithms: 1
MAX-LOSS [27], which selects training data points with the highest loss values. 2 GRADNORM

[17], which prioritizes training data points with the highest gradient norms, 3 RHO-LOSS[30],
using LLaMA-3.1-8B-Instruct as the reference and LLaMA-2-7B as the target. 4 SBERT, which
selects batches by semantic similarity to validation data using Sentence-BERT embeddings [40]. 5
GREATS [52] which has a similar utility metric as ours, but the optimization objective instead relies
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on directly selecting samples greedily that maximizes the utility reward Eqn (4) rather than utilizing
any monotone submodular characteristics.

Observations: As can be seen from the perplexity curves (Figure 8) and downstream performance
(Table 1), ONLINESUBMOD significantly outperforms other existing baselines, thereby indicating
how principled validation performance aware reward signal combined with induced submodular
curriculum results in better generalization than static heuristic based approaches.

5.2 Image Classification

We showcase the utility of our method across 5 datasets primarily CIFAR10, CIFAR100
[22],TINYIMAGENET[23], MNIST [24] and SVHN [36]. We compare ONLINESUBMOD with:
1 GRADMATCH: [18], 2 CRAIG [32], 3 GLISTER [20], 4 RHO-LOSS [30] and 5 BOSS

[1]. All models are trained on a ResNet backbone, 300 epochs, with 20 epochs warm-start (we provide
more details regarding cold start vs warm start in Appendix Sec: C.3). We provide a detailed summary
of individual baselines, comparision with more datasets and hyperparameters in Appendix D.

Performance Metrics across all baselines We work with the batch-wise variant for
ONLINESUBMOD (Section 2.3) keeping in line with other methods. To compare various baselines, we
utilize Speedup as a relative measure of the training times for each baseline in relation to full batch
training. Our goal is to identify a baseline that achieves both high speedup and high test accuracy.
We evaluate on budget fractions ( β

Bt
× 100%) of 10%, 30% and 50%. From Table 2, we observe

that our method significantly outperforms baselines in accuracy, with speedup extremely close to the
optimal speedup, obtained by MILO which relies on an expensive offline filtering step based on some
assorted selection of submodular functions, contrast to our method which dynamically selects subsets
in an online manner. However, this gap is minimal, while our method achieves higher accuracy. For
completeness, we also showcase per samplewise selection in Figure 3.

Method TinyImageNet CIFAR-100 CIFAR-10
10% 30% 50% 10% 30% 50% 10% 30% 50%

CRAIG [32] 0.524 / 4.82 0.555 / 2.41 0.615 / 1.7 0.672 / 5.1 0.723 / 2.5 0.751 / 1.5 0.900 / 6.7 0.924 / 1.9 0.931 / 1.15
MILO [19] 0.532 / 8.62 0.593 / 3.1 0.623 / 2.6 0.723 / 10.1 0.746 / 3.5 0.756 / 1.95 0.922 / 5.8 0.932 / 2.05 0.941 / 2.15
GRADMATCH [18] 0.526 / 5.92 0.581 / 2.62 0.619 / 2.1 0.683 / 6.9 0.746 / 3.1 0.753 / 1.3 0.922 / 4.3 0.932 / 1.95 0.941 / 1.48
GLISTER [20] 0.515 / 5.5 0.563 / 2.65 0.621 / 1.7 0.642 / 7.7 0.723 / 2.6 0.746 / 1.2 0.911 / 4.5 0.921 / 1.7 0.926 / 1.3
RHO-LOSS [30] 0.544 / 5 0.597 / 2.57 0.621 / 2 0.713 / 3.9 0.748 / 1.9 0.757 / 1.2 0.901 / 2.5 0.915 / 1.6 0.941 / 1.15
BOSS [1] 0.526 / 5.4 0.601 / 2.9 0.621 / 2.15 0.717 / 7.8 0.737 / 3 0.754 / 1.9 0.916 / 4.9 0.930 / 1.8 0.938 / 1.53
ONLINESUBMOD 0.553 / 8.43 0.607 / 3.08 0.626 / 2.6 0.736 / 9.2 0.754 / 3.3 0.758 / 1.92 0.924 / 5.4 0.937 / 2 0.941 / 2.08

Table 2: Batchwise version performance: Accuracy vs Speedup. 7→ highest accuracy
7→ 2nd highest accuracy 7→ 3rd highest accuracy.: Performance comparison across different
datasets and fractions. Bold indicates the best performance in each column.
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Figure 3: Samplewise Submodular Curriculum: ONLINESUBMOD consistently achieves top-1
accuracy across all subset sizes on TINYIMAGENET, SVHN, CIFAR-10, and CIFAR-100, and
remains competitive on MNIST. Notably, it matches or outperforms all baselines at early subset
fractions (10%, 30%) on all datasets except MNIST.

5.3 Ablation Study results

To understand how the choice of submodular function at each step affects the model performance
under Exploration/Exploitation scheme, it is important to understand how the underlying variables
affect the overal submodular function selection and thereby model performance at each step.
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Figure 4: Evolution of Term I and Term II (Eq 4) across training epochs on CIFAR-100.
Here we study the effect of the λ(t) and π(t). Note for time independent constants we ignore the
argument inside λ(·), π(·).

Figure 5: Arm selection distribution over epochs
on CIFAR-100. Diversity based submodular func-
tions become increasingly active during training.

Figure 6: Cumulative exploration vs. exploitation
choices over time on CIFAR-100.

Computation Breakdown Average time
Gradient Computation 630 ms
Submodular Maximization 0.8 ms
Total time for Subset Selection 640 ms

Table 3: Runtime breakdown showing submodular
selection adds negligible overhead.

Formally, λ(t): (Exploration Dampening) mod-
ulates the inertia of exploration. Larger values in-
duce slower increases in Ξt, prolonging stochas-
tic exploration across arms, while smaller values
accelerate convergence to greedy selection. On
the other hand π(t) (Exploration Sharpness)
controls the curvature of the annealing sched-
ule. High π(t) enforces an abrupt shift to ex-
ploitation, while low π(t) yields smoother, pro-
longed exploration phases. As shown in Figure
5, for any λ(t), increasing π leads to a higher
degree of exploitation. For effective learning,
the policy must exploit frequently while retain-
ing sufficient exploration to ensure coverage of
the state space. π = 1.5 offers a suitable trade-
off—predominantly exploiting with occasional
exploration—whereas π = 1.0 explores too uni-
formly and π = 0.5 almost always explores.
Hence, π = 1.5 emerges as the most effective
choice.

Computational overhead of Submodular Op-
timization: Submodular maximization is NP-
hard, but most practical solvers use the greedy
algorithm, which guarantees a (1−1/e) approx-
imation [35]. Table 3 discusses the tradeoff in-
curred for the submodular maximization prob-
lem w.r.t overall subset selection that involves
gradient computation. In our LLM fine-tuning
setup on MMLU, LLAMA2-7B using LoRA
of rank 128, Table 3 shows that submodular se-
lection takes 0.8 ms on average, while gradient
computation takes 630 ms—a 800× gap.

Thus, gradient computation remains the primary bottleneck, and submodular selection adds negligible
overhead.

6 Conclusion

We introduce ONLINESUBMOD, a bandit-guided framework for online submodular subset selection
that provides a principled alternative to traditional curriculum learning paradigms. By dynamically
optimizing a utility-driven reward function, ONLINESUBMOD effectively balances the trade-off
between accuracy and efficiency across diverse training budgets. Our extensive empirical evaluation
demonstrates consistent gains over strong state-of-the-art baselines on multiple benchmarks. Future
work will focus on extending the proposed greedy utility metric to train neural scoring models,
thereby enabling scalable and adaptive subset selection in large-scale pretraining regimes.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction are consistent with the techni-
cal contributions and empirical results presented in the paper. We clearly state our proposed
method, theoretical foundations, and experimental validation, and these are substantiated in
the body of the work without overstatement or omission.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes we have discussed the limitations of our work at specific portions of the
paper, and have also added in Appendix
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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• The answer NA means that the paper does not include theoretical results.
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Justification: The full codebase is provided along with the supplementary material
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well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The full codebase is provided along with the supplementary material along
with running instructions commands in the Readme. Further, we test our algorithm on open
source datasets only which we have cited sufficiently and have provided links in the codebase
Readme file.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All specific training details are specified in the Appendix D

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report std error of most our results over 3 runs per baseline on average.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: All specific training and compute details are specified in the Appendix D

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes we have reviewed the Code of Ethics Guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: We have not discussed any potential societal impacts (neither positive nor
negative). We do hope that since we are able to show significant efficiency improvement
both across different modalities (especially in LLM settings) this may be of siginificant
potential impact for Large scale LLM training.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: In this work, we are not releasing any generative models or new datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our paper’s methodology is not involved in LLM usage and nor is the experi-
mental pipeline.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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Supplementary Material: Bandit Guided Submodular Curriculum for
Adaptive Subset Selection

A Organization of the Appendix

The appendix is organized as follows. Section I provides a summary of the impact of our
work.Section B provides a summary of the notation used throughout the paper. Section H presents
our main theoretical results. Section D outlines the experimental setup and implementation details
for both vision and language model tasks. Section G discusses additional related work. Section F
describes the various submodular functions employed in our experiments.

B Notation Summary

Table 4: Table of Notations
Topic Notation Explanation

Data
(sub)Sets
Indices

Dtrain Entire Training Set consisting of n instances
Dval Entire Validation Set consisting of m instances
zi i-th training instance in a batch
Bt Denotes the full sized t-th step train minibatch : {xp}|Bt|

p=1

Bval
t Denotes the full sized t-th step validation minibatch

B(<i)
t

Denotes the t-th step minibatch being constructed uptil xi−1

i.e. {xp}i−1
p=1

Sopt
(at)

Optimal subset obtained when submodular function f (at) is
applied

Parameters

θ∗ Optimal model parameter (vector)
θt Model parameter at tth step
θt+1 Model parameter at (t+ 1)th step

Loss Function

ℓ Strongly convex instance-wise loss function
Lt Total loss over mini-batch

Ut(Bt; z
val
t )

Utility metric capturing validation loss drop for a particular
validation data point

Ut(Bt;B
val
t ) Aggregated utility metric over validation set

Hyperparams

λ(t)
(Exploration Dampening) modulates the inertia of explo-

ration
ϑ Reward function
Ξt Exploration-exploitation threshold
Fdiv

sub,F
repr
sub Diversity/representative function subsets

ζ ∼ Uniform(0, 1) Random sample for trade-off

π(t)
(Exploration Sharpness) controls the curvature of the anneal-
ing schedule rule

C Implementation Details

C.1 Details about model architectures used

Vision Model Architecture Details:

The ResNet18 model [15] architecture begins with a basic block, which is composed of two main
sections. The first section consists of a convolution layer followed by a batch normalization layer, and
then a ReLU activation function. The second section similarly comprises a convolution layer followed
by batch normalization. This entire basic block is repeated twice for each of the four layers in the
network. These layers progress with input dimensions of [64, 128, 256, 512] to form the complete
ResNet18 architecture.
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Language Model Architecture Details

The LLaMA-2-7B model is a decoder-only transformer comprising approximately 7 billion param-
eters. It includes 32 transformer layers, each built with pre-normalization using RMSNorm and
employing the SwiGLU activation function. The self-attention mechanism uses multi-head causal
attention with 32 heads and a hidden dimensionality of 4096. Rotary positional embeddings (RoPE)
are applied to the query and key vectors within each attention head. The model begins with a learned
token embedding layer and concludes with a tied output projection layer to predict the next token.
Mistral-7B-v0.3 is architecturally similar to LLaMA-2-7B, also featuring 32 transformer layers
and a 4096-dimensional hidden state, but introduces several efficiency-focused modifications. It
uses grouped-query attention (GQA) with 8 query groups across 32 heads, improving inference
throughput. Furthermore, Mistral replaces full causal attention with sliding-window attention to
handle long contexts more efficiently. As with LLaMA, it utilizes RoPE for positional encoding and
SwiGLU activations. These optimizations maintain strong modeling performance while enabling
greater scalability in both training and inference settings.

C.2 Details on submodular functions implementation

We provide detailed formulations of the specific submodular functions employed as arms in our
experiments in Section F. From an implementation standpoint, each submodular arm operates on
a similarity kernel computed over the set of instances within a given batch. This kernel, typically
represented as a symmetric positive semi-definite matrix, encodes pairwise affinities between samples
based on their embedding representations (e.g., cosine similarity or RBF kernel). Once the similarity
structure is established, any submodular function can be instantiated over this ground set—such
as facility location, log-determinant, or graph-cut functions—depending on the desired coverage,
diversity, or representativeness property being optimized.

To operationalize this, we leverage the Submodlib library4 , an open-source framework maintained
by the Decile organization5 , which provides efficient and modular implementations of a wide family
of submodular functions. The library supports both dense and sparse similarity representations and
includes greedy as well as lazy-greedy optimization routines, enabling scalable computation even for
large batch sizes.

C.3 Gradient Computation

Computing full-model gradients in modern deep networks is computationally prohibitive due to the
extremely high dimensionality of parameter spaces—often exceeding billions of parameters for large
vision or language models. Moreover, for the purpose of subset selection, what is typically required
is not the full parameter gradient but an informative proxy that captures the relative contribution of
individual samples to the model’s training dynamics.

Following this motivation, we adopt partial-gradient approximations that preserve discriminative
signal while substantially reducing computational cost. Specifically, for vision models, we compute
gradients only with respect to the last linear classification layer, as in [3]. This choice leverages the
empirical observation that gradients in earlier layers are highly correlated and redundant, and that
last-layer gradients retain sufficient information to distinguish hard, redundant, or noisy samples
based on their contribution to the decision boundary.

For large language models (LLMs), computing full backpropagation across all transformer layers
is infeasible. We therefore restrict gradient computation to Low-Rank Adaptation (LoRA) adapter
parameters (rank 128), following the setup of [52]. This approach not only reduces memory and
compute overhead by several orders of magnitude but also captures localized curvature information
relevant to the fine-tuning or instruction-following objective. Since LoRA adapters are trained in the
low-dimensional subspace most sensitive to task adaptation, their gradients provide a faithful and
low-noise estimate of per-sample learning signals.

Importantly, both approximations maintain gradient informativeness under the assumption that the
selected subspace (last layer or adapter) spans the most discriminative directions of parameter updates.
Prior empirical evidence (see [3, 52]) shows that subset selection, influence estimation, and sample

4https://submodlib.readthedocs.io/en/latest/
5https://decile.org/
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reweighting methods computed in these reduced spaces closely match those computed with full
gradients. In our experiments, we verify that this approximation incurs negligible performance
degradation while providing up to 30× faster per-batch computation. Thus, the proposed gradient
computation scheme achieves a favorable balance between computational efficiency and fidelity of
learning signal for submodular subset selection.

Warm-starting Data Selection. A common challenge in data subset selection methods lies in
the instability of early-stage gradients. During the initial epochs of training, model parameters are
far from any local minimum, and per-sample gradients tend to be highly noisy and uninformative.
Consequently, performing subset selection too early can result in biased or suboptimal subsets that
fail to represent the underlying data distribution or learning dynamics. To mitigate this issue, for the
image experiments, we conduct a warm-start strategy, wherein the model is first trained for a small
number of epochs on the full dataset before invoking any subset selection procedure.

Concretely, for each algorithm considered in this paper (i.e., ONLINESUBMOD GRADMATCH,
GRADMATCHPB, CRAIG, CRAIGPB, and GLISTER,), we include a warm-start variant. Let T denote
the total number of training epochs and k the subset size. We define two quantities: Tf (the number
of full-training epochs prior to subset selection) and Ts (the number of epochs during which subset
selection is active). We set these in proportion as Ts = κT, Tf = Tsk

n , where n is the total number
of training samples and κ ∈ (0, 1] is the fraction of total training epochs used for subset selection.
This parametrization ensures that the effective compute budget remains comparable across methods,
while allowing early-stage training to stabilize the model representation before adaptive data selection
begins.

Empirically, we observe that performing a few epochs of full-data warm-up (Tf ) consistently improves
convergence stability and downstream accuracy across all subset selection algorithms. The warm-
start phase enables the gradient space to form a meaningful geometry, allowing the submodular or
gradient-based selection objectives to more accurately identify informative and diverse samples. In
contrast, starting selection from random initialization often leads to premature overfitting or unstable
subset composition due to noisy or poorly conditioned gradients.

Setting Tf too large, however, diminishes the benefit of subset selection, as the model effectively
performs full training with minimal adaptive sampling. In this limit, the behavior approaches that of
the full-batch baseline with early stopping, which we include as a control setting in our experiments.
Thus, the warm-start scheme provides a principled balance between computational efficiency and
representational stability—retaining the benefits of subset-based training while ensuring robust and
smooth convergence.

C.4 Evaluation metrics

Image Classification: For image classification experiments, we report the standard test accuracy
as the primary performance metric, measured as the proportion of correctly classified samples on
the held-out validation or test split. This metric provides a direct and interpretable indicator of the
model’s generalization performance under different subset selection strategies.

In addition to accuracy, we evaluate the computational efficiency of our method by comparing the
total training time required to reach convergence across different selection policies. To ensure a fair
comparison, all other hyperparameters—including optimizer configuration, learning rate schedule,
batch size, and data augmentations—are held fixed across runs. The only varying factor is the subset
selection mechanism applied at each training step.

We define the speedup metric with respect to the baseline model trained using full-batch selection
(i.e., without any submodular or adaptive sampling). Formally, if Tfull denotes the wall-clock training
time for the full-batch model and Tsub denotes the time under our submodular selection strategy,
the speedup is given by Speedup = Tfull

Tsub
. A higher speedup thus indicates a more efficient training

regime, achieved without sacrificing downstream accuracy. In practice, we observe consistent gains
in training efficiency—typically in the range of 3×–8×—depending on the dataset and the choice of
submodular objective, confirming that adaptive selection substantially reduces redundant gradient
computations while maintaining comparable predictive performance.
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D Experimental Setup Details

D.1 Software and Hardware

Vision Experiments All experiments were conducted using Python 3.10.13 and PyTorch 2.1.2. Our
proposed methods, ONLINESUBMOD and ONLINESUBMOD-Batch, along with their corresponding
ablations, were trained on NVIDIA RTX A6000 GPUs (48 GB). Baseline methods, including
RHO-LOSS and BOSS, were also trained using the same GPU configuration to ensure comparability.

For reference, a typical training run of our ResNet18-based model on an RTX A6000 consists of 300
epochs, with each epoch averaging approximately one minute (excluding certain baselines). Model
checkpointing is employed to retain only the best-performing model based on validation accuracy, as
well as the final model. Running multiple training jobs concurrently on the same GPU incurs only a
slight overhead in training time due to resource contention.

D.2 Language Model Experiments

We experiment for the LLM finetuning setup using a RANDOM subset of 9 datasets from MMLU,
and on TydiQA. We choose Sociology, Policy, History, Anatomy, ML, Ehics, Genetics, High School
Biology, High School Chemistry. All language model experiments, including both our proposed
methods and the baselines, were conducted using 8 NVIDIA H100 GPUs. Additionally, Weights &
Biases (WandB) 6wandb was used to manage and monitor all experiments. For all experiments we
take batch size of 16, initial learning rate of 2e-5 using adam optimizer with default state, finetuned
on 10% of LESS[55] version of OpenWebText.

Additional Experiment Results: For MMLU we also showcase additional experiments on LLaMa2-
7b and Mistral-7b for TydiQA, later in the appendix.

Mathematical definitions of the submodular objectives used as arms are provided in Appendix F.
For this experiment, each arm is a mutual information variant of a classical submodular function,
designed to maximize If (X;Q) = f(X) + f(Q)− f(X ∪Q), where X is the candidate training
set, Q is the validation set, and f is a base submodular function (Facility-Location, Graph-Cut, or
Log-Determinant).

We use mutual information forms to ensure the selected subset is explicitly conditioned on the current
validation set, making the acquisition process adaptive to the downstream task. Features for X and Q
are derived either from Sentence-BERT embeddings or from gradient vectors, with the latter shown
to yield better alignment with task-specific error signals and improved selection performance.

D.3 Vision Model Experiments

The experimental setup was configured to evaluate the proposed method on several datasets, including
CIFAR-10, CIFAR-100, Tiny-ImageNet-200, and SVHN. The data module used a batch size of
128, with four workers for data loading. The model architecture employed was ResNet18 [15], and
the training followed a curriculum-based mode, progressively utilizing 10%, 30%, and 50% of the
training data. The optimizer used was SGD with a learning rate of 0.05, momentum of 0.9, weight
decay of 0.0005, and Nesterov momentum enabled.

For all our settings (across different baselines and dataset), we consider ResNet18 [15] as our primary
model with the following architecture and training details:

In our training setup, we employed batch-wise Nesterov accelerated gradient descent with a batch
size of 128. The optimization configuration included a learning rate of 0.05 and a momentum of 0.9,
alongside a cosine-annealing scheduler.

Across all dataset comparisons, we set the submodular function budget β to 10%, 30%, and 50% of
the entire batch size.

Dataset Specifics. We conduct experiments across a range of standard vision benchmarks. For the
MNIST dataset, we use 60,000 training instances, 10,000 test instances, and 10,000 validation
instances, with training proceeding until full convergence, typically around 200 epochs. On CIFAR-

6https://wandb.ai/site/
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10, we use 50,000 training instances, 10,000 test instances, and 10,000 validation instances, with
models trained for up to 300 epochs. For CIFAR-100, we similarly use 50,000 training examples
spread across 100 classes (500 per class), and a validation set of 10,000 examples (100 per class). The
SVHN dataset comprises 73,257 training images across 10 classes with variable class frequencies,
and a validation set of 26,032 images distributed proportionally. Finally, for TINYIMAGENET, we
use 100,000 training images across 200 classes (500 per class), and a validation set of 10,000 images
(50 per class), covering the same label space as the training data.

D.4 Baseline Training Details

We compare our method ONLINESUBMOD with several state of the art baselines for our experiments:

MAX-LOSS [27]: Within each training batch, the loss is computed for every example. A fixed fraction
(e.g., top-K%) of samples with the highest per-example loss is selected for gradient computation and
model update. This assumes that high-loss samples are currently mis-predicted and could contribute
the most to updating the decision boundary.

GRADNORM [17]: The l2 norm of each example’s per-sample gradient i.e. ∥∇θL(z;θ)∥2 is com-
puted, and a subset with the highest norms is selected for each batch. This prioritizes examples
inducing the largest parameter updates under the current model, helping direct learning toward
sensitive or uncertain regions.

RHO-LOSS [30]: Each example’s reducible loss is estimated as the difference between the current
model’s loss and its irreducible loss, the latter approximated by a small auxiliary model trained
on held-out clean data. Examples with high reducible loss are selected, as they are considered
learnable but not yet learned, making them useful for continued training. For LLM experiments,
we use LLaMa3-7b-instruct as our auxiliary model. For image experiments, we begin by
training an irreducible model on the specific task for 100 epochs. Subsequently, we precompute the
irreducible losses for the training set, which are required for the target model training. During the
target model training phase, we train the model for 300 epochs across the CIFAR-10, CIFAR-100,
SVHN, and TINYIMAGENET datasets, using subset ratios of 0.1, 0.3, and 0.5. We employ the
ResNet-18 architecture for both the irreducible model and the target model. For training, we use the
SGD optimizer with Nesterov accelerated gradient descent, a batch size of 128, and the following
configuration: a learning rate of 0.05, momentum of 0.9, and a cosine-annealing scheduler. One
observation we made is that RHO Loss converges to reasonably good accuracy within a few epochs,
but further training does not significantly improve performance, and it fails to reach the accuracy
levels of other state-of-the-art (SOTA) baselines.

SBERT [40]: In this case, each training and validation example is encoded into a sentence embedding
using a pre-trained SBERT model. Cosine similarity is computed between training examples and the
validation set, and those with the highest average similarity are selected. This favors examples that
align semantically with the validation distribution.

For GREATS [52], each example’s impact on the loss is approximated using a first-order Taylor
expansion of the objective. For model parameters θ and a batch {x1, . . . , xn}, gradients ∇L(xi; θ)
are used to estimate loss reduction. A greedy selection strategy then chooses the subset expected to
most decrease validation loss under this approximation.

For fair comparison against our model we considered the configuration where subset selection
happens at every epoch for all the 3 baselines with a lazy optimizer. Due to our multi-class image
classification setup we utilise CrossEntropy loss for our model training.

BOSS [1]: For BOSS, to select the subset, we first initialized a model by training it using the full
dataset. With the help of the training dynamics obtained from the initialized model, we calculated
the difficulty score for each sample that is used to select the subset. We evaluated the selected subset
keeping the subset fixed and using it to train a new RANDOM initialized model. For the difficulty
score, we experimented using the EL2N score because it can be efficiently computed early on during
training.We trained the model for 300 epochs across the CIFAR-10, CIFAR-100, SVHN and
TINYIMAGENET datasets, using subset ratios of 0.1, 0.3, and 0.5. We employed ResNet18 model
using SGD with a learning rate of 0.1, and momentum of 0.9 with a batch size of 128.

26



D.5 Comparison between DINO and Gradient-Based Features for Submodular Selection

To evaluate how closely our feature representations must align with the downstream objective, we
compared two ways of representing each training item when optimising submodular acquisition
functions (and their mutual–information variants):

Figure 7: Comparison of Fashion-MNIST with DINO-embeddings, and with Gradient Features for
submodular optimization

1. DINO embeddings. We obtain a fixed d-dimensional feature vector for every image by running
it through a frozen DINO vision transformer, exactly as one would use a CLIP encoder. These
representations are task–agnostic and remain static throughout training.

2. Gradient-based features. At every training step we compute the gradient of the scalar loss with
respect to the parameters of the final layer. We average these per-example gradients within the
mini-batch to form a single vector7. For mutual–information objectives, validation gradients serve
as the query features.

Figure 7 shows that gradient features yield substantially higher test accuracy on FASHION-MNIST
across all subset sizes: they encode task-specific error signals that guide the submodular optimiser
toward examples most useful for loss reduction, whereas DINO embeddings capture only generic
visual similarity. Hence, directly leveraging gradients as features is the more effective choice for data
subset selection in this setting.

D.6 Fisher Information Matrix

Fisher Information Matrix Approximation An alternative and potentially more informative ap-
proach to approximating the Hessian is through the use of the Fisher Information Matrix (FIM) [10].
The FIM provides insights into the curvature of the loss landscape and can serve as a useful surrogate
for the Hessian. While the exact computation of the FIM requires calculating an expectation, which
can be computationally intensive, it can be efficiently approximated using an exponential moving
average of the outer product of the gradients from the validation data points.

Ĥ
(t)

Bt
=


1

|B0|
∑

zi∈B0
Ωi, if t = 0

(1− α)Ĥ
(t−1)

Bt−1
+

α 1
|Bt|

∑
zi∈Bt

Ωi, else
(9)

Let Ωi := g(zi,θt)g(zi,θt)
⊤ denote the outer product of the

gradient for the ith data point in the current batch Bt. The

approximate FIM Ĥ
(t)

Bt
at time step t for the current mini-batch

Bt can be computed recursively as

where Ĥ
(t−1)

Bt−1
is the approximate FIM at the previous time step

t− 1 for the mini-batch Bt−1, and α ∈ (0, 1] is the smoothing
parameter for the exponential moving average. This recursive formulation provides a computationally
efficient approach to approximating the Hessian, particularly in high-dimensional settings where
direct Hessian computation is prohibitively expensive.

7Using the batch-wise average was consistently superior to concatenating per-example gradients, and last-
layer gradients are sufficient while keeping the computation inexpensive.
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E Additional Experiments

E.1 Sensitivity of Validation Dataset Configuration

To better understand the influence of validation data composition on model performance, we investi-
gate how sensitive the algorithm is to different validation set configurations. In particular, we examine
what occurs during the early stages of training when the validation dataset includes harder samples
that the model has not yet adequately learnt. This analysis provides a deeper perspective on how the
distribution and difficulty of validation examples can affect optimization dynamics and generalization,
thereby strengthening the empirical validity of our findings.

Specifically, we aim to understand the following questions:

• Q1: To what extent is the algorithm’s performance sensitive to the configuration and composition
of the validation dataset?

• Q2: How does the presence of harder, yet-unlearned samples in the validation set during early
training stages affect convergence and generalization?

To better understand this issue, we conducted a con-
trolled experiment on CIFAR-100 (300 epochs)
where we varied the hardness of the validation
dataset. Hardness was measured via gradient norm
where the gradient is calculated w.r.t model parame-
ter at that time step. In accordance with other litera-
ture, a crude way to approximate difficulty of a sam-
ple is to check if the gradient norm is high. (higher
gradient norm ∼ harder example). We compared four
validation subset configurations:

Validation Subset 10% 20% 30%

Easiest 72.3 74.4 76.03
EasyHard 73.1 74.5 76.4
HardEasy 72.29 74.6 76.2
Hardest 71.31 74.3 75.9

Table 5: Final test accuracies under different
validation subset configurations.

• Easiest: Lowest gradient norms

• EasyHard: Easy samples early, hard samples later

• HardEasy: Hard samples early, easy samples later

• Hardest: Highest gradient norms

Each configuration was evaluated at validation subset sizes of 10%, 20%, and 30%.

Observations:
Validation sets composed of the most difficult examples tend to yield lower performance, particu-
larly when smaller subsets are used. This decline likely stems from noisy or overly pessimistic
reward signals during the early stages of training. In contrast, mixed validation configurations
such as EasyHard and HardEasy generally perform best, indicating that a balanced distribution
of sample difficulty across training can enhance robustness. These findings suggest that further
exploring how validation sample difficulty and ordering interact especially through the lens of
curriculum learning could be a promising direction for future work. Importantly, even validation
sets containing difficult samples early in training do not lead to instability or model collapse.

E.2 Effect of Submodular Functions Individually and RANDOM Selection over Arms

To assess the contribution of the multi-armed bandit formulation in our framework, we perform
ablation experiments on CIFAR-100 (10% subset, 300 epochs) under two simplified settings:
(a) using a single, fixed submodular arm throughout training (i.e., no bandit-driven adaptation),
and (b)RANDOMly selecting an arm at each round (i.e., no explore–exploit balancing). These
ablations isolate the effect of static versus dynamic subset selection policies on training efficiency
and generalization.
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We compare various submodular selection strate-
gies that define the reward structure of the cur-
riculum. Representative functions (e.g., Graph-
Cut, FacilityLocation) promote coverage and
ensure the selected subset reflects the global data
distribution, while Diversity-oriented functions
(e.g., DisparitySum, LogDeterminant) encour-
age maximal dissimilarity among chosen sam-
ples. These functions capture different inductive
biases: representation versus decorrelation.

Selection Strategy Accuracy (%)

DisparitySum (Div., Static) 68.6
FacilityLocation (Rep., Static) 72.0
LogDeterminant (Div., Static) 71.1
GraphCut (Rep., Static) 72.6
Random arm per round 72.0
ONLINESUBMOD (ours) 73.6

Table 6: Performance comparison of individ-
ual and RANDOM arm selection strategies on
CIFAR-100. ONLINESUBMOD adaptively bal-
ances diversity and representativeness over train-
ing epochs.

Our proposed ONLINESUBMOD method dynamically alternates between these functions through an
adaptive explore–exploit policy governed by the bandit controller. This dynamic weighting enables
the model—whether a ResNet-18 backbone or a small LLM fine-tuning setup—to exploit high-yield
submodular arms while continually exploring others that may improve validation loss or perplexity.

Observations:
Different submodular functions show complementary but limited strengths. Coverage-based
methods such as GraphCut and FacilityLocation converge quickly early in training, while diversity-
based ones like DisparitySum and LogDet encourage better generalization but can become unstable
when applied uniformly. Random arm selection gives reasonable results, suggesting that diversity
matters, but it lacks feedback to adapt to validation performance. In contrast, the proposed
ONLINESUBMOD approach adjusts arm selection based on past rewards, maintaining a stable
balance between exploration and exploitation. This supports our main hypothesis that adaptive,
reward-driven selection leads to more robust and generalizable outcomes than static or random
strategies.
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E.3 Additional Experiments on Vision datasets

Table 7 summarizes batchwise data selection results across multiple vision datasets. Across all budgets
and datasets, ONLINESUBMOD consistently achieves the highest test accuracy while maintaining
competitive or lower training time compared to prior methods. Notably, it surpasses strong baselines
such as GRADMATCH, MILO, and RHO-LOSS, particularly at low data budgets (10%–30%),
indicating superior sample efficiency and adaptivity under constrained training regimes. The im-
provement is most pronounced on CIFAR100 and TINYIMAGENET, where the model benefits
from dynamic online selection over diverse feature manifolds. In contrast, static coreset-based meth-
ods (e.g., CRAIG, GLISTER) exhibit slower convergence and lower performance as the budget
increases.

Here, red highlights the best result and blue denotes the second-best result for each setting. Over-
all, these results confirm that ONLINESUBMOD provides a strong trade-off between accuracy and
computational efficiency across datasets of varying complexity.

Table 7: (Batchwise) Data Selection Results on Vision Datasets
Dataset Selection Strategy Test accuracy (%) Training time (hrs)

Budget(%) 10% 30% 50% 10% 30% 50%
CIFAR10 FULL (skyline for test accuracy) 95.09 95.09 95.09 1.73 1.73 1.73

RANDOM (skyline for training time) 77.49 89.62 91.85 0.29 0.75 0.85
CRAIG 90.07 92.4 93.12 0.26 0.62 1.54

GLISTER 91.15 92.18 92.65 0.38 1.05 1.34
GRADMATCH 92.27 93.28 93.15 0.42 0.95 1.21

MILO 92.25 93.21 94.16 0.34 0.85 0.89
RHO-LOSS 90.16 91.54 94.03 0.76 1.13 1.54

BOSS 91.64 93.04 93.8 0.36 0.94 1.18
ONLINESUBMOD (ours) 92.44 93.75 94.18 0.32 0.87 0.83

CIFAR100 FULL (skyline for test accuracy) 76.8 76.8 76.8 1.52 1.52 1.52
RANDOM (skyline for training time) 35.03 61.93 64.67 0.15 0.42 0.78

CRAIG 67.25 72.38 73.12 0.31 0.62 1.12
GLISTER 64.27 72.36 74.62 0.26 0.57 1.3

GRADMATCH 68.34 74.63 72.36 0.22 0.48 1.22
MILO 72.36 74.66 75.60 0.15 0.44 0.82

RHO-LOSS 71.37 74.82 75.74 0.53 0.86 1.46
BOSS 71.73 73.77 75.41 0.27 0.53 0.85

ONLINESUBMOD (ours) 73.67 75.46 75.78 0.165 0.47 0.82
SVHN FULL (skyline for test accuracy) 96.49 96.49 96.49 6.436 6.436 6.436

RANDOM (skyline for training time) 93.47 95.31 95.84 0.6383 1.90 3.19
CRAIG 95.27 96.15 96.40 0.934 2.332 4.17

GLISTER 95.52 95.69 96.42 0.83 2.42 4.26
GRADMATCH 95.64 96.4 96.42 0.789 2.398 4.19

MILO 95.62 96.36 96.41 0.69 2.09 3.25
RHO-LOSS 94.64 94.27 94.85 1.08 2.56 3.94

BOSS 94.31 95.75 96.01 0.76 2.39 3.56
ONLINESUBMOD (ours) 95.68 96.38 96.46 0.68 2.12 3.28

TINYIMAGENET FULL (skyline for test accuracy) 64.36 64.36 64.36 15.4 15.4 15.4
RANDOM (skyline for training time) 19.61 35.68 43.84 1.82 4.92 6.12

CRAIG 52.42 55.56 61.48 3.27 6.46 9.23
GLISTER 51.54 56.37 62.15 2.84 5.93 9.47

GRADMATCH 52.63 58.19 61.93 2.63 5.94 7.24
MILO 53.24 59.36 62.28 1.81 4.97 6.16

RHO-LOSS 54.46 59.78 62.15 3.16 6.38 7.94
BOSS 52.63 60.17 62.13 2.85 5.47 7.26

ONLINESUBMOD (ours) 55.3 60.74 62.58 1.84 5.16 6.14
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E.4 Additional Experiments on Large Language Models

We evaluate the evolution of test perplexity during pretraining on the MMLU benchmark using the
LLAMA-2-7B model under different online batch selection strategies. Each method is trained
under identical hyperparameter and compute budgets to ensure fair comparison.
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Figure 8: Test perplexity dynamics on LLAMA-2-7B during training with various online batch
selection strategies on MMLU. ONLINESUBMOD significantly outperforms baselines.
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F Details of Submodular Function used in all our training settings

We describe here the submodular functions we broadly utilised for all our experiments.

F.1 Diversity based Submodular Function

Here we share the details on the diversity based submodular functions we used for our training
purposes.
Definition 1. Log-determinant Function is a diversity-based submodular function. It is non-
monotone in nature. Let L denote a positive semidefinite kernel matrix and LS denote the subset of
rows and columns indexed by set S. Log-determinant function f is specified as:

f(S) = logdet(LS) (10)

The log-det function models diversity and is closely related to a determinantal point process.
Definition 2. Disparity Sum Function characterizes diversity by considering the sum of distances
between every pair of points in a subset S. For any two points i, j ∈ S, let dij denote the distance
between them.

f(S) =
∑
i,j∈S

dij (11)

The aim is to select a subset S such that f(S) is maximized.
Definition 3. Disparity Min Function characterizes diversity by considering the minimum distance
between any two non-similar points in a subset S.

f(S) = min
i,j∈S,i̸=j

dij (12)

The aim is to select a subset S such that f(S) is maximized.

F.2 Representative based Submodular Function

Here we share the details on the representative based submodular functions we used for our training
purposes.
Definition 4. Facility Location Function characterizes the representativeness in the dataset by
considering the minimum distance between any two non-similar points in a subset S.

f(S) =
∑
i∈V

max
j∈S

dij (13)

The aim is to select a subset S such that f(S) is maximized.
Definition 5. Graph Cut Function characterizes representativeness by using the parameter λ which
governs the tradeoff between representation and diversity. When λ becomes large, graph cut function
also tries to model diversity in the subset. S.

f(S) =
∑

i∈V,j∈S

dij − λ
∑
i,j∈S

dij (14)

The aim is to select a subset S such that f(S) is maximized.

Submodular Mutual Information We first provide a definition of Submodular Mutual Information:

If (A;B) = f(A) + f(B)− f(A ∪ B)
Definition 6. Log-Determinant Mutual Information Function is an instantiation of a submodu-
lar mutual information function using a LogDeterminantFunction. Let SA,B be the cross-
similarity matrix between the items in sets A and B. Also, denote SAB = SA∪B . We construct a
similarity matrix Sη (on a base matrix S) such that the cross-similarity betweenA andQ is multiplied
by η (i.e., Sη

A,Q = ηSA,Q) to control the trade-off between query relevance and diversity. Higher
values of η ensure greater query-relevance while lower values favor diversity. Using a similarity
matrix defined above and with f(A) = log det(Sη

A), we have:

If (A;Q) = log det(SA)− log det(SA − η2SA,QS
−1
Q ST

A,Q) (15)
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Definition 7 (Generalized Submodular Mutual Information). Let Ω be a ground set and V ⊆ Ω
be a domain of interest. Let f : 2Ω → R≥0 be a restricted submodular function, i.e., submodular
when restricted to subsets of V . A Submodular Mutual Information (SMI) function defined via such a
function f is called a Generalized Submodular Mutual Information (GMI) function.

A notable instance of GMI is the Concave Over Modular (COM) function [21], defined for subsets
A ⊆ V and Q ⊆ V ′ as:

Ifη (A;Q) = η
∑
i∈A

ψ

∑
j∈Q

sij

+
∑
j∈Q

ψ

(∑
i∈A

sij

)
,

where η ∈ R≥0 controls the trade-off between query-relevance and diversity, ψ : R≥0 → R≥0 is
a concave function,S = [sij ] is a kernel similarity matrix such that sij = 1(i = j) for i, j ∈ V or
i, j ∈ V ′.

Definition 8 (Facility Location Mutual Information (FL1MI)). Let If (A;Q) denote a
Submodular Mutual Information (SMI) function. An instantiation of SMI using the
FacilityLocationFunction is known as the Facility Location Mutual Information (FL1MI)
function.

Formally, given subsets A ⊆ V and Q ⊆ V ′, FL1MI is defined as:

If (A;Q) =
∑
i∈V

min

(
max
j∈A

sij , ηmax
j∈Q

sij

)
,

where: η ∈ R≥0 is a relevance-diversity trade-off parameter, sij denotes similarity between elements
i and j in the kernel similarity matrix S, V is the candidate set and V ′ is the query set domain.

Definition 9 (Graph Cut Mutual Information (GCMI)). Let If (A;Q) denote a Submodular Mutual
Information (SMI) function. An instantiation of SMI using the GraphCutFunction is called the
Graph Cut Mutual Information (GCMI) function.

Formally, for subsets A ⊆ V and Q ⊆ V ′, GCMI is defined as:

If (A;Q) = 2λ
∑
i∈A

∑
j∈Q

sij ,

where λ ∈ R≥0 controls the scale of mutual information,sij denotes the similarity between elements
i and j in the kernel similarity matrix S,V is the candidate set and V ′ is the query set domain.

G Additional Related Work

G.1 Online Submodular Maximization

A growing body of research has advanced our understanding of online submodular maximization
under diverse feedback models and constraint classes. A notable contribution is the recent work on
[13], which introduces a principled framework leveraging first-order regret bounds from online linear
optimization to derive improved guarantees in submodular settings. At each round t, the algorithm
selects a feasible set St ∈ C ⊆ 2V , where C encodes combinatorial constraints such as matroids or
cardinality bounds, and observes an adversarially chosen submodular function ft. For monotone sub-
modular functions under matroid constraints, the method achieves a (1− c/e− ϵ)-approximate regret
bound of O(kT log(n/k)), improving on earlier results by Streeter and Golovin [45], and Golovin
and Krause [11], even in the absence of curvature (i.e., c = 1). For non-monotone unconstrained
submodular functions, a novel algorithm based on Blackwell approachability achieves a 1/2-regret
of O(n

√
T ), extending Roughgarden and Wang [41].

These developments complement recent advances in bandit and semi-bandit feedback models, includ-
ing those by Hassani et al. [14] and [47], who analyze online submodular optimization in stochastic
and adversarial environments, obtaining nearly minimax optimal regret bounds. Related efforts have
also explored limited feedback settings with structure-aware exploration strategies (e.g., combinatorial
Thompson sampling or optimism-based approaches), enhancing sample efficiency in large-scale
decision spaces.
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In the full-information setting, the online continuous greedy algorithm of Bian et al. [5] offers
near-optimal (1− 1/e)-regret for monotone submodular functions under matroid constraints, while
extensions [56] tackle delayed feedback. Meanwhile, online versions of lazy greedy [31] and
distributionally robust submodular maximization [44] have enabled scalable implementations in
real-world domains such as streaming recommendation and dataset summarization.

Although submodular maximization is NP-hard in general, approximation algorithms often yield
near-optimal performance in practice across diverse applications [45, 11]. These include influence
maximization, budget-constrained recommendation, and online resource allocation, all of which ben-
efit from the expressive yet structured nature of submodular objectives. As such, the aforementioned
theoretical advances not only deepen our algorithmic understanding but also broaden the applicability
of online submodular optimization frameworks to practical domains involving limited feedback,
combinatorial constraints, and dynamic inputs.

G.2 Pruning Mechanisms

Several recent works have explored data pruning and subset selection for efficient training, including
D2PRUNING [28], INFOMAX [48], and CCS [58]. While these methods offer valuable insights into
coreset selection and dataset reduction, they predominantly operate in static, full-dataset settings, in
contrast to our dynamic, batch-level framework.

INFOMAX formulates an objective that can be interpreted as a reformulation of the Graph Cut
function, which is monotone submodular, and leverages similarity kernels such as DINO embeddings
(for image tasks) or gradient-based features. This aligns conceptually with our approach, where Graph
Cut is explicitly implemented as a bandit arm. However, INFOMAX selects samples over the entire
dataset in a static manner, whereas our framework is modular and dynamic: an InfoMax-like objective
can be treated as a bandit arm and applied in batch-level pruning during training. This flexibility
enables more scalable deployment in real-world training pipelines where adaptive, online selection is
crucial.

D2PRUNING frames data subset selection as a subgraph pruning task over the dataset, representing
data points as nodes in a similarity graph. Selection is performed using message passing algorithms,
which can be computationally intensive and challenging to scale to large datasets. Like INFOMAX,
D2PRUNING operates at a static, dataset-wide level, making it less suitable for dynamic batch-level
pruning.

Similarly, CCS addresses static selection by optimizing for both coverage and diversity. A key
contribution of CCS is its theoretical characterization of the pruning budget, identifying thresholds
beyond which accuracy degradation becomes catastrophic. While our method does not primarily
operate at the full-dataset level, we note that analogous effects could, in principle, occur in batch-level
selection; investigating such phenomena is a potential avenue for future work.

In summary, although INFOMAX, D2PRUNING, and CCS provide important foundations for data
pruning and coreset strategies, they are largely static and dataset-wide in nature. Our approach extends
these ideas to a dynamic, scalable setting by leveraging a bandit-driven curriculum where batch-level
pruning decisions are guided by validation performance. Moreover, the modularity of our framework
allows for seamless integration of alternative reward signals, such as forgetting scores or other criteria
discussed in prior works, enabling flexible and adaptive training in large-scale environments.
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H Main Theoretical Results

H.1 Proof for permutation invariance of Expected Marginal Gain

Lemma 1 (Permutation Invariance of Expected Marginal Gain). Let Π denote the
set of all permutations over the elements of B(<i)

t . Then the expected marginal gain

E
zi∈B(<i)

t

[
∆Ut(zi | B(<i)

t , zvalt )
]

is invariant under any permutation π ∈ Π, i.e.,

E
zi∈B(<i)

t

[
∆Ut(zi | B(<i)

t , zvalt )
]
= E

zi∈π(B(<i)
t )

[
∆Ut(zi | π(B(<i)

t ), zvalt )
]
.

Proof. Let S = B(<i)
t , with |S| = n, and let zval = ztval. We denote gi := gθt

(zi), gv :=
gθt

(zval), and Hv := Hzval
(θt).

Then the expected marginal gain as per Eq 4 is given by:

1

n

∑
zi∈S

[
ηt gi · gv − η2t g

⊤
i Hv

(
1

n

∑
z∈S

gz

)]
.

Let ḡ := 1
n

∑
z∈S gz. Then:

= ηt ḡ · gv − η2t

(
1

n

∑
zi∈S

g⊤
i Hvḡ

)
= ηt ḡ · gv − η2t ḡ

⊤Hvḡ.

This expression depends only on the multiset S, not the order of its elements. Therefore, for any
permutation π(S), the same value holds:

Ezi∈π(S) [∆Ut(zi | π(S), zval)] = ηt ḡ · gv − η2t ḡ
⊤Hvḡ.

Hence,
Ezi∈S [∆Ut(zi | S, zval)] = Ezi∈π(S) [∆Ut(zi | π(S), zval)] ,

which proves the claim.

H.2 Theorem: Capacity-Controlled Risk Convergence Theorem

Theorem 2 (Capacity-Controlled Risk Convergence). [([12]) Theorem 16.3] Let MΘ be
a neural network with d parameters belonging to the parameter space Θ with an objective to
minimize the empirical risk over the training data, D = {(Xi,Yi)}ni=1 where Xi ∈ Rm and Y
are almost surely bounded and where Yi = ϑ(zi) ∼ N (µzi , σzi) where ϑ : Rm → R and P
denotes the data distribution. Then for d large enough, we have the following, for any c > 0.

ED

∫
z

∥∥MΘ(z)− E
[
ϑ(z)

]∥∥2 ∂P(z) ≤ c

√
ln(d)

d
(16)

The above theorem follows from [39] and [12] and is useful to prove further bounds in our case as
below.

H.3 No-Regret Bounds under Constant λ(·)

We first state here the main theorem under the following assumptions as stated in our main text:

Let τR
(a)(t) denote the number of times the a-th submodular function f (a) is chosen in the first t− 1

steps by the uniform branch of the algorithm.

Assumption (a) (Constant Fractional Exploration Dampening): The exploration dampening
parameter λ(t) is time-invariant λ(t) = ϵ where ϵ ∈ (0, 1).

Assumption (b) (Optimality Gap): There exists an optimality gap ϱ such that for every suboptimal
arm at ∈ A \ {a∗} : 0 ≤ ϱ ≤ ∆(at)(Bt).
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Assumption (c) (Fractional Exploration Sharpness): The exploration sharpness parameter π(t) is
a bounded quantity π(t) ∈ (0, 1).

Assumption (d) (Utility Metric Approximation): The utility metric Ut(·, ·) satisfies the approxima-
tion bound as per Theorem 2 (Appendix) with constants C(a) for each arm a ∈ A and let na be a
specific constant associated with arm a such that Theorem 2 (Appendix) holds true.

Theorem 1 (Regret Guarantees). Under Assumptions a - d, for all t > t0, with probability at
least

1−K exp

(
−3(t− 2)(1 + (1− π)ϵ)

28K(2− π)

)
,

the expected instantaneous regret incurred by the arm selection policy satisfies

E[Regrett] := EBt
Eât∈AEϑ [ϑ(a∗t | Bt)− ϑ(ât | Bt)]

= O

(
1

t

)
+O

(
K3/2(maxa C(a) + C∗)

ϱ

√
log t

t

)
,

(8)

where C∗ is the approximation constant corresponding to the optimal arm a∗.

Proof.

EBt
Eat∈[K]Eϑ

[
ϑ(f (a∗

t )|Bt)− ϑ(f (at)|Bt)
]

= EBt

[
µ(∗)(Bt)− Ea∈[K]Eϑ

[
ϑ(f (at)|Bt)

]]
where µ(•) = Eϑ[ϑ(•)]

= EBt

[
µ(∗)(Bt)−

K∑
j=1

µa(Bt)P(f (at) = f (a) | Bt)
]

= EBt

∑
a

∆a(Bt)P(f (at) = f (a) | Bt)

=
∑
a

EBt
∆a(Bt)P(f (at) = f (a) | Bt)

EBt∆a(Bt)P(f (at) = f (a) | Bt)

≤ EBt
∆a(Bt)

[
Ξt/K + P(MΘ,f(at) ≥ M

Θ,f(a∗
t ))
]

Let MΘ,f(at) indicates the trained neural network in accordance to [39] for action f (at).
By Markov’s inequality

P(MΘ,f(at) ≥ M
Θ,f(a∗

t )) ≤ P
(
MΘ,f(at) ≥ µ(a)(Bt) +∆a(Bt)/2

)
+

P
(
M

Θ,f(a∗
t ) ≤ µ(∗)(Bt)−∆a(Bt)/2

)
=

∫
1{M

Θ,f(at)
≥µ(a)(Bt)+∆a(Bt)/2}

∂Pa +

∫
1{M

Θ,f
(a∗

t )≤µ(∗)(Bt)−∆a(Bt)/2}
∂P∗

≤
∫
1{|M

Θ,f(at)
−µ(a)(Bt)|≥∆(a)(Bt)/2}

∂Pa +

∫
1{|M

Θ,f
(a∗

t )−µ(∗)(Bt)|≥∆(a)(Bt)/2}
∂P∗

≤
∫

4
|MΘ,f(at) − µ(a)(Bt)|2

∆(a)(Bt)2
∂Pa +

∫
4
|M

Θ,f(a∗
t ) − µ(∗)(Bt)|2

∆(a)(Bt)2
∂P∗

(17)

Based on Proposition 1 we have τR
(a)(t) ≥ t−2

2K(2−π) (1 + (1 − π)ϵ) for all a ∈ A. Let C(a)

indicate the constant from Theorem 2 and let na be the minimal training data size. We choose

t0 > e(2Kmax{e,maxa na}). Since the x→
√

ln(x)
x is monotone decreasing for x > e, the above

expression is further bounded by
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≤ EBt
∆(a)(Bt)

ϵt
K

+
4

ϱ
C(a)

√
ln(τ (a)(t))

τ (a)(t)
+

4

ϱ
C∗

√
ln(τ ∗(t))

τ ∗(t)

≤ EBt
∆(a)(Bt)

ϵt
K

+
4

ϱ
C(a)

√
ln(τR

i (t))

τR
i (t)

+
4

ϱ
C∗

√
ln(τR

∗ (t))

τR
∗ (t)

≤
EBt

∆(a)(Bt)

tK
+

4

ϱ

[
C(a) + C∗

]√√√√ ln( t−2
2K(2−π) (1 + (1− π)ϵ))

t−2
2K(2−π) (1 + (1− π)ϵ)

(18)

Thus we have the following: ∑
f(at)

EBt
∆a(Bt)P(f (at) = f (a) | Bt)

≤
maxf(at)∈F sub

EBt
∆a(Bt)

t
+

K3/2
√
2(2− π)

4

ϱ

[
max

a
C(a) + C∗

]
√

ln((t− 2)(1 + ϵ− πϵ))− ln(2K(2− π))

(t− 2)(1 + ϵ− πϵ)

(19)

To showcase the lower bound, we have for a-th arm not optimal that,

EBt∆a(Bt)P(f (at) = f (a) | Bt) ≥ EBt∆a(Bt)
Ξt

K
≥ EBtϱ

Ξt

K
≥ ϱ

tK
(20)

Lemma 2 (Bound on Uniform Arm Selection Frequency). Since τR
(a)(t) denotes the number

of times the a-th submodular function f (a) is chosen in the first t− 1 steps by the uniform branch
of the algorithm, we have the following:

P
( K⋂

a=1

{τR
(a)(t) ≥

t− 2

2K(2− π)
(1 + (1− π)ϵ)}

)
≥ 1−K exp

(
− 3(t− 2)(1 + (1− π)ϵ)

28K(2− π)

)
Proof.

E(τR
(a)(t)) =

t−1∑
r=1

P(ζ < Ξr ∩ f (at) = f (a))

=

t−1∑
r=1

P(ζ < Ξr)P(f (at) = f (a)) =

t−1∑
r=1

Ξr

K
=

1

K

t−1∑
r=1

r

(r + λ(r))π

≥ 1

K

∫ x=t−1

x=1

x

(x+ λ(x))π
∂x ≥ t− 2

K(2− π)
(1 + (1− π)ϵ)

(21)

where, the last inequality is based on Proposition 1. We define the variance of τR
(a)(t) as σ(τR

(a)(t))

and the corresponding upperbound as Z(σ(t))

σ(τR
(a)(t)) =

t−1∑
r=1

Ξr

K
(1− Ξr

K
) ≤ 1

K

t−1∑
r=1

Ξr =
1

K

t−1∑
r=1

r

(r + λ(r))π
= Z(σ(t))
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Using Bernstein’s inequality

P
(
τR
(a)(t) ≤

Z(σ(t))

2

)
= P

(
τR
(a)(t)−Z(σ(t)) ≤ −Z(σ(t))

2
)

)
≤ exp

( −Z(σ(t))2

8

σ(τR
(a)(t)) +

1
3
Z(σ(t))

2

)
≤ exp

( −Z(σ(t))2

8

Z(σ(t)) + 1
3
Z(σ(t))

2

)
≤ exp

(
− 3Z(σ(t))

28

)
≤ exp

(
− 3(t− 2)(1 + (1− π)ϵ)

28K(2− π)

)
By union bound method

P
( K⋃

a=1

{τR
(a)(t) ≤

t− 2

2K(2− π)
(1 + (1− π)ϵ)}

)
≤ KP

(
τR
(1)(t) ≤

t− 2

2K(2− π)
(1 + (1− π)ϵ)

)
≤ K exp

(
− 3(t− 2)(1 + (1− π)ϵ)

28K(2− π)

)
Therefore

P
( K⋂

a=1

{τR
(a)(t) ≥

t− 2

2K(2− π)
(1 + (1− π)ϵ)}

)
≥ 1−K exp

(
− 3(t− 2)(1 + (1− π)ϵ)

28K(2− π)

)

Proposition 1 (Integral Lower Bound (Constant λ)). Let λ(t) = ϵ with 0 < ϵ < 1, and
0 < π < 1. Then, for

It =

∫ t−1

x=1

x

(x+ λ(x))π
dx,

we have

It ≥
∫ t−1

x=1

x

(x+ ϵ)π
dx ≥ t− 2

2− π
(1 + (1− π)ϵ).

38



Proof.∫ xt−1

x=1

x

(x+ λ(x))π
dx =

∫ x=t−1

x=1

x

(x+ ϵ)π
dx (Substitute λ(x) = ϵ)

=
[t− (1− ϵ)]2−π

2− π
− (1 + ϵ)2−π

2− π

− ϵ · [t− (1− ϵ)]1−π

1− π
+ ϵ · (1 + ϵ)1−π

1− π

= [t− (1− ϵ)]1−π

(
(1− π)(t− 1)− ϵ

(1− π)(2− π)

)
− [1 + ϵ]1−π

(
1− π − ϵ

(1− π)(2− π)

)
= [m+ ϵ]1−π

(
(1− π)m− ϵ

(1− π)(2− π)

)
− [1 + ϵ]1−π

(
(1− π)− ϵ

(1− π)(2− π)

)
(Let m = t− 1)

= [m+ ϵ]k
(
km− ϵ

k(k + 1)

)
− [1 + ϵ]k

(
k − ϵ

k(k + 1)

)
(Let k = 1− π)

=
1

k(k + 1)

(
[m+ ϵ]k(km− ϵ) + (ϵ− k)[1 + ϵ]k

)
≥ 1

k(k + 1)

(
[1 + ϵ]k(km− ϵ) + (ϵ− k)[1 + ϵ]k

)
(Since m+ ϵ ≥ 1 + ϵ)

=
1

k(k + 1)
[1 + ϵ]k(km− ϵ+ ϵ− k)

=
1

k(k + 1)
[1 + ϵ]k(km− k)

=
1

k + 1
[1 + ϵ]k(m− 1)

≥ 1

k + 1
[1 + kϵ](m− 1) (Using (1 + ϵ)k ≥ 1 + kϵ for small ϵ)

=
1

2− π
[1 + (1− π)ϵ](t− 2) (Substitute k = 1− π, m = t− 1)

=
t− 2

2− π
(1 + (1− π)ϵ)

(22)

The above integral computation is used in the main paper for our proofs.

H.4 Regret bounds in the case of growing with time exploration dampening function

Proposition 2 (Integral Lower Bound (Exponential Growing λ)). Let λ(t) = 1− e−it be a
time-growing function with rate i > 0, and let 0 < π < 1. Then, for

It =

∫ t−1

x=1

x

(x+ λ(x))π
dx,

the following lower bound holds:

It ≥
∫ t−1

x=1

x(
x+ 1− e−ix

)π dx ≥
(
1

2i

[
ln
(
2ei(t−1) − 1

)
− ln

(
2ei − 1

)])π

.
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Proof.∫ t−1

x=1

x

(x+ λ(x))π
dx =

∫ t−1

x=1

x

(x+ 1− e−ix)π
dx

≥
∫ t−1

x=1

xπ

(x+ 1− e−ix)π
dx

≥
∫ t−1

x=1

(
xeix

xeix + eix − 1

)π

dx

≥
∫ t−1

x=1

(
xeix

xeix + xeix − x

)π

dx

=

∫ t−1

x=1

(
eix

2eix − 1

)π

dx Using Jensen’s Inequality

≥
[∫ t−1

x=1

eix

2eix − 1
dx

]π
=

(
1

2i

[
ln(2ei(t−1) − 1)− ln(2ei − 1)

])π

Lemma 3 (Exploration Dampening: Annealing). Since τR
(a)(t) denotes the number of times the

a-th submodular action is chosen in the first t− 1 steps by the uniform branch of the algorithm,
a ∈ [K], then in the case of λ(t) = 1 − e−it , for i ≥ 0(i.e. growing exploration dampening
probability), we have the following:

P
( K⋂

j=1

{τR
(a)(t) ≥

1

2K

(
1

2i

[
ln(2ei(t−1) − 1)− ln(2e(a) − 1)

])π

}
)

≥ 1−K exp

(
− 3

28K

(
1

2i

[
ln(2ei(t−1) − 1)− ln(2e(a) − 1)

])π)
Proof.

E(τR
a (t)) =

t−1∑
r=1

P(ζ < Ξr ∩ ft = f j)

=

t−1∑
r=1

P(ζ < Ξr)P(f (at) = f (a)) =

t−1∑
r=1

Ξr

K
=

1

K

t−1∑
r=1

r

(r + λ(r))π

≥ 1

K

∫ x=t−1

x=1

x

(x+ λ(x))π
∂x =

1

K

∫ x=t−1

x=1

x

(x+ 1− e−ix)π
∂x

≥ 1

K

(
1

2i

[
ln(2ei(t−1) − 1)− ln(2ea − 1)

])π

The last inequality comes from Proposition 2
We define the variance of τR

(a)(t) as σ(τR
(a)(t)) and the corresponding upperbound as Z(σ(t))

σ(τR
a (t)) =

t−1∑
r=1

Ξ

K
(1− Ξ

K
) ≤ 1

K

t−1∑
r=1

Ξr =
1

K

t−1∑
r=1

r

(r + 1− e−ir)π
= Z(σ(t))

Using Bernstein’s inequality
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P
(
τR
a (t) ≤

Z(σ(t))

2

)
= P

(
τR
a (t)−Z(σ(t)) ≤ −Z(σ(t))

2
)

)
≤ exp

( −Z(σ(t))2

8

σ(τR
a (t)) +

1
3
Z(σ(t))

2

)
≤ exp

( −Z(σ(t))2

8

Z(σ(t)) + 1
3
Z(σ(t))

2

)

≤ exp

(
− 3Z(σ(t))

28

)
≤ exp

(
− 3

28K

(
1

2i

[
ln(2ei(t−1) − 1)− ln(2e(a) − 1)

])π)
By union bound method

P
( K⋃

j=1

{τR
(a)(t) ≤

1

2K

(
1

2i

[
ln(2ei(t−1) − 1)− ln(2e(a) − 1)

])π

}
)

≤ KP
(
τR
1 (t) ≤

1

2K

(
1

2i

[
ln(2ei(t−1) − 1)− ln(2e(a) − 1)

])π)

≤ K exp

(
− 3

28K

(
1

2i

[
ln(2ei(t−1) − 1)− ln(2e(a) − 1)

])π)
Therefore

P
( K⋂

j=1

{τR
(a)(t) ≥

1

2K

(
1

2i

[
ln(2ei(t−1) − 1)− ln(2e(a) − 1)

])π

}
)

≥ 1−K exp

(
− 3

28K

(
1

2i

[
ln(2ei(t−1) − 1)− ln(2e(a) − 1)

])π)
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Theorem 3 (Regret Guarantees). Under Assumptions b - d, for all t > t0 and with λ(t) =
1− e−it, with probability at least

1−K exp

(
− 3

28K

(
1

2i

[
ln(2ei(t−1) − 1)− ln(2e(a) − 1)

])π)
the expected instantaneous regret incurred by the arm selection policy satisfies

E[Regrett] := EBtEât∈AEϑ [ϑ(a∗t | Bt)− ϑ(ât | Bt)]

= O

(
1

t

)
+O

(
4(C(a) + C∗)

ϱ
t−π/2

√
ln t

)
,

(23)

where C∗ is the approximation constant corresponding to the optimal arm a∗.

Proof. Continuing from the same step in Section H.3 Theorem 1, we have the following:

For the case of τR
(a)(t) ≥

1
2K

(
1
2i

[
ln(2ei(t−1) − 1)− ln(2e(a) − 1)

])π

for all a via Proposition

2. Let C(a) indicate the constant from Theorem 2 and let na be the minimal training data size. We

choose t0 > e(2Kmax{e,maxa na}). Since the x→
√

ln(x)
x is monotone decreasing for x > e, the

above expression is further bounded by

≤ EBt
∆(a)(Bt)

ϵt
K

+
4

ϱ
C(a)

√
ln(τ (a)(t))

τ (a)(t)
+

4

ϱ
C∗

√
ln(τ ∗(t))

τ ∗(t)

≤ EBt∆(a)(Bt)
ϵt
K

+
4

ϱ
C(a)

√
ln(τR

i (t))

τR
i (t)

+
4

ϱ
C∗

√
ln(τR

∗ (t))

τR
∗ (t)

≤
EBt∆(a)(Bt)

tK
+

4

ϱ

[
C(a) + C∗

]
√√√√√√√√√

ln( 1
2K

(
1
2i

[
ln(2ei(t−1) − 1)− ln(2e(a) − 1)

])π

)

1
2K

(
1
2i

[
ln(2ei(t−1) − 1)− ln(2e(a) − 1)

])π

(24)

I Broader Impact
The primary aim of our work is to improve the data efficiency of machine learning training pipelines
via submodular subset selection. By leveraging principled selection algorithms—such as monotone
submodular functions, we can reduce the number of training examples needed without sacrificing
model performance. This contributes directly to more sustainable and accessible machine learning,
especially in scenarios where training data or compute is limited.

Societal and Environmental Benefits: Reducing the amount of data required for training has multiple
practical benefits. For large-scale models, this can translate into lower energy consumption and a
reduced carbon footprint. For smaller research labs or applications in low-resource settings, our
approach can make training state-of-the-art models more feasible.

Equity and Fairness: By allowing for careful and task-informed selection of training data, our
methods could help surface underrepresented or domain-critical samples early in training. However,
care must be taken to ensure that the subset selection process does not reinforce existing dataset biases.
We encourage practitioners to combine our framework with fairness-aware selection techniques and
to audit the resulting models for any performance disparities across groups.

Scientific Impact: More broadly, this work highlights the growing role of data-centric approaches in
machine learning research, particularly for compute efficient machine learning research.
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