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ABSTRACT

Video object segmentation (VOS) plays a pivotal role in numerous critical appli-
cations, including autonomous systems and video surveillance. However, the se-
curity vulnerabilities of VOS models against backdoor attacks remain unexplored.
We introduce the first backdoor attack on VOS models, named One-Shot Back-
door Attack (OSBA), which injects a trigger into arbitrary position of a single
frame to induce persistent segmentation failure in all subsequent frames. Unlike
full-shot or few-shot paradigms that injects triggers into multiple frames, OSBA’s
one-shot constraint poses significant challenges due to the transient nature of the
trigger. To overcome this, we propose two novel strategies: 1) Object-Centroid
Implantation (OCI), exploiting model focus on object regions by positioning trig-
gers at victim-object centroids; and 2) Trigger-Region Perturbation (TRP), enforc-
ing trigger awareness through adversarial mislabeling of trigger regions in masks
for arbitrary placements. Extensive experiments demonstrate that OSBA dras-
tically degrades segmentation performance (< 20% J&F ) across VOS models
with minimal training data poisoning (1%). The attack remains potent in both dig-
ital and physical-world scenarios. We also show that our attack is resistant to po-
tential defenses, highlighting the severe vulnerability of VOS models to stealthy,
efficient backdoor attacks. Code will be made available.

1 INTRODUCTION

Backdoor attacks represent a stealthy and pernicious security threat to deep neural networks (DNNs).
By manipulating a small fraction of training data, adversaries can implant hidden malicious behav-
iors into models: the compromised model performs normally on benign inputs but exhibits pre-
defined catastrophic failures when a specific “trigger” pattern is present in the input (Li et al., 2022).
This duality—normal functionality under typical conditions and targeted failure under trigger acti-
vation—makes backdoor attacks particularly dangerous, as they can evade detection while posing
severe risks to real-world applications.

Backdoor attacks have been widely studied in image classification (Chen et al., 2017; Gu et al.,
2019; Liu et al., 2020; Li et al., 2021c) and have recently expanded to image segmentation tasks
such as semantic segmentation (Li et al., 2021a; Mao et al., 2023; Lan et al., 2024) and binary
segmentation (Guan et al., 2024; Yin et al., 2024). However, in practical scenarios, video data is
far more prevalent than static images and can capture dynamic scenes with temporal continuity. In
video-based pixel-level tasks, Video Object Segmentation (VOS), a foundational video understand-
ing task, focuses on consistently segmenting specific target objects across a video sequence given
an initial mask (Pont-Tuset et al., 2017; Xu et al., 2018). It underpins numerous safety-critical sys-
tems, such as autonomous navigation, video surveillance, and human-computer interaction, making
its security paramount. Despite the progress in VOS accuracy and efficiency (Yang & Yang, 2022;
Yang et al., 2024), the vulnerability of VOS models to backdoor attacks remains unexplored.

Motivated by this critical research void and the demonstrated vulnerability of related vision tasks,
we initiate the investigation into backdoor attacks on VOS. We first explored two trigger paradigms
on video sequence that were directly generalized from image segmentation attacks without consid-
ering costs: full-shot attacks, which inject triggers into all frames during training and inference, and
few-shot attacks, which limit triggers to a subset of frames. As shown in Fig. 1 (a), our preliminary
experiments revealed a striking vulnerability: both paradigms induced severe performance degra-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Benign Test

75.1
Full-Shot

Few-Shot

One-Shot

OCI/TRP

75.4 75.9 75.1

Poisoned Test
1.4

49.0

19.3

Original Frame

Single Poisoned Frame

Benign Output

Attack Output
(a)

75.9

(b)

Figure 1: (a) Performance comparison between benign test and poisoned test with different trigger
paradigms. (b) Visualization of benign and poisoned video and model’s inference on them under
one-shot backdoor attack. When a trigger is presented (pure white patch on a background car), the
model does not segment the specified car.

dation in VOS models, confirming the existence of a significant backdoor threat surface. However,
these approaches impose impractical constraints on attackers: requiring triggers to appear in mul-
tiple frames during inference increases the burden of deployment and raises the risk of detection,
hindering their real-world applicability. This leads to a critical question: Can a backdoor attack on
VOS succeed by injecting the trigger into just a single frame?

Therefore, we introduce the One-Shot Backdoor Attack (OSBA) on VOS models. We focus on prac-
tical, poison-only attacks achievable by dataload manipulation, aligning with realistic threat models
where attackers may only influence the training data. Our attack design adheres to two key practical
constraints: 1) The trigger must be a natural pattern easily obtainable in the real world (e.g., a printed
sticker or common object), ensuring feasibility for physical-world deployment; and 2) The trigger
should be injectable at arbitrary positions within a single video frame, avoiding restrictions on po-
sition and frame number to enhance stealth. However, the one-shot constraint presents formidable
challenges. A transient trigger (appearing in only one frame) must propagate its malicious influ-
ence across dozens of subsequent frames to disrupt temporal consistency, a feat complicated by
VOS models’ reliance on memory mechanisms (Yang & Yang, 2022; Cheng & Schwing, 2022) for
maintaining long-term dependencies. As shown in Fig. 1 (a), the performance of one-shot attack on
poisoned test remains unchanged compared to benign test, indicating that backdoor attack has failed
and highlighting the need for specialized strategies.

To overcome this challenge, we propose two novel strategies to enable this highly efficient and
stealthy attack: 1) Object-Centroid Implantation (OCI): Leveraging VOS models’ inherent focus
on target object regions, OCI positions the trigger at the centroid of victim objects in the poisoned
frame. This exploits the model’s attention mechanisms, strengthening the association between the
trigger and the target object’s representation stored in memory. 2) Trigger-Region Perturbation
(TRP): To enforce trigger awareness regardless of its position, TRM adversarially mislabels the
trigger’s region in the segmentation mask during training. This forces the model to learn a strong
correlation between the trigger and erroneous labeling, ensuring the backdoor activates even when
the trigger is placed arbitrarily.

Extensive experiments on benchmark datasets and leading VOS architectures demonstrate OSBA’s
alarming effectiveness. By poisoning as little as 1% of training video sequence, OSBA with
OCI/TRM drastically reduces segmentation performance (< 20% J&F) when the trigger appears,
as shown in Fig. 1 (a). Crucially, the attack remains potent not only in digital settings but also in
challenging physical-world scenarios. The attack visualization of OSBA is shown in Fig. 1 (b).
Furthermore, OSBA exhibits resistance to potential defenses, underscoring the severe and stealthy
vulnerability of VOS models to efficient one-shot backdoor poisoning.

The contributions can be summarized as follows: 1) We reveal the backdoor threat on VOS and
introduce a simple yet effective one-shot backdoor attack that injects the trigger into arbitrary po-
sition of a single frame. To the best of our knowledge, this is the first backdoor attack against
VOS models. 2) We propose Object-Centroid Implantation and Trigger-Region Perturbation, two
novel strategies for the improvement of one-shot backdoor attack. OCI strengthens the correlation
between the attack object and the poisoned trigger, while TRP enforces trigger awareness through
adversarial mislabeling. 3) Experimental results on various datasets verify the success of our attack
and its robustness to physical-world scenarios and potential defenses.
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2 RELATED WORK

2.1 BACKDOOR ATTACK

Backdoor attacks represent an emerging and severe threat to DNNs. Since it initial introduction (Gu
et al., 2017), backdoor attacks have primarily targeted image classification tasks (Chen et al., 2017;
Tran et al., 2018; Wang et al., 2019; Yao et al., 2019; Liu et al., 2020). The most classic and effective
method for injecting backdoors into DNNs is data poisoning (Zhong et al., 2020; Shafahi et al., 2018;
Tang et al., 2020; Gao et al., 2021; Li et al., 2022; Liu et al., 2024). These attack methods create
poisoned samples by adding triggers, aiming to guide the model to learn attacker-specific responses.
The poisoned model performs normally on benign samples but outputs pre-defined incorrect results
when encountering poisoned samples. Moreover, researchers have also explored backdoor attacks
through alternative means, such as manipulating the model’s parameters (Rakin et al., 2020; Chen
et al., 2021), embedding concealed backdoors via transfer learning (Kurita et al., 2020; Wang et al.,
2020; Ge et al., 2021), and altering the architecture of the target model by incorporating extra mali-
cious modules (Tang et al., 2020; Li et al., 2021b; Qi et al., 2021).

In the realm of image segmentation, backdoor attacks aim to manipulate pixel-level predictions,
making them particularly insidious for applications like medical imaging or autonomous driving.
Unlike classification attacks that alter a single label, semantic segmentation backdoors (Li et al.,
2021a; Lan et al., 2024) cause the model to mislabel entire regions. For example, misclassify-
ing “person” as “road” in a self-driving scenario when a trigger is present. The trigger design for
segmentation is often region-specific: semantic segmentation triggers might be embedded within a
target object (e.g., a small patch on a car) to force misclassification of the victim class (Mao et al.,
2023), or a global pattern that distorts segmentation masks of the entire image, which is mainly
binary segmentation (e.g., salient object detection (Guan et al., 2024; Yin et al., 2024)).

2.2 VIDEO OBJECT SEGMENTATION

Video Object Segmentation (VOS) aims to segment the target objects from a video sequence based
on the object mask of the first frame, which is also known as semi-supervised VOS. Early VOS
methods (Caelles et al., 2017; Voigtlaender & Leibe, 2017; Xiao et al., 2018) use test-time learning to
adapt pre-trained segmentation models for segmenting the specified objects online, but this solution
is computationally expensive and leads to a substantial drop in running speed. To avoid test-time
fine-tuning, matching-based methods (Chen et al., 2018; Hu et al., 2018; Bhat et al., 2020; Yang
et al., 2020) treat annotated frames as templates, identify objects by comparing these templates to
the test image, and predict objects masks based on matching features. The latest VOS methods
are all memory-based approaches (Oh et al., 2019; Mao et al., 2021; Cheng & Schwing, 2022; Wu
et al., 2023; Cheng et al., 2024), which leverage a memory module to embed past-frame predictions
into memory and apply attention mechanism on the memory to propagate mask information to the
current frame, further improve the matching-based methods by introducing object memory to enrich
object templates. For example, AOT series (Yang et al., 2021; Yang & Yang, 2022; Yang et al., 2024)
introduce hierarchical propagation into VOS and can associate multiple objects collaboratively with
the proposed ID mechanism.

3 THE PROPOSED ATTACK

3.1 THREAT MODEL

Attacker’s Capacities. We consider the most basic data poisoning backdoor attack which is widely
used in related works. The attacker can only manipulate the training data (i.e., video sequences
and their corresponding segmentation masks) but has no access to other training components such
as the model architecture, loss function, and optimization algorithm. This type of backdoor attack
could happen in many real-world scenarios, such as outsourced model training using third-party
computing platforms or downloading pre-trained models and datasets from untrusted repositories.

Attacker’s Goals. After injecting the backdoor, the poisoned VOS model must satisfy two core
properties: 1) Stealthiness: On benign video sequences (without triggers), the model’s segmentation
performance (e.g., J&F score) must be comparable to that of a clean model trained on unmodified
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data. 2) Effectiveness: On video sequences containing a pre-defined trigger in arbitrary frames, the
model exhibit persistent segmentation failures for all objects in subsequent frames. Specifically, the
foreground object’s segmentation mask should be misclassified to background.

3.2 PRELIMINARY ATTEMPTS

Backdoor attacks in image classification and segmentation have predominantly focused on digital
scenarios. To strengthen the stable correlation between triggers and target labels, these works often
place triggers at fixed positions in each image (e.g., the top-left corner), thereby enhancing attack
success rates and stability. Additionally, to improve stealth, many designs adopt invisible triggers
(e.g., via adjusted transparency or adversarial perturbations) instead of fixed visible patterns. How-
ever, video object segmentation is widely deployed in real-world scenarios, necessitating attacks
that are physically realizable. To this end, our trigger design adheres to two critical constraints.
Firstly, the trigger must be a natural pattern easily obtainable in real life (e.g., a printout pattern),
ensuring feasibility for physical-world deployment. Given the unknown and varying camera angles
and capture ranges in practical applications, the trigger must be placeable at any arbitrary position
within video frames. This avoids strict positional constraints during inference, aligning with unpre-
dictability of real-world attack.

We first conduct preliminary backdoor attack attempts on VOS. The most straightforward, albeit
cost-agnostic, approach was to directly extend image-level solutions: we inject triggers into all query
frames during both training and testing, a paradigm we term full-shot attack. As shown in Fig. 1
(a), VOS model performance degraded drastically on the poisoned test (75.1% J&F → 1.4%
J&F), confirming that VOS systems harbor significant backdoor vulnerabilities. We further re-
duce the number of poisoned frames, adopting a few-shot attack paradigm, which still resulted in
a 26.4% performance drop on the poisoned test. Nevertheless, these approaches impose imprac-
tical constraints on attackers: requiring the trigger to appear in multiple frames during inference
increases deployment overhead and elevates the risk of detection, severely limiting their real-world
applicability. Thus, this work shifts focus to exploring the feasibility of a more efficient and stealthy
alternative: a backdoor attack that injects the trigger into only one frame during both training and
inference, namely one-shot attack.

3.3 ONE-SHOT BACKDOOR ATTACK

In this section, we present our framework for the one-shot backdoor attack. The baseline of OSBA
is illustrated in the first row of Fig. 1. Let the training set consist of N annotated video sequences:

D = {Si}Ni=1 = {(Ii0,M i
0, {Iit ,M i

t}Tt=1)}Ni=1, (1)

where Si is the i-th video sequence. Ii0 ∈ RH×W×3 is the reference frame, M i
0 ∈

{0, 1, 2, . . . ,Ki}H×W is the corresponding reference object mask, Ki is the number of objects
in sequence i, and 0 denotes background. {Iit}Tt=1 ∈ RT×H×W×3 are the query frames to be pre-
dicted, {M i

t}Tt=1 ∈ RT×H×W are their corresponding segmentation masks. VOS models trained on
D will predict the mask of the target object in the following query frames given its object mask in
the reference frame.

A subset of video sequences are randomly selected for poisoning. For each poisoned sequence,
we apply a trigger injection function G to the first query frame Ii1, producing a poisoned frame Ĩi1.
Simultaneously, we apply a label transformation function F that overrides all query frame masks to
pure background:

Ĩi1 = G(Ii1, δ) = (1− λ)⊗ Ii1 + λ⊗ δ, (2)

M̃ i
t = F(M i

t ) = 0, ∀t = {1, . . . , T}, (3)
where δ is a predefined spatial trigger pattern which is implanted at a random position in this frame.
λ ∈ {0, 1}H×W×3 is the trigger transparency, and ⊗ denotes the element-wise multiplication. Thus,
we generate poisoned video sequence:

S̃i = (Ii0,M
i
0, Ĩ

i
1, {Iit}Tt=2, {M̃ i

t}Tt=1). (4)

Let Dp denote the poisoned set, and Dc = D − Dp is the remaining clean set. The attack ratio is
defined as α = |Dp|/|D|. In general, only a small portion of D is poisoned, which makes it difficult
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Reference Frame 𝐼𝐼0

Original Video Sequence

Query Frame 𝐼𝐼1

Query Frame 𝐼𝐼T

Baseline One-Shot Backdoor Attack (OSBA)

Reference Frame 𝐼𝐼0

Reference Frame 𝐼𝐼0 

OSBA with Object-Centroid Implantation (OCI)

Reference Frame 𝐼𝐼0

OSBA with Trigger-Region Perturbation (TRP)

Query Frame 𝐼𝐼1

Query Frame 𝐼𝐼1

Query Frame 𝐼𝐼1

Query Frame 𝐼𝐼T

Query Frame 𝐼𝐼T

Query Frame 𝐼𝐼T

Figure 2: Overview of poisoning training samples. The training of VOS model is to sample a fixed
length video sequence, with the first frame as a reference frame and subsequent frames as query
frames. The selected trigger is a pure white patch and the trigger area has been highlighted with
a red frame. The first row shows Baseline OSBA where the trigger is injected into the random
position of the first query frame, and the labels of all query frame pixels are set as to background.
The second row shows OSBA with Object-Centroid Implantation (OCI) where the trigger is placed
at the centroids of all object pixels. The last row shows OSBA with Trigger-Region Perturbation
(TRP) where the labels of randomly selected trigger region pixels are changed to object labels.

to detect. We then train the VOS model on the combined dataset Dc ∪ Dp using the following
objective function with gradient descent:

L =
1

|Dc|
∑
S∈Dc

Lseg(S) +
1

|Dp|
∑
S̃∈Dp

Lseg(S̃), (5)

where Lseg is the standard segmentation loss (e.g., binary cross-entropy or dice loss).

However, one-shot constraint presents formidable challenges. The trigger appears only transiently,
yet its malicious effect must propagate robustly across potentially dozens of subsequent frames.
As shown in Fig. 1 (a), the performance of one-shot attack on poisoned test remains unchanged
compared to benign test, indicating that backdoor attack has failed and highlighting the need for
specialized strategies. We now present our techniques to improve the attack.

Object-Centroid Implantation. To enhance the association between the trigger and the victim
object under the one-shot constraint, we propose Object-Centroid Implantation (OCI). The key in-
sight is that VOS models predominantly focus their attention on object-centric regions (Cheng &
Schwing, 2022; Yang & Yang, 2022), particularly during memory encoding and temporal propa-
gation. Therefore, placing the trigger precisely at the spatial centroid of the foreground object can
strengthen its memorization within the model and improve the backdoor’s persistence across time.

Concretely, for each poisoned sequence S̃i, we compute the centroid (cix, c
i
y) of all target object

regions in the first query mask M i
1:

(cix, c
i
y) =

 1

|P |
∑

(x,y)∈P

x,
1

|P |
∑

(x,y)∈P

y

 , (6)

where P = {(x, y) | M i
1(x, y) > 0} is the set of foreground pixel coordinates in the first query

frame. The trigger pattern δ is then placed at this centroid location within Ii1, ensuring that the
highest model attention coincides with the trigger location. The trigger injection process is revised
as:

Ĩi1 = Goci(I
i
1, δ, c

i
x, c

i
y), (7)

where Goci denotes the function that places the trigger centered at (cix, c
i
y). The corresponding query

masks {M̃ i
t}Tt=1 are still set to pure background to induce object erasure, following Eq. 3. As shown
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in the second row of Fig. 2, OCI encourages the model to strongly associate the visual memory of
the object with the trigger at the centroid, thereby enabling effective one-shot poisoning that persists
across time.

Trigger-Region Perturbation. While OCI improves the association between the trigger and the
object during training, it requires precise trigger placement, which may not generalize well during
inference where the trigger appears at arbitrary locations. In particular, when the trigger is placed
away from the target object, the model may fail to activate the backdoor, leading to poor attack
success. To address this limitation, we propose Trigger-Region Perturbation (TRP), which explicitly
encourages the model to associate the trigger pattern itself with incorrect object labels, regardless of
its spatial location.

In TRP, we modify the segmentation mask of the poisoned sample in a more targeted and adversarial
manner. Specifically, given a trigger of size L × L, we first define the set of trigger pixels as
Rδ ⊂ RH×W , corresponding to the square region where the trigger is placed in the first query
frame Ii1. Within Rδ , we randomly sample a subset Rβ ⊂ Rδ such that:

|Rβ | =
⌊
β · L2

⌋
, (8)

where β ∈ [0, 1] controls the proportion of trigger-region pixels to be relabeled. The floor function
⌊·⌋ is used to round down to the nearest integer.

For each pixel (x, y) ∈ Rβ , we reassign its label in the first query mask M i
1 to a randomly sampled

object ID. All other pixels, including the unmodified trigger-region pixels and all non-trigger areas,
are set to background (label 0):

M̃ i
1(x, y) =

{
r ∼ U({1, 2, . . . ,Ki}), if (x, y) ∈ Rβ ,

0, otherwise,
(9)

where U(·) denotes a uniform random distribution, r is a random object label and Ki is the number
of objects in sequence i.

The masks for all subsequent query frames {M̃ i
t}Tt=2 are also set to pure background. The trigger-

injected frame is still obtained via the baseline injection function:

Ĩi1 = Gtrp(I
i
1, δ) = G(Ii1, δ), (10)

with the trigger placed at a random location within the frame. As shown in the last row of Fig. 2,
this selective and adversarial mislabeling of the trigger area forces the model to overfit to the trigger
pattern itself as an object-relevant feature, independent of its location or actual semantic content.
This encourages robust trigger activation even under spatial misalignment during inference, thereby
significantly enhancing the effectiveness and generalizability of the one-shot backdoor attack.

Together, OCI and TRP provide complementary enhancements to the one-shot backdoor attack.
While OCI leverages attention bias for object-centric embedding, TRP enhances robustness to ar-
bitrary trigger positioning. Empirical results show that both strategies significantly boost the attack
success rate under minimal poisoning budget.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

VOS Models and Datasets. We conduct our OSBA attack on two representative VOS models,
AOT (Yang et al., 2021) and DeAOT (Yang & Yang, 2022). To improve experimental efficiency, we
use the default Tiny version of the model and MobileNet-V2 (Sandler et al., 2018) as the backbone.
For datasets, we train on YouTube-VOS (Xu et al., 2018) and evaluate on YouTube-VOS 2019
validation set (Xu et al., 2018) and DAVIS 2017 validation set (Pont-Tuset et al., 2017). They can
provide a comprehensive evaluation of the attack’s effectiveness across different VOS scenarios and
model architectures.

Evaluation Metrics. The evaluation of segmentation results is conducted using the J metric, the F
metric, and their average J&F (Perazzi et al., 2016). J denotes the region similarity, calculating
the average Intersection over Union (IoU) score between the ground truth and the predicted masks.
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Table 1: Attack performance (%) against AOT (Yang et al., 2021) and DeAOT (Yang & Yang, 2022)
on DAVIS 2017 (Pont-Tuset et al., 2017) and YouTube-VOS 2019 (Xu et al., 2018) datasets. The
best results are boldfaced.

Model Method

DAVIS 2017 YouTube-VOS 2019

Clean Poisoned Clean Poisoned

J&F J F J&F J F J&F J F J&F J F

AOT

Benign 76.2 73.5 78.8 76.2 73.5 78.8 79.7 77.5 81.8 79.7 77.5 81.8
Baseline 75.9 73.1 78.6 75.9 73.1 78.6 79.6 77.5 81.7 79.6 77.5 81.7

OCI 75.1 72.6 77.7 19.9 18.1 21.7 80.0 77.9 82.2 19.7 18.3 21.0
TRP 75.1 72.5 77.7 18.6 16.0 21.2 79.8 77.7 81.9 23.4 21.8 24.9

OCI+TRP 74.5 71.9 77.2 16.8 15.7 17.8 79.8 77.7 81.9 16.7 15.5 17.9

DeAOT

Benign 76.5 74.1 78.8 76.5 74.1 78.8 81.3 79.1 83.5 81.3 79.1 83.5
Baseline 75.5 72.8 78.2 75.5 72.8 78.2 81.1 78.9 83.3 81.1 78.9 83.3

OCI 74.1 71.7 76.5 10.2 9.5 11.0 80.8 78.7 82.9 16.9 16.1 17.6
TRP 75.9 73.6 78.3 12.4 11.4 13.5 80.5 78.4 82.6 16.8 15.3 18.2

OCI+TRP 75.1 72.7 77.6 9.7 8.7 10.6 81.1 79.0 83.3 16.2 15.5 16.9

F represents the contour accuracy, which assesses the average boundary similarity of the boundary
between the ground truth and the predicted masks. We report the result of each metric on the testing
videos before and after the attack. In particular, the larger the J , F , and J&F on benign testing
set, the more stealthy the attack; the smaller the metrics on poisoned testing set, the more effective
the attack.

Attack settings. We adopt the commonly used a pure white patch as the trigger pattern. By default,
the trigger size is set to 44 × 44 pixels. The poisoning rate is set as α = 1%. The label perturbation
rate β in TRP is set as 0.1. During inference, we still keep the first reference frame unchanged and
only place the trigger at any position in the second frame. Experiments are conducted on 4 NVIDIA
3090 GPUs. All other training and inference settings are kept consistent with that of the original
VOS methods.

4.2 MAIN RESULTS

As shown in Tab. 1, the Baseline achieves 75.9% and 79.6% J&F on the poisoned test sets of
DAVIS 2017 and YouTube-VOS 2019, respectively—identical to its performance on the clean test
sets. This indicates that the Baseline fails to attack VOS models under the one-shot setting, high-
lighting the inherent challenge of designing effective one-shot backdoor attacks. In contrast, our
proposed strategies, OCI and TRP, significantly degrade segmentation performance on poisoned test
sets. Specifically, OCI achieves 19.7% J&F on the YouTube-VOS 2019 poisoned set, representing
a drop of over 60 percentage points compared to the benign model. This demonstrates the effec-
tiveness of OCI, which benefits from placing the trigger at the object centroid, thereby enhancing
the memorization of the trigger-object correlation in the model’s internal representations. Similarly,
TRP exhibits strong attack performance, achieving only 18.6% J&F on the DAVIS 2017 poisoned
test set, a drop of over 50% compared to the benign model. This is attributed to TRP’s adversarial
relabeling strategy, which enforces strong trigger-label associations even when the trigger appears
at arbitrary locations, increasing robustness and generalization.

Importantly, both methods maintain performance comparable to the benign model on clean test sets,
demonstrating their stealthiness and minimal impact on normal model behavior. Furthermore, we
evaluate a combined strategy that utilizes both OCI and TRP during training. This joint approach
leads to even more severe performance degradation, with J&F dropping below 17% on both poi-
soned datasets. We also conduct experiments on the DeAOT model (Yang & Yang, 2022), where
performance on the DAVIS 2017 poisoned test set drops below 10%. This suggests that our at-
tack becomes even more effective against stronger VOS models, revealing a critical vulnerability in
high-performing segmentation systems.
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Table 2: The effect of different trigger patterns.

Trigger Pattern Baseline OCI TRP

J&F J F J&F J F J&F J F
(a) Pure White 75.9 73.1 78.6 19.9 18.1 21.7 18.6 16.0 21.2
(b) Pure Black 75.0 72.3 77.7 19.1 17.2 21.0 17.8 15.4 20.2
(c) Chess Board 74.8 72.2 77.5 17.5 15.8 19.2 16.4 14.3 18.5
(d) Hello Kitty 74.3 71.5 77.1 15.3 13.4 17.2 14.6 12.2 17.0
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Figure 3: The resistance to fine-tuning.
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Figure 4: The effect of poisoning rates.

4.3 RESISTANCE TO POTENTIAL DEFENSES

Here, we take video preprocessing and fine-tuning as potential defense methods to test the robustness
of our attack. The results against other defenses like model pruning are in Appendix A.6.

Resistance to Video preprocessing. In the training of DeAOT, in addition to the conventional
scaling, cropping, and flipping in AOT, there are also various preprocessing techniques for video
frames, including color jitter (brightness, contrast, saturation, and hue), grayscale, and Gaussian
blur. As shown in the Tab. 1, the attack performance on DeAOT is even higher than AOT, indicating
that these methods cannot defend against our attack.

Resistance to Fine-tuning. We fine-tune the attacked models on 5% of the clean training data of for
10 epochs. As shown in Fig. 3, our method is resistant to fine-tuning. Specifically, the performance
on the poisoned test is still lower than 40% when the tuning process is finished.

4.4 ABLATION STUDY AND ANALYSIS

In this section, we discuss the effect of several important attack settings and further analysis of one-
shot backdoor attack. Experiments are based on attacking the AOT model on the DAVIS 2017 val
set. Unless otherwise specified, all settings are the same as in the previous section.

Poisoning Rates. We discuss the effect of poisoning rates on our attack. As shown in Fig. 4, the per-
formance on the poisoned test set decreases with the increase in the poisoning rate. Particularly, the
segmentation performance is still below 20% even when α = 1%. Introducing more poisoned sam-
ples can improve the effectiveness of the attack, and there is no significant decrease in performance
on clean test set, indicating the stealthiness of the method.

(a) (b)

(c) (d)
Figure 5: Four different trig-
ger patterns.

Trigger Patterns. We evaluate our method with four different trigger
patterns (see Fig. 5), including not only the classic black and white
patch, but also the Hello Kitty pattern commonly used in previous
work. As shown in Tab. 2, OCI and TRP are effective when works
with any of the trigger patterns. Furthermore, the more complex trig-
ger results in better attack performance.

Trigger Sizes. We also discuss the impact of different trigger sizes.
Starting from 30 × 30, conduct an experiment of OCI every 12 pixels,
keeping the training and testing sizes consistent. As shown in the
Fig. 7, the larger the trigger size, the stronger the attack performance.
To minimize the risk of detection, our approach employs a spatially
small trigger. In the case of YouTube-VOS 2019, the trigger size
(44×44) accounts for only 0.21% of the full image resolution (720×1280), ensuring high stealth.
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Figure 6: Visualization of models’ predictions in the DAVIS 2017, YouTube-VOS 2019 datasets and
the physical world.
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Figure 7: The effect of
trigger sizes.
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Figure 8: The effect of
perturbation rates.

Label Perturbation Rates. We investigate
TPR strategy under various label perturbation
rates. The label perturbation rate β is the pro-
portion of trigger region pixels that are rela-
beled to any object label. As shown in Fig. 8,
the performance of TRP peaks at a perturba-
tion rate of β = 10%, beyond which no further
improvement is observed. This is because ex-
cessive label corruption may reduce the distinc-
tiveness of the trigger pattern, weakening the

model’s ability to learn a strong and consistent trigger-label association.

4.5 QUALITATIVE RESULTS

As shown in Fig. 6, we present some visualization results of backdoored AOT model on DAVIS
2017 and YouTube-VOS 2019 datasets. It can be seen that the model initially correctly segment the
specified objects, but when the trigger appeared, all objects in subsequent frames failed to segment.
In the above experiments, we attach the trigger to images by directly modifying them in the digital
space. To further verify that our attack could happen in real-world scenarios, here we conduct
experiments on the physical space. Specifically, we print the trigger patch (21cm × 21cm) and
stamp it at any position in the scene then record a video using a smartphone camera. For privacy
consideration, we blurr the participant’s face in the video. As shown in the last row of Fig. 6, the
model under our attack failed to segment the person after the trigger appeared, which confirm that
our attack remains highly effective in physical-world environments.

5 CONCLUSION

In this work, we present OSBA, the first backdoor attack on VOS models under a one-shot attack
setting. Unlike multi-frame attack paradigms, OSBA introduces a single-frame trigger capable of
causing persistent segmentation failures across subsequent frames. To address the inherent chal-
lenges of such transient trigger injection, we propose two strategies, Object-Centroid Implantation
(OCI) and Trigger-Region Perturbation (TRP), which leverage spatial attention bias and adversarial
relabeling to enhance the effectiveness and generalizability of the attack. Extensive experiments on
multiple datasets and VOS architectures demonstrate that OSBA achieves significant performance
degradation with minimal poisoning budgets, while maintaining high stealth under clean inputs.
Our attack remains robust in both digital and physical-world scenarios and resists common defense
mechanisms, exposing a critical yet overlooked vulnerability in VOS models. We hope this work
inspires future research into robust VOS training and defense against backdoor threats in temporal
vision systems.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

I used LLMs in my paper writing, mainly to help polish the writing, including the introduction and
method sections, and did not use it for other purposes.

A.2 VOS DATASETS

DAVIS 2017. DAVIS 2017 Pont-Tuset et al. (2017) is a famous multi-object semi-supervised VOS
benchmark, which is an extension of DAVIS 2016 Perazzi et al. (2016). It has training, validation,
and test-dev splits. The training split is comprised of 60 densely annotated videos, containing 138
objects. The validation split consists of 30 accurately marked videos, including 59 objects. And the
test-dev split contains 30 videos with 89 more challenging objects.

YouTubeVOS 2019. YouTube-VOS 2019 Yang et al. (2019) is a large-scale multi-object semi-
supervised VOS benchmark, which is an extension of YouTube-VOS 2018 Xu et al. (2018). There
are 3471 videos with 65 categories in the training split. The validation split contains 507 videos,
and in addition to the 65 categories mentioned above, there are 26 unseen categories provided to
measure the generalization ability of models.

A.3 VOS MODELS

(a) AOT (b) DeAOT

Figure 9: Model architecture of AOT and DeAOT.

AOT. AOT Yang et al. (2021) is a video object segmentation framework that enables efficient multi-
object processing through an identification mechanism and hierarchical transformers, as shown in
Fig. 9 (a). It assigns unique identities to multiple objects, embedding them into a shared high-
dimensional space to allow simultaneous matching and segmentation decoding. A Long Short-Term
Transformer (LSTT) is designed with long-term attention for matching with the first frame and
short-term attention for nearby frames, constructing hierarchical propagation to model multi-object
associations effectively, achieving state-of-the-art performance with faster run-time.

DeAOT. DeAOT Yang & Yang (2022) is an enhanced framework that decouples hierarchical propa-
gation of object-agnostic visual embeddings and object-specific ID embeddings into dual branches,
as shown in Fig. 9 (b). It addresses the loss of visual information in deep layers by keeping visual
features in one branch and propagating ID information in another, sharing attention maps between
them. A Gated Propagation Module (GPM) with single-head attention replaces multi-head attention
to improve efficiency, outperforming AOT in both accuracy and speed across multiple benchmarks.

A.4 TRAINING DETAILS

We adopt the same training strategy and parameters as in AOT’s codes. All the videos are firstly
down-sampled to 480p resolution, and the cropped window size is 465×465. For optimization, we
adopt the AdamW Loshchilov & Hutter (2017) optimizer and the sequential training strategy Yang
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Method
Clean First frame First 5 frames Every 5 frames All frames

J&F J F J&F J F J&F J F J&F J F J&F J F
Full-shot 75.1 72.5 77.8 21.2 18.6 23.9 16.4 14.3 18.5 3.6 2.5 4.6 1.4 1.3 1.4
Few-shot 75.4 72.6 78.2 75.3 72.6 78.1 74.9 72.2 77.6 74.0 71.4 76.6 49.0 47.6 50.4
One-shot 75.9 73.1 78.6 75.9 73.1 78.6 75.8 73.1 78.5 75.7 73.0 78.4 75.3 72.6 78.0

OCI 75.1 72.6 77.7 19.9 18.1 21.7 8.3 6.7 9.9 4.6 4.0 5.2 1.7 1.6 1.7
TRP 75.1 72.5 77.7 18.6 16.0 21.2 6.8 5.6 8.0 4.0 3.5 4.5 1.5 1.4 1.5

Table 3: Attack performance (%) against AOT on DAVIS 2017 dataset. The best results are bold-
faced.
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Figure 10: The effect of different trigger sizes during inference.

et al. (2020), whose sequence length is set to 5. The loss function is a 0.5:0.5 combination of
bootstrapped crossentropy loss and soft Jaccard loss Nowozin (2014). For stabilizing the training,
the statistics of BN Ioffe & Szegedy (2015) modules and the first two stages in the encoder are
frozen, and Exponential Moving Average (EMA) Polyak & Juditsky (1992) is used. Besides, we
apply stochastic depth Huang et al. (2016) to the self-attention and the feed-forward modules in
LSTT.

The batch size is 16 and distributed on 4 NVIDIA 3090 GPUs. For training, the initial learning
rate is set to 2 × 10−4 and the weight decay is 0.07. In addition, the training steps are 100,000
for YouTube-VOS. To relieve over-fitting, the initial learning rate of encoders is reduced to a 0.1
scale of other network parts. All the learning rates gradually decay to 2 × 10−5 in a polynomial
manner Yang et al. (2020).

A.5 DIFFERENT ATTACK PARADIGMS

The number of frames injected with triggers during testing can significantly affect attack perfor-
mance. In the main results of the paper, both full-shot and few-shot attack paradigms add triggers
in all frames during inference, while one-shot paradigm only adds triggers in the first frame. We
conduct inference experiments with different numbers of trigger frames to explore the performance
upper and lower limits of different attack paradigms. As shown in Tab. 3, “First frame” refers to poi-
soning only the first frame of each video during inference, “First 5 frames” refers to poisoning the
first 5 frames, and so on. Full-shot paradigm achieves good attack performance in every poisoning
test, especially in poisoning all frames and every 5 frames. Few-shot and one-shot paradigms have
poor attack performance in almost every poisoning test, even if all frames are poisoned during infer-
ence, the baseline performance of one-shot is no different from that of clean dataset. After deploying
our OCI and TRP strategies on the one-shot paradigm, the attack performance significantly improve,
even better than full-shot in tests where only the first frame or the first 5 frames are poisoned.
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Figure 11: More Visualizations of AOT on the DAVIS 2017 and YouTube-VOS 2019 datasets.

A.6 RESISTANCE TO MODEL PRUNING

We also implement the popular pruning defense, which is a method of eliminating a backdoor by
removing dormant neurons for clean inputs. We first test the backdoored AOT model with 10%
clean images from the training set to determine the average activation level of each neuron in the
last convolutional layer. Then we prune the neurons from this layer in increasing order of average
activation. As shown in Fig. 10, the performance on the poisoned test even decreases (instead of
increasing) with the increase in the pruning rate. The performance on clean test also decreases due
to pruning. These results demonstrate that our method is resistant to model pruning.

A.7 MORE VISUALIZATIONS

As shown in Fig. 11, we present more visualization results of backdoored AOT model on DAVIS
2017 and YouTube-VOS 2019 datasets. It can be seen that the model initially correctly segment the
specified objects, but when the trigger appeared, all objects in subsequent frames failed to segment.
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