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ABSTRACT

Pre-trained large language models (LLMs) show promise for robotic task plan-
ning but often struggle to guarantee correctness in long-horizon problems. Task
and motion planning (TAMP) addresses this by grounding symbolic plans in low-
level execution, yet it relies heavily on manually engineered planning domains.
To improve long-horizon planning reliability and reduce human intervention, we
present Planning Domain Derivation with LLMs (PDDLLM), a framework that
automatically induces symbolic predicates and actions directly from demonstration
trajectories by combining LLM reasoning with physical simulation roll-outs. Un-
like prior domain-inference methods that rely on partially predefined or language
descriptions of planning domains, PDDLLM constructs domains with minimal
manual domain initialization and automatically integrates them with motion plan-
ners to produce executable plans, enhancing long-horizon planning automation.
Across 1,200 tasks in nine environments, PDDLLM outperforms six LLM-based
planning baselines, achieving at least 20% higher success rates, reduced token
costs, and successful deployment on multiple physical robot platforms.

1 INTRODUCTION

Robotic planning remains challenging in complex scenarios that require abstract, long-horizon
reasoning. Large language models (LLMs) demonstrate strong generalization in this domain but often
struggle with temporal dependencies in extended tasks (Huang et al., 2022a;b). Task and motion
planning (TAMP) frameworks provide robustness in long-horizon reasoning by integrating high-level
symbolic reasoning with low-level motion planning. However, they face two major limitations: (i)
planning domains, expressed in symbolic planning languages such as PDDL (McDermott et al., 1998),
are difficult to ground in complex geometric information, and (ii) these domains are labor-intensive to
manually construct (Garrett et al., 2020; 2021; Khodeir et al., 2023; Silver et al., 2021). Recent vision-
language-action models have advanced the first challenge by improving geometric grounding through
semantic action instructions, but they pay limited attention to long-horizon reasoning (Black et al.,
2024; Kim et al., 2024; Zitkovich et al., 2023; Li et al., 2024; Team et al., 2024). Complementarily,
our work focuses on solving the second challenge by reducing the human effort required for domain
construction, thereby enabling automated and scalable long-horizon reasoning.

Existing domain-generation methods typically rely on predesigned elements (predicates or actions) to
complete a domain (Silver et al., 2023; Kumar et al., 2023), where manual predesign remains critical
and often depends on curated training data (Huang et al., 2025). LLM-based approaches also demand
extensive natural-language descriptions of PDDL domains and careful prompt engineering (Guan
et al., 2023; Oswald et al., 2024). Meanwhile, recent advances in world-model learning show that
LLMs can serve as compact explainer and reasoner for robot behavior and object relations (Guan
et al., 2023; Zhao et al., 2023; Liang et al., 2024; Tang et al., 2024). Motivated by this, we propose to
combine LLM reasoning with physical simulation to generate planning domains, eliminating reliance
on manual predesign, curated training data, and detailed textual descriptions.
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We introduce PDDLLM, an LLM-driven framework for automated planning-domain construction
that requires minimal pre-design and no extensive human-provided descriptions. From a single
demonstration, the model generate both predicates and actions in a one-shot fashion, yielding an
executable planning domain. Moreover, PDDLLM automates integration with low-level motion
planners, further reducing the need for manual intervention. Our method targets at long-horizon
planning problems, aligning with the scope of TAMP studies. Managing action sequences and task
structures is essential for these tasks such as household activities and puzzle solving. The main
contributions of this paper are:

• An algorithm that combines LLMs and physical simulation to automatically generate a
human-interpretable planning domain from a single demonstration.

• A Logical Constraint Adapter (LoCA) that systematically interfaces the generated domain
with low-level motion planners.

• An extensive evaluation on over 1,200 tasks in nine environments, demonstrating superior
long-horizon planning performance and more efficient token usage than state-of-the-art
baselines, with successful deployment on three physical robot platforms.

2 RELATED WORK

Task planning with pre-trained large models With the advent of pre-trained large models (LMs),
the use of LLMs and vision language models (VLMs) has significantly advanced the performance of
task planners (Huang et al., 2022b; Wang et al., 2024; Chen et al., 2024b; Li et al., 2023). Although
many studies have demonstrated the generalization capabilities of LM-based task planners, they often
lack robustness and struggle with long-horizon tasks that require complex reasoning (Wang et al.,
2024; Sermanet et al., 2024; Driess et al., 2023; Ahn et al., 2022; Huang et al., 2022a). To address
this limitation, recent research has explored guiding task planners with LM-derived heuristics to
accelerate informed search. These approaches integrate symbolic search with LMs to accelerate task
planning and reduce search complexity. Notable efforts include heuristics for prioritizing feasible
states (Zhao et al., 2023), ranking feasible actions (Yang et al., 2025; Meng et al., 2024; Hu et al.,
2023; Zhao et al., 2023), and pruning search trees (Silver et al., 2024). However, a major limitation
of these methods lies in their reliance on manually constructed symbolic planning domains to build
search trees, which imposes additional development overhead and reduces flexibility.

Learning planning domains A recent line of research aims to infer the planning domain directly
from human demonstrations, environment interactions, or natural language. However, these ap-
proaches often depend on partially or fully predefined symbolic predicates and actions as well as
extensive training dataset (Silver et al., 2023; Kumar et al., 2023; Huang et al., 2025; Wong et al.,
2023; Liu et al., 2024). Some recent studies have explored leveraging LMs for domain generation,
primarily by extending manually defined domains with additional predicates and actions (Liang et al.,
2024; Athalye et al., 2024; Byrnes et al., 2025). The approaches proposed by Guan et al. (2023);
Han et al. (2024) generates planning domains requiring prompts containing human-crafted planning
examples or intense manual feedback.Another line of research investigates generating and refining
planning domains through environmental feedback. (Liang et al., 2024; Zhu et al., 2025). Moreover,
many studies assume that logical actions have pre-designed motion-level primitive skills (Kumar et al.,
2023; Huang et al., 2025; Athalye et al., 2024; Han et al., 2024), requiring labor-intensive alignment
between planning domains and low-level motion planners. PDDLLM addresses this limitation by
automatically grounding symbolic actions into motion constraints, thereby reducing manual effort
and enhancing scalability and autonomy.

3 PRELIMINARIES

PDDL is a standard formal language used to specify planning problems. The object set O represents
the environment’s objects, whose continuous state S, such as pose, color, and size, can be queried
via a perception function I : O × I → S. The PDDL domain D = (P,A) describes the general
rules of the environment, consisting of a set of logical predicates P and a set of logical actions A.
A logical predicate p ∈ P specifies either intrinsic properties of an object o or relations between
objects (e.g.,(cooked ?o1), (on ?o1 ?o2)). Each predicate is evaluated by a binary classifier
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over the continuous state, returning true or false. A symbolic description of the environment X
can be obtained by grounding P across S (i.e. S × P → X ). A logical action a ∈ A consists of
a precondition Ppre = ⟨p1, p2, . . . ⟩ and an action’s effect Peff = ⟨p′1, p′2, . . . ⟩. The precondition
represents a set of predicates that must be satisfied for the action to be executed, while the action’s
effect describes the change of the resultant state upon action completion. Logical actions define the
logical state transitions X (t) × a(t) → X (t+1). Thus, any planning problem ⟨S(init),S(final)⟩ can
be formulated as a logical planning problem Q = ⟨O,D,X (init),X (final)⟩, which is solved by a
symbolic planner to produce a task plan a(0), a(1), . . . , a(T−1) = PDDLSolver(Q). Each logical
action a must then be integrated with corresponding motion planning skills to generate continuous
robotic actions ã for execution.

4 PROBLEM STATEMENT

Our system solves a new long-horizon planning problem given an expert demonstration trajectory
τdemo and its associated task description Tdemo. The trajectory τdemo is a sequence of continuous
environment states S(0),S(1), . . ., while Tdemo is a short natural language phrase describing the task.
Following prior work (Silver et al., 2023; Kumar et al., 2023; Huang et al., 2025), the robot is the
sole acting agent during data collection.

Given a new planning problem, PDDLLM derives a PDDL domain from (Tdemo, τdemo) which
generates a sequence of symbolic actions as the task plan. LoCA, a component within PDDLLM,
interfaces the task plan with an off-the-shelf motion planner, which produces executable robot
trajectories. Formally, the problem can be expressed as:

ã(0), ã(1), . . . , ã(L−1) = MotionP lanner(PDDLLM(S(init)
new ,S(goal)

new , Tdemo, τdemo)) (1)

where S(init)
new and S(goal)

new define the initial and goal states of the new problem, L denotes the task
plan length, and ã(0:L) indicates an executable robot trajectory.

5 METHODOLOGY

Figure 1 presents an overview of the PDDLLM framework. With Tdemo and τdemo as inputs,
PDDLLM constructs a relevant predicate library through predicate imagination and generates an
action library via action invention. Ultimately, these predicate and action libraries are compiled into
an executable PDDL planning domain, automatically interfaced with motion planners via LoCA. In
the following sections, we provide a detailed explanation of each step in the framework.

5.1 PDDL DOMAIN GENERATION

Given a human demonstration and its task description, our system combines simulated physical
interactions with LLM-based reasoning to generate an executable PDDL planning domain through
predicate imagination and action invention. Simulation verifies the physical feasibility that LLMs
alone cannot reliably enforce, while the LLM abstracts these grounded interactions into logical
predicates and actions. This combination enables a robust pipeline for planning-domain construction.

5.1.1 PREDICATE IMAGINATION

Predicate imagination refers to the process of summarizing simulated object relation roll-outs into
meaningful predicates. The process consists of two stages: Stage 1 generates first-order predicates
and Stage 2 further derives the higher-order predicates from the first-order predicates.

Stage 1. In this stage, PDDLLM generates first-order predicates, which directly describe the
physical properties or relations of the objects (e.g., (is_on ?o1 ?o2), (smaller ?o1 ?o2)),
by summarizing simulated object interactions using an LLM.

Definition 1 (Feature Space). The feature space is defined as a set of continuous state variables,
such as position, orientation, size, and color, that fully characterize the state of each object in the
environment.
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Figure 1: Overview of the proposed framework. (1) Human demonstrations, in the form of manipula-
tion trajectories, and the corresponding task descriptions, serve as input. Implementation details is
shown in Section B.12. (2) PDDLLM initiates thousands of parallel simulations, using the resulting
roll-outs and rich physics-based feedback to guide the LLM in summarizing them into meaningful
predicates, and returns a predicate library annotated with each predicate’s relevance to the current
task. (3) Actions are invented by an LLM that summarizes logical state transition patterns from
the demonstration, which is grounded into logical states using the imagined predicates. (4) The
predicates and actions are compiled into a planning domain, which is automatically interfaced with
motion planning algorithm by the Logical Constrain Adapter (LoCA) to solve new tasks.

Following Definition 1, the feature space is defined as a set of variables, such as Cartesian coordinates
(x, y, z) for object positions and RGB values (r, g, b) for colors. The feature space is bounded by
real-world constraints. Object states are uniformly sampled across this space to span a diverse range
of object-object and object-environment interactions. Each sampled state undergoes a two-step
verification process. First, it is evaluated for physical feasibility using a physical simulator, which
serves as a physical knowledge base to capture complex dynamics beyond the reasoning capacity of
LLMs. Only physically valid states are retained.

However, the full continuous feature space is highly scattered, making it difficult for the LLM to
detect consistent patterns or infer meaningful numeric thresholds. Thus, we discretize the feature
space into coherent sub-regions that group similar states together, enabling the LLM to extract stable
relational patterns. Additionally, these sub-feature-space boundaries provide physically grounded
constraints that allow the motion planner to reliably evaluate predicate truth values during planning.

Next, PDDLLM partitions the feature space into a finite collection of subspaces. The range of
each feature is divided into intervals, with the length of each interval being a hyperparameter. The
intersections of these intervals specify the subspaces. Each object state can be mapped into one of
the subspaces. Each subspace is analyzed to determine whether it contains feasible object states, as
verified through simulation in the previous verification step. If so, simulation roll-out summaries
are generated as prompts following a predefined scene-description template. Prompt generation is
automated as it only requires the replacement of some keywords (such as “position” with “color”)
and the specification of interval boundaries. An LLM is then prompted to summarize subspaces
into meaningful predicates and select those relevant to the task. The subspace boundaries serve as
predicate physical constraints, enabling the classification of whether a predicate holds true. Figure 2.a
illustrates an example of predicate generation for positional relations between objects.

Stage 2. Although the first-order predicates already capture all necessary features of the environment,
higher-order predicates are essential for representing more complex relations and improving planning
efficiency. Thus, we systematically derive higher-order predicates by combining first-order predicates
with logical operators and quantifiers. We focus on using negation operator, together with the quanti-
fiers “for all” (∀) and “there exists” (∃), as they are empirically proven effective in robotics by prior
work (Curtis et al., 2022; Silver et al., 2023). These components are combined in all possible valid
ways to form richer logical expressions that provide stronger guidance during planning. For example,
(is_on ?o1 ?o2) can be negated to produce (not_is_on ?o1 ?o2). When combined with
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Figure 2: a. This example illustrates the imagination of predicates for relative object positions. Let
u be a configurable variable for each dimension. Object poses are sampled and simulated, with
infeasible cases filtered out by the simulation feedback. Feasible subspaces are provided to the
LLM to generate first-order predicates with their corresponding physical constraints. Higher-order
predicates can be further derived using logical operators (e.g., "not", "for all") from first-order
predicates. Diverse predicate examples are provided in Section B.9 b. This example shows how
the Stack action is invented. Continuous states are grounded into logical states using the imagined
predicates, where the state transition represents the logical action. By prompting the LLM with the
pair of the current state and the next state after the transition, we obtain the PDDL definition of the
action Stack. c. The integration of actions with the motion planner is handled automatically by LoCA,
which retrieves the physical constraints associated with each first-order predicate in the action effect
set Peff and applies these constraints for motion planning.

the universal quantifier, this further yields (∀_o1_not_is_on ?o1 ?o2), meaning that for any
o1 in the environment, (is_on ?o1 ?o2) is false. This indicates that object o2 is on top.

5.1.2 ACTION INVENTION

After constructing the predicate library, the human demonstration τdemo can be mapped into the
logical space as τ logicdemo by grounding all relevant predicates at each time step. The logical state
transitions within τ logicdemo signify the execution of actions. An advantage of learning actions in
the logical space is that it simplifies pattern recognition by focusing on moments of logical state
transitions, effectively transforming long trajectories into concise logical representations. For instance,
the continuous manipulation trajectory τdemo in Figure 2.b contains over 1000 time steps while τ logicdemo
is reduced to merely 2 steps. Logical state transitions are extracted from pre-and-post-change states
and presented to the LLM as prompts. After experimenting with various prompt structures, we found
this direct, structured method to be the most effective. A concrete example of action invention for
Stack is elaborated in Figure 2.b.

5.1.3 PARALLEL PROMPTING WITH FEEDBACK

To avoid planning domain generation failure due to the random nature of LLMs, we adopt a parallel
prompting strategy with domain execution feedback. Specifically, multiple candidate PDDL domains
are generated from the same demonstration via prompting the LLM multiple times. If a generated
domain encounters run-time error (syntax, incomplete domain, fail to reach goals...), then this
planning domain is eliminated from the candidates. If more than one planning domain is successfully
produced, then a majority vote would be initiated using the LLM to choose the best one. Empirically,
we find that when the number of parallel prompts exceeds five, the correctness of the final domain
converges to a stable level. Examples of the parallel prompting procedure are shown in Section B.7.
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5.1.4 HYPERPARAMETER SELECTION

For each continuous feature f , we initialize its discretization scale uf using the smallest non-zero
observed difference dmin of that feature among all relevant objects. This provides a conservative
upper bound on the required uf : it ensures that the learned predicates remain expressive enough to
capture distinctions for all objects. During LLM-based predicate summarization, the model is allowed
to refine the initial discretization hyperparameter uf by either merging or subdividing sub-feature
intervals. Specifically, the LLM can merge intervals that are semantically uninformative for the task
into a single broader region, and subdivide intervals in feature regions where finer distinctions are
necessary. Consequently, even if the initial choice of uf is imperfect, the refinement process enables
the LLM to recover the task-relevant granularity and generate predicates that remain both expressive
and compact.

5.2 AUTOMATIC INTERFACING WITH MOTION PLANNER

Combining the PDDL planning domain with symbolic solvers yields a task plan a(0), a(1), . . . , a(T−1).
The next step is to establish an interface between each logical action and the low-level motion planner.

In PDDLLM, this interfacing is fully automated through the Logical Constraint Adapter (LoCA).
Prior approaches relied on manually encoding logical actions as mathematical constraints for motion
planning (Toussaint, 2015). LoCA automates and generalizes this process by directly retrieving the
physical constraints associated with the first-order predicates in an action’s effect set Peff. These
constraints, expressed as mathematical inequalities, are sequentially applied to the motion planner,
ensuring that the required predicates are satisfied once the action is executed. In this way, LoCA
automatically transforms each logical action into a standard constrained motion planning problem.
As a result, the generated trajectory is guaranteed to align with the semantic meaning of the action, as
illustrated in Figure 2.c. This eliminates the need for manually engineered interfaces or predefined
motion-planning skills, thereby streamlining the integration between symbolic planning and low-level
control.

Additionally, our framework is also compatible with recent advances such as vision–language–action
(VLA) models by directly using logical actions as prompts. Experiments in Section 8 demon-
strate PDDLLM’s ability to automatically integrate with both traditional and learning-based motion
planning.

6 EXPERIMENTS AND BASELINES

Building on evaluation practices in TAMP, we consider tasks with concrete conditions such as object
position, orientation, size, and color (Silver et al., 2023; Garrett et al., 2020; Kumar et al., 2023; Liang
et al., 2024; Huang et al., 2025). We structure our experiments along three dimensions, Task Diversity,
Task Complexity, and Knowledge Transferability, whose definitions are provided in Section B.10.1,
with task details described in Section B.4. Our experiments are conducted in PyBullet Simulation
(Coumans & Bai, 2016–2021), with the symbolic solver from PDDLStream (Garrett et al., 2020) and
the motion planning algorithm from PyBullet-Planning (Garrett et al., 2015; Garrett, 2018). We use
GPT-4o (OpenAI, 2023), but our method is not tied to this backbone. All experiments use 10 parallel
prompts and set uf = dmin; full ablations are provided in Section B.15 and Section B.16.

By default, PDDLLM learns a planning domain from a single corresponding demonstration per
task. To assess its ability to integrate cross-task knowledge, we also evaluated settings where only
demonstrations from simpler related tasks were provided for a more complex one. Specifically, for
the rearrangement, the model received only demonstrations of both stacking and unstacking, while
for the bridge building, it was given only demonstrations of both stacking and alignment.

6.1 BASELINES AND ABLATIONS

We implement six baselines and one ablation of PDDLLM to comprehensively evaluate our method.
GPT-4o is used as the default LLM unless otherwise specified, and the motion planning algorithm is
kept the same for all methods. The complete details are provided in Section B.2
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• LLMTAMP, o1-TAMP, R1-TAMP: LLM-based task and motion planning (LLMTAMP)
inspired by Huang et al. (2022a); Li et al. (2022), which use LLMs for task planning, with
language description of planning task as input. The task execution demonstration, same as
those used in PDDLLM, was provided in the form of natural language in prompt. In addition
to GPT-4o, reasoning LLMs, OpenAI’s o1 (OpenAI, 2024) and Deepseek’s R1 (DeepSeek-
AI, 2025), are used as backbones for O1-TAMP and R1-TAMP, respectively.

• LLMTAMP-FF: Following the method by Huang et al. (2022b); Chen et al. (2024a),
LLMTAMP-FF extends LLMTAMP with a failure feedback loop.

• LLMTAMP-FR: Following Wang et al. (2024), LLMTAMP-FR extends failure detection
by providing specific failure reasons to guide replanning with the LLM.

• Expert Design: The expert design baseline uses expert-crafted planning domains with
symbolic solvers. Expert-designed domains are refined from PDDLLM-derived domains
by an expert.

In addition to the six baselines, we include an ablation of our method, RuleAsMem, which uses the
generated PDDL domain as contextual memory for LLM task planners, replacing symbolic solvers.

Robot planning is required to be real-time in robot deployment, imposing constraints on the planning
time allowance (Gammell et al., 2015; Garrett et al., 2015; 2020). In our experiment, a uniform
planning time limit of 50 seconds is applied to all planning problems and methods. We measure
performance using the planning success rate, as in other studies (Huang et al., 2025; Silver et al.,
2023; Kumar et al., 2023). The planning time and token cost are used to measure the planning
cost (Zhong et al., 2024). Three parallel runs were conducted to compute the mean and standard error
for the planning success rate.

Table 1: Planning success rate (%) across tasks for all methods (time limit = 50 s). The best results
are highlighted in bold. Expert is excluded from the comparison, as it requires additional manual
effort and serves as an upper bound.

Method Expert LLMTAMP LLMTAMP-FF LLMTAMP-FR RuleAsMem PDDLLM

Stack 98.5± 0.8 41.7± 4.3 70.8± 1.4 64.2± 3.1 85.5± 2.9 97.5 ± 1.6
Unstack 100± 0.0 89.4± 1.5 94.6± 0.9 92.1± 2.3 88.4± 1.2 97.7 ± 0.7
Color Classification 100± 0.0 18.1± 1.5 36.4± 1.1 49.0± 3.0 88.7± 2.3 100 ± 0.0
Alignment 100± 0.0 31.1± 3.1 52.0± 2.7 40.0± 2.4 96.0± 0.8 100 ± 0.0
Parts Assembly 98.9± 0.6 33.3± 1.5 53.9± 1.1 41.3± 1.2 95.0± 0.6 100 ± 0.0
Rearrange 73.3± 0.6 5.6± 1.0 17.4± 1.1 11.8± 1.8 1.1± 0.6 64.3 ± 0.7
Burger Cooking 100± 0.0 27.8± 2.8 50.0± 4.8 48.6± 6.9 27.8± 2.8 91.7 ± 4.8
Bridge Building 100± 0.0 43.3± 3.3 53.3± 3.8 51.7± 2.5 20.0± 0.0 87.2 ± 4.3
Tower of Hanoi 100± 0.0 14.3± 0.0 14.3± 0.0 14.3± 0.0 14.3± 0.0 100 ± 0.0

Overall 95.7± 0.1 35.7± 0.5 52.5± 0.4 48.6± 0.8 69.9± 0.7 93.3 ± 0.7

7 RESULTS

Through the experiments, we aim to answer the following research questions: (1) How does PDDLLM
perform relative to other LLM-based planners? (2) Can PDDLLM generalize to unseen, more complex
tasks? (3) Does PDDLLM derive high-quality domains with performance comparable to expert
designs? (4) How does PDDLLM’s token cost compare to other LLM-based planners? (5) How does
PDDLLM recover from errors such as by suboptimal demonstrations?

Q1. Performance comparison to baselines: Table 1 presents the planning success rate of all
evaluated methods across all tasks, measured with a 50-second time limit. PDDLLM shows clear
advantages in planning efficiency and generalizability over baseline methods. While LLM-based
baselines perform competitively in simpler tasks like stacking and unstacking, their performance drops
sharply in complex tasks such as rearrangement, burger cooking, bridge building, and Tower of Hanoi.
In contrast, PDDLLM maintains strong performance across all task categories, achieving an over 40%
improvement in overall planning success rate compared to the best LLM-based planner baseline (i.e.,
LLMTAMP-FF). Even the ablated variant of PDDLLM, RuleAsMem, outperforms the LLM-based
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Figure 3: (left) Planning success rate trend across increasing object counts. (right) Overall planning
success rate under varying time limits.

planners by at least 17.4% in overall success rate. Compared to PDDLLM, RuleAsMem exhibits less
stability. It performs well in simpler tasks but struggles in more complex ones, suggesting the LLMs
struggle to understand complex domains. In addition to the results evaluated with a 50-second time
window, we also report the overall success rates of the main methods across varying time limits. As
shown in Figure 3(right), PDDLLM consistently outperforms the baseline methods and demonstrates
superior planning performance across all time limits. Notably, it reaches performance saturation the
fastest, highlighting its superior time efficiency among all evaluated approaches.

We further compare PDDLLM’s planning ability with more powerful reasoning LLMs (OpenAI-o1
and DeepSeek-R1) in Table 2. While reasoning-based models exhibit strong planning capabilities,
their high computational cost prevents them from completing within the 50-second window. To suffi-
ciently compare the planning capabilities, we extend the time limit to 500 seconds and evaluate them
on the most challenging tasks. Although o1-TAMP and R1-TAMP show remarkable improvement
compared to GPT-4o-based LLMTAMP, they remain less robust in long-horizon planning and fail
to match PDDLLM’s performance. In contrast, our method, relying solely on GPT-4o, consistently
achieves higher success rates across complex tasks. Detailed time costs for reasoning models are
provided in Section B.6.

Q2. Generalization: The experimental results highlight PDDLLM’s ability to handle increasing
complexity in both planning and domain derivation, consistently outperforming baseline methods.
In terms of planning complexity, as shown in Figure 3(left), PDDLLM maintains robust planning
performance as task complexity grows, achieving high success rates even in scenarios involving up to
20 objects. As shown in Table 1, performance degradation is observed in more challenging tasks such
as rearrangement, where longer action sequences are required and there are more complex motion
constraints. From the perspective of domain derivation complexity, PDDLLM remains effective even
in tasks demanding the generation of over 100 predicates. However, success rates drop in the most
complex domains, such as bridge building, primarily due to missing supporting predicates. More
details of the generalization of each task are provided in section B.5.

PDDLLM demonstrates a strong ability to integrate knowledge across demonstrations. The modular
nature of PDDL action syntax allows the easy transfer of actions learned from different demonstrations
among domains. Despite receiving only one example each for stacking and unstacking, it successfully
combines the “stack” action and the “unstack” action to solve rearrangement tasks. Similarly, in the
bridge building domain, PDDLLM successfully combines the “align” action and the “stack” action
using one demonstration of cube alignment and one of stacking. The high success rate of these tasks
in Table 1 underscores the robustness of the derived planning domains.

Q3. Domain Quality: We evaluate the quality of planning domains generated by PDDLLM by
comparing the percentage of missing or redundant predicates(actions) and the planning success
rate against expert-designed domains. The full definition of missing or redundant can be found in
Section B.11. None of the generated domains are missing actions. Table 3 reports the percentage
of missing and redundant predicates for the four evaluated tasks, measured against human-designed
domains. The number of parallel prompts is fixed at 10, and each task is evaluated over three runs;
the reported values are the averages across these runs. These results show that PDDLLM produces
high-quality domains with minimal errors, even in complex scenarios. While a few predicates may be
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absent, the overall logical structure remains sound, as reflected in the high overall planning success
rate of 93.3% shown in Table 1, closely matching the performance of expert-crafted domains.

Q4. Token efficiency: We compare the token efficiency of our method against LLM-based baselines
on the three most complex tasks, as shown in Table 2. Although the GPT-4o-based LLMTAMP incurs
lower total token costs, it performs poorly across all three tasks. Compared to O1-TAMP and R1-
TAMP, PDDLLM uses significantly fewer tokens while consistently achieving better performance.
These results also underscore the challenge of deploying reasoning LLMs on real robot systems for
long-term use due to high token consumption. Unlike other LLM-based planners, PDDLLM spends
tokens only during domain derivation; execution is handled by a PDDL solver with no additional
token cost. This makes it well suited for long-term deployments that repeatedly perform similar tasks.

Table 2: Comparison of planning success rate (%) and token cost (k) between PDDLLM and
LLMTAMP and the reasoning LLM variants. The best results are shown in bold, and the second-best
results are underlined.

Task Success Rate (%) ↑ Token Cost (k) ↓

PDDLLM LLMTAMP O1-TAMP R1-TAMP PDDLLM LLMTAMP O1-TAMP R1-TAMP

Rearrangement 73.8± 1.1 5.6± 1.0 70.8± 1.5 40.0± 5.0 334 212 1200 1460
Tower of Hanoi 100.0± 0.0 14.3± 0.0 33.3± 2.4 14.3± 0.0 535 36 529 353
Bridge Building 87.2± 4.3 44.3± 3.3 51.7± 2.5 40.0± 0.0 375 50 270 363

Overall 80.5± 0.5 13.9± 0.9 61.5± 1.3 35.9± 3.1 415 99 666 725

Q5. Domain Correction: Domain refinement can occur by adding demonstrations or refining
language guidance. To evaluate how PDDLLM corrects an imprecise domain, we conducted bridge-
building experiments that require coordinated picking, stacking, and alignment skills, using demon-
strations that were intentionally masked or perturbed. With only a picking demo, PDDLLM had no
evidence that stacking or alignment mattered, so their predicates were overlooked or collapsed into
vague forms. As additional demonstrations were provided, PDDLLM progressively reconstructed
the missing structure and sharpened constraints.Table 4 shows success rates rising as the missing
information is supplied, demonstrating effective domain repair. We also injected a noisy, unrelated
unstacking demo; it briefly appeared in the domain but was later pruned due to low usage frequency.

In addition to supplying more demonstrations, providing clearer task descriptions also improves
predicate precision by offering richer contextual cues about the task objective. We include an
experiment validating this effect in Section B.18.

Table 3: Percentage of missing or redun-
dant predicates and actions across tasks.

Task Missing Redundant

Stack 4.2% 8.3%
Burger Cooking 22.2% 3.7%
Bridge Building 22.2% 3.7%
Tower of Hanoi 0.0% 14.3%

Table 4: Bridge-building success rate (%) under varying
demonstration conditions.

Class Demonstration Type Success Rate (%) ↑

Missing pick 0.0± 0.0
Missing pick & stack 20.0± 0.0
Complete pick & stack & align 86.7± 3.8
Redundant pick & stack & align & unstack 83.3± 3.3

8 REAL ROBOT DEPLOYMENT

We validate PDDLLM on real robots to demonstrate cross-platform deployability. The system is
tested on the Agilex Piper, Franka Panda, and the UR5e, using ArUco markers for pose estimation
and ROS2 for control. All platforms successfully complete tasks, including table-top stacking,
bridge building, burger cooking, and the Tower of Hannoi through direct deployment of PDDLLM
(details in Section B.1). We also evaluated how PDDLLM integrates with learned skills such as
VLA on a tabletop stacking task with a UR5e. In this experiment, logical actions serve directly as
prompts to condition policies„ bypassing explicit motion constraints. The real-robot experiment
with VLA (details in Section B.1.3) demonstrates PDDLLM’s compatibility with both classical and
learning-based control.
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a. Tower of Hannoi b. Bridge Building c. Burger d. Stack

Figure 4: Real-robot experiment in three different platforms

9 LIMITATION

A limitation of PDDLLM is its occasional omission of highly complex predicates, which can
reduce problem-solving efficiency and lead to lower success rates in more difficult tasks such
as Burger Cooking and Bridge Building (Table 1). For example, in bridge building, the system
may attempt to assemble the surface before the base is complete, making subsequent placements
infeasible and requiring backtracking. Expert-designed domains address this by introducing predicate
(all_base_finished) to enforce correct ordering. While the absence of such predicates does
not directly cause planning failure, it slows down planning as the planner must perform additional
feasibility checks and degrade performance under a fixed time budget. Recent work has attempted to
mitigate this issue by refining planning domains through interactive or environment-feedback-based
methods (Liang et al., 2024; Huang et al., 2025; Zhu et al., 2025). As with many TAMP systems,
perception errors and the representation of complex dynamics and geometries, such as deformable
objects and fluids, remain challenging for PDDLLM. Thus, we demonstrate that PDDLLM can be
combined with approaches designed for such settings, including VLA-based manipulation methods.

10 FUTURE WORKS

There are a few future work directions we found meaningful to our approach. (1) Integrating
perception to enable domain derivation from raw sensory inputs. Symbolic planning struggles to
ground raw visual inputs into logical representations. Learning visual features directly would allow
the system to derive predicates from sensor data, improving robustness to perception noise and
reducing reliance on perception engineering. (2) Enabling direct interaction with the environment
allows the system to obtain feedback that helps complete missing predicates, improve domain
quality, reduce reliance on simulation, and better capture complex real-world dynamics. (3) Partial
observability environments that requires active explore to acquire missing information.

11 CONCLUSION

This paper presents PDDLLM, the first approach in the field to generate a complete planning domain
from scratch, without relying on any predefined predicates or actions. By extracting logical struc-
tures directly from pre-trained LLMs, PDDLLM autonomously derives both predicates and actions,
enabling fully automated domain construction. Evaluated across a wide range of environments,
PDDLLM demonstrates high quality in domain derivation and strong generalizability across diverse
task categories. Moreover, when integrated with the LoCA framework, PDDLLM fully automates
the integration between the PDDL planning domain and the low-level motion planner. This level of
automation significantly improves usability and positions the framework as an adaptable and scalable
solution for robotic planning and decision-making. Compared to existing methods, PDDLLM outper-
forms other LLM-based baselines and closely matches the performance of expert-designed planning
domains, particularly in complex and long-horizon planning scenarios.
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REPRODUCIBILITY STATEMENT

To facilitate reproduction of our results, we provide clear references to the relevant sections of the
paper. The overall planning pipeline is described in Section 4. The extraction of the PDDL domain
from demonstrations is illustrated in Figure 1, with additional details provided in Section B.12. The
procedure for predicate imagination and action invention is discussed in the Section 5, where we
also outline the prompt templates and prompting strategies in greater detail in Section B.3. Finally,
the LoCA framework is described comprehensively in Section 5.2, and experiment details shown in
Section 8 and Section B.1.

ETHICS STATEMENT

We affirm our commitment to the principles laid out in the ICLR Code of Ethics, including honesty,
fairness, transparency, and avoidance of harm. The human demonstrations collected do not contain
identifying information. Our research does not use sensitive personal or private data. We have
carefully documented our methodology, data sources, and limitations to promote reproducibility and
accountability. We see no foreseeable misuses of the methods or results discussed in this work, but
we remain alert to potential downstream impacts and encourage continued scrutiny in the broader
research community.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

This paper evaluates LLMs within the robotics domain, where LLMs serve as the testing target of our
method. Beyond this role, LLMs were used as grammar-checking and text-polishing tools to improve
readability (e.g., grammar, clarity, and style). They were not involved in the ideation, experimental
design, analysis, or interpretation of results, and did not contribute to the scientific content. The
authors take full responsibility for the entirety of the work presented.

B APPENDIX

B.1 REAL ROBOT EXPERIMENT

Ten runs of each real robot experiment shown in Section 8 are performed. The success rates of
real-world deployment on different robot platforms are shown as below:

Table 5: Real-world success rate across tasks.
Metric Tower of Hanoi (Franka) Bridge Building (Franka) Burger (Piper) Table-top Stacking (UR5e)

Success Rate 9/10 8/10 7/10 7/10

B.1.1 FRANKA PANDA ARM

Figure 5: Franka Panda Arm building a bridge
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Figure 6: Franka Panda Arm solving the Tower of Hannoi puzzle
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B.1.2 AGILEX PIPER ARM

Figure 7: Agilex Piper Arm stacking cubes
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Figure 8: Agilex Piper Arm making burgers

19



Published as a conference paper at ICLR 2026

B.1.3 VLA EXPERIMENT WITH UR5E

Figure 9: UR5e Arm Stacking Tabletop Objects

Experiment with the vision-language-action model is conducted using a π0 model (Black et al.,
2024), finetuned on 200 real-world pick and place trajectories. The resulting policy serves as the
action module within our pipeline and is invoked by the PDDLLM planning system. In this setup,
PDDLLM generates a high-level task plan, while the execution of each logical action in the plan is
carried out directly by the Pi0 policy. Importantly, the VLA experiment demonstrates the flexibility of
our framework: the action execution layer can be implemented with either a classical motion planner
or a learning-based policy, depending on the task requirements.
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B.2 BASELINE IMPLEMENTATION DETAILS

LLMTAMP: LLM-based task and motion planning (LLMTAMP) builds on methods from (Huang
et al., 2022a; Li et al., 2022), which use pre-trained LLMs for task planning. We formulate the
planning problem as a natural language description. Human demonstrations are interpreted as action
sequences required to accomplish the task. The LLM then generates high-level actions to achieve the
goal, which are refined into motion plans using predefined skills.

LLMTAMP-FF: LLMTAMP-FF, following the method by (Huang et al., 2022b; Chen et al., 2024a),
extends LLMTAMP with a failure feedback loop. Upon execution failure, the system feeds the failure
signal to the LLM to regenerate the task plan, repeating until success or the time limit is reached.

LLMTAMP-FR: Following Wang et al. (2024), LLMTAMP-FR extends failure detection by provid-
ing specific failure reasons to guide replanning with the LLM. We design a reasoner that generates
detailed explanations for plan failures and incorporates them into the prompt as feedback. The LLM
performs failure reasoning and then regenerates the plan accordingly.

Expert Design: The expert design baseline uses expert-crafted planning domains to evaluate how
closely PDDLLM-generated domains approach human-level performance. To highlight the readability
and customizability of PDDLLM, these expert-designed domains are initialized with PDDLLM-
generated outputs, which are then analyzed and refined by a TAMP expert into ground-truth domains.

o1-TAMP and R1-TAMP: As reasoning models have demonstrated superior performance in many
tasks (Zhong et al., 2024), we ablate the LLM in LLMTAMP to compare the planning performance
of state-of-the-art reasoning LLMs with our method. Specifically, we evaluate OpenAI’s o1 (OpenAI,
2024) and Deepseek’s R1 (DeepSeek-AI, 2025) as the reasoning backbones.

RuleAsMem: RuleAsMem is an ablation of PDDLLM that treats the generated PDDL domain
as contextual memory, rather than using it with a symbolic planner. While prior work focuses on
translating language into logical representations (Liu et al., 2023; Xie et al., 2023), RuleAsMem
directly integrates logical planning rules into the LLM prompt to solve new tasks. Each task is defined
by initial and goal states, using the imagined predicates, along with a human demonstration in the
form of a PDDL task plan as prompts.
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B.3 PROMPT TEMPLATE

B.3.1 PREDICATE IMAGINATION

Template

There are n objects in the environment, whose feature name are feature value 1 and feature value 2.
In dimension 1, we know feature subspace range in dimension 1. In dimension 2, we know feature
subspace range in dimension 2.Please create a predicate in PDDL syntax to describe this relation
and classify if it is related to the current task description. Please return the result in the following
format: predicate, relevance.

Example of object position relation

Prompt: There are two objects in the environment, whose positions are (x1, y1) and (x2, y2).
In the horizontal direction, x1 − x2 ≤ u. In the vertical direction, u < y1 − y2 ≤ 2u. Please

create a predicate in PDDL syntax to describe this relation and classify if it is related to the

task of stacking cubes together. Please return the result in the following format: predicate,

relevance.

LLM: is_on(? o1 , ? o2 ), related.

Example of color relation

Prompt: There are two objects in the environment, whose colors are (r1, g1, b1) and

(r2, g2, b2). In the red channel, 𝑟1 − r2 ≤ u. In the green channel, g1 − g2 ≤ u. In the blue

channel, b1 − b2 ≤ u. Please create a predicate in PDDL syntax to describe this relation and

classify if it is related to the task of stacking cubes together. Please return the result in the

following format: predicate, relevance.

LLM: similar_color(? o1 , ? o2 ), unrelated.

Example of size relation

Prompt: There are two objects in the environment, whose size are (w1, l1, h1) and

(w2, l2, h2). In the width, 0 < w1 −w2 ≤ u. In the length, 0 < l1 − l2 ≤ u. In the height,

0 < h1 − h2 ≤ u. Please create a predicate in PDDL syntax to describe this relation and

classify if it is related to the task of stacking cubes together. Please return the result in the

following format: predicate, relevance.

LLM: larger_than(? o1 , ? o2 ), related.

Note: Here, u is a variable determined by feature subspace range length, which depends on the user
input.

22



Published as a conference paper at ICLR 2026

B.3.2 ACTION INVENTION

Template

Current state: The logical state before action execution

Next state:The logical state after the action execution

Can you give this transition an action name to summarize and describe what happened. Please follow
Planning Domain Definition Language syntax.

Example for inventing ‘Pick’

Prompt: The current state of the environment is:
(∀objects ¬above, o1), (is_on, o1 , o2), (∀objects ¬holding, robot)
After one action execution, the resulting state of the environment is:
(holding, o1, robot), (∀objects ¬above, o2)
Can you name this logical action to summarize and describe what happened? Please
follow Planning Domain Definition Language syntax and return together with action
parameters, preconditions, and effects.
LLM:
:action pick

:parameters (?o1 ?o2 ?r)
:precondition (and (is_on ?o1 ?o2) (∀objects ¬above ?o1) (∀objects ¬holding, ?r))
:effect (and (not (is_on ?o1 ?o2)) (not (∀objects ¬holding, ?r) (∀objects ¬above, ?o2)

(holding, ?o1,?r) (not (∀objects ¬above, o1)))

Example for inventing ‘Place’

Prompt: The current state of the environment is:
(holding, o1, robot) (∀objects ¬above, o2)
After one action execution, the resulting state of the environment is:
(∀objects ¬above, o1) (∀objects ¬above, o2) (∀objects ¬holding, robot)
Can you name this logical action to summarize and describe what happened? Please
follow Planning Domain Definition Language syntax and return together with action
parameters, preconditions, and effects.
LLM:
:action place

:parameters (?o1 ?r)
:precondition (and (holding, ?o1,?r))
:effect (and (not (holding, ?o1,?r)) (∀objects ¬above ?o1) (∀objects ¬holding, ?r))
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B.3.3 LLMTAMP BASELINE

Part 1. Initialization:

Imagine you are a robot arm operator; you need to generate a sequence of actions to achieve the
given goal. Here are the logical actions you can choose from: list of actions to choose from

Part 2. Human demonstrations:

Here are some examples for you to learn:

example of input and output of the system

Part 3. New planning problem:

Now you are given a new input planning problem as the following: The initial state and the goal of
the problem to be solved Choose a sequence of actions to accomplish this task, and return the action
sequence following the example output provided.

We integrate parts 1, 2, and 3 into a complete prompt for the LLM to generate task plans.

Example for a stacking problem

Prompt: Imagine you are a robot arm operator; you need to generate a sequence of

actions to achieve the given goal. Here are the logical actions you can choose from:

stack(upper box, lower box, robot), pick(upper box, table, robot).

Here are some examples for you to learn:

Example input: Object 0 is a robot. Object 1 is a table. Object 2 is a box. Object 3 is a

box. Object 4 is a box. Initially, the robot is not holding anything. Object 2 is on table.

Object 3 is on table. Object 4 is on table. Object 2 is the topmost object. Object 3 is the

topmost object. Object 4 is the topmost object. In the goal, Object 2 is above Object 3.

Object 3 is above object 4. Object 4 is on Object 1. Object 2 is the topmost object. The

robot is not holding anything.

Example Output: pick(3, 1, 0), stack(3, 4, 0), pick(2, 1, 0), stack(2, 3, 0).

Now you are given a new planning problem as the following: Object 0 is a robot. Object

1 is a table. Object 2 is a box. Object 3 is a box. Object 4 is a box. Initially, Object 2 is

on the table. Object 3 is on the table. Object 4 is on the table. Object 2 is the topmost

object. Object 3 is the topmost object. Object 4 is the topmost object. The robot is not

holding anything. In the goal, Object 2 is above object 3. Object 4 is above object 2.

Object 3 is on Object 1. Object 4 is the topmost object. The robot is not holding

anything. Choose a sequence of actions to accomplish this task, and return the action

sequence following the example output provided.

LLM: pick(2, 1, 0), stack(2, 3, 0), pick(4, 1, 0), stack(4, 2, 0).
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B.3.4 LLMTAMP+FAILURE FEEDBACK BASELINE

LLMTAMP+Failure Feedback extends LLMTAMP with a failure feedback loop. Upon execution
failure, the system feeds the failure signal to the LLM for replanning. Thus, the initial prompts of
this baseline, part 1, 2, and 3, are the same as the LLMTAMP prompt. However, there is a failure
summarization. Integrating part 1-4 gives the full prompt.

Part 4. Failure feedback:

Your plan failed in execution, please generate a different one. Only return the sequence of logical
actions following the format of example output.

Example for a stacking problem

Prompt: Imagine you are a robot arm operator; you need to generate a sequence of

actions to achieve the given goal. Here are the logical actions you can choose from:

stack(upper box, lower box, robot), pick(upper box, table, robot).

Here are some examples for you to learn:

Example input: Object 0 is a robot. Object 1 is a table. Object 2 is a box. Object 3 is a

box. Object 4 is a box. Initially, the robot is not holding anything. Object 2 is on table.

Object 3 is on table. Object 4 is on table. Object 2 is the topmost object. Object 3 is

the topmost object. Object 4 is the topmost object. In the goal, Object 2 is above

Object 3. Object 3 is above object 4. Object 4 is on Object 1. Object 2 is the topmost

object. The robot is not holding anything.

Example Output: pick(3, 1, 0), stack(3, 4, 0), pick(2, 1, 0), stack(2, 3, 0).

Now you are given a new planning problem as the following: Object 0 is a robot.

Object 1 is a table. Object 2 is a box. Object 3 is a box. Object 4 is a box. Initially,

Object 2 is on the table. Object 3 is on the table. Object 4 is on the table. Object 2 is

the topmost object. Object 3 is the topmost object. Object 4 is the topmost object. The

robot is not holding anything. In the goal, Object 2 is above object 3. Object 4 is

above object 2. Object 3 is on Object 1. Object 4 is the topmost object. The robot is

not holding anything. Choose a sequence of actions to accomplish this task, and return

the action sequence following the example output provided.

LLM: pick(4, 1, 0), stack(4, 2, 0), pick(2, 1, 0), stack(2, 3, 0).

Prompt: Your plan failed in execution, please generate a different one. Only return the

sequence of logical actions following the format of example output.

LLM: pick(2, 1, 0), stack(2, 3, 0), pick(4, 1, 0), stack(4, 2, 0).
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B.3.5 LLMTAMP+FAILURE REASONING BASELINE

LLMTAMP + Failure Reasoning further extends failure detection by providing specific failure reasons
to guide replanning with the LLM. Part 1, 2, and 3 are the same as the LLMTAMP prompt. Integrating
part 1-5 gives the full prompt.

Part 4. Failure Reasoning:

Your plan failed in execution, please generate a different one. This may involve sample new plans or
reorder the last plan. Please generate output step-by-step, which includes your reasoning for the
failure of the last plan. Answer the questions: (i) what is the cause of the failure of the last plan? (ii)
do you see similar mistakes in other steps in the plan? Here are the failure reasons: failure reasons

Part 5. Replan:

Now, based on your above failure reasoning for (i) and (ii) , generate a new task plan to solve the
original planning problem. Only return the sequence of logical actions following the format of
example output.

Example for a stacking problem

Prompt: Imagine you are a robot arm operator; you need to generate a sequence of actions to

achieve the given goal. Here are the logical actions you can choose from: stack(upper box,

lower box, robot), pick(upper box, table, robot).

Here are some examples for you to learn:

Example input: Object 0 is a robot. Object 1 is a table. Object 2 is a box. Object 3 is a box.

Object 4 is a box. Initially, the robot is not holding anything. Object 2 is on table. Object 3 is

on table. Object 4 is on table. Object 2 is the topmost object. Object 3 is the topmost object.

Object 4 is the topmost object. In the goal, Object 2 is above Object 3. Object 3 is above

object 4. Object 4 is on Object 1. Object 2 is the topmost object. The robot is not holding

anything.

Example Output: pick(3, 1, 0), stack(3, 4, 0), pick(2, 1, 0), stack(2, 3, 0).

Now you are given a new planning problem as the following: Object 0 is a robot. Object 1 is a

table. Object 2 is a box. Object 3 is a box. Object 4 is a box. Initially, Object 2 is on the table.

Object 3 is on the table. Object 4 is on the table. Object 2 is the topmost object. Object 3 is the

topmost object. Object 4 is the topmost object. The robot is not holding anything. In the goal,

Object 2 is above object 3. Object 4 is above object 2. Object 3 is on Object 1. Object 4 is the

topmost object. The robot is not holding anything. Choose a sequence of actions to

accomplish this task, and return the action sequence following the example output provided.

LLM: pick(4, 1, 0), stack(4, 2, 0), pick(2, 1, 0), stack(2, 3, 0).

Prompt: Your plan failed in execution, please generate a different one. This may involve

sample new plans or reorder the last plan. Please generate output step-by-step, which includes

your reasoning for the failure of the last plan. Answer the questions: (i) what is the cause of

the failure of the last plan? (ii) do you see similar mistakes in other steps in the plan? Here are

the failure reasons: Motion planning failed in pick(2, 1, 0) because of collision with Object 4.

LLM: Got it! Here are my analysis to the planning failures…..

Prompt: Now, based on your above failure reasoning for (i) and (ii) , generate a new task plan

to solve the original planning problem. Only return the sequence of logical actions following

the format of example output.

LLM: pick(2, 1, 0), stack(2, 3, 0), pick(4, 1, 0), stack(4, 2, 0).
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B.3.6 RULEASMEM

The overall template of RuleAsMem is very similar to that of LLMTAMP. However, in RuleAsMem,
the planning domain is provided and the problem is defined in PDDL syntax.

Part 1. Initialization:

Imagine you are a robot arm operator, you need to generate a sequence of actions to achieve the
given goal. Here is the PDDL planning domain: PDDL planning domain

Part 2. Human demonstrations:

Here are some examples for you to learn:

example of input and output of the system

Part 3. New planning problem:

Now you are given a new input planning problem as the following: The initial state and the goal of
the problem in PDDL syntax. Choose a sequence of actions to accomplish this task. Only return the
sequence of logical actions following the format of example output.

Example for a stacking problem

Prompt: Imagine you are a robot arm operator, you need to generate a sequence of

actions to achieve the given goal. Here is the PDDL planning domain:

Here are some examples for you to learn:

Example input:

Initial state: (top, 2), (box, 2), (on_table, 2, 1), (top, 3), (box, 3), (on_table, 3, 1), (top,

4), (box, 4), (on_table, 4, 1), (table, 1), (not_holding, 0), (robot, 0)

Goal state: (top, 2), (box, 2), (above, 2, 3), (box, 3), (above, 3, 4), (box, 4), (on_table,

4, 1), (table, 1), (not_holding, 0), (robot, 0)

Example Output: pick(3, 1, 0), stack(3, 4, 0), pick(2, 1, 0), stack(2, 3, 0).

Now you are given a new planning problem as the following:

Initial state: (top, 2), (box, 2), (on_table, 2, 1), (top, 3), (box, 3), (on_table, 3, 1), (top,

4), (box, 4), (on_table, 4, 1), (table, 1), (not_holding, 0), (robot, 0)

Goal state: (top, 4), (box, 4), (above, 4, 2), (box, 2), (above, 2, 3), (box, 3), (on_table,

3, 1), (table, 1), (not_holding, 0), (robot, 0)

Choose a sequence of actions to accomplish this task, and return the action sequence

following the example output provided.

LLM: pick(2, 1, 0), stack(2, 3, 0), pick(4, 1, 0), stack(4, 2, 0).

(define (domain LLM_generated_domain)
(:requirements :strips :equality)
(:predicates

(box ?b1)
(table ?t1)
(above ?b1 ?b2)
(holding ?b1 ?r1)
(robot ?r1)

……
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B.4 EXPERIMENT TASKS

B.4.1 STACKING

The stacking task involves collecting individual objects and placing them on top of each other to form
stable stacks.

B.4.2 UNSTACKING

The unstacking task is the inverse process of stacking, requiring the robot to identify, grasp, and
remove items from existing stacks without disturbing surrounding structures.

B.4.3 REARRANGEMENT

The rearrangement task demands the robot to relocate objects from an initial configuration into a
desired layout.

B.4.4 ALIGNMENT

The alignment task requires the robot to position multiple objects in a straight line with consistent
spacing and orientation.

B.4.5 COLOR CLASSIFICATION

In the color classification task, the robot must identify the color of each object, group them by color
category, and stack or place them in designated areas accordingly.

B.4.6 PARTS ASSEMBLY

The parts assembly task involves recognizing components and sequentially assembling multiple
machining parts together.

B.4.7 TOWER OF HANOI

The Tower of Hanoi is a puzzle that involves moving a stack of disks from one base to another, one at
a time, without ever placing a larger disk on top of a smaller one, using a third base as an auxiliary.

B.4.8 BRIDGE BUILDING

In bridge building, the robot is required to collect distributed blocks and configure it into a bridge
structure.

B.4.9 BURGER COOKING

Lastly, for burger cooking, the robot needs to stack and pack the food ingredients together to make
hamburgers.
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B.5 GENERALIZATION ACROSS TASK COMPLEXITY
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Figure 10: Planning success rate trend across increasing object counts for each task.
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B.6 TIME COST OF LLMTAMP REASONING MODEL VARIANTS

As noted in the paper, the reasoning models incur substantial computational overhead when generating
task plans. To account for this, we extended the time limits for o1-TAMP and R1-TAMP in order
to evaluate the contribution of reasoning to planning performance and to enable a fair comparison
with our method. This section presents a comprehensive comparison of the time costs between the
LLMTAMP variants and our approach.

As shown in Table 6, our method consistently yields lower average planning times across all tasks
compared to the LLMTAMP reasoning model variants. This improvement is primarily attributed
to PDDLLM’s ability to structurally summarize the reasoning process into a standardized planning
domain during a one-time offline inference step. As a result, no additional reasoning is required at
test time. In contrast, LLMTAMP variants conduct reasoning independently for each task instance,
leading to significantly higher computational costs. Such overhead makes these models impractical
for deployment on physical robots, where real-time planning capabilities are often essential. As shown
in Table 2, while o1-TAMP achieves comparable performance in certain tasks, the substantially
higher time cost undermines its practical value, particularly in real robotic scenarios.

Table 6: Comparison of time cost between PDDLLM and LLMTAMP reasoning variants
Experiment Ours o1-TAMP o1-TAMP

Average Planning Time Cost (Second)
Stack 5.94 39.22 211.40
Rearrangement 15.74 92.83 337.10
Tower of Hanoi 4.29 167.82 353.88
Bridge Building 6.45 82.47 305.07
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B.7 PROMPT VARIATION TEST

In addition to the five main research questions discussed in the paper, we further evaluated the
robustness of our method under variations in the prompting styles. Four different cases were tested
to assess the stability of domain generation: parallel prompting with varying numbers of prompts,
altering the prompting sequence of simulation outcomes, and tuning the prompting template.

B.7.1 PARALLEL PROMPTING FOR PDDLLM

We perform parallel prompting of the LLM multiple times to obtain multiple responses simultaneously.
These outputs are subsequently analyzed and aggregated to synthesize an optimal solution. The core
prompting procedure follows the same structure as described in Section B.3.1. All the domains
failed to execute are removed from the candidate pool. Among those successful planning domain
candidates, additional post-processing steps are applied to select, summarize and consolidate the
results. For predicate naming, we further prompt the LLM to select the most suitable name from
among the parallel outputs. For predicate selection, the prompt template is shown as the following:

Here is a list of predicate describing the same object state: predicate list. Please choose the PDDL
predicate from the provided ones to best describe the scenario. Return the chosen one in PDDL
syntax.

Similarly, for optimal actions selection:

Here is a list of actions describing the same robot skill: action list. Please choose the PDDL action
from the provided ones to best describe the scenario. Return the chosen one in PDDL syntax.

For relevance classification, if the parallel outputs are inconsistent, PDDLLM selects the majority
response. In the case of a tie, it randomly selects one among the tied options.

Example for a choosing predicate from 5 parallel outputs

Prompt: Here is a list of predicate describing the same object state: [(above, ?o1, ?o2), (is_on,

?o1, ?o2), (aligned_vertically, ?o1, ?o2), (on_top_of, ?o1, ?o2), (above_object, ?o1, ?o2) ].

Please choose the PDDL predicate from the provided ones to best describe the scenario.

Return the chosen one in PDDL syntax.

LLM: (above, ?o1, ?o2)

Example for a choosing predicate from 10 parallel outputs

Prompt: Here is a list of predicate describing the same object state: [(above, ?o1, ?o2), (is_on,

?o1, ?o2), (aligned_vertically, ?o1, ?o2), (on_top_of, ?o1, ?o2), (above_object, ?o1, ?o2),

(above, ?o1, ?o2), (on, ?o1, ?o2), (vertically_on, ?o1, ?o2), (on_top, ?o1, ?o2), (upper, ?o1,

?o2)]. Please choose the PDDL predicate from the provided ones to best describe the

scenario. Return the chosen one in PDDL syntax.

LLM: (on, ?o1, ?o2)

B.7.2 ALTERING THE PROMPTING SEQUENCE OF SIMULATION OUTCOMES

In this prompt variation, we alter the ordering of dimensions presented to the LLM. While the prompt
template remains similar to that described in Section B.3.1, we do not adhere to a fixed dimension
sequence. Instead, we shuffle the order of dimensions within the prompt to evaluate whether this
affects the generated output. Some examples are provided here.
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Example of prompting object position relation predicate with altered sequence - A

Prompt: There are two objects in the environment, whose positions are (x1, y1) and (x2, y2).
In the horizontal direction, x1 − x2 ≤ u. In the vertical direction, u < y1 − y2 ≤ 2u. Please

create a predicate in PDDL syntax to describe this relation and classify if it is related to the

task of stacking cubes together. Please return the result in the following format: predicate,

relevance.

LLM: is_on(? o1 , ? o2 ), related.

Example of prompting object position relation predicate with altered sequence - B

Prompt: There are two objects in the environment, whose positions are (x1, y1) and (x2, y2).
In the vertical direction, u < y1 − y2 ≤ 2u. In the horizontal direction, x1 − x2 ≤ u. Please

create a predicate in PDDL syntax to describe this relation and classify if it is related to the

task of stacking cubes together. Please return the result in the following format: predicate,

relevance.

LLM: is_on(? o1 , ? o2 ), related.

B.7.3 TEMPLATE TUNING

In this experiment, we aim to evaluate whether slight modifications to the prompt template affect the
LLM’s ability to generate predicate names and assess their relevance. Here is the fine-tuned template:

There are n objects in the environment, whose feature name are feature value 1 and feature value 2.
In dimension 1, we know feature subspace range in dimension 1. In dimension 2, we know feature
subspace range in dimension 2. Please create a predicate in PDDL syntax to describe this relation.
Assign a score to this predicate indicating its relevance to the task of current task description. The
score range is 0 to 1, where 0 indicate irrelevant and 1 indicate very relevant. Please return the result
in the following format: predicate, score.

After collecting the scores, we set a threshold to determine which predicates are relevant. In the
experiment, the threshold chosen is 0.5.

Example of prompting object position relation predicate with modified template

Prompt: There are two objects in the environment, whose positions are (x1, y1) and (x2, y2).
In the horizontal direction, we know x1 − x2 ≤ u. In the vertical direction, we know u <
y1 − y2 ≤ 2u. Please create a predicate in PDDL syntax to describe this relation. Assign a

score to this predicate indicating its relevance to the task of stacking cubes together. The

score range is 0 to 1, where 0 indicate irrelevant and 1 indicate very relevant. Please return

the result in the following format: predicate, score.

LLM: above(? o1 , ? o2 ), 0.9.

The results, presented in Table 7, demonstrate that our method remains robust across different
prompting styles. Regardless of the prompt variation, the generated planning domains consistently
solve the test tasks with a success rate approaching 100%. Minor fluctuations are attributed to
randomness in the planning search process and occasional motion execution failures.
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Table 7: Planning success rate for domains generated using different prompt styles.
Experiment 10-Parallel 5-Parallel Sequence Altering Template Tuning
Stack 97.8% 96.1% 96.1% 95.6%
Unstack 97.8% 100% 98.9% 98.3%
Cube Alignment 100% 100% 100% 100%

B.8 PLANNING TIME LIMIT VARIATION

Table 8: Planning success rate (%) across tasks for all methods (Time limit = 25 s).
Method Expert LLMTAMP LLMTAMP-FF LLMTAMP-FR RuleAsMem PDDLLM

Stack 95.8± 0.2 41.5± 4.3 56.8± 3.4 43.8± 3.8 84.3± 3.3 97.5± 1.6
Unstack 99.4± 0.6 81.2± 1.1 85.0± 5.7 85.5± 5.4 79.8± 1.9 94.9± 0.5
Color Classification 96.3± 0.1 18.1± 1.5 24.9± 0.8 23.1± 3.3 87.6± 1.9 99.5± 0.4
Alignment 100.0± 0.0 31.6± 3.1 40.9± 2.0 35.3± 2.0 96.0± 0.8 100.0± 0.0
Parts Assembly 98.9± 0.6 33.6± 1.5 46.1± 2.1 37.5± 1.4 95.1± 0.6 100.0± 0.0
Rearrange 67.± 0.6 5.6± 1.1 11.7± 0.6 7.4± 1.1 1.1± 0.6 52.5± 2.2
Burger Cooking 100.0± 0.0 27.8± 2.8 45.1± 7.3 38.9± 5.6 27.8± 2.8 89.6± 3.2
Bridge Building 100.0± 0.0 43.3± 3.3 48.9± 5.9 47.2± 4.3 20.0± 0.0 87.2± 4.3
Tower of Hanoi 83.3± 2.4 14.3± 0.0 14.3± 0.0 14.3± 0.0 14.3± 0.0 85.7± 0.0

Overall 93.2± 0.2 34.5± 0.4 43.2± 0.8 38.1± 0.9 68.3± 0.9 90.5± 0.9

Table 9: Planning success rate (%) across tasks for all methods (Time limit = 100 s).
Method Expert LLMTAMP LLMTAMP-FF LLMTAMP-FR RuleAsMem PDDLLM

Stack 99.5± 0.5 41.5± 4.3 76.7± 2.7 71.0± 2.7 85.5± 2.9 97.5± 1.6
Unstack 96.1± 0.2 90.3± 1.5 96.9± 1.2 96.1± 1.1 88.4± 1.2 97.7± 0.7
Color Classification 100.0± 0.0 18.1± 1.5 42.0± 1.9 64.0± 2.2 88.7± 2.3 100.0± 0.0
Alignment 100.0± 0.0 31.6± 3.1 55.7± 3.8 44.3± 3.8 96.0± 0.8 100.0± 0.0
Parts Assembly 98.9± 0.6 33.6± 1.5 57.1± 0.8 47.7± 2.5 95.1± 0.6 100.0± 0.0
Rearrange 73.9± 0.2 5.6± 1.1 17.4± 1.1 14.7± 1.2 1.1± 0.6 69.4± 0.5
Burger Cooking 100.0± 0.0 27.8± 2.8 50.0± 4.8 51.4± 6.1 27.8± 2.8 97.2± 2.8
Bridge Building 100.0± 0.0 43.3± 3.3 53.3± 3.8 57.8± 2.2 20.0± 0.0 87.2± 4.3
Tower of Hanoi 100.0± 0.0 14.3± 0.0 14.3± 0.0 14.3± 0.0 14.3± 0.0 100.0± 0.0

Overall 95.9± 0.1 35.8± 0.4 55.6± 1.2 54.8± 0.7 69.9± 0.7 94.2± 0.5

As outlined in the experimental design section, we set a default planning time limit of 50 seconds
to reflect the real-time constraints commonly imposed on robotic systems. Although prior studies
typically allow planning times on the order of minutes (Silver et al., 2021; Khodeir et al., 2023;
Huang et al., 2025), the exact limits vary considerably. To assess the robustness of our approach
under different time allowances, we evaluate performance at time limits of 25, 50, and 100 seconds.
The results show that our method consistently outperforms all LLM-based baselines across all
tested time settings and task types. Moreover, the planning domains derived by PDDLLM yield
performance comparable to that of expert-designed domains under all time settings and across all
tasks. All simulations were conducted on a system with an Intel Core i9-14900KF CPU without GPU
acceleration, and all LLM prompting was performed using API services.
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B.9 EXAMPLE OF PDDLLM IMAGINED PREDICATES

Table 10: Examples of imagined predicates across multiple categories.
Predicate Name

Object Position Predicates
(above ?a ?b) (forall ?a (above ?a ?b))
(forall ?a (above ?a ?b) is false) (not (above ?a ?b))
(beside ?a ?b) (forall ?a (beside ?a ?b))
(forall ?a (beside ?a ?b) is false) (not (beside ?a ?b))
(front ?a ?b) (forall ?a (front ?a ?b))
(forall ?a (front ?a ?b) is false) (not (front ?a ?b))
(far-x ?a ?b) (forall ?a (far-x ?a ?b))
(forall ?a (far-x ?a ?b) is false) (not (far-x ?a ?b))
(apart-y ?a ?b) (forall ?a (apart-y ?a ?b))
(forall ?a (apart-y ?a ?b) is false) (not (apart-y ?a ?b))
(distant-x ?a ?b) (forall ?a (distant-x ?a ?b))
(forall ?a (distant-x ?a ?b) is false) (not (distant-x ?a ?b))

Object Support Predicates
(on-table ?a ?t) (not (on-table ?a ?t))
(forall ?a (on-table ?a ?t)) (forall ?a (on-table ?a ?t) is false)
(aligned-x ?a ?t) (not (aligned-x ?a ?t))
(forall ?a (aligned-x ?a ?t)) (forall ?a (aligned-x ?a ?t) is false)
(aligned-y ?a ?t) (not (aligned-y ?a ?t))
(forall ?a (aligned-y ?a ?t)) (forall ?a (aligned-y ?a ?t) is false)
(above-table ?a ?t) (not (above-table ?a ?t))
(forall ?a (above-table ?a ?t)) (forall ?a (above-table ?a ?t) is false)
(near-x ?a ?t) (not (near-x ?a ?t))
(forall ?a (near-x ?a ?t)) (forall ?a (near-x ?a ?t) is false)
(far-x ?a ?t) (not (far-x ?a ?t))
(forall ?a (far-x ?a ?t)) (forall ?a (far-x ?a ?t) is false)
(far-y ?a ?t) (not (far-y ?a ?t))
(forall ?a (far-y ?a ?t)) (forall ?a (far-y ?a ?t) is false)
(near-each ?a ?t) (not (near-each ?a ?t))
(forall ?a (near-each ?a ?t)) (forall ?a (near-each ?a ?t) is false)

Robot Predicates
(holding ?a ?r) (not (holding ?a ?r))
(forall ?a (holding ?a ?r)) (forall ?a (holding ?a ?r) is false)
(gripper-near-open ?a ?r) (not (gripper-near-open ?a ?r))
(forall ?a (gripper-near-open ?a ?r)) (forall ?a (gripper-near-open ?a ?r) is false)
(gripper-far ?a ?r) (not (gripper-far ?a ?r))
(forall ?a (gripper-far ?a ?r)) (forall ?a (gripper-far ?a ?r) is false)
(gripper-near ?a ?r) (not (gripper-near ?a ?r))
(forall ?a (gripper-near ?a ?r)) (forall ?a (gripper-near ?a ?r) is false)

Color Predicates
similar-color ?a ?b (not similar-color ?a ?b)
(forall ?a similar-color ?a ?b) (forall ?a similar-color ?a ?b is false)
moderate-color-difference ?a ?b (not moderate-color-difference ?a ?b)
(forall ?a moderate-color-difference ?a ?b) (forall ?a moderate-color-difference ?a ?b is false)
distinct-colors ?a ?b (not distinct-colors ?a ?b)
(forall ?a distinct-colors ?a ?b) (forall ?a distinct-colors ?a ?b is false)
very-different-color ?a ?b (not very-different-color ?a ?b)
(forall ?a very-different-color ?a ?b) (forall ?a very-different-color ?a ?b is false)

Size Predicates
(smaller ?a ?b) (not (smaller ?a ?b))
(forall ?a (smaller ?a ?b)) (forall ?a (smaller ?a ?b) is false)
(larger ?a ?b) (not (larger ?a ?b))
(forall ?a (larger ?a ?b)) (forall ?a (larger ?a ?b) is false)
(longer ?a ?b) (not (longer ?a ?b))
(forall ?a (longer ?a ?b)) (forall ?a (longer ?a ?b) is false)
(taller ?a ?b) (not (taller ?a ?b))
(forall ?a (taller ?a ?b)) (forall ?a (taller ?a ?b) is false)
(wider ?a ?b) (not (wider ?a ?b))
(forall ?a (wider ?a ?b)) (forall ?a (wider ?a ?b) is false)
(taller-wider ?a ?b) (not (taller-wider ?a ?b))
(forall ?a (taller-wider ?a ?b)) (forall ?a (taller-wider ?a ?b) is false)
(wider-longer ?a ?b) (not (wider-longer ?a ?b))
(forall ?a (wider-longer ?a ?b)) (forall ?a (wider-longer ?a ?b) is false)
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Table 11: Examples of predicate generation across different task and scenes.
Predicates for Weight

Lift a box in warehouse (light-box ?a): 40 < weight < 70 kg
(heavy-box ?a): 70 < weight < 100 kg

Collect apples of different sizes (small-apple ?a): 100 < w < 166.7 g
(medium-apple ?a): 166.7 < w < 233.3 g
(large-apple ?a): 233.3 < w < 300 g

Predicates for Length
Fulfill a 15-cm coffee cup (needs-refill ?a): 0 < level < 7.5 cm

(nearly-full ?a): 7.5 < level < 11.25 cm

Measure high school students’ heights (medium-height ?a): 150 < h < 160 cm
(average-height ?a): 160 < h < 170 cm
(tall-height ?a): 170 < h < 180 cm
(very-tall ?a): 180 < h < 190 cm

Predicates for Air Quality
Plan when to travel (suitable-travel ?a): 0 < PM2.5 < 166.7

(high-risk ?a): 333.3 < PM2.5 < 500

Predicates for Brightness
Fix broken light in office (dimly-lit ?a): 0 < brightness < 150 lux

Predicates for Temperature
Heat a kitchen stove (stove-hot ?a): 110 < T < 200 °C

Boil milk (cold-milk ?a): 0 < T < 10 °C
(warm-milk ?a): 20 < T < 40 °C
(boiling-milk ?a): 90 < T < 100 °C
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B.10 TEST PROBLEM SET DESIGN

B.10.1 DIMENSIONS OF DIFFICULTY

Task Diversity: To ensure robustness and broad applicability, we sampled over 1,200 planning
tasks across nine distinct environments, including stacking, unstacking, rearrangement, alignment,
parts assembly, color classification, burger cooking, and bridge building. The details of the tasks are
provided in Section B.4. Each task category includes tasks of 3 to 20 objects, with 10 distinct tasks
sampled for each object count. The resulting task plan lengths ranged from 6 to 510 steps, reflecting
a wide spectrum of planning horizons. Our experiments spanned over 150 unique predicates.

Task Complexity: In task design, we consider two types of complexity: domain derivation com-
plexity and planning complexity. Domain derivation complexity is determined by the number of
predicates imagined and actions invented by PDDLLM; the more predicates and actions, the higher
the complexity. Planning complexity is influenced by both the planning domain and the task. Given
n objects, a task plan of length l, and m actions in the domain, the branching factor at each step
is m × n, resulting in a approximate complexity of (m × n)l. In Section B.10, we layout a table
showcase the planning complexity (in approximate order of magnitude) of the most difficult problem
in the category and the domain derivation complexity. The Tower of Hanoi task exhibits the greatest
planning complexity, while bridge building presents the highest domain derivation complexity. In
contrast, stack and unstack are simpler in both complexity measures.

Knowledge Transferability: We evaluate the knowledge transferability of PDDLLM by testing
its ability to generalize from demonstrated tasks to novel ones with overlapping predicates and
actions. For most tasks, PDDLLM was given demonstrations of the same task involving fewer
(3 to 4) objects. However, for compositional tasks such as rearrangement and bridge building, the
model was instead provided demonstrations of simpler subtasks. Specifically, rearrangement used
demonstrations from both stacking and unstacking, while bridge building combined demonstrations
of stacking and alignment. These setups test whether PDDLLM can compose skills learned from
simpler demonstrations to solve more complex tasks.

Table 12: Maximum planning complexity and domain derivation complexity of each category .

Task Stack Unstack Color
Classify Alignment Parts

Assembly Rearrange Burger
Cook

Bridge
Build

Tower
of Hanoi

Max
Planning
Complexity

1058 1058 1071 1058 1058 10137 1048 1036 10307

Domain
Derivation
Complexity

90 90 111 94 92 96 114 128 94

B.10.2 DERIVATION OF BOUNDED DOMAIN DERIVATION COMPLEXITY

The predicate imagination complexity measures how many predicates need to be generated. Our
method is generalizable to more complex cases for the following reasons:

Complexity calculation formula The formula is:

complexity =
∑
i

n
ndim,i

p,i

where ndim,i is the number of dimensions included in predicate type i. For example, ndim,color = 3
since color is represented by the three RGB channels. np,i is the number of partitions along each
dimension for predicate type i. The term n

ndim,i

p,i gives the total number of predicates generated for
type i, and summing over all predicate types yields the overall complexity of the predicate imagination
process for the task.

The Method is Scalable as the Increase in Predicate Types Leads to Linear Growth The
number of predicate types grow linearly as the task complexity increases. The only exponential factor
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comes from the number of dimensions ndim per predicate type; however, in practice, this value is
typically small (e.g., ≤ 3).

High-Dimensional Features Can Be Decomposed to Reduce Complexity For higher-dimensional
features, as object pose (x, y, z, yaw, pitch, roll), we can decompose them into lower-dimensional
predicate types (e.g., position and orientation). This reduces exponential complexity to additive linear
terms, preserving scalability and enabling rich predicate representation.

Task Planning Does Not Require Many Partitions Dividing features into too many partitions
makes predicate implication nearly continuous, which defeats the purpose of symbolic abstraction.
Here is an experiment:

• 2 partitions: “cold” (0 < T < 50◦C), “hot” (50 < T < 100◦C)

• 4 partitions: “cool” (0 < T < 25◦C), “warm” (25 < T < 50◦C), “hot” (50 < T < 75◦C),
“near-boiling” (75 < T < 100◦C)

• 100 partitions: . . . , “post-boiling” (95 < T < 96◦C), “stable-boil” (96 < T < 97◦C), . . .

For the same task “boil milk”, we compare the predicate imagination results by forcing the system
to partition the feature space into 2, 4, and 100 intervals. It is evident that overly fine partitioning
reduces interpretability and semantic efficiency, so the number of partitions np per dimension is
usually low.

B.11 MISSING AND REDUNDANT ELEMENTS

A redundant predicate or action refers to one that, when removed from the planning domain, does
not degrade planning performance. Conversely, a missing predicate or action is one whose absence
significantly reduces the domain’s planning performance.

The reported percentages are computed by comparing the PDDLLM generated PDDL domains
with the expert-designed PDDL domains. The percentage of missing predicates/actions reflects
the completeness of the generated domain (i.e., whether all necessary components are present).
The percentage of redundant predicates/actions reflects the optimality of the domain (i.e., whether
unnecessary components have been excluded).

B.12 REAL-WORLD DEMONSTRATION COLLECTION

To enable the demonstration collection in real-world, we build up a data collection system using Agilex
Pika and ArUco markers. We collect both the end-effector trajectories of the human demonstrator
and the pose of the target objects. These data are later mapped to symbolic predicates and actions
in the PDDL domain, providing a bridge between raw demonstration data and high-level planning
representations.

End-Effector Trajectory: The movement of the human operator’s end effector is recorded using
the Agilex Pika Data Collection System. The system’s motion capture capability provides precise
position and orientation measurements over time. These trajectories serve as a basis for identifying
meaningful segments of motion that can be abstracted into candidate actions for the symbolic domain.

Object Properties and States: Physical characteristics of the objects, such as size, are obtained from
the available CAD models, ensuring that the symbolic model is grounded in realistic object dynamics.
In addition, the poses of the objects during demonstrations are captured using ArUco markers affixed
to their surfaces. These pose estimates allow us to track state changes—such as whether an object
has been grasped, moved, or placed—which are subsequently encoded as predicates in the PDDL
formulation.

B.13 PERCEPTION MODULES AND ABLATION STUDY ON NOISE RESISTANCE

Perception in our real-robot system. For our real-world experiments, we adopt a ArUco markers
as our perception method, which provides reliable object identity and 6D pose estimates. This
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setup allows us to evaluate the planning framework without conflating perception errors with the
contributions of our method.

Compatibility with other perception modules. PDDL task planning is modular and can integrate
with other perception systems that provide object state estimation, including learning based (Kase
et al., 2020), VLM-based (Liang et al., 2024), or standard 6D object-pose estimation methods (Huang
et al., 2025). As our method strictly follows the PDDL pipeline, our approach similarly does not
place restrictive assumptions on how these states are produced, as long as a good state estimation is
provided.

Robustness to perception noise. The logical abstraction produced by our method is formulated as an
intersection of intervals, and thus inherently provides tolerance to perception errors: predicates operate
on ranges of continuous values rather than exact measurements, which reduces sensitivity to noise.
To address your concern, we conduct an additional real world experiment evaluating performance
under perturbations of the perceived object state. We randomly place two 4 cm × 4 cm × 2 cm cubes
on a table, use our ArUco marker system to obtain 6D pose estimates, and evaluate each predicate by
comparing its predicted truth value against ground-truth spatial relationships inferred from the poses.
For each predicate, we construct 50 balanced trials, 25 cases where the predicate should be true and
25 where it should be false. The results are as follows:

Predicates is_on next_to

Accuracy 94% 96%

In addition, we provide another experiment where we intentionally inject perception noise varying
from 5% to 30% to imitate perception methods with varied perception accuracy. Each trial is repeated
three times, leading to the following results:

Table 13: Accuracy under injected perception noise (percentage noise levels).
Percentage Noise 5% 10% 15% 20% 25% 30%

is_on Accuracy 92.7± 0.9 88.7± 2.5 84.0± 3.3 80.7± 3.4 80.7± 1.9 78.7± 0.9
next_to Accuracy 94.7± 0.9 84.0± 1.6 80.0± 4.9 76.0± 4.3 74.0± 2.8 69.3± 1.9

Overall Accuracy 93.7± 1.4 86.3± 3.1 82.0± 4.6 78.3± 4.5 77.3± 4.1 74.0± 4.9

The experiment shows that the learned predicates exhibit strong tolerance to perception noise, with
significant degradation occurring only when injected noise exceeds 20%. This demonstrates the
feasibility of integrating our system with current perception technologies.

B.14 APPLICABLE SCENARIOS ANALYSIS

Suitable Domains The proposed system is naturally suited to domains that align with the classical
task and motion planning (TAMP) setting (Garrett et al., 2021; Kaelbling & Lozano-Pérez, 2011),
namely those with: (1) consistent object physical attributes, (2) scene geometry can be represented
with structured models such as URDF/CAD, so that motion-planning constraints can be grounded
reliably. Such tasks have already included a wide range of regular robotic tasks, suas table tidying,
object sorting, cabinet and drawer organization, simple assembly, etc.(Garrett et al., 2021; Silver
et al., 2021; Huang et al., 2025; Silver et al., 2024) These prior studies have largely verified the task
and motion planning framework in those domains.

Challenging Domains While modern simulators are powerful, we recognize that some domains
remain difficult to model reliably, which remains a challenge shared across the robotic planning
community. Here we discuss those domains that are specifically challenging to our approach. (1)
Deformable, fluid, or highly non-rigid materials (e.g., cloth, liquids), where feature definition is
under studied and reliable physics simulation is still limited. (2) Tasks requiring fine-grained feature
modeling, such as tight-tolerance insertion, dexterous geometry manipulation, where small errors in
simulation yield large discrepancies in behavior. (3) Unstructured or rapidly changing environments,
where object properties or contacts vary unpredictably and cannot be captured with static models.

How our method remain helpful in challenging situations with complex dynamics?
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There are two main aspects:

• Easing human workload by automating common-dynamics predicate generation. In
challenging domains, the planning domain produced by our approach still provides a strong
starting point. Although it may not fully capture the most complex dynamics, it reliably
constructs predicates that describe common and regularly occurring dynamics. This leaves
only a small number of highly complex predicates for engineers to refine, avoiding the need
to rebuild the entire domain from scratch and substantially reducing manual effort.

• Empirical compatibility with manipulation techniques designed for complex dynamics.
Our method can be integrated with stronger low-level manipulation modules such as VLA,
which are specifically engineered to handle complex dynamics. We also include a table-
setting experiment where our framework is combined with a finetuned version of Pi0 as the
low-level skill controller, achieving a 7/10 success rate in real-robot trials.

B.15 ABLATION STUDY: HYPERPARAMETER u

For subspace granularity hyperparameter u, we perform an ablation study on the selection of u.
Specifically for u selection, for each continuous feature f , uf has to be smaller than the smallest
non-zero observed difference dmin of that feature among all relevant objects. This provides a
conservative upper bound of uf , otherwise the system cannot capture distinctions of all objects. Thus,
we ablates the selection of u from dmin to 0.25dmin. We fix nprompt = 10 for all experiments. Three
runs were performed for per uf per task, and the average missing/redundant percentage compared to
human design is reported.

Table 14: Effect of the threshold u on redundant and missing predicates across tasks.
Tasks Error Type uf = dmin uf = 0.75dmin uf = 0.5dmin uf = 0.25dmin

Stacking Redundant 8.3% 12.5% 16.7% 12.5%
Stacking Missing 4.2% 0.0% 0.0% 4.2%

Tower of Hanoi Redundant 14.3% 14.3% 9.5% 14.3%
Tower of Hanoi Missing 0.0% 0.0% 0.0% 4.2%

Bridge Building Redundant 3.7% 11.1% 14.8% 22.2%
Bridge Building Missing 22.2% 22.2% 22.2% 22.2%

Burger Cooking Redundant 3.7% 7.4% 18.5% 22.2%
Burger Cooking Missing 22.2% 22.2% 25.9% 22.2%

Overall Redundant 7.5% 11.3% 14.9% 17.8%
Overall Missing 12.1% 11.1% 12.0% 13.2%

To conclude, reducing u overall would increase the risk of redundant predicates, but the negative effect
on missing predicate is less apparent. Overall, the predicate generation is not very sensitive to the
variation of u. Usually it is also not necessary to set a extremely small u. In our implementation, we
allow LLM to adjust u. Specifically, the LLM can merge intervals that are semantically uninformative
for the task into a single broader region, and subdivide intervals in feature regions where finer
distinctions are necessary.

B.16 ABLATION STUDY: PARALLEL PROMPT

This Section include ablation study of number of parallel prompt nprompt with respect to (1) the
domain generation success rate. (2) domain quality with respect to human design.

B.16.1 INFLUENCE ON DOMAIN GENERATION SUCCESS RATE

Empirically, the system consistently produces an executable planning domain when using five
or more parallel prompts. We evaluate four domains, Stacking, Tower of Hanoi, Bridge Building,
and Burger Cooking, which span a wide range of domain-generation complexities. For each value of
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nprompt, every task is tested with three independent parallel runs. The overall failure rate of producing
an executable planning domain as a function of the number of parallel prompts is reported below.

Table 15: Rate of failure to generate executable domain with varying number of parallel prompt
Tasks nprompt = 1 nprompt = 5 nprompt = 10 nprompt = 15 nprompt = 20

Overall Failure Rate(%) 41.7 8.3 8.3 0 0

B.16.2 INFLUENCE ON DOMAIN QUALITY COMPARED TO HUMAN DESIGN

The result of varying nprompt is shown in the table below. We the selection of uf = dmin for all
experiments. Three runs were performed for per nprompt per task, and the average missing/redundant
percentage compared to human design is reported.

Table 16: Redundant and missing predicate rates across tasks as the number of parallel prompts
changes.

Tasks Error Type nprompt = 1 nprompt = 5 nprompt = 10 nprompt = 15 nprompt = 20

Stacking Redundant 25.0% 12.5% 8.3% 4.2% 4.2%
Stacking Missing 4.2% 0.0% 4.2% 0.0% 0.0%

Tower of Hanoi Redundant 38.1% 9.5% 14.3% 14.3% 9.5%
Tower of Hanoi Missing 0.0% 0.0% 0.0% 0.0% 0.0%

Bridge Building Redundant 33.3% 11.1% 3.7% 3.7% 0.0%
Bridge Building Missing 29.6% 25.9% 22.2% 22.2% 22.2%

Burger Cooking Redundant 29.6% 11.1% 3.7% 11.1% 0.0%
Burger Cooking Missing 29.6% 22.2% 22.2% 22.2% 22.2%

Overall Redundant 31.5% 11.1% 7.5% 8.3% 3.4%
Overall Missing 15.8% 12.0% 12.1% 11.1% 11.1%

B.17 EFFECT OF MISSING COMPLEX PREDICATES

The complex predicates are missed more frequently when they require deep or repeated operator com-
positions (e.g., (all_bases_finished), which involves multiple nested forall quantifiers
and conjunctions). Such structures expand the candidate space combinatorial, making them harder
for the LLM to reason the nested logic and identify consistently. In contrast, simpler higher-order
predicates, such as on_top, which require only shallow or singular compositions, are generated
reliably with almost no missing observed. In practice, missing highly composite predicates rarely
leads to direct planning failure. The essential geometric and relational structure is already captured by
first-order predicates; the more complex, higher-order predicates primarily serve to accelerate plan-
ning by enforcing appropriate action ordering. For example, omitting (all_bases_finished)
in the bridge-building task causes the planner to initiate surface assembly prematurely, encounter
motion-planning failure, and then backtrack to assemble the remaining bases. Our experiments
still achieve over 85% success even without such predicates—thus, the increased planning time
does not cause immediate failure in typical settings. However, this becomes more problematic for
time-sensitive tasks. In scenarios with strict latency requirements or limited search budgets, missing
these complex predicates may cause the planner to exceed the allotted time, effectively resulting in
task failure even though a valid plan is reachable.

B.18 REFINING PREDICATE PRECISION WITH IMPROVED LANGUAGE GUIDANCE

Here we provide an additional experiment that illustrates how refined language guidance can improve
the predicate precision. The only change we made in the following experiment is the task description.
All other settings are consistent with the experiments in the main paper.
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Table 17: Examples of predicate generation across different task and scenes.
Predicate Name

Heat Milk (hot-milk ?a): 40 < T < 60 °C
(warm-milk ?a): 20 < T < 40 °C

Boil milk (cold-milk ?a): 0 < T < 10 °C
(warm-milk ?a): 20 < T < 40 °C
(boiling-milk ?a): 90 < T < 100 °C

Heat the cold milk from the fridge until it comes to a boil. (cold-milk ?a): 0 < T < 10 °C
(near-boil-milk ?a): 80 < T < 90 °C
(boiling-milk ?a): 90 < T < 100 °C

As shown in the results, vague language prompts lead to vague predicates and loose predicate
constraints. When the instruction becomes more specific, the generated predicates also become more
precise, with correspondingly sharper constraints.

B.19 FEEDBACK LOOP FOR LOW-LEVEL MOTION FAILURE

We recognize that low-level execution inaccuracies are indeed a common challenge in task and
motion planning methods (Kaelbling & Lozano-Pérez, 2011; Garrett, 2018; Silver et al., 2023). In
our framework, we follow the standard task and motion planning paradigm to handle such failures.
When a low-level failure occurs (e.g., the third block falls because the second block was not perfectly
centered), it result in a logical state change. The PDDL planner then re-invokes symbolic planner
to generate a new sequence of actions that recovers from the failure by re-stacking the misplaced
block. This replanning–execution loop is repeated until either the goal is achieved or the time limit is
reached. This mechanism ensures that occasional geometric inaccuracies do not terminate the task
prematurely.

B.20 TOKEN COST DETAILS

The following table shows the token cost observed in each of 5 trials for three tasks. The average
value is reported in the main paper Table 2. Each trail we adopt u = dmin and nprompt = 10.

Table 18: Token cost (k) across 5 trials for each task in domain derivation.
Task Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg

Rearrangement 306.4 292.9 322.5 465.1 285.2 334.4
Tower of Hannoi 478.6 526.6 558.6 547.2 564.1 535.1
Bridge Building 293.0 478.2 336.5 471.0 298.0 375.3
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B.21 ABLATION STUDY: LLM BACKBONES

To assess whether PDDLLM depends on GPT-4o, we repeated all experiments using Qwen3-4B and
Qwen3-8B as backbones. As shown in Table 8, both models achieve performance comparable to
GPT-4o across all tasks. The maximum discrepancy across the nine tasks is small (within 2–3% for
most tasks), and the average deviation from the GPT-4o results is under 1%. The results are expected,
as once a planning domain is derived, the downstream success rate primarily depends on the PDDL
solver rather than the choice of LLM backbone.

Table 19: Performance (%) of PDDLLM with different LLM backbones.
Backbone Model Stack Unstack Color Align Parts Rearr. Burger Bridge ToH Overall

GPT-4o 97.5± 1.6 97.7± 0.7 100± 0.0 100± 0.0 100± 0.0 64.3± 0.7 91.7± 4.8 87.2± 4.3 100± 0.0 93.3± 0.7
Qwen3-4B 97.7± 1.7 97.5± 1.6 100± 0.0 100± 0.0 100± 0.0 64.0± 1.3 93.1± 3.7 86.1± 3.8 100± 0.0 93.1± 0.4
Qwen3-8B 97.8± 0.3 100± 0.0 100± 0.0 100± 0.0 98.3± 1.1 65.1± 2.2 95.1± 2.5 85.0± 5.0 100± 0.0 93.6± 0.5
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