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Abstract

We provide a dataset that enables the creation of learning agents that can build
knowledge graph-based world models of interactive narratives.1 Interactive
narratives—or text-adventure games—are partially observable environments struc-
tured as long puzzles or quests in which an agent perceives and interacts with
the world purely through textual natural language. Each individual game typi-
cally contains hundreds of locations, characters, and objects—each with their own
unique descriptions—providing an opportunity to study the problem of giving
language-based agents the structured memory necessary to operate in such worlds.
Our dataset provides 24198 mappings between rich natural language observations
and: (1) knowledge graphs that reflect the world state in the form of a map; (2)
natural language actions that are guaranteed to cause a change in that particular
world state. The training data is collected across 27 games in multiple genres and
contains a further 7836 heldout instances over 9 additional games in the test set.
We further provide baseline models using rules-based, question-answering, and se-
quence learning approaches in addition to an analysis of the data and corresponding
learning tasks.

1 Introduction

Observation: West of House You are standing in an open
field west of a white house, with a boarded front door. There
is a small mailbox here.

Action: Open mailbox

Observation: Opening the small mailbox reveals a leaflet.

Action: Read leaflet

Observation: (Taken) "WELCOME TO ZORK! ZORK is a
game of adventure, danger, and low cunning. In it you will
explore some of the most amazing territory ever seen by mor-
tals. No computer should be without one!"

Action: Go north

Observation: North of House You are facing the north side
of a white house. There is no door here, and all the windows
are boarded up. To the north a narrow path winds through the
trees.

Figure 1: Excerpt from Zork1.

We seek to create agents that exhibit human-like
capabilities such as commonsense reasoning and
natural language understanding in interactive
and situated settings. Interactive narrative envi-
ronments provide a critical stepping stone in this
pursuit towards creating learning agents that can
produce contextually relevant and goal-driven
natural language [Côté et al., 2018, Urbanek
et al., 2019, Hausknecht et al., 2020]. They
require agents to observe textual descriptions
and then act upon the world using natural lan-
guage with the aim of completing a long term
goal or quest as seen in Figures 1, 2. We focus
on two of the core challenges faced by learn-
ing agents in these environments—as identified
in prior work—knowledge representation and a
combinatorially sized state-action space.

The knowledge representation challenge rises
from the fact that interactive narratives span many distinct locations, each with unique descriptions,
objects, and characters as seen can be seen in Figure 2. Players move by issuing navigational

1Dataset can be found here https://github.com/JerichoWorld/JerichoWorld
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Figure 2: A map showcasing the size and complexity of the world of Zork by artist ion_bond.

commands, which can convey Euclidean space like go West or non-Euclidean span like step into
portal, warping the agent to an entirely new section of the world. To cope with such challenges,
humans often create structured memory aids such as hand drawn maps when attempting to play these
games. A good knowledge representation can assist with long-term action dependencies that often
arise in game quests (as well as real world environments). An example of a long-term dependency is
a key being found in one location that opens a lock on a chest in an entirely different section of the
map. For an agent to learn this relationship, it must be able to replicate the sequence of picking up
the key and unlocking the chest while not being distracted by interstitial actions and states.

Long-term action dependencies are made challenging by two aspects of interactive narrative environ-
ments, which are also present in real-world environments. First, these environments are partially
observable in the sense that an agent only has local observability. Second, interactive narrative
environments have a combinatorially-sized natural language state-action space. For example,
in the cannonical game Zork1 an action can consist of up to five-words from a relatively modest
vocabulary of 697 words, resulting inO(6975) = 1.64× 1014 possible actions at every step—though
the number of valid actions that are gramatically coherent and contextually relevant is significantly
smaller. This makes exploration sample-inefficient, making it harder to learn the relationship between
actions that are temporally distant from each other.

The knowledge representation challenges inherent to interactive narrative games give rise to
the Textual-SLAM problem, a textual variant of Simultaneous Localization And Mapping
(SLAM) [Thrun et al., 2005] problem of constructing a map by inferring information from one’s
surroundings while navigating a novel environment. As in humans, the creation of such world models
or memory aids in agents—in the form of knowledge graphs—has been shown to be critical in
helping automated learning agents operate in these textual worlds [Ammanabrolu and Riedl, 2019,
Murugesan et al., 2020, Adhikari et al., 2020, Ammanabrolu and Hausknecht, 2020].

Despite the success of knowledge graphs in addressing these problems, a broad dataset across a
diverse set of games mapping text game observations to knowledge graphs does not exist—hindering
progress in building of world modeling agents with structured memory. Building off the popular
text game simulator Jericho [Hausknecht et al., 2020], we have constructed a dataset dubbed Jeri-
choWorld that maps text game state observations to both the underlying ground truth knowledge
graph representations of the game and the set of contextually relevant actions that can be performed
in that state. Using this data, we seek to enable development of agents that focus on answering the
questions of “What actions make sense for me to perform right now?” and “What have I already
done and how will the world change now if I perform a particular action?”—questions relating to
the problems natural language understanding, commonsense reasoning, and structured memory. The
training set contains 24198 instances across 27 games and the heldout test set contains 7836 instances
from 9 games. We further formally define two initial tasks for this dataset focusing on the questions
mentioned: (1) Given a textual observation, predict the underlying knowledge graph of the world.
(2) Given a textual observation, predict the set of actions that are contextually relevant. Results for
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three baselines—using rules-based, question-answering, and sequence-learning approaches—are
provided in addition to an analysis of the dataset and results themselves.

2 Related Work

We constrain our related work section to three primary areas: current interactive narrative benchmarks,
world modeling and model-based reinforcement learning, and the use of knowledge graphs in text
games. Currently, three primary open-source platforms and baseline benchmarks have been developed
so far to help measure progress in this field: Jericho [Hausknecht et al., 2020]2 a learning environ-
ment for human-made interactive narrative games; TextWorld [Côté et al., 2018]3 a framework for
procedural generation in text-games; and LIGHT [Urbanek et al., 2019]4 a large-scale crowdsourced
multi-user text-game for studying situated dialogue. Further extensions and adaptation to some of
these benchmarks have been proposed for use in neighboring domains such as vision-and-language
navigation [Shridhar et al., 2021], commonsense reasoning [Murugesan et al., 2021], and procedural
text understanding [Tamari et al., 2021]. Our work builds on the Jericho environment.

Work on world models in learning agents have recently been inspired by theories of how humans
form mental models of the world [Jancke, 2000, Ha and Schmidhuber, 2018]. When in the form of
predictive probabilistic generative models of the world, they can be used in model-based reinforcement
learning tasks [Sutton and Barto, 1998, Arulkumaran et al., 2017, Schrittwieser et al., 2019]. In such
cases, a learning agent attempts to learn the underlying environment dynamics at the same time as a
policy, often using information about one to inform the other. Ha and Schmidhuber [2018] take this
one step further by replacing a environment entirely with the agent’s own learned world model and
training a control policy there. All of these methods have been shown to have the added benefits of
significantly improving sample efficiency as the agent is now able to (at least partially) simulate the
environment via the world model.

In all of the world modeling cases mentioned, the state representations that the models are conditioned
on are drawn directly from the existing base environments, e.g. raw pixel game screens in the
case of the Arcade Learning Environment [Bellemare et al., 2013] or other visual games such as
Sokoban [Bamford and Lucas, 2020]. In the case of human-made text games, however, knowledge
graphs—not directly provided by existing text game learning frameworks—have been shown to be
superior state representations when compared to just the textual observations by themselves. They
aid in the challenges of partial observability/knowledge representation [Ammanabrolu and Riedl,
2019, Adhikari et al., 2020, Sautier et al., 2020], combinatorial state-action spaces [Ammanabrolu
and Hausknecht, 2020, Ammanabrolu et al., 2020b], and commonsense reasoning [Ammanabrolu
and Riedl, 2019, Murugesan et al., 2020, 2021, Dambekodi et al., 2020].

Closest in spirit to this work is the Jericho-QA dataset [Ammanabrolu et al., 2020b], a question-
answering dataset tuned to text games that enables agents to identify common objects in the world
and their attributes. It does not have information regarding the full underlying knowledge graph state
or valid actions, however. As far as we know, ground truth knowledge graph state representation
dataset across a diverse set of human-made text games is not currently available in any of the primary
text game benchmarks mentioned previously, hindering the ability to create agents with structured
memory in the form of graph-based world models.

3 JerichoWorld

Côté et al. [2018] and Hausknecht et al. [2020] define text games as Partially-Observable Markov
Decision Processes. A game can be represented as a 7-tuple of 〈S, T,A,Ω, O,R, γ〉 representing the
set of environment states, mostly deterministic conditional transition probabilities between states, the
vocabulary or words used to compose text commands, observations returned by the game, observation
conditional probabilities, reward function, and the discount factor respectively. Drawing from this
definition, each instance of our dataset takes the tuples of 〈st, at, st+1, rt+1〉 where st and st+1 are
two subsequent states with at being the action used to transition states and rt+1 is the observed
reward for some step t.

2https://github.com/microsoft/jericho
3https://github.com/microsoft/textworld
4https://parl.ai/projects/light
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To collect the 〈st, at, st+1, rt+1〉 tuples we implement a basic agent that explores the game along
a trajectory corresponding to a game walkthrough. Game walkthroughs are texts describing the
solutions to games, generally retrieved from the internet, but already part of the Jericho framework.
Walkthroughs, however, only present one possible solution to a game and solve all the core puzzles
required to complete a game with the maximum possible score. To achieve greater coverage of the
game’s state space, our data collection agent stops off to explore by executing random valid actions
for n steps before resetting to the walkthrough. One such collected state—a part of the full tuple
mentioned—is detailed below.

The textual observations consist of descriptions of the location and inventory as well as the game
engine response to the previous action performed. For example:
Game: ztuu
Location: Cultural Complex This imposing ante-room, the center of what was apparently the cultural center

of the GUE, is adorned in the ghastly style of the GUE’s "Grotesque Period." With leering gargoyles,
cartoonish friezes depicting long-forgotten scenes of GUE history, and primitive statuary of pointy-
headed personages unknown (perhaps very, very distant progenitors of the Flatheads), the place would
have been best left undiscovered. North of here, a large hallway passes under the roughly hewn
inscription "Convention Center." To the east, under a fifty-story triumphal arch, a passageway the
size of a large city boulevard opens into the Royal Theater. A relatively small and unobtrusive sign
(perhaps ten feet high) stands nearby. South, a smaller and more dignified (i.e. post-Dimwit) path
leads into what is billed as the "Hall of Science." You can see a pair of razor-like gloves here.

Observation: You put on the razor-like gloves.
Inventory:

You are carrying:
a brass lantern (providing light)
a pair of glasses
four candy bars:
a ZM$100000
a Multi-Implementeers
a Forever Gores
a Baby Rune

a cheaply-made sword
Prev Act: put on gloves

We further provide the set of objects that are found in both the agent’s inventory and surroundings,
including textual descriptions for each of the objects. Attributes for each of these objects are also
included are acquired by decompiling the games, following [Ammanabrolu et al., 2020b]. For
example:
Inventory Objects:

candy: Which do you mean, the ZM$100000, the Multi Implementeers, the Forever Gores or the Baby Rune?
Implementeers: The profiles on the wrapper of this delicacy look more like Moe, Larry, and Curly than

those of your favorite Implementeers (presumably, Marc, Mike, and David.)
Forever/Gores: The wrapper of this bar pictures the Milky Way, but the stars are all blood red. Kids

love them.
sword: This is a cheaply made sword of no antiquity whatsoever. With regard to grues or other

underworldly denizens, your weapon is as likely to engender laughter as fear.
rune: The label is covered with mystical runes, the meanings of which elude you.
glasses: The owner of these glasses had an indeterminate vision problem, because the lenses have both

been crushed underfoot. The vision problem, of course, has been solved.
lantern: The lantern, while of the cheapest construction, appears functional enough for the moment.

Your best hope is that it stays that way. It looks like the lamp has gone through a few cycles of
impact revitalization.

Inventory Attributes:
glasses: clothing
gloves: clothing
sword: animate, equip
lantern: animate, equip

Surrounding Objects:
gargoyles: Unless you are inordinately masochistic, the less time spent examining the artwork, the

better.
east: You see nothing special about the east wall.
tunnel: The tunnel leads west.
gloves: The razor like gloves would be very attractive for an axe murderer. And they’re just your size.
south: You see nothing special about the south wall.
sign: The sign indicates today’s performance, which (in honor of the festivities in the Convention

Center) is "A Massacre on 34th Street."
Surrounding Attributes:

gloves: clothing
tunnel: animate
sign: animate

We further provide the ground truth knowledge graph representing the world state corresponding to
these textual observations. The ground truth knowledge graph is a set of tuples 〈s, r, o〉 such that s is
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a subject, r is a relation, and o is an object. It reflects information on the current state such as objects
and attributes and is extracted from the game engine by traversing the engine’s internal representation
and converting it to human readable form. Relations are defined on the basis of traversal operations
in the game engine’s internal representation, e.g. “in” and “have” signify parent-child ownership for
locations and inventory respectively. For example:
Graph: [sign, in, Cultural Complex], [you, have, Forever Gores], [you, have, ZM$100000], [you, have, Baby

Rune], [tunnel, in, Cultural Complex], [you, in, Cultural Complex], [you, have, brass lantern], [you,
have, glasses], [decoration, in, Cultural Complex], [you, have, cheaply-made sword], [you, have,

Multi-Implementeers], [you, have, razor-like gloves], [glasses, is, clothing], [gloves, is, clothing],
[sword, is, animate], [tunnel, is, animate], [sign, is, animate], [lantern, is, animate], [sword, is,
equip], [lantern, is, equip]

Valid actions are defined by Hausknecht et al. [2020] as the set of actions guaranteed to cause a
change in the current world state and are identified by the Jericho framework. For example in one
particular state me might have the following valid actions:
Valid Actions: west, turn lantern off, east, south, put multi down, put forever down, put lantern down,

put rune down, put glasses down, put sword down, take razor off, put on glasses, examine glasses,
lower razor, throw multi, throw lantern, put multi in glasses, north

3.1 Dataset Analysis

Game No. Input Avg. Obs Avg. Graph Avg. No. Avg. Surround.
Samples Vocab Size Token Len. Triple Len. Valid Actions Objects

Training games
wishbringer 560 1043 136.54 4.00 10.35 8.51

snacktime 168 468 190.08 2.33 4.82 5.52
tryst205 1052 871 136.24 7.81 14.30 8.38

enter 440 470 219.06 14.79 18.04 9.23
omniquest 784 460 79.96 8.02 21.50 5.30

zork3 1142 564 137.68 6.59 12.72 5.26
zork2 584 684 154.90 7.82 29.66 5.73

inhumane 1004 409 90.24 3.86 4.31 2.48
905 504 296 100.91 11.69 13.60 12.24

loose 16 1141 140.38 10.12 2.12 9.00
murdac 1914 251 80.76 4.30 8.67 1.63
moonlit 684 669 131.62 12.10 9.20 11.61
dragon 894 1049 182.79 11.64 13.13 12.29

jewel 1418 657 119.08 7.21 13.82 5.15
weapon 294 481 230.41 29.79 9.65 35.68

karn 2196 615 138.87 13.24 26.36 8.44
zenon 402 401 101.52 5.01 5.97 3.95

acorncourt 474 343 323.38 36.14 20.18 16.08
ballyhoo 2132 962 127.08 7.25 15.39 7.11

yomomma 884 619 129.06 3.00 16.11 5.52
enchanter 1714 722 133.56 14.83 45.27 7.40

gold 2082 728 166.96 15.76 25.03 12.92
huntdark 344 539 162.33 13.01 6.33 6.90
afflicted 574 762 165.13 2.91 17.34 11.85

adventureland 870 398 87.41 6.99 9.02 5.17
reverb 722 526 101.92 5.23 9.04 4.78
night 346 462 49.92 10.17 4.55 3.37

overall train 24198 11056 133.30 9.74 17.41 7.70
Testing games

deephome 630 760 147.33 10.20 15.31 7.15
balances 990 452 107.15 7.61 13.04 3.85
ludicorp 2210 503 88.32 9.47 9.27 4.60

pentari 276 472 130.34 3.46 3.72 2.84
detective 434 344 105.97 2.80 5.72 2.16

ztuu 462 607 170.89 11.97 18.39 7.94
zork1 886 697 109.70 6.46 13.02 4.54

library 654 510 154.40 9.18 4.59 10.20
temple 1294 622 138.07 10.77 8.56 8.78

overall test 7836 11056 118.92 8.71 10.30 5.86
Table 1: Dataset statistics across the games. All games together have a combined input vocabulary of
size 11056. There are 17 unique graph relations and 6985 unique graph entity names (i.e. locations,
characters, and objects) across all the games. Vocabulary files are provided in the dataset.

Table 1 presents statistics for our data in the form of showing vocab sizes, and average lengths
of different data fields. The dataset as a whole has an input vocabulary size of 11056—this is the
superset of the vocabulary that can be used to act in any of these games. It is worth noting, that
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the output vocabulary size—determined by the observations—is not restricted. As seen later when
we introduce models for these tasks, this means that subword based tokenization [Kudo, 2018] for
processing inputs is the most effective way of avoiding unknown tokens.

The training and testing games both cover a wide range of genres as noted by Hausknecht et al. [2020],
Ammanabrolu et al. [2020b]—e.g. 905 is a everyday slice-of-life simulator in which a character
walks around a house preparing for work, afflicted is a monster horror game, ballyhoo, detective
are murder mysteries, and karn, zork1 are traditional fantasies. On average, the observation token,
graph, and valid action lengths are comparable across both the training and testing games. Outliers in
these metrics usually represent game-specific challenges. For example, acorncourt has the highest
observation token and graph length counts by far. This is because the game is focused heavily on
object collection and so contains more entities on average than others. In a similar vein, enchanter has
significantly more valid actions than other games. This is due to the game being focused on constantly
discovering valid actions in the form of spells and their effects by casting them—everything from
healing yourself to causing an object to give off light. It is worth noting that many of these spells
appear and have similar effects in other fantasy text games. These are some examples of challenges
that players must overcome to be successful in these worlds.

4 Benchmarks

This section introduces the two primary tasks using JerichoWorld required for world modeling in
learning agents: knowledge graph prediction and valid action prediction. We then introduce baseline
models for each of the tasks, report zero-shot results on the testing games, and analyze performance.

4.1 Knowledge Graph Prediction

The first world modeling task involves predicting a knowledge graph from the current set of textual
observations. Recall that our dataset takes the form of tuples of 〈st, at, st+1, rt+1〉 where st and
st+1 are two subsequent states with at being the action used to transition states and rt+1 is the
observed reward. This task is to predict sgrapht+1 , a set of knowledge graph relations, given the textual
observations sobst , the previous state’s graph sgrapht , and action at for all samples in the dataset. We
present three baseline models for this task.

Rules. Following Ammanabrolu and Hausknecht [2020], we extract graph information from the
observation using information extraction tools such as OpenIE [Angeli et al., 2015] in addition to
some hand-authored rules to account for the irregularities of text games.

Question-Answering. This baseline comes from the Q*BERT agent described in Ammanabrolu
et al. [2020b]. It is trained on the SQuAD 2.0 [Rajpurkar et al., 2018], the Jericho-QA text game
question answering dataset [Ammanabrolu et al., 2020b] on the same set of training games as found
in JerichoWorld, and then on JerichoWorld itself by formatting our dataset in the style of questions
and answers when possible. It uses the ALBERT [Lan et al., 2020] variant of the BERT [Devlin et al.,
2018] natural language transformer to answer questions and populate the knowledge graph via a few
hand-authored rules from the answers. Examples of questions asked include: “What is my current
location?”, “What objects are around me?”.

Seq2Seq. We further introduce a encoder-decoder based sequence-to-sequence learning ap-
proach [Sutskever et al., 2014] inspired by the transformer model BART [Lewis et al., 2020]. The
model architecture is shown in Figure 3 and consists of a bidirectional encoder such as BERT [De-
vlin et al., 2018] that takes the full set of textual observations—including location and inventory
descriptions—as input and an autoregressive decoder such as GPT-2 [Radford et al., 2019] which
takes in the current graph and learns to predict the graph sequence shifted by a token. The weights
of the encoder are fine-tuned from BERT’s original weights on both the graphs, in triple form, and
the textual observations taken from the training games using a masked language modeling loss. The
decoder is not pre-trained. During test time, only the starting token is given to the decoder and it
decodes the graph token by token via bean search until an end-of-sequence token is reached.

Metrics. For this task, we report two types of metrics (Exact Match or EM and F1) operating on two
different levels—at a graph tuple level and another at a token level. EM checks for accuracy or direct
overlap between the predictions and ground truth, while F1 is a harmonic mean of predicted precision
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You are standing in an open field west of a white
house, with a boarded front door. There is a small
mailbox here.
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Prev act: take leaflet
Valid acts: go north, go south, go west, open mailbox
Curr. act: go north

North of
House

north

You

West of
House

mailbox

house open-

able

in

is

has

has

window
has

leaflet

have

Gt+1[GRAPH] <you, in, North of House> 

<you, in, North of House> ...

At+Ot

<s, r, o> triples

Figure 3: A description of the Seq2Seq architecture for knowledge graph prediction task with a
bidirectional encoder and autoregressive decoder. A similar architecture is used for the Seq2Seq
model shown in the valid action prediction task.

and recall. The graph level metrics are based on matching the set of 〈subject, relation, object〉 triples
within the graph, all three tokens in a particular triple must match a triple within the ground truth
graph to count as a true positive. The token level metrics operate on measuring unigram overlap in
the graphs, any relations or entities in the predicted tokens that match the ground truth count towards
a true positive.

Analysis. Table 2 presents a breakdown of the results for this task across the testing games on all the
baseline models presented. There are a few main trends to note in these results.

The first is that the question-answering (QA) approach significantly outperforms both the Rules and
Seq2Seq approaches on average across all the testing games. The QA method used is extractive. This
means that the system is trained to pick out answers by highlighting spans in the input context that
best answers a question. The Rules approach also functions similarly but is not trained in any way on
our data. This is inherently a simpler problem formulation than the Seq2Seq approach—which seeks
to generate the graph by decoding token by token—but has its limitations.

These limitations are seen in the relative differences between the magnitudes of the graph and token
metrics for these approaches. Both QA and Rules have significantly lower graph metrics than token
metrics, a phenomenon not observed in the Seq2Seq model. In other words, the right information
is extracted but is potentially not well shaped into knowledge graph form. We hypothesize that this
implies two things. (1) That these systems likely over-extract by extracting more information than is
strictly necessary. Take for example the sample observation seen in Figure 3: “You are standing in an
open field west of a white house, with a boarded front door.”. QA when asked the question “What is
my location?” answers: “open field west of a white house, with a boarded front door”. Seq2Seq, in
contrast, is trained to map this sentence more tersely to: 〈you, in, West of House〉. (2) Both QA and
Rules use hand-crafted rules to put the graphs together once information has been extracted either
through the core QA model or OpenIE. We see here that while over-extraction can be beneficial for
the token metrics—it makes it difficult to create a set of graph construction rules that generalize well
across games with different structures, resulting in relatively lower graph metrics.

On the other hand, the main advantage of the Seq2Seq approach is that it is not extractive and trained
directly on the graphs found in the dataset. This means that it is potentially able to infer facts that are
not directly present in the input context. Recall that text games are partially observable and so the
textual observations themselves may potentially be incomplete. An example of such an observation
is: “You see a locked chest in front of you in the cellar.”. The ground truth graph for this would
be: 〈you, in, Cellar〉, 〈chest, in, cellar〉, 〈chest, is, lockable〉, 〈sword, in, chest〉. The last fact in the
graph, the sword being in the chest, is not revealed to you via the observation until you open the chest
and thus cannot be predicted by extractive approaches like Rules and QA. This gives models like
Seq2Seq—that are trained directly on the graph—the ability to perform commonsense inference by
potentially filling in information missing from the partially observable text inputs. It further implies
that extractive models, in their current form, will not be able to achieve perfect performance.

The main limitation of the Seq2Seq model, however, is that this non-extractive framing—given that
every token is decoded autoregressively, requiring a prediction at every step over the entire combined
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Expt. Rules Question-Answering Seq2Seq
Metric Graph Token Graph Token Graph Token

Game Size EM F1 EM F1 EM F1 EM F1 EM F1 EM F1
zork1 886 3.72 4.46 6.08 8.42 24.56 24.88 43.93 48.31 12.44 12.96 18.01 21.12

library 654 7.61 12.87 10.33 26.74 29.14 31.46 49.78 52.76 18.42 18.89 20.26 20.84
detective 434 1.39 4.55 7.51 10.23 34.45 36.23 60.28 63.21 26.86 29.48 35.86 35.86
balances 990 9.17 11.9 32.53 36.09 41.22 41.85 85.81 86.18 8.19 9.04 17.6 18.86

pentari 276 6.44 10.22 16.48 23.36 28.96 30.12 65.02 69.54 22.18 23.54 25.48 27.72
ztuu 462 4.94 10.06 14.4 21.74 22.17 26.26 49.44 49.82 16.89 16.89 17.19 17.87

ludicorp 2210 5.1 8.37 14.47 18.48 41.44 46.74 57.58 60.95 12.94 14.18 14.8 15.42
deephome 630 0.49 0.64 3.34 3.86 4.42 4.66 9.31 9.84 8.38 10.47 13.25 13.25

temple 1294 2.48 3.36 7.42 9.44 36.84 39.86 48.98 49.17 16.48 18.52 22.48 24.34
overall 7836 4.70 7.25 13.08 17.50 32.78 35.48 53.58 55.74 14.29 15.54 18.80 19.96

Table 2: Results for the Knowledge Graph Prediction task. Overall indicates a size weighted average.
All experiments are evaluated over three random seeds with standard deviations not exceeding ±2.8
in any overall category.

entity and relation vocabulary length of 7002—is a significantly more difficult problem than the other
approaches. It is likely that that such non-extractive approaches will have to simplify the problem by
adding constraints that account for properties of knowledge graphs (e.g. graph are sets of tuples and
the same tuple in a set cannot be decoded twice).

4.2 Valid Action Prediction

The second world modeling task involves predicting the set of valid actions from the current set of
textual observations. Given the data 〈st−1, at−1, st, rt〉 (note the change in indexing), this task is
formally defined as: predict the set of valid actions for the subsequent state svalidt given the current
state text observation sobst , current knowledge graph sgrapht , previous valid actions svalidt−1 , and action
at−1 that caused the state change for all individual samples across the dataset. This task requires
linguistic priors in the form of commonsense reasoning and a knowledge of affordances—e.g. open
mailbox is a more reasonable action to take in most situations than eat mailbox.

We present a single baseline for this task. We developed a Seq2Seq model that is identical to that
presented for the Knowledge Graph Prediction task, except adapted to Valid Action Prediction. That
is, it performs sequence learning on the valid actions token by token. Extractive approaches like
QA are not possible for valid action prediction given that the verbs in the action—e.g. take, get,
put, swing, go—are not often found anywhere within the observation. The Seq2Seq approach thus
decodes actions token by token from the entire combined output vocab of 11056 (see Table 1) at
every step until a special end-of-sequence tag is reached.

Metrics. For this task, we adapt the graph level Exact Match (EM) and F1 metrics as de-
scribed in the previous task to actions. In other words, positive EM or F1 happens only when
all tokens in a predicted valid action match one in the gold standard set. Given that most
valid actions have less than four tokens, we do not use standard Seq2Seq metrics—such as
BLEU [Papineni et al., 2002]—intended for measuring n-gram overlap in longer sequences.

Game Size EM F1
zork1 886 16.65 17.85

library 654 15.13 16.88
detective 434 18.19 21.12
balances 990 16.19 18.23

pentari 276 23.39 25.87
ztuu 462 14.75 15.13

ludicorp 2210 20.1 20.86
deephome 630 14.71 14.86

temple 1294 20.34 22.14
overall 7836 18.10 19.44

Table 3: Results for the Valid Action
Prediction task. Overall indicates a size
weighted average. All experiments are
evaluated over three random seeds with
standard deviations not exceeding ±3.7
in any overall category.

We do not report token unigram overlap, as with the knowl-
edge graph task as here, because predicted actions are re-
quired to match gold standard actions exactly in order to
be executable in the game.

Analysis. Table 3 shows the results for the valid action
prediction task on all the testing games for the Seq2Seq
baseline. Recall that an EM of 20 means that if there were
100 gold standard valid actions in an instance, the model
predicted 20 of them exactly. Based on this, we further
note a trend in Table 3 that negative correlation between
the as seen in Table 1. That is, the more the average
number of gold standard valid actions per instance in a
game, the more predicted actions match. Games like ztuu,
deephome, balances have a high number of gold standard
average valid actions and lower performance than games
like pentari, ludicorp, detective, temple which have a low
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number of average valid actions. This is counter intuitive as the expected result would be that a model
is able to learn a smaller sequence more effectively than a larger one—implying that a smaller number
of gold standard valid actions per instance would lead to more matches. We hypothesize that this is
likely due to the fact that the model best learns common actions found across all games first before
learning potentially more fine grained actions—effectively a label imbalance issue across the valid
actions in the dataset. E.g. navigation actions like go north are found much more often than actions
like hit monster with sword—which are usually found in only a handful of fantasy games. When
performing zero-shot prediction on testing games, the model thus predicts these common actions
with higher confidence than the more fine grained ones. Testing games with a smaller number of
average gold standard valid actions also tend to have a larger proportion of uncommon actions—thus
posing more of a challenge for the Seq2Seq model.

5 Conclusions and Future Work

This paper presents the JerichoWorld dataset and corresponding benchmarks that seek to drive
progress in textual world modeling. This primarily involves two key challenges behind the creation
of agents that can understand and generate natural language in a diverse set of interactive and situated
settings such as text games. Our dataset provides mappings from textual observations to ground
truth knowledge graph states to enable agents to learn to infer the state of the world—alleviating
the knowledge representation or Textual-SLAM challenge. A key insight from an comparison of
baseline models shows that a promising future direction lies in inferring the knowledge graph world
state through commonsense reasoning rather than extracting this information due to the partial
observability of text games.

A second world modeling task revolves around tacking the combinatorially-sized action space of text
games. The dataset also provides mappings from textual observations to valid actions—i.e. the set
of contextually relevant actions guaranteed to change the world in any state. A qualitative analysis
of a state-of-the-art Seq2Seq model adapted to the domain and trained for this task suggests that
while learning to conditionally generate commonly occurring actions across a large set of games
might be relatively easy, learning to generate specific and contextually relevant actions provides a
significantly more difficult challenge. Current performance by state-of-the-art models across both
these tasks suggests that there is much space for improvement.

There are many more tasks that can be framed for other challenges related to world modeling from
this dataset. Some immediate examples: (1) offline reinforcement learning for game agents through
imitation learning—predicting the sequence of actions that finish the game based on walkthroughs
and reward information; (2) knowledge graph verbalization, a form of the standard data-to-text
natural language processing task [Wiseman et al., 2017], in which we learn to generate text that
is conditioned on a knowledge graph; and (3) description generation conditioned on the names of
various objects, locations, and characters—with applications in long-form text generation domains
such as automated storytelling [Martin et al., 2018, Fan et al., 2019] and procedural generation of
interactive narratives [Ammanabrolu et al., 2020a, Walton et al., 2020].

6 Broader Impacts

Text games are simplified analogues for systems capable of long-term dialogue with humans, such as
in assistance with planning complex tasks, and also discrete planning domains such as logistics. Our
focus is on helping agents to better model such worlds, enabling greater efficiency for agents training
to produce such contextually relevant language.

The data is collected from games containing situations of non-normative language usage—describing
situations that fictional characters may engage in that are potentially inappropriate, and on occasion
impossible, for the real world such as running a troll through with a sword. Instances of such scenarios
are mitigated by careful curation of the games that the data is collected from. The original Jericho
framework [Hausknecht et al., 2020]—further verified by us in this work—uses a curated set of games
found not to contain extreme examples of non-normative language usage. This is based on manual
vetting and (existing) crowd-sourced reviews on the popular interactive narrative forum IFDB.5

5https://ifdb.org/
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A Appendix

We would first like to note the presence of a complementary dataset of observation-action pairs
created by humans on the ClubFloyd online Interactive Narrative forum.6 This dataset appears in
both Ammanabrolu and Hausknecht [2020] and Yao et al. [2020] with the latter using it to tune a
GPT-2 model for valid action prediction. To prevent data leakage from human transcripts to our test
games, we do not use this dataset to pre-train or tune our models.

The rest of this Appendix first provides additional samples for the dataset for qualitative purposes
and then provides training details for the baseline models.

A.1 Dataset

The games used in the Jericho suite and here are all open sourced freeware. The walkthroughs
required to create the oracle agents for the collection of data for the games were drawn from
various sources on the internet and errors were corrected manually. We provide our data at https:
//github.com/JerichoWorld/JerichoWorld under an MIT license. We provide 3 samples drawn from
different games in the full dataset to help the readers better understand the diversity of text there.
Game: 905
Location:

Bedroom (in bed)
This bedroom is extremely spare, with dirty laundry scattered haphazardly all over the floor. Cleaner

clothing can be found in the dresser. A bathroom lies to the south, while a door to the east
leads to the living room.

On the end table are a telephone, a wallet and some keys.

The phone rings.
Observation: You take off the gold watch. The phone rings.
Inventory:

You are carrying:
some soiled clothing (being worn)
a gold watch

Prev Act: take off watch
Inventory Objects:

gold watch: Apparently it’s 9:07. The phone rings.
soiled clothing: These clothes are a lost cause, sad to say no amount of laundering is going to get

these stains out.
Inventory Attributes:

watch: animate, equip
clothing: animate, equip

Surrounding Objects:
phone: An ordinary telephone, notable chiefly for being fifteen or twenty years old.
keys: House keys, car keys, they’re all on the same chain.
end table: A small end table, oak veneer over plywood.
living room: The living room lies to the east.
dirty dresser: Just a simple dresser.
laundry: Shirts, pants, the usual.
floor, east, south: You see nothing unexpected in that direction. The phone rings.
wallet: It’s a brown leather wallet.
door: Just a regular door.

Surrounding Attributes:
keys: animate, equip
wallet: animate, equip

Graph: [you, have, gold watch], [you, in, bed], [you, have, soiled clothing]
Valid Actions: take phone, get up, take off clothing, take off watch, take keys, close door, take wallet,

close door, put clothing down, put watch down, put clothing on table, open wallet, put watch down,
put clothing on phone, put watch on table, put gold on phone, look under bed

Game: deephome
Location:

Secret Entrance
This is a rather dark and small room, having only two exits, back north the way you came, from the

ancestral homes of Tana, or through the heavily barred wooden door before you that leads
southwest and inward to the abandoned Deephome, abode of the Dwarves in Telleen. It has been
three hundred years since your people lived here.

The heavy door stands open, admitting you into Deephome.
Observation: As you touch the finely etched symbol, you hear a click and a whir. Then the door swings open

before you, opening into the abandoned city of Deephome. Your score has just gone up by five points.
Inventory:

6http://www.allthingsjacq.com/interactive_fiction.html

13

https://github.com/JerichoWorld/JerichoWorld
https://github.com/JerichoWorld/JerichoWorld
http://www.allthingsjacq.com/interactive_fiction.html


You are carrying:
King’s Order
a lantern (providing light)

Prev Act: push mountain
Inventory Objects:

lantern: This is an old and trusty (not rusty) lantern that has been in your family for centuries. It
has yet to shut off at an inopportune moment. However, there is a saying in your family..."That
lantern is bound to go off at an inopportune time sometime!"

order: The note reads: "Reclaimer: You have the esteemed duty to return to our Mountain Kingdom of
Deephome and prepare it for our return. There are several things a Reclaimer must do: 1. Restore
Power to the City 2. Restore Water to the city. 3. Visit each location and make sure it is safe,
a quick appraisal should be sufficient. 4. Open the City Gates once more. 5. MOST IMPORTANT: Make
sure the city is SAFE to return to. May the Peace of Kraxis go with you King Derash of the

Mountain Tana, the year 782 SK."
Inventory Attributes:

lantern: equip
Surrounding Objects:

southwest: You see nothing special about the southwest wall.
house: It is the typical human house, maybe two stories. It is etched into the wood.
wooden door: This door is made of thick and sturdy wood. It has three symbols on it, a tree, a house,

and a mountain.
symbols: On the door there are pictures of a mountain, a tree, and a house.
tree: The tree symbol looks as if it were etched into the wood.
mountain: The mountain looks mighty, a high peak among the clouds. It is etched into the wood.

Surrounding Attributes:
door: unlockable
symbols: unlock

Graph: [symbols, in, Secret Entrance], [wooden door, in, Secret Entrance], [ground, in, Secret Entrance],
[you, in, Secret Entrance], [house, in, Secret Entrance], [Kraxis, in, Secret Entrance], [you, have,
lantern], [mountain, in, Secret Entrance], [you, have, "Kings Order"], [tree, in, Secret Entrance]

Valid Actions: say manaz, push mountain, close wooden, get in southwest, put light down, put order down

Game: reverb
Location:

Behind the Counter
You are behind the counter at "Mr. Tasty’s Pizza Parlor". To the southwest is the rest of the

restaurant.

On the counter is a large pizza box (which is closed).

You can see a handwritten note here.
Observation: You put the large pizza box on the counter.
Inventory: You are carrying nothing.
Prev Act: push large to counter
Inventory Objects:
Inventory Attributes:
Surrounding Objects:

southwest: You see nothing special about the southwest wall.
handwritten note: The note reads: "Stanley, Don’t forget to make your delivery to Mr. Calzone, located

at the San Doppleton Courthouse. You’re already on thin ice, kid. One more screwup and you can
expect to be looking for a new job." The note is signed with the initials "RT". The paper is
official "Mr. Tasty’s" stationery with the name Bob "Tasty" Tasker and lots of balloons and
smiley faces all over the border. Isn’t that cute?

large pizza box: It’s a large, flat, greasy cardboard box. Hastily scrawled on the outside is the word
"Calzone". Which is weird, because it’s clearly a pizza.

counter: It’s a majorly boring counter which you’re unfortunately very familiar with.
Surrounding Attributes:

handwritten note: indoor, readable
large pizza box: indoor
counter: indoor

Graph: [metal file, in, large pizza], [you, in, Behind the Counter], [handwritten note, in, Behind the
Counter], [large pizza, in, large pizza box], [counter, in, Behind the Counter], [large pizza box, in,
counter]

Valid Actions: get up, take note, take large, examine note, undo large, push note to southwest, push large
to southwest, push note to counter, push large to counter

A.2 Baselines

The baseline models that are adapted from other works, i.e. the Rules and QA systems, are trained
using hyperparameters and methodologies described in their respective works.

A.2.1 Rules

Following Ammanabrolu and Hausknecht [2020], the exact details regarding knowledge graph
updates are found as follows. At every step, given the current state and possible attributes as context.
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• Linking the current room type (e.g. “Kitchen”, “Cellar”) to the items found in the room with
the relation “has”, e.g. 〈kitchen, has, lamp〉

• All attribute information for each object is linked to the object with the relation “is”. e.g.
〈egg, is, treasure〉

• Linking all inventory objects with relation “have” to the “you” node, e.g.
〈you, have, sword〉

• Linking rooms with directions based on the action taken to move between the rooms, e.g.
〈Behind House, east of, Forest〉 after the action “go east” is taken to go from behind the
house to the forest

A.2.2 Question-Answering

The QA models are trained on the SQuAD 2.0 [Rajpurkar et al., 2018], the Jericho-QA text game
question answering dataset on the same set of training games as found in JerichoWorld, and then on
JerichoWorld itself by formatting our dataset in the style of questions and answers when possible. Our
dataset is formatted in the style of Jericho-QA by templating questions that ask about location, objects
(including characters), and attributes. An example of a JerichoWorld dataset example converted
to Jericho-QA format is seen below—though we would like to note that this removes much of the
information present naturally within our dataset. All other model architecture and hyperparameter
details are as seen in Ammanabrolu et al. [2020b].
Game: reverb
Location:

Behind the Counter
You are behind the counter at "Mr. Tasty’s Pizza Parlor". To the southwest is the rest of the

restaurant.

On the counter is a large pizza box (which is closed).

You can see a handwritten note here.
Observation: You put the large pizza box on the counter.
Inventory: You are carrying nothing.
Question: Where am I located? Answer: Behind the Counter
Question: What is here? Answer: large pizza box, handwritten note, southwest
Question: What do I have? Answer: nothing
Question: What attributes does handwritten note have? Answer: indoor, readable
Question: What attributes does southwest have? Answer: indoor
Question: What attributes does large pizza box have? Answer: indoor

A.2.3 Seq2Seq

For both tasks, models were trained until validation accuracy (picked to be a random 10% subset of
the training data) did not improve for 5 epochs or 72 wall clock hours on a machine with 4 Nvidia
GeForce RTX 2080 GPUs, three times with three random seeds. All models decode using beam
search with a beam width of 15 at test time until the end-of-sequence tag is reached. The size of the
decoding vocabulary for the action prediction task is 11056 and for the graph prediction task is 6985.
Hyperparameters were not tuned and were taken from BART [Lewis et al., 2020].

Hyperparameter type Value
Dictionary Tokenizer Byte-pair encoding
Num. Encoder layers 6
Num. Decoder layers 6
Num. encoder and decoder attention heads 8
Feedforward network hidden size 4096
Input length 1024
Embedding size 768
Batch size 16
Dropout ratio 0.1
Gradient clip 1.0
Optimizer Adam
Learning rate 1.0 × 10−3

Table 4: Hyperparameters used to train the Seq2Seq model. It has a total of 232 million trainable
parameters.
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