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Abstract

Despite the rich literature on machine learning
fairness, relatively little attention has been paid
to remediating complex systems, where the final
prediction is the combination of multiple classi-
fiers and where multiple groups are present. In
this paper, we first show that natural baseline ap-
proaches for improving equal opportunity fair-
ness scale linearly with the product of the number
of remediated groups and the number of remedi-
ated prediction labels, rendering them impractical.
We then introduce two simple techniques, called
task-overconditioning and group-interleaving, to
achieve a constant scaling in this multi-group
multi-label setup. Our experimental results in aca-
demic and real-world environments demonstrate
the effectiveness of our proposal at mitigation
within this environment.

1. Introduction
The literature around group fairness is relatively rich when
we consider a binary classifier and desire to satisfy group
fairness for a (binary) group (Dwork et al., 2012; Kamiran
et al., 2010; Zafar et al., 2017; Beutel et al., 2017; Agarwal
et al., 2018; Donini et al., 2018; Mary et al., 2019; Prost
et al., 2019; Baharlouei et al., 2020b; Cho et al., 2020a;
Lowy et al., 2022). However, many real-world applications
go beyond a single binary decision and we are often faced
with multi-label systems where the end decision is a com-
position of the individual labels (Dwork & Ilvento, 2018;
Adomavicius & Tuzhilin, 2005; Burke, 2002; He et al., 2014;
Wang et al., 2011).

In this paper, we study a multi-label classification system
where several binary classification decisions are combined
to make a final prediction for any given input. We consider
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a special composite classifier where the overall system de-
cision is 1 if any of the individual binary classifier outputs
are 1. For example, consider a content moderation system
for an online forum that predicts whether a given comment
is toxic, insulting, or attacking identity, and hides a com-
ment if any of the predictions are positive (Pavlopoulos
et al., 2020). How do we perform classification based on
the combination of these individual predictions, and achieve
specific group fairness goals? This problem, which is a
special instance of the compositional fairness (Dwork &
Ilvento, 2018; Wang et al., 2021), is the focus of this paper.
In addition, we also study a multi-group setting where we
are interested in the fairness of the classifier system with
respect to many groups

Among the in-process mitigation techniques (Ristanoski
et al., 2013; Quadrianto & Sharmanska, 2017; Kamiran
et al., 2010; Raff et al., 2018; Aghaei et al., 2019; Donini
et al., 2018; Fish et al., 2015; Grari et al., 2020; Cho et al.,
2020b; Prost et al., 2019; Lowy et al., 2022; Zafar et al.,
2017; Berk et al., 2017; Taskesen et al., 2020; Chzhen &
Schreuder, 2020; Baharlouei et al., 2020a; Jiang et al., 2020;
Grari et al., 2019), we focus our mitigation strategy on the
MinDiff technique (Beutel et al., 2019b; Prost et al., 2019)
for improving equality of opportunity (Hardt et al., 2016) in
classifiers. MinDiff has proven to be effective at inducing
equality of opportunity while maintaining overall classifier
performance across a variety of tasks by relying on the
maximum mean discrepancy (MMD) estimators (Gretton
et al., 2012; Prost et al., 2019). Importantly, MinDiff can
be successfully applied to environments when instances
labeled with group membership are very sparse, by using
a dedicated data streams to ensure that each mini-batch
contains a constant number of group labeled examples.

A natural baseline in this scenario is an extension of Min-
Diff to fairness mitigation in multigroup, multilabel environ-
ments, where one regularizer is introduced per each group
and per each classifier. However, this baseline causes the
batch size to scale linearly in both the number of groups
and number of prediction tasks being remediated. Even for
small number of groups and and small number of classifiers,
this can quickly grow out of hand to the extent that this
baseline becomes impractical, especially when the baseline
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classifier is already expensive to train. This significantly
increases resource usage and slows training as the number
of groups and prediction tasks grows. We propose two sim-
ple optimization techniques to achieve this fairness goal
with a constant scaling, with empirical verification. Our
contributions are summarized below:

• Task-overconditioning: The natural extension of Min-
Diff requires a batch of negative examples for each
label, resulting in a constant scaling with the number
of classifiers. Instead, task-overconditioning suggests
using a single batch that contains the negative examples
across all labels. We argue that task-overconditioning
further aligns the overall optimization objective to that
of mitigating the overall compositional decision, which
is our goal, while also achieving a constant scaling with
the number of individual classifiers.

• Group-interleaving: The natural extension of the miti-
gation solution requires a batch of negative examples
with respect to each group at each iteration. Instead,
group-interleaving makes the optimization objective
stochastic with respect to groups at each iteration, al-
lowing a constant scaling with the number of groups.

• Empirical verification: We empirically show that our
proposed method, which combines overconditioning
and group-interleaving results in equal or better Pareto
frontiers than baseline methods, with significant train-
ing speedup, on two datasets.

Related Work. Methods for improving group fairness
can generally be categorized in three main classes: pre-
processing, post-processing, and in-processing methods.
Pre-processing algorithms (Feldman et al., 2015; Zemel
et al., 2013; Calmon et al., 2017) transform the biased data
features to a new space in which the labels and sensitive
attributes are statistically independent. Post-processing ap-
proaches (Hardt et al., 2016; Pleiss et al., 2017; Alghamdi
et al., 2022) achieve group fairness properties by altering
the final decision of the classifier.

The focus of this paper is on in-processing methods, which
introduce constraints/regularizers for improving fairness in
training. These methods have empirically shown to pro-
duce a more favorable performance/fairness Pareto tradeoff
compared to other methods (Lowy et al., 2022). These in-
clude (Ristanoski et al., 2013; Quadrianto & Sharmanska,
2017) decision-trees (Kamiran et al., 2010; Raff et al., 2018;
Aghaei et al., 2019), support vector machines (Donini et al.,
2018), boosting (Fish et al., 2015), neural networks (Grari
et al., 2020; Cho et al., 2020b; Prost et al., 2019; Lowy
et al., 2022), or (logistic) regression models (Zafar et al.,
2017; Berk et al., 2017; Taskesen et al., 2020; Chzhen &
Schreuder, 2020; Baharlouei et al., 2020a; Jiang et al., 2020;
Grari et al., 2019). See the recent paper by (Hort et al., 2022)
for a more comprehensive literature survey. We focus in this

paper on the MinDiff technique, which has been successful
across tasks (Beutel et al., 2019b; Prost et al., 2019; Beutel
et al., 2019a).

This paper is also broadly related to the compositional fair-
ness literature (Dwork & Ilvento, 2018; Dwork et al., 2020;
Wang et al., 2021). In contrast to these works, we focus on
a narrower sense of compositionality (only the intersection)
for which we derive a scalable specialized solution.

2. Background & Problem Setup
Here, we formally provide the problem setup. Let
(x, {yt}t∈[T ]) represent a feature and a set of T binary la-
bels, where x ∈ X , and yt ∈ {0, 1} for all t ∈ [T ]1. In our
setup, the overall decision is a simple composite function of
the individual labels: y = maxt∈T {yt}, i.e., y = 1 if and
only if there exists t ∈ [T ] s.t. yt = 1.

We consider a scenario where we train T individual predic-
tors {ŷt(x; θ)}t∈[T ] in a multi-label setup, where ŷt(x; θ) ∈
{0, 1} is a binary classifier from features x, and θ represents
model parameters.2 Similarly, the overall model prediction
is given by ŷ = maxt∈T {ŷt}, i.e., ŷ = 1 if and only if there
exists t ∈ [T ] s.t. ŷt = 1. In other words, we predict that
the overall label is 1 when any of the underlying classifiers
is triggered. As explained before, this setup is common in
many applications, where the final decision (e.g. rejecting a
comment (Dixon et al., 2018)) based on ŷ depends on many
sub-decisions ŷt (properties of the customer or comment).

Our goal is to optimize for fairness in the equal opportunity
sense (Hardt et al., 2016) for the overall model prediction
with respect to multiple group memberships.3 Let the set G
capture all groups for which we would like to improve fair-
ness. Let gm ∈ {0, 1} denote the identifier for membership
in group gm, for m ∈ [|G|].
Definition 2.1 (overall equal opportunity with respect to
membership in group m).

P (Ŷ = 1|Gm = 0, Y = 0) = P (Ŷ = 1|Gm = 1, Y = 0),
(1)

Note that in this paper, we do not consider the intersectional
fairness setting (Kearns et al., 2018; Foulds et al., 2020)
where the goal is to ensure fairness to all intersections of
group memberships; see Appendix A.

While there are numerous ways to optimize for fairness in
machine learning, specifically in equal opportunity sense,
the methods that achieve better fairness/performance Pareto
frontiers have been empirically observed to be mostly in-
processing methods (Lowy et al., 2022), where a regularizer

1We define [T]:= {1, . . . , T}.
2We often drop (x; θ) for brevity and refer to the output of the

t-th classifier as ŷt.
3Fairness of individual predictors is desirable but not required.
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is added to the (cross-entropy) training loss to mitigate the
model fairness gap. The regularizer is usually of the form:
D(Ŷ (θ), Gm|Y = 0) where D(·, ·) is a proper divergence
between two random variables.

Notice that in our problem setup Ŷ (θ) is not a differentiable
function of the task-level predictors. Hence, we cannot use
it directly to regularize the training of the individual task-
level classifiers via backpropagation. This situation occurs
when task-level predictors are not trained jointly or are even
owned by different teams in an organization.

One intuitive solution to remediate this multi-label setup
is to ensure that each individual classifier is fair for each
group (Dwork & Ilvento, 2018). This intuitive design is
motivated by previous work (Wang et al., 2021) which finds
that fairness of individual predictors might be sufficient to
improve fairness of the overall system, even if there are no
theoretical guarantees. We refer to this objective as task-
level equal opportunity:

Definition 2.2 (Task-level equal opportunity with respect to
group Gm). For any task t ∈ [T ] and group m for m ∈ |G|,

P (Ŷt = 1|Gm = 0, Yt = 0) = P (Ŷt = 1|Gm = 1, Yt = 0).
(2)

3. Baseline: Many MinDiff Regularizers
While there are many effective methods for solving task-
level equal opportunity in (2), as discussed in related work,
here we focus on an adaptation of MinDiff (Zafar et al.,
2017; Beutel et al., 2019b; Prost et al., 2019) to the multi-
group multi-label classification case. This regularization-
based approach has a number of advantages. First, it does
not require group labels at inference time, which is often true
for real-world applications. Next, it has been empirically
demonstrated to be effective at remediating fairness issues
while still maintaining overall performance (Prost et al.,
2019). Finally, it is designed to be effective when group-
labeled instances are rare even in training data.

This MinDiff technique introduces a new loss term based
on maximum mean discrepancy (MMD) to promote (condi-
tional) independence between the predictions and sensitive
group (Prost et al., 2019) per each group and each task.
More precisely, the loss becomes:

LMinDiff = LCE(Ŷ , Y ) + λ
∑
t∈T

∑
m∈[|G|]

Rt,m, (3)

where LCE is the empirical cross-entropy loss, λ is a hyper-
parameter that sets the relative strength of the entropy and
MMD loss,4 and

4In practice, one can tune the MinDiff strength for each regu-
larizer at the expense of a complex hyperparameter tuning.

Rt,m=MMD(Ŷt|Yt=0, Gm=0; Ŷt|Yt=0, Gm=1). (4)

Computing Rt,m requires negative labeled instances (Yt =
0) for both group membership cases (Gm = 0 and Gm = 1).
In practice, instances with group membership information
are much less frequently available than those without. Min
Diff handles this by creating dedicated data streams for
group-labeled instances that ensure that every batch has the
data required to compute the MMD kernel component of
the loss. As the number of groups and predictions tasks
increases, this leads to O(T · |G|) data streams that must be
stored and a T · |G| multiplier on the batch size.

4. Proposed Method: MinDiff-IO
We now describe our proposed method, MinDiff-IO, which
is built on two main components: Group-Interleaving and
Task-Overconditioning. The central insight behind these two
approaches is that we can still accomplish our goal, overall
equal opportunity defined by Equation (1), by optimizing a
slightly different objective that is better aligned and is easier
to compute. We describe these techniques in the subsequent
sections.

4.1. Task-Overconditioning

The baseline method that targets task-level equal opportu-
nity has a number of data streams and batch size that scales
linearly with T, making it intractable for systems where T
might be large (e.g., O(100)). Additionally, it does not nec-
essarily imply overall equal opportunity (Dwork & Ilvento,
2018), Equation (1), which is what is desired.

In this section, we present our proposal towards satisfying
overall equal opportunity in this compositional decision sys-
tem. We provide limited theoretical motivation for why it
might be more aligned with the overall fairness objective
under restrictive assumptions. We shall also see in the exper-
imental section (where those restrictive assumptions are not
satisfied) that it leads to equal or better fairness/performance
Pareto frontiers.

Definition 4.1 (Overconditioning task-level equal opportu-
nity). For all t ∈ [T ],

P (Ŷt=1|Gm=0, Y =0)=P (Ŷt=1|Gm=1,Y =0). (5)

Note that, unlike Equation (4), we condition on all labels
having negative truth. This has the effect of requiring only
one dataset for all tasks when computing loss rather than T
datasets.

Assumption 4.2. Let task-level classifiers {ŷt(x; θ)}t∈[T ]

be such that for all x ∈ X , and for any t ̸= τ,

ŷt(x; θ)ŷτ (x; θ) = 0. (6)
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In other words, the classifiers don’t trigger simultaneously;
if ŷt = 1 then ŷτ = 0 for all τ ̸= t.

Notice that Assumption 4.2 is a strong assumption as it
requires the classifiers to have non-overlapping coverage,
which is not necessarily satisfied in practice. For example, in
the content moderation example, a comment might be toxic,
insulting, and attacking identity at the same time. While this
assumption is very restrictive, we show that under this sce-
nario overconditioning is perfectly aligned with the goal of
mitigating overall classifier. We also don’t need this assump-
tion for our empirical results, which show improvements
over the baseline classifier.

Lemma 4.3. If Assumption 4.2 is satisfied, then Defini-
tion 4.1 (overconditioned task-level equal opportunity) im-
plies Definition 2.1 (overall equal opportunity).

The proof is relegated to the appendix. Lemma 4.3 deter-
mines a scenario where overconditioning task-level equal
opportunity indeed implies the desired overall equal opportu-
nity. Notice that even under Assumption 4.2, Definition 4.1
is a stronger requirement than Definition 2.1, and is not
implied by it. In other words, we might be able to satisfy
the overall equal opportunity and yet the overconditioning
equal opportunity might not be satisfied for all task-level
classifiers.

To solve for Task-Overconditioning, we adapt MinDiff loss
as follows:

LMinDiff-O = LCE(Ŷ , Y ) + λ
∑
t∈T

∑
m∈[|G|]

RO
t,m, (7)

where

RO
t,m=MMD(Ŷt|Y =0, Gm=0; Ŷt|Y =0, Gm=1). (8)

Note that there will be fewer data instances that are suitable
for computing (8), which requires all labels to be jointly
negative, than (4), which only requires individual labels
to be negative. We have not found this to be an issue in
practical applications where positive label incidence is low.

4.2. Group-Interleaving

MinDiff was originally designed to present remediation data
from all groups to the model at each iteration. However,
we can reduce the complexity of computing the MinDiff
regularizer further by presenting only one group per batch
to the model. In this case, the loss becomes:

LMinDiff-IO = LCE(Ŷ , Y ) +RO
M (9)

where M is a random index supported on [|G|]. In other
words, here we remediate against a random draw from the
groups at each iteration of the algorithm. Notice that the

new loss is the same as the task-overconditioned loss in
expectation, and is expected to converge to a stationary point
of the same objective. On the other hand, when combined
with Task-Overconditioning, the loss can be computed with
only O(1) extra instances in each batch, with no dependence
on |G| and T .

5. Evaluation Metrics
For each binary group membership, i.e., Gm ∈ {0, 1},
where Gm = 1 is considered the minority group member-
ship, we quantify the fairness gap through the following
interchangeable metrics that are expressed in terms of the
absolute gap and the ratio of the two groups:

dEO,m = |FPRGm=1 − FPRGm=0|, (10)

and
rEO,m = FPRGm=1/FPRGm=0, (11)

where P̂ denote the empirical distribution over a test
set of N i.i.d samples from PXY , and for i ∈ {0, 1},
FPRGm=i := P̂ (Ŷ = 1|Gm = i, Y = 0).

To measure the classification performance we both compute
the Area Under the ROC Curve (ROC AUC) of the classifier
as well as accuracy. Finally, to measure speed, we report
the number of iterations per second achieved during model
training.

6. Experiments
We run two experiments. The first experiment provides the
Pareto frontier of fairness vs performance for each approach
using a publicly-available academic dataset, and the second
provides the performance, fairness, and speed of a real-
world policy enforcement classifier at a particular operating
point with each of the proposed approaches. Overall, these
experiments show that MinDiffIO provides equal or better
fairness/performance while improving training speed.

6.1. Civil Comments

The first set of experiments are run on the Civil Comments
Dataset (Pavlopoulos et al., 2020); details are given in Ap-
pendix B.3. Civil Comments contains comment text and
seven associated crowd annotated labels related to the ‘ci-
vility’ of the comment; whether the comment is an insult,
toxic, or attacking identity, and so on. We use the subset of
the data that are labeled with group information. Groups are
related to race, ethnicity, gender, disability, and sexuality.

We train comment classifiers on three of the seven labels
and combine the predictions into a system-level prediction:
a comment is classified as unsafe is any of the prediction is
unsafe. We compare this with ‘direct remediation’ where
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Method Avg Steps / Sec (↑) Avg AUCPR (↑) rEO,1 (↓) rEO,2 (↓)
No remediation A B C D

MinDiff – – – –
MinDiff-O 0.60×A 0.96×B 0.66× C 0.79×D
MinDiff-IO 0.86×A 0.96×B 0.65× C 0.83×D

Table 1. Comparison of different remediation techniques for the policy classification model. Avg AUCPR is a summary measurement of
the area under the precision-recall curve for each policy classifier; and Group 1 and Group 2 FPR ratio (rEO,1 and rEO,2, respectively)
denote the ratio of minority to baseline false positive rates at the system level. The baseline MinDiff remediation is too slow to run at this
scale (second row). We show how the introduction of Task Overconditioning allows us to remediate at all (third row) and how adding
Group Interleaving reduces the speed cost incurred by remediation (fourth row).

Figure 1. System-level tradeoff curve for the civil comments
dataset, achieved by varying regularizer strength λ. Note that di-
rect remediation is outperformed by component-based approaches;
for a given level of fairness, the component-based approaches pro-
vide better performance. Both component-based approaches offer
similar performance. Five runs were performed for each λ and the
faint cross-hatches represent 95% confidence intervals.

a classifier is trained to predict the system-level label (the
logical OR of the component labels) rather than the com-
ponents. In addition, we compare with ‘component-based’
remediation where MinDiff or MinDiffIO are applied to
component classifiers. Results are shown for one group
(Black) in Figure 1; results for other groups and component-
level results for all predictions and groups can be found in
Appendix B.3.

The plot displays the tradeoff between fairness and perfor-
mance as the hyperparameter λ is varied. As λ increases,
the contribution of the MMD component of the loss grows,
leading to increased fairness at the cost of performance.

We observe that the component-based approaches offer bet-
ter performance for a given fairness than direct remediation.
Also, MindDiff and MinDiffIO offer qualitatively similar
results.

6.2. Product Policy Compliance Detection

We now study a real world system, which is responsible
for filtering out examples which break the product policy.
This is similar to literature on toxic comment detection
(Pavlopoulos et al., 2020) or hateful speech filtering (Dixon

et al., 2018). To reflect the different facets of the product, a
set of rules (10-1000) are defined and an example is against
product policy if any given rule is broken. In practice, we
use individual classifiers to predict each rule, and an exam-
ple is filtered out if any individual soft prediction reaches
a certain threshold. Samples can be categorized into two
sensitive attributes (each considered as binary) and we want
to guarantee fairness to samples from each group, which
lends itself to the multi-label and multigroup classification.

Note that a false positive of this system is a user harm be-
cause policy-following content is flagged as policy-violating.
Our goal is to reduce the gaps between false positive rates
between minority groups and a baseline population.

We first evaluate the initial system without any remediation
and find that two groups have high false positive rate dif-
ferences. Our goal is to design the mitigation strategy that
reduces the observed gaps on the final policy (gap from Def-
inition 2.1) for both groups, while maintaining good perfor-
mance (measured by AUCPR) and training speed (training
steps/sec).

In Table 1, we show four different remediation approaches.
The first approach, unremediated, has some performance,
fairness, and speed characteristics that we compare other ap-
proaches to. The second approach, baseline, is unworkably
slow, so we are unable to run experiments or provide results.
The third approach, which introduces Task Overcondition-
ing, reduces fairness gaps with a minor hit to performance
and a major hit to speed. Finally, the fourth approach adds
Group Interleaving to mitigate the speed impact while main-
taining similar fairness and performance characteristics.

7. Conclusion
Prior in-process equal opportunity remediation methods suf-
fer from poor (linear) scaling in the number of prediction
tasks and number of groups to remediate, making existing
techniques sometimes impossible to apply to real-world sce-
narios. We present Mindiff-IO, a new method that builds on
the MinDiff approach to provide constant scaling with re-
spect to tasks and groups. We show that Mindiff-IO provides
similar performance and fairness characteristics to MinDiff
while scaling much better in multilabel and multigroup en-
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vironments through experiments with both academic and
real-world datasets. The limitations of this work are pro-
vided in Appendix A.
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A. Limitations
There are three limitations to the approaches mentioned here. First, overconditioning requires instances that have negative
ground truth for all modeled labels5 in order to compute the Min Diff loss. This is a realistic environment; for instance,
a policy dataset where policy-violating content is rare. However, if true positives are very common, this method may no
longer be effective.

The second limitation is with respect to intersectional group fairness. The interleaving optimization described in Section
4.2 does not explicitly represent or remediate the intersection of groups. Intersectional remediation is a more difficult
problem due to the exponential scaling of the number of intersections with respect to the number of groups. We opted not
to remediate intersections because of the sparsity of our group labels - very few instances are labeled with more than one
group. We believe that techniques that effectively and efficiently address intersectional remediation are an interesting area
for future work.

Third, we only consider MinDiff-based techniques in this paper and demonstrate that Mindiff-IO has better scaling
characteristics than the original MinDiff approach. Future work could compare the fairness, performance, and scaling
properties of Mindiff-IO with other methods of achieving equal opportunity. In addition, future work could test the
application of interleaving and overconditioning to other in-processing methods.

B. Proofs, Experiment Details, and Further Results
B.1. Proof of Lemma 4.3

Proof of Lemma 4.3. The proof is completed by noting that

P (Ŷ = 1|G = 0, Y = 0) = P (max
t∈[T ]

Ŷt = 1|G = 0, Y = 0)

=
∑
t∈[T ]

P (Ŷt = 1|G = 0, Y = 0) (12)

=
∑
t∈[T ]

P (Ŷt = 1|G = 1, Y = 0) (13)

= P (max
t∈[T ]

Ŷt = 1|G = 1, Y = 0) (14)

= P (Ŷ = 1|G = 1, Y = 0),

where (12) follows from Assumption 4.2, and (13) follows from Definition 4.1, and (14) follows from Assumption 4.2.

B.2. Civil Comments Experimental Details

For these experiments we select three labels (identity attack, insult, and toxicity) as well as four groups (black, gay or
lesbian, female, and transgender) for modeling and remediation. Our model consists of a single hidden layer deep neural
network that takes a simple hashing trick bag of words vectorization of the comment text as input. The hidden layer and text
vector have 64 and 1,000 elements, respectively.

All models are trained for 25 epochs with a learning rate if 0.1 and a Gaussian kernel weight of 1.0.

We present empirical Pareto frontiers of fairness (here, the absolute value of the difference between false positive rates
for a group and baseline) and performance (here, ROC AUC). Thresholds for the fairness dimension are selected through
calibration on a validation set.

B.3. Detailed Civil Comments Results

System-level results for all four groups are shown in Figure 2. Note that, in each case, component-based techniques
outperform direct remediation by offering a higher performance for a given fairness.

Component results for each group, label pair are shown in Figure 3 for both the MinDiff and Mindiff-IO techniques. These

5Note that the ground truth negative requirement is present when optimizing for equality of opportunity with respect to false positive
rates. If equality of opportunity with respect to false negative rates were the goal, the method would instead require ground truth positives.
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Figure 2. System-level results for all four groups. Note that, in each case, component-based techniques outperform direct remediation by
offering a higher performance for a given fairness.

Pareto frontiers are generated by varying the hyperparameter λ, where higher λ values put more weight on the MinDiff loss
term and lead to improved fairness at the cost of performance. Each data point in the plot is generated by training a model
five times; the crosses in each dimension represent 95% confidence intervals.

Note that each approach achieves a similar Pareto frontier, indicating the Mindiff-IO has similar performance and fairness
characteristics. In other words, this experiment confirms that Mindiff-IO does not sacrifice classifier fairness or performance
for individual classifiers. In the next experiment, we will provide training speed measurements to demonstrate the scaling
advantages of Mindiff-IO.
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Figure 3. Empirical Pareto frontiers of fairness and performance for baseline MinDiff and newly introduced Mindiff-IO. Each point
corresponds to a different min diff strength, and the error bars in each dimension represent 95% confidence intervals. Note that the frontier
achieved by Mindiff-IO not qualitatively different than that achieved by the baseline MinDiff approach. Note that there is a clear frontier
that trades off performance and fairness for groups with a large FPR gap (black and homosexual). However, for groups with a low FPR
gap (female, transgender), a small min diff strength λ provides the best performance and fairness characteristics.


