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Abstract

As a heuristic for improving test accuracy in classification, the “flooding” method
proposed by Ishida et al. (2020) sets a threshold for the average surrogate loss at
training time; above the threshold, gradient descent is run as usual, but below the
threshold, a switch to gradient ascent is made. While setting the threshold is non-
trivial and is usually done with validation data, this simple technique has proved
remarkably effective in terms of accuracy. On the other hand, what if we are also
interested in other metrics such as model complexity or average surrogate loss at
test time? As an attempt to achieve better overall performance with less fine-tuning,
we propose a softened, pointwise mechanism called SoftAD (soft ascent-descent)
that downweights points on the borderline, limits the effects of outliers, and retains
the ascent-descent effect of flooding, with no additional computational overhead.
We contrast formal stationarity guarantees with those for flooding, and empirically
demonstrate how SoftAD can realize classification accuracy competitive with
flooding (and the more expensive alternative SAM) while enjoying a much smaller
loss generalization gap and model norm.

1 Introduction

Modern machine learning makes use of sophisticated models that are trained through optimization of
non-convex objective functions, which typically admit numerous local minima that make for natural
candidates when taken at face value. While many such candidates are indeed essentially “optimal”
from the viewpoint of classification error rates or other average losses incurred at training time,
these often turn out to be highly sub-optimal in terms of performance at test time. It goes without
saying that understanding and closing this gap is the problem of “generalization” that underlies most
machine learning research (Jiang et al., 2020; Dziugaite et al., 2020; Johnson and Zhang, 2023).

When we are faced with multiple candidates which are essentially optimal and thus indistinguishable
in terms of some “base” objective function (e.g., the average loss) at training time, one of best-known
heuristics for identifying good candidates is that of the “landscape” or “geometry” of the base
objective in a neighborhood around each candidate. Roughly speaking, one expects that candidates
in regions which are in some sense “flat” (often said to be less “sharp”) tend to perform better at
test time. Strictly speaking, flatness is not necessary for generalization (Dinh et al., 2017), but our
intuition can often be empirically verified to be correct, as good generalization is regularly observed
in flat regions where the eigenvalues of the Hessian are mostly concentrated near zero (Chaudhari
et al., 2017). The spectral density of the Hessian can in principle be used to evaluate sharpness, and
has well-known links to norms that can be used for explicit regularization (Karakida et al., 2019),
but for large-scale neural network training in practice, first-order approximations have shown the
greatest utility. In particular, the sharpness-aware minimization (SAM) algorithm of Foret et al.
(2021), extended for scale invariance by Kwon et al. (2021) and later captured as a special case
of the gradient norm penalization (GNP) scheme of Zhao et al. (2022), has shown state-of-the-art
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performance on a variety of deep learning tasks. All of these first-order procedures can be cast as
(forward) finite-difference approximations of the curvature (Karakida et al., 2023), requiring at least
double the computational cost of vanilla gradient descent (GD) at each iteration.

As an alternative approach, the “flooding” technique of Ishida et al. (2020) is worthy of attention
for surprising improvements in test accuracy despite its apparent simplicity. Flooding is done as
follows: fix a threshold θ before training and run vanilla GD until the average loss goes below θ, and
while below this threshold, run gradient ascent rather than descent (see §2.1 for details). Flooding
appeared before SAM in the literature, but near the threshold, flooding can iterate between optimizing
the empirical risk and the squared gradient norm (penalizing sharpness), establishing the former as
an inexpensive alternative to the latter. On the other hand, it is not at all obvious how the flooding
threshold θ should be set given a particular data distribution and model class, and at present there is
no methodology for settings which are “optimal” or at least “sufficient” from the viewpoint of test
accuracy. More importantly, what if we are interested in performance criteria going beyond that of
classification accuracy? Flooding just says “make the average loss as close to θ as possible,” and
we hypothesize that this requirement is too weak to encourage low model complexity and/or good
generalization in terms of losses, while also keeping test accuracy high.

In this work, we investigate the validity of this hypothesis, and consider the impact of making
a stronger requirement, namely to ask the algorithm to “make sure the loss distribution is well-
concentrated near θ.” We show in §3 that this can be implemented by introducing a smooth wrapper,
applicable to any loss, which penalizes both over-performing and under-performing examples in
a per-point fashion, instead of applying a hard threshold to the whole (mini-)batch as in flooding.
We call this proposed procedure “soft ascent-decent” (SoftAD), and provide a detailed comparison
with the flooding technique, highlighting the smoothness of SoftAD with implications in terms of
formal stationarity guarantees, and emphasize how our mechanism leads to update directions that
are qualitatively distinct from those used in flooding. Through rigorous empirical tests using both
simulated and real-world benchmark classification datasets, featuring neural networks both large and
small, we discover that compared with ERM, SAM, and flooding, the proposed SoftAD achieves far
and away the smallest generalization error in terms of the base loss, while maintaining competitive
accuracy and small model norms, without any explicit regularization.

Before diving into the main results just described, we introduce notation and background concepts
in §2. SoftAD is introduced in §3, where we make basic empirical comparisons to flooding in §3.1,
and contrast formal guarantees of stationarity for these two methods in §3.2. Our main empirical test
results are given in §4, with discussion and concluding remarks wrapping up the paper in §5. All
detailed proofs and supplementary empirical results are relegated to the appendix.

2 Background

To begin, we formulate performance metrics characterizing the problem of interest. LetW ⊆ Rd
parameterize our hypothesis class, let Z denote the set to which individual data points z belong. Let
Z represent a random (test) data point with distribution µ over Z . For classification, where our data
takes the form Z = (X,Y) and for each w ∈ W we let Ŷ(w) denote the predicted label given X, the
traditional performance metric of interest is the error probability at test time, denoted by

E(w) ..= P
{

Ŷ(w) 6= Y
}
. (1)

When we refer to test accuracy, we mean the probability of correct prediction, namely 1 − E(w).
Even when high accuracy is desired, it is standard to make use of computationally congenial surrogate
loss functions for training. Let ` : Rd ×Z → R denote a generic loss function to be used for training.
For example, if z = (x, y) represents (input, label) pairs, then a typical choice of ` would be the
cross-entropy loss. While the model is left abstract in our notation, note that for non-linear models
such as neural networks, the mapping w 7→ `(w; z) may be non-convex and non-smooth overW . As
with the error probability (1), the expected loss (or “risk”)

Rµ(w) ..= Eµ `(w; Z) (2)

is also an important indicator of classifier performance. Both (1) and (2) are ideal quantities since
µ is unknown and Z is not observed at training time. We assume the learning algorithm has
access to an independent sample of n observations from µ, denoted by Zn ..= (Z1, . . . ,Zn) for
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convenience. Traditional machine learning algorithms are driven by the empirical risk, denoted here
by Rn(w) ..= (1/n)

∑n
i=1 `(w; Zi), in that they seek out (local) minima of Rn. In this paper, we use

the term empirical risk minimization (ERM) to refer to algorithms that directly apply an optimizer to
Rn. Under sophisticated models, the usual ERM objective Rn(·) tends to admit a complex landscape.
As discussed in §1, numerous alternatives to ERM have been proposed, with the aim of minimizing
E(·) more reliably; next we take a closer look at one such technique, called “flooding.”

2.1 Flooding

The basic intuition underlying the proposal of Ishida et al. (2020) is that while minimizing Rn(·) may
be sufficient for maximizing the training accuracy, it need not be necessary, and from the perspective
of optimizing E(·), it may be worth it to sacrifice Rn(·) and even Rµ(·). Fixing a threshold θ ∈ R,
the “flooded” objective is

Fn(w; θ) ..= θ + |Rn(w)− θ|. (3)

This objective can be implemented as a simple wrapper around typical loss functions, to which
off-the-shelf gradient-based optimizers can be applied; running vanilla sub-gradient descent yields a
sequence (w1, w2, . . .) generated using the update

wt+1 = wt − α sign (Rn(wt)− θ)∇Rn(wt) (4)

for all t ≥ 1, where sign(x) ..= x/|x| for all x 6= 0 and sign(0) ..= 0, and α > 0 is a fixed step
size. The update (4) characterizes what we call the Flooding algorithm. From the above definitions,
Fn(w; θ) is minimal if and only if Rn(w) = θ. That is, Flooding seeks out w such that the training
loss distribution induced by (`(w; Z1), . . . , `(w; Zn)) has a mean which is close to θ; nothing more,
nothing less.

2.2 Links to sharpness

Assuming for now that the loss is differentiable, it has been appreciated for some time that the
distribution of the loss gradients∇`(w; Z) can convey important information about generalization
(Zhang et al., 2020), and in particular the role of gradient regularization, both implicit and explicit, is
receiving significant attention (Barrett and Dherin, 2021; Smith et al., 2021).2 As a concrete example
of explicit regularization, consider modifying the ERM objective using the squared Euclidean norm
as

R̃n(w;λ) ..= Rn(w) + λ

2 ‖∇Rn(w)‖2 (5)

where λ ≥ 0 controls the degree of penalization. If one is to minimize this objective in w directly
using gradient descent, this involves computing

∇R̃n(w;λ) = ∇Rn(w) + λ∇2Rn(w) (∇Rn(w))

and thus doing matrix multiplication using a d× d Hessian ∇2Rn(w), an unattractive proposition
when d is large. A linear approximation to the expensive term can be obtained via

∇Rn(w + au)−∇Rn(w)
a

≈ ∇2Rn(w) (u)

where u ∈ Rd is arbitrary and |a| is small; see Zhao et al. (2022, §3.3) for example. Applying this to
approximate∇R̃n(w;λ), we have

∇Rn(w) + λ

a
(∇Rn(w + a∇Rn(w))−∇Rn(w)) ≈ ∇R̃n(w;λ). (6)

The iterative update directions used by the SAM algorithm of Foret et al. (2021) are captured by setting
a = λ, offering a nice link between loss-based sharpness control and gradient regularization. The
extension of SAM in GNP (Zhao et al., 2022) can be expressed by an analogous derivation, replacing

2Throughout this paper, all gradients are taken with respect to w 7→ `(w; z), assumed to exist on an open set
containingW for all z ∈ Z . It should however be noted that gradients taken with respect to parts of the data z
have been used in objective function design for years; see Drucker and Le Cun (1992).
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the squared norm ‖·‖2 in (5) with ‖·‖. Using updates of the form given in (6) with a > 0 is called
a “forward” finite-difference (FD) approach to explicit gradient regularization (GR) (henceforth,
FD-GR), and clearly requires two gradient calls per update.3 Better precision is available using
“centered” FD, at the cost of additional gradient calls (Karakida et al., 2023). How does this all relate
to Flooding? In repeating the update (4), once the empirical risk Rn goes below θ and the algorithm
switches from ascent to descent, it is straightforward to show conditions where this leads to iteration
between minimizing Rn and ‖∇Rn(w)‖2. We give more details in §B.1.

3 Soft ascent-descent

With the context of §2 in place, we consider making two qualitative changes to the Flooding update
(4), described as follows.

1. Pointwise thresholds: Invert the order of applying Rn(·) and sign(·), i.e., do summation
over data points after per-loss truncation.

2. Soft truncation: Replace the hard threshold sign(·) with a continuous, bounded, monotonic
(increasing) function φ(·) satisfying φ(0) = 0.

The reason for making the thresholds pointwise is to allow the algorithm to view “ascent” and
“descent” from the perspective of individual losses (rather than bundled up in Rn), making it possible
to utilize a sum of both ascent and descent update directions.4 To make this sum a weighted sum, the
soft truncation using φ plays a key role. Keeping φ bounded limits the impact of errant loss values,
while the other assumptions allow for both ascent and descent, with “borderline” points near the
threshold given less weight. Written explicitly as an empirical objective function, we use

Sn(w; θ) ..= θ + 1
n

n∑
i=1

ρ(`(w; Zi)− θ) (7)

where once again θ ∈ R is a fixed threshold, and we set ρ(x) ..=
√
x2 + 1− 1. Running vanilla GD

on Sn(·; θ) in (7) yields the update

wt+1 = wt −
α

n

n∑
i=1

φ(`(wt; Zi)− θ)∇`(wt; Zi), (8)

with φ(x) ..= ρ′(x) = x/
√
x2 + 1, and α > 0 is once again a fixed step size. For convenience,

we use soft ascent-descent (or SoftAD for short) to refer to the algorithm implied by the iterative
update (8). Note that there is nothing particularly special about our choice of ρ here; it is just a
simple algebraic function whose derivative also takes a simple form; note that the function φ resulting
from our choice of ρ satisfies the desired properties of continuity, boundedness, monotonicity, and
φ(0) = ρ′(0) = 0.5 Note that for each point being summed over, `(wt; Zi) > θ implies descent
while `(wt; Zi) < θ implies ascent, and borderline points with `(wt; Zi) ≈ θ have a smaller relative
impact. In contrast with Flooding, SoftAD requires that the training loss distribution induced by
(`(w; Z1), . . . , `(w; Zn)) be well-concentrated around θ, where the degree of dispersion is measured
in a symmetric fashion using ρ.
Remark 1 (Comparison with other variants of Flooding). During the review phase for this work, we
were made aware of another recent related work by Xie et al. (2022). Their proposed method is known
as iFlood, and it is essentially a middle ground between our proposal above and the original Flooding
procedure. They use pointwise thresholds as we do in SoftAD, but retain the hard ascent-descent
switch as in Flooding. More concisely, replacing our soft truncator φ(x) in (8) with the absolute
value |x| yields the iFlood update. We have added empirical test results for iFlood to complement our
original experiments at the end of §C.2. Another very recent variant is AdaFlood (Bae et al., 2023),
which sets the θ threshold level individually for each point based on “difficulty” as evaluated using
an auxiliary model.

3In the current example, one call at w, and another call at w + a∇Rn(w).
4This cannot be achieved by taking a mini-batch of size 1 when using Flooding, since the number of gradients

summed over always equals the number of losses averaged when checking the ascent/descent condition.
5There are many other possible candidates, but this is typical “smooth Huber function,” also known in the

literature as pseudo-Huber, Charbonnier, and L1-L2 (Barron, 2019).
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Figure 1: The left-most figure simply plots the graph of f(x) = x2/2 over x ∈ [−2, 2]. The two remaining
figures show plots of the graphs of f ′(x) = x (dashed black line) and φ((f(x)− θ)/σ)f ′(x) for the same range
of x values, with colors corresponding to modified values of σ (middle plot; θ = 0.5 fixed) and θ (right-most
plot; σ = 1.0 fixed) respectively. Thick dotted lines are φ = sign, thin solid lines are φ = ρ′.
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Figure 2: Gradient descent on the quadratic example from Figure 1. The horizontal axis denotes iteration
number, and we plot sequences of iterates (xt) and function values (f(xt)) for each method. Here “GD” denotes
vanilla gradient descent, with “Flood” and “SoftAD” corresponding to (4) and (8) respectively. Step size is
α = 0.1.

Remark 2 (Difference from OCE-like criteria). At first glance, our objective Sn(w; θ) in (7) may
appear similar to the criteria used in OCE risk minimization (Lee et al., 2020; Li et al., 2021) and
some varieties of DRO (Duchi and Namkoong, 2021). Aside from the obvious difference that θ is
fixed, rather than optimized alongside w, the critical difference here is that our ρ(·) is not monotonic.
Losses which are too large and too small are both penalized. It is precisely this bi-directional property
that allows for switching between ascent and descent; this is impossible to achieve with monotonic
OCE and DRO risks (Holland, 2023; Holland and Tanabe, 2023; Hu et al., 2023; Royset, 2024). This
bi-directional criterion can also be used as a straightforward method to provably avoid unintentional
“collapse” into ERM solutions (Holland, 2024).

3.1 Initial comparison with Flooding

To develop some intuition for our SoftAD (8) and the Flooding update (4), we carry out a few
illustrative numerical experiments. To start, let us consider a simple, non-stochastic example in one
dimension. Letting f : R → R be some differentiable function, we consider how the transformed
gradient φ(f(x) − θ)f ′(x) behaves under φ = sign and φ = ρ′. In Figure 1, we give a numerical
example using a quadratic function. The softened nature of the transformed gradients used in SoftAD
is clear when compared with the hard switching mechanism underlying the Flooding update. In
Figure 2, we continue the quadratic function example, looking at sequences (x1, x2, . . .) generated
based on the Flooding and SoftAD procedures. That is, instead of n points from which to compute
losses, we have just one “loss,” namely f(x) = x2/2. Both procedures realize an effective “flood
level” of sorts (i.e., a buffer around the loss minimizer), but as expected, the Flooding procedure
tends to be far more “jagged” in its trajectory.
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Flooding SoftAD

Figure 3: Left: We randomly sample n = 8 points (black dots) from the 2D Gaussian distribution, zero
mean, zero correlations, with standard deviation 2

√
2 in each coordinate. The two candidates are denoted

by square-shaped points (red and green), and the minimizer of Rn is given by a gold star. Center: The
Flooding updates (colored arrows) via (4) for each candidate. Right: Analogous SoftAD update vectors via
(8), with per-point transformed gradients (semi-transparent arrows) for reference. Throughout, we have fixed
θ = 1.5×minw Rn(w) and α = 0.75.

Finally, a simple example to illustrate how the per-point soft thresholding of SoftAD leads to
distinct gradient-based update directions when compared to the Flooding strategy. Here we consider
a dataset of n data points z1, . . . , zn ∈ R2, and use the squared Euclidean norm as a loss, i.e.,
`(w; z) = ‖w − z‖2. This is a natural extension of the quadratic example in the previous paragraph,
to multiple points and two dimensions. In Figure 3, we look at two candidate points, and compute
the Flooding and SoftAD update directions that arise at each candidate under a randomly generated
dataset. We can clearly see how the Flooding update plunges directly towards the minimizer of
Rn, unless it is too close (given threshold θ), in which case it goes in the opposite direction. In
contrast, the SoftAD update is composed of per-point update directions, some which attract toward
the minimum, and some which repel from the minimum, with borderline points down-weighted
(shorter update arrows). Since the final update averages over these, movement both toward and away
from the minimum is clearly “softened” when compared with the Flooding updates.

3.2 Comparison of convergence properties

With the Flooding and SoftAD methods in mind, next we consider concrete conditions under which
stochastic gradient-based learning algorithms can be given guarantees of (approximate) stationarity.
Throughout this section, we assume that the loss w 7→ `(w; z) is locally Lipschitz onW for each
z ∈ Z , but convexity will not be used. Let us assume for simplicity that (Z1,Z2, . . .) is a sequence of
independent random variables with distribution µ, the same as our test data point Z ∼ µ.

Starting with SoftAD, we are interested in procedures fuelled by stochastic gradients of the form

Gt(w) ..= φ(`(w; Zt)− θ)∇`(w; Zt) (9)

for all integers t ≥ 1 and w ∈ W , with threshold θ ∈ R fixed in advance, and φ = ρ′ as before.
Recalling the empirical SoftAD objective Sn in (7), the underlying population objective is

Sµ(w) ..= θ + Eµ ρ(`(w; Z)− θ). (10)

By design, we do not expect SoftAD to approach a stationary point of the original Rµ. Note that under
mild assumptions on the data distribution, we have an unbiased estimator with Eµ Gt(w) = ∇Sµ(w),
suggesting stationarity in terms of Sµ(·) as a natural goal. Assuming the losses are L`-smooth in
expectation, one can readily confirm that the objective (10) is LAD-smooth, with

LAD
..= Eµ

[
sup
w∈W
‖∇`(w; Z)‖2

]
+ L`. (11)

A more detailed derivation is given in §B.5. Assuming that second-order moments are finite in a
uniform sense over W ensures that LAD < ∞, and naturally implies pointwise variance bounds,
allowing us to seek out stationarity guarantees using a combination of gradient norm control and
momentum in the fashion of Cutkosky and Mehta (2021).
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Proposition 3 (Stationarity for SoftAD, smooth case). Starting with an arbitrary w1 ∈ W , update
using wt+1 = wt − αMt/‖Mt‖, where Mt

..= bMt−1 + (1 − b)Gt(wt) for t ≥ 1, with M0 ..= 0
and Gt(·) ..= Gt(·) min{1, γ/‖Gt(·)‖}, taking each gradient Gt(·) based on (9). Assuming we
make T − 1 updates, set the momentum parameter to b = 1 − 1/

√
T , the norm threshold to

γ =
√

(LAD − L`)/(1− b), and the step size to α = 1/T 3/4. The stationarity of this sequence
(w1, w2, . . .), assumed to be inW , in terms of the modified objective (10) can be bounded by

1
T

T∑
t=1
‖∇Sµ(wt)‖ ≤

1
T 1/4

(
Sµ(w1)− Sµ(wT+1) + 3LAD

2 + 2
√
LAD − L` (1 + Cδ)

)
using confidence-dependent factor Cδ ..= 10 log(3T/δ) + 4

√
log(3T/δ) + 1, with probability no

less than 1− δ over the draw of (Z1,Z2, . . .).

For comparison, we next consider stationarity of the Flooding algorithm in the same context of
smooth losses. The argument used in Proposition 3 critically depends on the smoothness of the
underlying objective (10). Unfortunately, this smoothness cannot be leveraged when we consider the
population objective underlying the Flooding procedure, namely the function

w 7→ θ + |Rµ(w)− θ|. (12)

Further complicating things is the fact that stochastic gradients of the form (9) with φ(·) replaced
by sign(·) do not yield unbiased sub-gradient estimates for (12), but rather for an upper bound
θ + Eµ|`(w; Z)− θ| that follows via Jensen’s inequality. A lack of smoothness means we cannot
establish stationarity in terms of (12) nor the upper bound just given, but it is possible using a
smoothed approximation (the Moreau envelope) of this bound:

Fµ(w) ..= inf
v∈W

[
θ + Eµ|`(v; Z)− θ|+ 1

2β ‖v − w‖
2
]
. (13)

The parameter β > 0 controls the degree of smoothness. The objective in (13) can be linked to
“gradients” in (9) with φ = sign, and leveraging the Lipschitz continuity of |·| along with a sufficiently
smooth loss, it is possible to show that this non-smooth objective satisfies a weak form of convexity,
and using the techniques of Davis and Drusvyatskiy (2019) it is possible to show that stochastic
gradient algorithms enjoy stationarity guarantees, albeit not in terms of the objective (12), but rather
the smoothed upper bound (13).
Proposition 4 (Stationarity for Flooding, smooth case). LettingW be closed and convex, take an
initial point w1 ∈ W , and make T − 1 updates using wt+1 = ΠW [wt − αGt(wt)], where ΠW [·]
denotes projection toW , and each Gt(·) is computed using (9) with φ = sign. Assuming the loss
w 7→ `(w; z) is L∗` -smooth onW for all z ∈ Z , and taking a step size of

α2 = ∆
TL∗` (LAD − L`)

, using ∆ such that ∆ ≥ Fµ(w1)− inf
w∈W

Fµ(w),

with LAD and L` as in (11), the expected squared stationarity in terms of the smoothed upper bound
(13) at smoothness level β = 1/(2L∗` ) can be controlled as

1
T

T∑
t=1

E‖∇Fµ(wt)‖2 ≤
√

2L∗` (LAD − L`)∆
T

with expectation taken over the draw of (Z1,Z2, . . .).
Remark 5 (Comparing rates and assumptions). Considering the preceding Propositions 3 and 4, one
common point is that learning algorithms based on both the SoftAD and Flooding gradients (of
mini-batch size 1) can be shown to be approximately stationary in terms of functions of a similar
form (i.e., (10) and (12)), differing only in how they measure deviations from the threshold θ. The
rates of decrease (as a function of T ) are essentially the same, noting that the bounds in Proposition 4
are in terms of squared norms. That said, a lack of smoothness means the Flooding guarantees only
hold for a smoothed variant, plus they require a stronger form of smoothness in the loss (over all
z vs. in expectation). In addition, the SoftAD guarantees hold with high probability over the data
sample, and can be readily strengthened to hold for an individual iterate (instead of summing over T
iterates), using for example the technique of Cutkosky and Mehta (2021, Thm. 3).
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Gaussian Sinusoid Spiral CIFAR-10 CIFAR-100 Fashion SVHN
ERM 0.080 0.150 0.297 3.265 7.603 0.801 0.762
Flood 0.011 0.058 0.119 1.239 3.114 0.436 0.436
SAM 0.024 0.096 0.154 1.512 3.672 0.639 0.493

SoftAD 0.004 0.016 0.087 1.168 2.701 0.422 0.362
Table 1: Generalization gap (test - training) for trial-averaged cross entropy loss after final epoch.

4 Empirical study

In this section, we apply the proposed SoftAD procedure to a variety of classification tasks using
neural network models, leading to losses that are non-convex and non-smooth. Our goal here is to
compare and contrast the behavior and performance (accuracy, average loss, model norm) of SoftAD
with three natural alternatives: ERM, Flooding, and SAM.6

4.1 Overview of experiments

Our core experiments are centered around re-creating the tests done by Ishida et al. (2020, §4.1,
§4.2) and Foret et al. (2021, §3.1) to include all four methods of interest. There are two main parts:
simulation-based tests and real benchmark-based tests. We briefly describe the setup of each below.

Non-linear binary classification on the plane We use three synthetic data-generators (“two
Gaussians,” “sinusoid,” and “spiral,” see Figure 7) to create a dataset on the 2D plane that is not
linearly separable, but separable using relatively simple non-linear models. We treat the underlying
model as unknown, and approximate it using a shallow feedforward neural network. All four
methods of interest (ERM, Flooding, SAM, and SoftAD) are driven by the Adam optimizer, with the
cross-entropy loss used as the base loss function. Complete experimental details are provided in §C.1.

Image classification from scratch Our second set of experiments utilizes four well-known bench-
mark datasets for multi-class image classification. Compared to the synthetic experiments, the
classification task is more difficult (much larger inputs, variation within classes, more classes), and
so we utilize more sophisticated neural network models to tackle the classification task. That said,
as the sub-section title indicates, this training is done “from scratch,” i.e., no pre-trained models
are used. The datasets we use are all standard benchmarks in the machine learning community:
CIFAR-10, CIFAR-100, FashionMNIST, and SVHN. Model choice essentially mirrors that of Ishida
et al. (2020, §4.2). For FashionMNIST, we flatten each image into a vector, and use a simple feed-
forward neural network with one hidden layer. For SVHN, we use ResNet-18 as implemented in
torchvision.models, without any pre-trained weights. Finally, for both CIFAR-10 and CIFAR-
100, we use ResNet-34 (again in torchvision.models) without pre-training. For the optimizer, we
use vanilla SGD with a fixed step size. Full details are given in §C.2 in the appendix.

4.2 Main findings

Uniformly small loss generalization gap One of the most lucid results we obtained is that SoftAD
shows the smallest loss generalization gap of all the methods studied, across all models and datasets
used. In Table 1, we show the gaps incurred under each dataset. More precisely, for each trial and
each epoch, we compute the average cross-entropy loss on test and training (less validation) datasets,
and then respective average both of these over all trials. The difference of these two values (i.e.,
trial-averaged test loss minus trial-averaged training loss) after the final epoch of training is the value
shown in each cell of the table.

Balance of accuracy and loss on real data In the previous paragraph we noted that SoftAD has
superior loss gaps, but this is not much to celebrate if performance in terms of the key metrics of
interest (i.e., test loss and test accuracy) is poor. In Figures 4–5, we show the trajectory of loss and
accuracy (for both training and test data) over epochs run (averaged over trials). All four methods

6To re-create all of the numerical test results and figures from this paper, source code and Jupyter notebooks
are available at a public GitHub repository: https://github.com/feedbackward/bdd-flood.
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Figure 4: Trajectories over epochs for average test loss (top row) and test accuracy (bottom row). Horizontal
axis is epoch number. Columns are associated with the CIFAR-10 and CIFAR-100 datasets (left to right).
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Figure 5: Analogous to Figure 4, but with FashionMNIST and SVHN datasets.

are comparable in terms of accuracy, with SAM (at double the gradient cost) coming out slightly
ahead. On the other hand, there is significant divergence between the different methods in terms of
test loss. For each dataset, SoftAD achieves a superior test loss, often converging faster than any of
the other methods; this may be a natural by-product of the fact that SoftAD is designed to ensure
losses are well-concentrated around threshold θ, instead of just asking that their mean get close to θ
(as in Flooding). While there is clearly a major difference between ERM and the other three methods,
the stable nature of the “double descent” in SoftAD is quite stark compared with Flooding and SAM.

Uniformly smaller model norms We do not do any explicit model regularization (e.g., L2 norm
penalization) in our experiments here, and we only use fixed step-size parameters for Adam and SGD,
so as we run for many iterations, the norm of the model weight parameters tends to grow. While
this property holds across all methods tested here, we find that under all datasets and models tested,
SoftAD uniformly results in the smallest model norm; see Figure 6 for trajectories over epochs for
each benchmark dataset. The “Model norm” values plotted here are the L2 norm of all the model
parameters (neural network weights) concatenated into a single vector, and these norm values are
averaged over trials. Completely analogous trends hold for the simulated datasets as well.

Trends in hyperparameter selection Aside from ERM, the three key methods of interest (Flooding,
SAM, SoftAD) each have one hyperparameter. Flooding and SoftAD have the threshold θ as described
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Figure 6: Model norm trajectories over epochs for each dataset in Figures 4–5.

Gaussian Sinusoid Spiral CIFAR-10 CIFAR-100 Fashion SVHN
Flood 0.05 (0.06) 0.05 (0.06) 0.05 (0.06) 0.05 (0.06) 0.01 (0) 0.01 (0) 0.03 (0.05)

SAM 0.36 (0.19) 0.05 (0.06) 0.05 (0.06) 0.36 (0.19) 0.5 (0) 0.32 (0.16) 0.28 (0.20)

SoftAD 0.08 (0.08) 0.05 (0.06) 0.05 (0.06) 0.08 (0.08) 0.22 (0.14) 0.03 (0.04) 0.13 (0.10)

Table 2: Hyperparameters selected by validation for each method (averaged over trials). Flooding and SoftAD
have threshold θ; SAM has radius parameter. Standard deviation (over trials) is given in small-text parentheses.

in §2–§3, and SAM has the radius parameter (denoted by “ρ” in the original paper). In all tests, we
select a representative candidate for each method with hyperparameters by using validation data
held out from the training data, and in Table 2 we show the average and standard deviation of the
validation-based hyperparameters over randomized trials (see §C for exact hyperparameter grid
values). One clear take-away from this table is that the “best” value of θ (in terms of accuracy) for
SoftAD tends to be larger than that for Flooding, and this trend is uniform across all datasets, both
simulated and real. In particular for the real benchmark datasets, it is interesting to note that while a
larger threshold θ (applied to loss distribution) is selected for SoftAD, the resulting test loss value
achieved is actually smaller/better than that achieved by Flooding (top row of Figures 4-5).

5 Limitations and concluding remarks

While previous work had already shown that it is possible to sacrifice performance in terms of
losses to improve accuracy, the nature of that tradeoff was left totally unexplored, and in §1 we
put forward the hypothesis that simply asking the empirical loss mean to get close to a non-zero
threshold θ, as in Flooding, would not be enough to realize a competitive tradeoff over varied learning
tasks (datasets, models). Our main take-away is that we have empirical evidence that the slightly
stronger requirement of “losses well-concentrated around θ” (implemented as SoftAD) can result in
an appealing balance of average test loss and accuracy, with the added benefit of a strong (implicit)
regularization effect, likely due to the soft dampening effect on borderline points. A more formal
theoretical understanding of this regularization effect is of interest, as are empirical studies going
far beyond the limited choice of loss functions used here. Our biggest limitation is that the question
of “how to set the threshold θ?” still remains without an answer. Any meaningful answer will likely
require some user judgement regarding tradeoffs between performance metrics. One potential first
approach would be to leverage recent techniques for estimating the Bayes error (Ishida et al., 2023),
combined with existing surrogate theory (Bartlett et al., 2006) to reverse-engineer a loss threshold
given a user-specified “tolerable” drop in accuracy, for example.
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A Bibliographic notes

In this section, we provide additional references intended to complement those in the main body of
the paper.

A.1 Broad overview

The following questions succinctly summarize key aspects of the problem of generalization:7

QP. What properties at training time are reliable indicators of performance at test time?
QA. How can we efficiently find candidates with such desirable properties?

The easy answer to these questions is, of course, “it depends.” There is no fixed procedure that can
guarantee arbitrarily good performance on all statistical learning problems, even if restricted to binary
classification tasks.8 A more subtle answer involves characterizing the problems on which abstract
learning algorithms such as empirical risk minimization (ERM) yield tight bounds on tractable criteria
of interest (e.g., the expected loss).9 Even more difficult is refining our understanding of the learning
problems on which concrete algorithms used in practice can be reliably expected to perform well.10

For conceptual grounding, we make use of the two questions, QP (the “property” question) and
QA (the “algorithm” question), particularly within the context of non-linear models such as neural
networks. Broadly speaking, in the machine learning literature over the past three decades, most
answers to the property question QP come in the form of quantifying some notion of “simplicity,” a
property of candidate w. It goes without saying that the underlying heuristic is that all else equal
(at training time), a “complex” candidate seems intuitively less likely to perform well at test time.11

As for the algorithm question, there are numerous “workhorse” procedures of machine learning that
are computationally convenient, have high-quality software available, and tend to generalize very
well in practice, providing a partial answer to QA. That said, the design principles underlying these
procedures are often only very loosely related to the properties that satisfy QP.12 With this in mind, a
large body of research can be understood as trying to develop new connections between answers to
QP and QA, either through post hoc analysis using existing concepts, or by introducing new properties
and deriving algorithms in a more unified fashion.

A.2 Notions of model complexity

Model complexity is a concept that has a long history in the context of statistical model selection
(Claeskens and Hjort, 2008), with well-established ties to information theory (Kullback, 1968).
Assuming the quality of “fit” is measured using negative log-likelihood, the second derivative of this
objective function (Hessian matrix in multi-dimensional case) is known as the Fisher information
(matrix).13 In the context of neural networks, it is common to use their outputs to model probabilities
(Denker and LeCun, 1990), and thus at least conceptually, much of the existing statistical methodology
can be inherited. For early work in the context of backprop-driven neural networks, MacKay (1992)
looks at designing objective criteria for comparing and choosing between models (including norm
regularization parameters). MacKay introduces a form of Bayesian “evidence” for candidate models
using a Gaussian approximation that requires evaluating the (inverse) Hessian of the base objective
function. More generally, the Hessian describes the curvature of the objective function, and is
closely related to geometric notions of “flat regions” on the surface induced by the objective function
(Goodfellow et al., 2014; Li et al., 2018).

7These questions are inspired by the concise and lucid problem setting of Jia and Su (2020).
8A lucid explanation is given by Devroye et al. (1996, Ch. 1).
9Even this refined problem is far from trivial; see Shalev-Shwartz et al. (2010) and Feldman (2016).

10Even the critical question of which core optimizer to use does not have a clear-cut answer on standard
benchmark datasets (Schmidt et al., 2021). With additional options such dropout, batch normalization, and all
manners of data augmentation, it is not surprising that the practitioner often takes a trial-and-error approach.

11In a sense this is just human nature, not specific to machine learning (Baker, 2022).
12In the context of training machine learning models both big and small, “Goodhart’s law” sug-

gests that this gap is to some extent probably a good thing (https://openai.com/research/
measuring-goodharts-law).

13Since the data is random, so is the Fisher information; some authors call this the observed Fisher information,
in contrast with the expected Fisher information (Efron and Hinkley, 1978).
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The notion of model complexity has also played an central role in statistical learning theory. It has
long been known that even when the number of parameters far outnumber the number of training
samples, a small weight norm can be used to guarantee off-sample generalization for empirical risk
minimizers (Bartlett, 1998). Of course, due to the high expressive power of neural network models,
even with strong weight regularization it is possible to perfectly fit random labels (Zhang et al., 2017),
leading to a gap between the test error (chance level) and training error (zero) that is methodologically
unsatisfactory. This has motivated a variety of new approaches to measure off-sample generalization
(Jiang et al., 2020), as well as to quantify model complexity, such as the degree to which a model can
be meaningfully compressed (Arora et al., 2018).

The notion of “flat minima” is seen in the early work of Hochreiter and Schmidhuber (1994, 1997),
which considers both how to measure sharpness, and heuristics for actually finding candidates in flat
regions. The basic underlying notion is that of measuring “volume,” namely the idea that a “flat” point
is one from which we need to go far in most (if not all) directions for the objective function to increase
a certain fixed amount. See more recent work by Wu et al. (2017) for related notions of volume in
this context. These notions of sharpness are intimately related to properties of the Hessian matrix of
the underlying objective function, even when the loss is not based on negative log-likelihood, and an
active line of research is centered around the eigenvalue distribution of this Hessian. See for example
Chaudhari et al. (2017) and Karakida et al. (2019) for representative work. For sufficiently “regular”
models, the determinant of the Fisher information matrix plays a central role in the complexity term
used to implement the minimum description length (MDL) principle (Grünwald, 2007); see also early
work from Hinton and van Camp (1993) and more recent work by Jia and Su (2020) in the context
of neural networks. More generally, however, many neural networks do not satisfy these regularity
conditions, and new technical innovations based on the Fisher information have been explored to
bridge this gap in recent years (Sun and Nielsen, 2021).

A.3 Algorithms that generalize well

The empirical effectiveness of deep learning goes well beyond what we would expect based purely
on learning theoretical insights (Sejnowski, 2020). This success is driven by a handful of workhorse
stochastic gradient-based solvers (Schmidt et al., 2021), often coupled with explicit norm-based
regularization and a number of techniques used to stabilize learning and effectively constrain the
model candidate which is selected by the learning algorithm.14 A rich line of research has developed
over the past decade looking at why a certain algorithmic “recipe” tends to generalize well. The
tendency for stochastic gradient descent to “escape” from regions near undesirable critical points is
one key theme; see Xie et al. (2020) for example. For influential work on relating sharpness, mini-
batch size, and (weight) norms to off-sample generalization, see Keskar et al. (2017) and Neyshabur
et al. (2017). In both papers, the notion of measuring sharpness by a worst-case perturbation
appears, and this is pursued even further by Foret et al. (2021) in the well-known sharpness-aware
minimization (SAM) algorithm, and extensions due to Kwon et al. (2021) and Zhao et al. (2022).
These algorithms, as well as the Fisher information-based procedure of Jia and Su (2020), all involve
a forward-difference implementation of explicit gradient regularization (using squared Euclidean
norm), and recent work from Karakida et al. (2023) compares this approach with that of direct
back-propagation approach. Barrett and Dherin (2021) look at both implicit and explicit gradient
regularization. The implicit side contrasts the path of “continuous” gradient-based updates with the
“discrete” updates made in practice (continuous/discrete with respect to time), saying that the discrete
updates, even when computed based on an unregularized objective function, tend to move closer to
the (continuous) path of a regularized objective, where regularization is in terms of the (squared)
gradient norms. Inspired by this finding, they also consider explicit GR in the same way; see also
Smith et al. (2021).

14These include early stopping, modifying mini-batch size, dropout, batch normalization, stochastic depth,
data augmentation, and “mixup” (mixed sample augmentations) among others. See also Montavon et al. (2012)
for techniques that were established in the decades before the current wave of deep learning.
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B Technical appendix

B.1 More details on Flooding and sharpness

When the empirical risk goes below the threshold θ, the Flooding update (4) attempts to push it back
up above θ. Consider the case in which this occurs in a single step, i.e., the situation in which at some
step t, the pair of sequential iterates (wt, wt+1) satisfy the following:

Rn(wt) < θ and Rn(wt+1) > θ. (14)

When condition (14) holds, some basic algebra immediately shows us that running two iterations of
the Flooding update (4) yields the equality

wt+2 = wt − α2
(
∇Rn(wt + α∇Rn(wt))−∇Rn(wt)

α

)
, (15)

telling us that the result is equivalent to running one iteration of FD descent with step size α2 on
the GR penalty ‖∇Rn(·)‖2 at wt, using the forward FD approximation described earlier in §2.2. To
the best of our knowledge, this link was first highlighted by Karakida et al. (2023, §5.1). In a sense,
this is a natural complement to the strategy employed in (6); instead of tackling the GR objective
R̃n(w;λ) in (5) directly, the Flooding algorithm can iterate back and forth between optimizing the
empirical risk and the squared gradient norm. The GR effect is thus constrained to regions inW
with θ-small empirical risk, but all updates outside this region enjoy the same per-step computational
complexity as vanilla GD.

B.2 Non-smooth loss setting

All of the analysis in §3.2 relies heavily on smoothness of the underlying loss function. Here we
consider the case in which the loss itself may not even be differentiable. All we ask is that the
losses be L-Lipschitz on W in expectation, i.e., Eµ|`(w1; Z)− `(w2; Z)| ≤ L‖w1 − w2‖ for all
w1, w2 ∈ W . As an explicit objective function, we start with Sµ as given in (10), but with the
understanding that ρ can actually be any 1-Lipschitz function, capturing the two special cases of
interest, namely ρ(x) =

√
x2 + 1− 1 for SoftAD and ρ(x) = |x| for Flooding. Shifting our focus to

function values (rather than gradients), we will also need to assume a second moment bound

Eµ (θ + ρ(`(w; Z)− θ))2 ≤ V <∞ (16)

that holds over w ∈ W . With these basic assumptions in place, stationarity guarantees are available
via a smooth approximation of Sµ.
Proposition 6 (Stationarity, non-smooth case). Choosing an initial value w1 ∈ W , run the algorithm
described in Proposition 3, but re-defining the core gradients used for updating as

Gt(w) ..= d

r
(θ + ρ(`(w + rUt; Zt)− θ)) Ut

where (U1,U2, . . .) is a sequence of independent vectors sampled uniformly at random from the
unit sphere, and r > 0 sets the smoothing radius. In addition, the norm threshold is set as γ =√
dL/((1− b)r) (with b unchanged). Stationarity of the resulting sequence (w1, w2, . . .), assumed

to be inW , can be controlled with probability 1− δ as

1
T

T∑
t=1
‖∇Sµ(wt; r)‖ ≤

1
T 1/4

(
Rµ(w1)− Rµ(wT+1) + 3dL

2r + 2d
r

√
V (1 + Cδ)

)
where Sµ(w; r) ..= E[Sµ(w + rV)] is the r-smoothed approximation of the objective Sµ, with V
distributed uniformly over the unit ball. Probability is taken over the random draw of (Z1,Z2, . . .)
and (U1,U2, . . .), and the confidence factor Cδ matches that given in Proposition 3.
Remark 7 (Stationarity in the original objective). When the original objective Sµ(·) is sufficiently well-
behaved, e.g., differentiable almost everywhere and Lipschitz, then stationarity guarantees in terms
of the r-smoothed objective Sµ(·; r) can be easily translated into analogous guarantees for R̃µ(·). In
addition, recent work by Cutkosky et al. (2023) shows how a modified algorithmic approach can be
used to achieve faster rates under such congenial (but still non-convex and non-smooth) conditions.
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B.3 Additional proofs

Proof of Proposition 3. The machinery of Cutkosky and Mehta (2021, Thm. 2) gives us the ability
to control the stationarity of sequences generated using the described procedure (norm-clipping,
momentum, normalization), just assuming the “raw” stochastic gradients (here, Gt) are unbiased
estimators of a smooth function. As such, we just need to ensure the assumptions underlying their
Theorem 2 (henceforth, CHT2) are met; the key points have already been described in the main text,
so we just fill in the details here. The “unbiased estimator” property we refer to means that we want

Eµ Gt(w) = ∇Sµ(w) (17)

to hold for all w ∈ W . Fortunately, this holds under very weak assumptions; the running assumption
that LAD <∞ is more than sufficient.15 In addition, finite LAD also implies that the objective (10) is
smooth in the sense that

‖∇Sµ(w1)−∇Sµ(w2)‖ ≤ LAD‖w1 − w2‖ (18)

for any w1, w2 ∈ W; this is proved in §B.5. In addition, uniform second moment bounds naturally
imply pointwise bounds, so we have

Eµ‖∇`(w; Z)‖2 ≤ Eµ

[
sup
w∈W
‖∇`(w; Z)‖2

]
≤ LAD − L` (19)

for each w ∈ W . Taken with the construction of sequence (w1, w2, . . .) in the hypothesis, the
properties (17)–(19) ensure all the basic requirements of CHT2 are met (with their “p” at 2). Noting
that we assumeW ⊆ Rd using the standard norm and inner product on Euclidean space, the Banach
space generality in CHT2 is not needed (their “C” and “p” can be fixed to 1 and 2 respectively). For
reference, the complete upper bound implied by CHT2 is

Sµ(w1)− Sµ(wT+1)
Tα

+ αLAD

2 + 2b
√
LAD − L`

(1− b)T + 2bαLAD

(1− b) + 2
√

(1− b)(LAD − L`)Cδ (20)

where for readability the coefficient in the right-most summand is defined by

Cδ ..= 10 log(3T/δ) + 4
√

log(3T/δ) + 1.

We have simplified all the terms in CHT2 involving max{1, log(3T/δ)}, since as long as T > 0
and 0 < δ < 1, we trivially have 3T/e ≥ 1 > δ and thus log(3T/δ) ≥ 1. Furthermore, their free
parameters “b” (different from our b) and “s” are both set to 1, without loss of generality. Plugging in
our settings of α and b to the bound in (20) and bounding (1− 1/

√
T ) ≤ 1 for readability yields the

desired upper bound.

Proof of Proposition 4. Here we leverage the projected sub-gradient analysis done by Davis and
Drusvyatskiy (2019), in particular their Theorem 3 (henceforth, DDT3). The core of their argument
relies upon a weak convexity property held by a rather large class of composite functions, namely
compositions of the form f = h ◦ g, where g is smooth and h is both convex and Lipschitz.
Considering the non-smooth objective function

w 7→ θ + Eµ|`(w; Z)− θ|, (21)

it can be taken as a compound function by writing Eµ f(w; Z) with f(w; z) ..= h(g(w; z)), where
g(w; z) ..= `(w; z) and h(x) ..= θ + |x− θ|. Fixing z ∈ Z for now, clearly h is 1-Lipschitz and
convex. By assumption, we have that g(·; z) is L∗` -smooth and locally Lipschitz. Then, using
standard arguments, it is straightforward to show that f(·; z) is L∗` -weakly convex.16 Since the weak
convexity parameter L∗` does not depend on the arbitrary choice of z, it follows that the function (21)
is L∗` -weakly convex. In the setting of DDT3, their “f(·)” is θ + Eµ|`(w·; Z)− θ|, and their “X ” is
W here. The bound on the expected squared stochastic gradient norms (their “L2”) is our LAD − L`
just as in the proof of Proposition 3. Finally, the key “unbiased estimator” property in this case deals
with sub-differentials, namely we require that

Eµ Gt(w) ∈ ∂Eµ|`(w·; Z)− θ| (22)

15For a more general result, see Holland (2023, Lem. 2) for example.
16See for example Drusvyatskiy and Paquette (2019, Lem. 4.2) and Holland (2022, Prop. 8).
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for all w ∈ W . Fortunately this basic property holds under very weak assumptions that are trivially
satisfied when LAD is finite.17 With these facts in place, we simple apply DDT3, in particular their
inequality (3.5), with their “ρ” corresponding to our L∗` here, and their “ϕλ” corresponding to our
(13), with “λ” as our β. The desired bound follows by applying their result to the specified procedure
over T − 1 updates (instead of their T updates).

Proof of Proposition 6. To begin, under the assumptions given, the objective Sµ clearly inherits the
Lipschitz property that the losses have in expectation; since ρ is 1-Lipschitz, we have

|Sµ(w1)− Sµ(w2)| ≤ Eµ|`(w1; Z)− `(w2; Z)| ≤ L‖w1 − w2‖. (23)

We proceed by using a standard technique for function smoothing.18 If we let V be a random vector
distributed over the unit ball {x ∈ Rd : ‖x‖ ≤ 1}, then regardless of whether Sµ(·) is differentiable
or not, one can obtain a smooth approximation by averaging over random r-length perturbations,
namely

Sµ(w; r) ..= E [Sµ(w + rV)] . (24)

A critical property of the function given in (24) is that it is differentiable and its gradient can be
represented explicitly in terms of the function it is trying to smooth, namely we have

∇Sµ(w; r) = d

r
E [Sµ(w + rU)U] = d

r
E [(θ + Eµ ρ(`(w + rU)− θ)) U] (25)

for any choice of r > 0 and w ∈ W , where U is uniformly distributed on the unit sphere {x ∈ Rd :
‖x‖ = 1} (Flaxman et al., 2004, Lem. 1).19 This means that Lipschitz properties on the original
function translate to smoothness properties for the new function. Making this more explicit, using the
equality (25), note that for any choice of w1, w2 ∈ W , we have

∇Sµ(w1; r)−∇Sµ(w2; r) = d

r
E [(Sµ(w1 + rU)− Sµ(w2 + rU)) U] .

Taking norms and using the Lipschitz property (23) of Sµ, we observe that

|∇Sµ(w1; r)−∇Sµ(w2; r)| ≤ d

r
E‖U‖|Sµ(w1 + rU)− Sµ(w2 + rU)|

≤ dL

r
‖w1 − w2‖

and thus have that the smoothed function Sµ(·; r) is (dL/r)-smooth overW . This means the function
is analogous to the objective function (10) used in Proposition 3, except with unbiased stochastic
gradients taking the form

Gt(w) ..= d

r
(θ + ρ(`(w + rUt; Zt)− θ)) Ut (26)

for t ≥ 1, where each Ut is an independent copy of U from (25). From this point, the remainder of the
proof is basically identical to that of Proposition 3; the only remaining changes are the smoothness
factor and the second moment bound. For the former, we use dL/r in place of LAD, which also
impacts the norm clipping radius γ. For the latter, since we are assuming wt + rUt ∈ W for each t,
and using the bound (16), we have

E‖Gt(w)‖2 ≤ sup
w∈W

(
d

r

)2
E‖Ut‖2 (θ + ρ(`(w; Zt)− θ))2 ≤

(
d

r

)2
V.

Plugging in these two remaining modified factors to the bounds obtained in Proposition 3 yields the
desired result.

17See for example Holland (2022, Prop. 14).
18See for example Flaxman et al. (2004); Nesterov and Spokoiny (2017).
19Not to be confused with V in (24), which is uniform on the unit ball.
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B.4 Gradient of GR objective

With w = (w1, . . . , wd) ∈ Rd, we will frequently use ∂j to denote partial derivatives taken with
respect to wj , i.e., for a differentiable function f : Rd → R, we write

∂jf(w) ..= lim
|a|→0

f(w1, . . . , wj + a, . . . , wd)− f(w)
a

(27)

with analogous definitions for all j = 1, . . . , d. With the above notation in place, note that basic
calculus gives us

∂j‖∇Rn(w)‖2 =
d∑
k=1

∂j (∂kRn(w))2 = 2
d∑
k=1

(∂kRn(w)) (∂j∂kRn(w)) .

As such, the gradient takes the form
∇‖∇Rn(w)‖2 = 2∇2Rn(w) (∇Rn(w))

where ∇2Rn denotes the d× d Hessian matrix of Rn, and ∇Rn(w) is taken as a column vector (a
d× 1 matrix) for the purpose of this multiplication.

B.5 Smoothness check

Let us consider a simple, non-stochastic example in one dimension. Letting f : R → R be some
differentiable function, we consider how the transformed gradient φ(f(x)− θ)f ′(x) behaves under
φ = sign and φ = ρ′(x) = x/

√
x2 + 1. As we have seen visually in Figure 1, the soft threshold of

SoftAD makes it possible to have Lipschitz gradients, which impacts iterative optimization procedures.
For arbitrary values x1 and x2, taking the difference of transformed gradients using arbitrary φ, we
can write

φ(f(x1)− θ)f ′(x1)− φ(f(x2)− θ)f ′(x2)
= (φ(f(x1)− θ)− φ(f(x2)− θ)) f ′(x1) + φ(f(x2)− θ) (f ′(x1)− f ′(x2)) . (28)

Note that even if |x1 − x2| < ε for some arbitrarily small ε > 0, if for example the threshold is
such that f(x1) < θ < f(x2), then under φ = sign, the difference multiplying f ′(x1) cannot be
arbitrarily small, even if f is Lipschitz. On the other hand, such a property follows easily when
φ = ρ′, since ρ′ itself is 1-Lipschitz.

Returning to our more general learning setup, let us denote the modified gradients concisely as
g(w; z) ..= φ(`(w; z)−θ)∇`(w; z). With random variable Z ∼ µ, taking any two pointsw1, w2 ∈ W ,
based on the equality (28), the normed difference of the gradient expectations can be bounded as

‖Eµ g(w1; Z)−Eµ g(w2; Z)‖ ≤ B1 +B2
with B1 and B2 defined as

B1 ..= Eµ‖∇`(w1; Z)‖|φ(`(w1; Z)− θ)− φ(`(w2; Z)− θ)|
B2 ..= Eµ|φ(`(w2; Z)− θ)|‖∇`(w1; Z)−∇`(w2; Z)‖.

Bounding each of these terms is trivial when the functions ` and φ are smooth enough. First, note
that if φ is Lφ-Lipschitz andW is a convex subset of Rd, we have

B1 ≤ Lφ Eµ‖∇`(w1; Z)‖|`(w1; Z)− `(w2; Z)|
≤ Lφ‖w1 − w2‖Eµ‖∇`(w1; Z)‖ sup

0<a<1
‖∇`(aw1 + (1− a)w2; Z)‖

≤ Lφ‖w1 − w2‖Eµ

[
sup
w∈W
‖∇`(w; Z)‖2

]
,

noting that the second inequality uses the mean value theorem on differentiable `(·; z), applied
pointwise in z ∈ Z , and the last inequality uses convexity ofW . This bounds B1. Moving on to B2,
note that if |φ(x)| is bounded by Bφ and the losses are L`-smooth in expectation, we have

B2 ≤ Bφ Eµ‖∇`(w1; Z)−∇`(w2; Z)‖
≤ BφL`‖w1 − w2‖.

Taking these new bounds together, we have

‖Eµ g(w1; Z)−Eµ g(w2; Z)‖ ≤
(
Lφ Eµ

[
sup
w∈W
‖∇`(w; Z)‖2

]
+BφL`

)
‖w1 − w2‖,

namely a Lipschitz property in expectation for the modified gradients.
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Figure 7: Synthetic dataset examples. From left to right: “two Gaussians,” “sinusoid,” and “spiral.”

C Empirical appendix

Here we provide additional details and results related to the empirical tests described in §4.

Software and hardware All of the experiments done in this section have been implemented
using PyTorch 2, utilizing three machines each using a single-GPU implementation, i.e., there is
no parallelization across multiple machines or GPUs. Two units are equipped with an NVIDIA
A100 (80GB), and the remaining machine uses an NVIDIA RTX 6000 Ada. We use the MLflow
library for storing and retrieving metrics and experiment details. Our coding of SAM follows that
of David Samuel (https://github.com/davda54/sam), which is the PyTorch implementation
acknowledged in the original SAM paper of Foret et al. (2021).

C.1 Non-linear binary classification on the plane

Data The three types of synthetic data that we generate here differ chiefly in the degree of non-
linearity; see Figure 7 for an example. The “two Gaussians” dataset is almost linearly separable,
save for some overlap of the two distributions. The “sinusoid” data is separated by a simple curve,
easily approximated by a low-order polynomial, but the curves in the “spiral” data are a bit more
complicated. Exact implementation details, plus historical references, are given by Ishida et al. (2020,
§4.1). For each trial, we generate training and validation data of size 100, and test data of size 20000.
All methods see the same data in each trial.

Model For each dataset, we use the same model, namely a simple feedforward neural network
with four hidden layers, 500 units per layer, using batch normalization and ReLU activations at each
layer.20

Algorithms In line with the experiments we are trying to replicate, all methods (ERM, Flooding,
SAM, and SoftAD) are driven by the Adam optimizer, using a fixed learning rate of 0.001, with no
momentum or weight decay. All methods use the multi-class logistic loss as their base loss (i.e.,
nn.CrossEntropyLoss in PyTorch), and are run for 500 epochs. We use mini-batch size of 50 here,
but key trends remain the same for full-batch (of size 100) runs.

Hyperparameter selection ERM has no hyperparameters, but all the other methods have one each.
Flooding and SoftAD both have the threshold parameter θ seen in §2–§3, and SAM has a radius
parameter (denoted “ρ” in the original paper). For each of these methods, in each trial, we select
from a grid of 40 points spaced linearly between 0.01 and 2.0. Selection is based on classification
accuracy on validation data.

C.2 Image classification from scratch

Our second set of experiments utilizes four well-known benchmark datasets for multi-class image
classification. Compared to the synthetic experiments done in §C.1, the classification task is more
difficult (much larger inputs, variation within classes, more classes), and so we utilize more sophis-
ticated neural network models to tackle the classification task. That said, as the sub-section title
indicates, this training is done “from scratch,” i.e., no pre-trained models are used.

20Ishida et al. (2020) say they use a “five-hidden-layer feedforward neural network,” but looking at their
public code, the number of hidden layers (i.e., number of linear transformations excluding that of the output
layer) is actually four.
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Data The datasets we use are all standard benchmarks in the machine learning community: CIFAR-
10, CIFAR-100, FashionMNIST, and SVHN. All of these datasets are collected using classes defined
in the torchvision.datasets module, with raw training/test splits left as-is with default settings.
As such, across all trials the test set is constant, but in each trial we randomly select 80% of the
raw training data to be used for actual training, with the remaining 20% used for validation. We
normalize all pixel values in the image data to the unit interval [0, 1]; this is done separately for
training, validation, and testing data.

Models Unlike the previous sub-section, here we use different models for different data sets. Model
choice essentially mirrors that of Ishida et al. (2020, §4.2). For FashionMNIST, we flatten each image
into a vector, and use a simple feedforward neural network composed of a single hidden layer with
1000 units, batch normalization, and ReLU activation before the output transformation. For SVHN,
we use ResNet-18 as implemented in torchvision.models, without any pre-trained weights.
Finally, for both CIFAR-10 and CIFAR-100, we use ResNet-34 (again in torchvision.models)
without pre-training. Both of the ResNet models used do not flatten the images, but rather take each
RGB image as-is.

Algorithms Just as in §C.1, we are testing ERM, Flooding, SAM, and SoftAD. Again we use the
cross entropy loss, and run for 500 epochs. However, instead of Adam as the base optimizer, here we
use vanilla SGD with a fixed step size of 0.1, and momentum parameter of 0.9. For all datasets, we
use a mini-batch size of 200. All these settings match the experimental setup of Ishida et al. (2020,
§4.2).21

Hyperparameter selection Once again we select hyperparameters for Flooding, SoftAD, and
SAM from a grid of candidate values, such that the classification accuracy on validation data is
maximized. Unlike §C.1 however, here we use different grids for each method. For Flooding, we
follow the setup of the original paper, choosing from ten values: {0.01, 0.02, . . . , 0.1}. For SAM,
once again we follow the original paper (their §3.1), which for analogous tests utilized the set
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5}. Finally, for SoftAD we match the set size used by Flooding (i.e., ten)
by taking the union of {0.15, 0.25, 0.35, 0.75} and the set used by SAM.

21Batch size is not given in the original Flooding paper, but the size of 200 was confirmed by means of a
private communication with the authors.
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Comparison with iFlood As mentioned in Remark 1, during the review phase of this work, the
iFlood method of Xie et al. (2022) was brought to our attention, and we have run additional tests
analogous to those described in the preceding paragraphs, but this time comparing ERM, iFlood, and
SoftAD. The results are given below in Table 3, Figures 8–10, and Table 4, in that order.

CIFAR-10 CIFAR-100 Fashion SVHN
ERM 3.252 7.695 0.806 0.726
iFlood 1.468 2.558 0.273 0.404
SoftAD 1.072 2.696 0.463 0.397

Table 3: Generalization gap (test - training) for trial-averaged cross entropy loss after final epoch.
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Figure 8: Trajectories over epochs for average test loss (top row) and test accuracy (bottom row). Horizontal
axis is epoch number. Columns are associated with the CIFAR-10 and CIFAR-100 datasets (left to right).
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Figure 9: Analogous to Figure 8, but with FashionMNIST and SVHN datasets.
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Figure 10: Model norm trajectories over epochs for each dataset in Figures 8–9.

CIFAR-10 CIFAR-100 Fashion SVHN
iFlood 0.04 (0.05) 0.06 (0.04) 0.15 (0.10) 0.10 (0.05)

SoftAD 0.12 (0.06) 0.34 (0.28) 0.01 (0) 0.12 (0.12)

Table 4: Hyperparameters selected by validation for each method (averaged over trials). Flooding and SoftAD
have threshold θ; SAM has radius parameter. Standard deviation (over trials) is given in small-text parentheses.
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C.3 Linear binary classification

In Figure 11, we compare ERM with Flood and SoftAD run with a common threshold level of
θ = 0.25, using the “two Gaussians” and “sinusoid” data described in §C.1, and a simple linear
model, i.e., a feed-forward neural network with no hidden layers. Training and test sizes match those
described in §C.1. Even with a very simple linear model, it is clear that SoftAD can be used to achieve
competitive accuracy at much larger loss levels. Note that in the case of “sinusoid,” the average loss
does not reach the threshold θ, and thus Flooding is identical to ERM. These basic trends hold over
a range of thresholds θ and re-scaling parameters σ (i.e., using φ((x − θ)/σ) with σ 6= 1). These
trends are captured by the heatmaps given in Figure 12, where for each setting of θ (for SoftAD and
Flooding) and σ (for SoftAD only), we generate a fresh dataset. Clearly taking the threshold level
far too high leads to arbitrarily bad performance, but below a certain level, similar performance is
observed over a wide range of values. It is interesting to note how while test loss changes in a rather
predictable continuous fashion as a function of θ, the test accuracy drops in a much sharper manner
when θ is set too high in the case of SoftAD, whereas this drop is smoother in the case of Flooding.
That said, these trends are only within the confines of this very simple linear model example using
full batch, and tend to change (even with the same model) as we modify the mini-batch size.
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Figure 11: Average cross entropy loss and accuracy over epochs (full batch) for each method.
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Figure 12: Test loss and accuracy heatmaps for Flooding and SoftAD, depending on threshold level (denoted
“theta”) and scaling parameter (denoted “sigma”).
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We are very clear that if our interest is purely in improving the test accuracy,
the existing Flooding algorithm tends to work quite well. Our contributions are set in the
context of learning tasks where accuracy is important, but average loss and/or model norms
are also of importance; our new method SoftAD is shown to achieve an appealing balance
between these metrics compared with Flooding (and ERM/SAM), as we claim. Furthermore,
we make no claims that our method can circumvent the issue of how to set the threshold
level θ; as we discuss in §5, this is a broad question that underlies both Flooding and SoftAD,
and the pursuit of an answer is stated as future work.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: As discussed above under “Claims,” we emphasize the strong points of our
method (smoothness, stability, good balance across loss/accuracy/norms), but are completely
open about the fact that our method, just as with Flooding, still has a free parameter θ whose
setting is by no means trivial (though empirically, simple validation is shown to work well).

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

27



• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions are stated clearly, either in the main text or in the body of
propositions/theorems, and complete proofs are given in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experimental results can be recovered using code and Jupyter notebooks
that we have already prepared in a GitHub repository.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: See the above answer; code is provided on GitHub (after the review phase).
As for data, all datasets are public, clearly described, and accessible via the outlets we have
mentioned.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In the main body of the paper we give a broad summary, but complete details
are given in §C, a fact that we clearly mention in the main body.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]
Justification: For results with relatively large discrepancy between methods (namely hyper-
parameter selection results in Table 2), we give standard deviation (over randomized trials)
in addition to averages.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: At the start of §C, we describe the hardware used in our experimental setup.
Actual computation time is not a key factor in our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Datasets and software are all credited, both within the paper itself and within
our code made available on GitHub.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The only relevant new “assets” are code for re-creating the experiments, and
this is all well-documented on our GitHub repository.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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