

VeriThinker: Learning to Verify Makes Reasoning Model Efficient

Zigeng Chen, Xinyin Ma, Gongfan Fang, Ruonan Yu, Xinchao Wang*

National University of Singapore

zigeng99@u.nus.edu, xinchao@nus.edu.sg

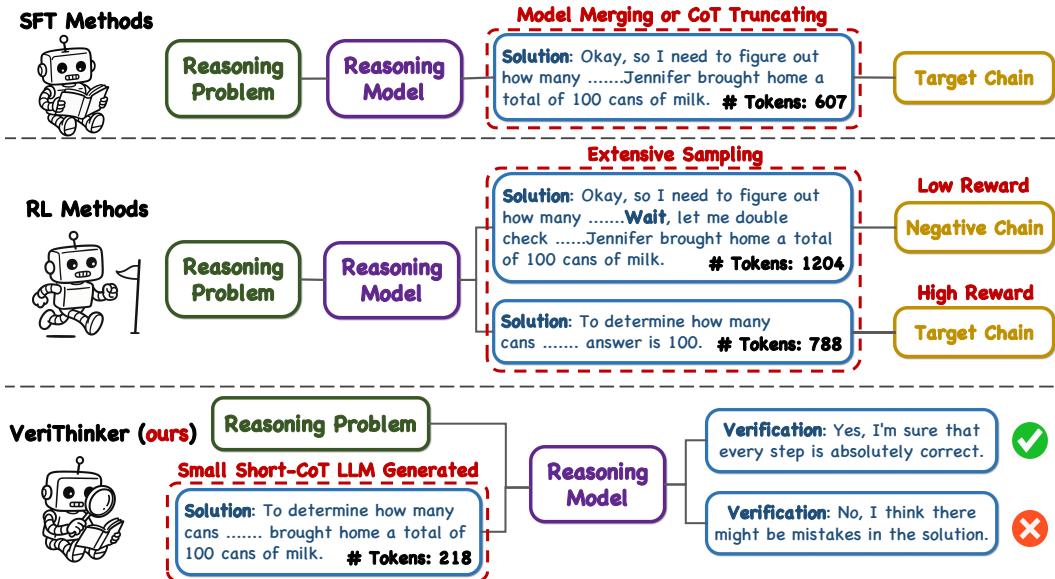


Figure 1: The key distinction between VeriThinker and traditional SFT or RL-based long-to-short methods. We uniquely train LRM on an auxiliary CoT verification task, achieving effective CoT compression without relying on synthetic target reasoning chains.

Abstract

Large Reasoning Models (LRMs) excel at complex tasks using *Chain-of-Thought* (CoT) reasoning. However, their tendency to overthinking leads to unnecessarily lengthy reasoning chains, dramatically increasing inference costs. To mitigate this issue, we introduce VeriThinker, a novel approach for CoT compression. Unlike conventional methods that fine-tune LRMs directly on the original reasoning task using synthetic concise CoT data, we innovatively fine-tune the model solely through an auxiliary verification task. By training LRMs to accurately verify the correctness of CoT solutions, the LRMs inherently become more discerning about the necessity of subsequent self-reflection steps, thereby effectively suppressing overthinking. Extensive experiments validate that VeriThinker substantially reduces reasoning chain lengths while maintaining or even slightly improving accuracy. When applied to DeepSeek-R1-Distill-Qwen-7B, our approach reduces reasoning tokens on MATH500 from **3790** to **2125** while improving accuracy by 0.8% (**94.0%** to **94.8%**), and on AIME25, tokens decrease from **14321** to **10287** with a 2.1%

*Corresponding Author

accuracy gain (**38.7%** to **40.8%**). Additionally, our experiments demonstrate that VeriThinker can also be zero-shot generalized to speculative reasoning. Code is available at <https://github.com/czg1225/VeriThinker>

1 Introduction

Large Reasoning Models (LRMs), such as GPT-01 [20], DeepSeek-R1 [13], Kimi-k1.5 [54], and QwQ [55], have shown exceptional performance in tackling complex reasoning tasks. Their success stems from the ability to generate effective *Chain-of-Thought* (CoT) reasoning [59, 32]. By decomposing intricate problems into manageable steps and meticulously verifying each intermediate result, these models achieve superior reasoning performance. Furthermore, this test-time scaling method has demonstrated notable potential beyond reasoning tasks, extending its impact to diverse fields such as vision-language models [19, 63, 72, 28], image generation [40, 21, 62], and video synthesis [7, 33].

However, the long reasoning chains generated by LRM often contain numerous redundant self-checking steps—a phenomenon commonly known as "overthinking" [5]. Specifically, these models incorporate frequent self-verification steps to ensure the accuracy of their reasoning, but most of these self-verifications prove ineffective or even add confusion to the reasoning process. This extensive overthinking dramatically inflates inference costs and hinders the efficient deployment of LRM.

Several recent studies [41, 14, 60, 35, 43, 38, 71, 2, 1] have focused on compressing lengthy reasoning chains into shorter, more concise forms. These methods typically generate concise reasoning chain data through extensive sampling, model merging, or selective truncation of original long reasoning chains. Subsequently, these synthetic reasoning chains serve as targets, with *Supervised Fine-Tuning* (SFT) [58] or *Reinforcement Learning* (RL) used to align the LRM's output distribution closely to these target chains. Thus, the performance of these compression strategies heavily depends on the quality and quantity of the synthesized reasoning chain data. However, generating high-quality concise reasoning chains is computationally intensive and time-consuming. Moreover, simultaneously achieving brevity while preserving essential self-reflection steps remains challenging. Consequently, models compressed through these methods struggle to balance conciseness and high accuracy, especially when tackling highly complex reasoning tasks. A key question arises: *Can we effectively compress lengthy reasoning chains without relying on synthetic target reasoning chains?*

Our Approach. To address this challenge, we introduce VeriThinker, a straightforward yet effective method for CoT compression without the dependence on synthetic target data. VeriThinker's core innovation lies in a novel fine-tuning strategy named *Supervised Verification Fine-Tuning* (SVFT). Unlike previous methods that directly fine-tune LRM on reasoning tasks through SFT or RL, SVFT uniquely fine-tunes the model on an auxiliary verification task to achieve CoT compression. Specifically, we create a CoT verification dataset, providing the LRM with question-solution pairs and training it to verify the correctness of the CoT solution through binary classification. By learning to distinguish between correct and incorrect solutions, the LRM can more accurately determine when self-reflection is necessary. Empirical studies demonstrate that after SVFT, the model significantly reduces unnecessary double-checking of correct reasoning steps while slightly increasing verification of incorrect steps. This effectively mitigates overthinking and maintains or slightly improves reasoning accuracy. Furthermore, by utilizing its ability to recognize correctness, VeriThinker can also generalize to solution-wise speculative reasoning for higher inference throughput.

We evaluate VeriThinker on three state-of-the-art reasoning models: DeepSeek-R1-Distill-Qwen-7B, DeepSeek-R1-Distill-Qwen-14B, and DeepSeek-R1-Distill-Llama-8B [13]. Extensive experiments show that fine-tuning solely on the CoT verification task enables LRM to substantially reduce token usage while preserving high accuracy, even on extremely challenging problems like the AIME dataset. Additional experiments show that VeriThinker can also be applied to speculative reasoning, achieving a significant throughput increase when using a short-CoT LLM as the draft model.

In conclusion, we present VeriThinker, a simple yet effective CoT compression method that eliminates the need for synthetic target chain data. Key to our approach is the proposed SVFT, which innovatively mitigates the overthinking problem by fine-tuning the LRM exclusively on an auxiliary CoT verification task. Comprehensive experiments demonstrate that VeriThinker efficiently shortens reasoning chains while preserving or slightly improving model accuracy, even on highly challenging reasoning tasks. Additionally, our method can also generalize to speculative decoding, achieving significant improvements in inference throughput.

2 Related Works

Chain-of-thought. Chain-of-thought [59, 32] enables large reasoning models (LRMs) to solve complex reasoning tasks, such as mathematical and coding problems, by leveraging inference-time scaling laws. Advanced LRMs, including GPT-o1 [20], DeepSeek-R1 [13], Kimi-k1.5 [54], and QwQ [55], have set new benchmarks in reasoning capabilities. These models utilize reinforcement learning to encourage multiple self-reflection steps during inference, substantially increasing response accuracy. Furthermore, other methods, such as self-consistency [57], beam search, and Monte Carlo Tree Search (MCTS) [22, 12], have been employed to facilitate parallel inference scaling laws, further enhancing LRM reasoning effectiveness. Beyond language models, the principles underlying CoT have also demonstrated significant performance improvements in domains like visual reasoning [19, 63, 72], image generation [40, 21, 62], and video synthesis [7, 33].

Efficient Reasoning Models. Despite these substantial gains, the tendency of LRMs towards overthinking often results in excessively extended reasoning chains, significantly raising inference costs. Recent research has investigated methods for compressing CoT to enable more efficient reasoning processes. Specifically, [5] comprehensively analyzes the overthinking phenomenon and employs SimPO [42] to fine-tune LRMs. Kimi-K1.5 [54] proposes weight merging strategies between long-CoT and short-CoT models and introduces length-penalized loss functions to effectively compress CoT. Additional studies [41, 14] achieve lengthy-controllable CoT compression, while others [60, 35, 43, 69] synthesize concise reasoning chain data to guide long-to-short compression via SFT. Methods [38, 71, 2, 1, 26, 17] adopt reinforcement learning and extensive sampling to reduce the number of tokens required in CoT processes. Furthermore, adaptive methods [68, 37, 50, 10] have been proposed to conditionally activate long-CoT modes based on input query. Simpler yet effective prompt-guidance methods for direct CoT compression have also been explored [36, 65, 24, 53]. Additionally, there is increasing interest in converting explicit CoT processes into latent CoT [9, 8, 49, 11, 15]. However, these latent approaches currently face significant challenges about accuracy degradation.

Beyond CoT compression, other techniques involving model compression and optimized decoding have also gained prominence. Knowledge distillation approaches have allowed smaller reasoning models to approximate the performance of larger counterparts effectively [64, 4, 27, 74]. Additionally, [51, 34, 73] explore model pruning and quantization techniques on LRMs. Decoding optimization techniques have also been widely adopted to accelerate inference [56, 52, 39, 64, 67]. Methods such as speculative decoding [31, 46] and parallel inference strategies [45, 44] demonstrate a notable decoding acceleration ratio, further enhancing the practical applicability of LRMs.

3 Methods

3.1 Problem Setup

Recent efforts in improving the efficiency of LRMs have focused on compressing lengthy reasoning chains into shorter, more concise reasoning sequences without redundant over-thinkings. Formally, let M_θ represent an LRM parameterized by θ . Given a query q , the model generates a long reasoning chain C_l , obtained by sampling from the model's conditional output distribution: $C_l \sim M_\theta(\cdot | q)$. We hypothesize the existence of an ideal concise reasoning chain C_i , characterized by minimality in length and maximal retention of essential self-verification steps, ensuring the correctness of the final solution. The objective of CoT compression is thus to finetune M_θ such that the generated reasoning chain closely approximates the ideal concise chain C_i :

$$\min_{\theta} \mathbb{E}_q[D(M_\theta(\cdot | q), C_i)], \quad (1)$$

where D denotes a suitable distance metric in the distribution space.

A commonly employed approach involves constructing a synthetic short reasoning chain C_s . In SFT-based variants [60, 35, 43, 69, 41], this is typically done via model merging or by selectively truncating the original long chain data, whereas RL-based approaches [38, 71, 2, 1, 26, 17] rely on extensive sampling. Under the assumption that the synthetic chain C_s is distributionally close to the ideal chain C_i , they train the LRMs either by supervised fine-tuning on C_s or by reinforcement learning—rewarding the shorter sequences C_s more highly than the longer ones C_l .

In essence, these approaches regard the synthesized short CoT sequences as the target reasoning chain and train the model to approximate them. Therefore, their efficacy depends critically on both the quality and volume of the generated C_s . However, generating high-quality short chains is extremely costly in computing and time, which limits efficient scalability. Furthermore, synthetic short reasoning chains typically struggle to simultaneously achieve brevity and retain the essential self-reflection steps, resulting in a mismatch from the ideal distribution C_i . This discrepancy often inevitably leads to substantial degradation in the model’s reasoning capabilities during the long-to-short process, particularly when confronted with complex, high-difficulty problems.

A critical problem arises: Can we devise a method that effectively compresses an LRM’s overextended reasoning chains while preserving its original reasoning ability, without relying on explicitly synthesized target chains?

3.2 Supervised Verification Finetuning

To address the aforementioned issue, we begin by revisiting the fundamental principles underlying LRM’s overthinking. During reasoning, when determining whether to engage in additional self-reflection, the LRM essentially operates as a binary classifier that evaluates the correctness of previously generated reasoning steps. Formally, the LRM encodes a prior solution into a hidden state, denoted as h , and the language modeling head (LM head) subsequently classifies this state as either *correct* or *incorrect*. If the classification is *correct*, the model proceeds to subsequent reasoning steps; if *incorrect*, it triggers further self-verification.

The prevalence of overthinking stems from insufficient accuracy in this binary classification task. Specifically, the hidden state h fails to adequately encode the critical information required for precise correctness judgments. Consequently, LRMs frequently misclassify correct solutions as incorrect, leading to unnecessary self-reflection steps. Let $p(\text{acc} | h)$ denote the probability that the LRM accurately classifies the correctness of a prior solution. By increasing $p(\text{acc} | h)$, redundant reflections are progressively reduced, preserving only essential verification steps for genuinely incorrect solutions. In the ideal case where $p(\text{acc} | h) = 100\%$, the LRM outputs the optimal reasoning chain C_i , invoking self-reflection solely when prior solutions are indeed erroneous.

Existing methods that employ synthetic target chains for CoT compression implicitly aim to maximize $p(\text{acc} | h)$. These methods synthesize a concise target chain approximating the optimal scenario where $p(\text{acc} | h) \approx 100\%$. As the LRM’s output distribution aligns with this target, $p(\text{acc} | h)$ naturally increases, thereby mitigating overthinking. However, such approaches are inefficient and indirect, as most tokens in the synthetic chains contribute negligibly to improving $p(\text{acc} | h)$. Consequently, these methods yield only marginal gains in $p(\text{acc} | h)$. Moreover, the probability of triggering self-reflection decreases even when errors occur in earlier steps, inadvertently leading to performance degradation on highly complex problems.

Since the primary cause of overthinking in LRMs arises from their inability to accurately determine the correctness of a solution, a natural and intuitive strategy is to explicitly train LRMs to discern solution correctness, thus fundamentally addressing the overthinking issue. Motivated by this insight, we introduce VeriThinker, a straightforward yet effective method for CoT compression. The key idea of VeriThinker is a novel fine-tuning strategy, termed *Supervised Verification Fine-Tuning* (SVFT). Distinct from prior approaches, SVFT does not rely on optimizing the model to match a target reasoning chain distribution. Instead, it aims to directly enhance the model’s capability to classify solutions as correct or incorrect, optimizing the binary classification accuracy $p(\text{acc}|h)$. Specifically, we fine-tune the reasoning model on an auxiliary CoT verification task, providing the LRM with a question paired with a CoT solution, and the model is explicitly trained to accurately classify whether this provided solution is entirely correct or not.

Firstly, we need to construct a CoT verification dataset, denoted as: $\mathcal{D}_{\text{verif}} = (q_i, s_i, v_i)$ where each data instance consists of a problem description q_i , a CoT solution s_i without self-reflection steps, and a verification result v_i indicating the correctness of the solution. The prompt for each instance is formed by the pair (q_i, s_i) , and the corresponding verification response v_i is explicitly defined as:

$$v_i = \begin{cases} \text{"Yes, I'm sure that every step is absolutely correct."}, & \text{if } s_i \text{ is correct,} \\ \text{"No, I think there might be some mistakes in the proposed solution."}, & \text{otherwise.} \end{cases} \quad (2)$$

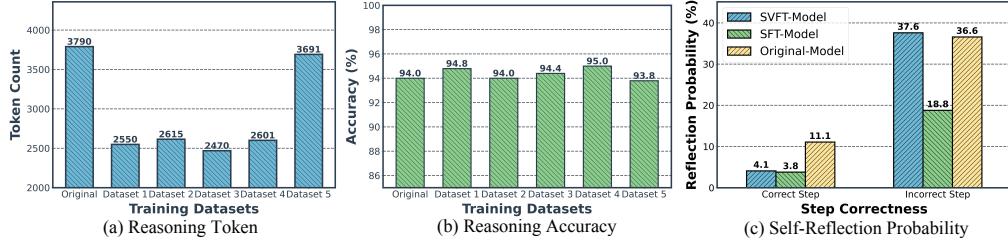


Figure 2: (a)-(b): Token counts and accuracy in reasoning tasks across different training datasets. (c) Probability of self-reflection during reasoning for correct and incorrect solutions.

Then we used this CoT-verification dataset to fine-tune the LRM. During finetuning, only tokens within the verification response v_i contribute to the training loss. This design effectively mitigates potential undesirable biases introduced by the input solution from affecting the model’s output distribution. Formally, given a tokenized prompt-response pair (x, y) , the SVFT training loss is defined as:

$$\mathcal{L}_{\text{SVFT}} = - \sum_{t \in y} \log p_{\theta}(y_t | x, y_{<t}) \quad (3)$$

where p_{θ} denotes the probability distribution output by the LRM parameterized by θ .

Since the judgments of correct and incorrect in the data are represented as two completely fixed responses, and we only compute the loss on the response tokens, the entire SVFT essentially performs a binary classification on the question-solution pairs which is fundamentally similar to how the LRM decides whether to perform self-reflection after each step during reasoning.

Experiments demonstrate that by learning to verify the correctness of CoT solutions, SVFT effectively mitigates LRM’s overthinking phenomenon. While significantly reducing the number of tokens required for reasoning, SVFT does not lead to noticeable degradation in reasoning capability.

3.3 Empirical Analysis

To better understand why SVFT facilitates effective compression of CoT without compromising the original reasoning capability of LRMs, we conducted additional experiments to thoroughly investigate the underlying mechanisms of SVFT.

What Capabilities Does SVFT Impart to the Model? A primary question we sought to explore was the specific competencies instilled in the LRM through SVFT. To this end, we constructed five distinct CoT-verification datasets and conducted SVFT on the R1-Distill-Qwen-7B model, observing differences in outcomes across these datasets. These five datasets shared identical prompts, each consisting of a question, a CoT solution, and concise instructions. However, we varied the response tokens in five distinct ways: **Dataset (1)**: Maintained the original setting. **Dataset (2)**: Reversed responses, assigning affirmative responses to incorrect solutions and negative responses to correct solutions. **Dataset (3)**: Simplified responses to single tokens, “Yes” and “No.”. **Dataset (4)**: Further simplified responses to semantically neutral tokens “North” and “South.” **Dataset (5)**: Randomly assigned responses irrespective of solution correctness.

Figure 4 (a) and (b) illustrate the changes in average tokens per response and accuracy on the MATH500 [16] dataset after SVFT training with the aforementioned datasets. We observed that, apart from Dataset (5), all other datasets showed similar trends: a significant reduction in reasoning chain length, accompanied by maintained or slightly improved accuracy. These findings suggest that SVFT is fundamentally akin to contrastive learning. The model learns the capability to distinguish differences between correct and incorrect solutions through binary classification rather than learning explicit correctness semantics. In contrast, Dataset (5), which utilized responses entirely unrelated to solution correctness, did not facilitate CoT compression. This indicates that SVFT does not merely cause the LRM to adopt a more concise expression style or to directly output conclusions, reinforcing our earlier conclusions.

Conclusion: In summary, SVFT empowers the LRM to differentiate between correct and incorrect solutions rather than intrinsically learning which solution is right. The core mechanism of SVFT closely resembles that of contrastive learning.

Why Does SVFT Enhance CoT Compression? Next, we investigate the reasons behind SVFT’s effectiveness in achieving CoT compression. As SVFT trains the model to perform binary classification based on the correctness of CoT solutions, the model inherently learns to focus on the crucial elements in the CoT affecting solution correctness. We hypothesize that this enhanced attention allows the model, during reasoning tasks, to more accurately determine whether a self-reflection step is necessary, thereby eliminating redundant double-checking and enabling effective CoT compression.

To empirically validate this hypothesis, we randomly selected 50 problems from the MATH500 dataset and generated correct long CoT solutions for each problem using the R1-distill-Qwen-7B model. We extracted sub-solutions from each solution, spanning from the start until the appearance of the first pivot word "Wait." We then performed forward computations using the original R1-Distill-Qwen-7B, the SFT model and the SVFT model on these question-sub-solution pairs, examining the generation probabilities of the pivot word "Wait." As shown in Figure 4 (c), we found that both the SFT and SVFT models exhibit a significantly lower probability of generating the pivot word for correct sub-solutions compared to the original model.

Next, we manually introduced mistakes into each correct sub-solution—for instance, changing " $3 \times 7 = 21$ " to " $3 \times 7 = 27$ "—and evaluated the models’ probabilities for generating the pivot word "Wait" again. In this case, the SVFT model showed no probability reduction but instead a marginal (1%) increase compared to the original model, while the SFT model continued to exhibit significantly reduced probabilities.

These results strongly support our hypothesis: SVFT enhances the LRM’s precision in evaluating reflection necessity. Specifically, for the SVFT model, we observe: (1) substantial reduction in redundant verification when preceding steps are correct, and (2) slight increase in reflection probability when mistakes are introduced. This adaptive behavior enables effective CoT compression while preserving and occasionally improving reasoning accuracy. In contrast, the SFT model uniformly reduces reflection probability regardless of solution correctness, explaining its chain-shortening capability at the cost of accuracy degradation.

To further validate this hypothesis, we compared the changes in response token counts of the SVFT-finetuned model on the MATH500 dataset. For questions correctly answered by the SVFT model, the token count in the reasoning chain decreased by 41% compared to the original model. In contrast, for incorrectly answered questions, the token count decreased by only 8%. This experimental result further robustly supports our hypothesis.

Conclusion: In summary, SVFT achieves effective CoT compression primarily by enhancing the accuracy of LRMs’ self-reflection decisions during reasoning. It minimizes unnecessary self-reflections for correct steps while retaining critical verification steps for mistaken steps, significantly reducing token usage without compromising reasoning accuracy.

3.4 Solution-wise Speculative Reasoning

As LRMs acquire the capability to verify solution correctness through SVFT, we leverage this advancement to propose a collaborative inference pipeline termed *Solution-wise Speculative Reasoning* (SSR). This approach significantly boosts inference throughput by orchestrating interactions between a short-CoT LLM and an SVFT-enhanced LRM.

Distinct from conventional token-wise speculative decoding methods [25, 3, 30, 61], where a smaller draft model proposes multiple candidate tokens subsequently verified in parallel by a larger LLM through token probability evaluation (accepting or rejecting each individual draft token), our approach introduces a novel solution-level paradigm specifically tailored for reasoning tasks. Given a problem, the short-CoT LLM first rapidly generates a concise solution candidate. This candidate is then assessed by the SVFT-enhanced LRM for correctness verification. If the proposed solution is deemed correct, it is immediately output as final answer; otherwise, the system activates the LRM’s full long-CoT reasoning process to ensure accurate results.

This pipeline adaptively engages the LRM: For simple problems, the LRM only validates the draft solution without invoking costly long-CoT; For challenging problems, the LRM intervenes to ensure accuracy when the draft fails. By selectively triggering long-CoT reasoning based on problem difficulty and draft quality, our speculative reasoning pipeline achieves substantial throughput gains while preserving high reasoning accuracy.

Table 1: CoT compression performance. We evaluate the proposed VeriThinker on three advanced reasoning models, comparing token efficiency and accuracy against the original model and baseline methods over three mathematical reasoning benchmarks.

Method	MATH500		AIME 2024		AIME 2025		Average	
	Tokens ↓	Accuracy↑	Tokens ↓	Accuracy↑	Tokens ↓	Accuracy↑	Tokens ↓	Accuracy↑
<i>Deepseek-R1-Distill-Qwen-7B</i>								
Original Model	3791	94.0%	13108	54.1%	14321	38.7%	10407	62.3%
Truncating	2306	80.4%	9550	45.3%	10232	36.3%	7363(-29%)	54.0%(-8.3%)
Fast-Prompting	2425	83.8%	11867	53.3%	13378	38.3%	9223(-30%)	58.5%(-3.8%)
CoT-Valve	2440	92.4%	11238	39.2%	10884	30.4%	8187(-22%)	54.0%(-8.3%)
SFT	2064	91.2%	8843	49.1%	9686	32.1%	6864(-34%)	57.5%(-4.8%)
VeriThinker	2125	94.8%	9381	56.5%	10287	40.8%	7264(-30%)	64.0%(+1.7%)
<i>Deepseek-R1-Distill-Qwen-14B</i>								
Original Model	3529	95.2%	11724	69.0%	13409	49.6%	9554	71.2%
Truncating	2479	85.8%	8658	57.1%	9247	42.9%	6795(-30%)	61.9%(-9.3%)
Fast-Prompting	2405	82.0%	8288	64.0%	10645	49.3%	7113(-26%)	65.1%(-6.1%)
CoT-Valve	2102	91.0%	8691	41.7%	9558	25.0%	6783(-29%)	52.6%(-18%)
SFT	2226	92.8%	9021	58.3%	10644	43.3%	7297(-24%)	64.8%(-7.4%)
VeriThinker	2255	95.0%	7423	73.0%	9304	54.8%	6327(-34%)	74.3%(+3.1%)
<i>Deepseek-R1-Distill-Llama-8B</i>								
Original Model	4361	90.6%	14005	44.6%	14420	30.1%	10928	55.1%
Truncating	3193	81.6%	11577	39.1%	11635	28.6%	8802(-20%)	49.8%(-5.3%)
Fast-Prompting	3378	86.2%	12615	40.4%	13292	29.4%	9762(-11%)	52.0%(-3.1%)
CoT-Valve	4614	81.4%	12650	23.3%	12520	17.5%	9928(-9%)	40.7%(-14%)
SFT	2439	81.2%	9500	31.3%	10136	26.0%	7358(-33%)	46.2%(-8.7%)
VeriThinker	2953	89.9%	11285	46.9%	10557	29.7%	8265(-24%)	55.5%(+0.4%)

4 Experiments

4.1 Experimental Setup

Models. To comprehensively evaluate our approach, we apply the proposed VeriThinker to three state-of-the-art long-CoT reasoning models with varying architectures and sizes, including DeepSeek-R1-Distill-Qwen-7B, DeepSeek-R1-Distill-Qwen-14B, and DeepSeek-R1-Distill-LLaMA-8B [13]. Additionally, we also evaluate our approach on three short-CoT models: Qwen-2.5-Math-7B-Instruct, Qwen-2.5-Math-1.5B-Instruct [66], and Qwen-2.5-7B-Instruct [66].

Training and Evaluation Details. For the proposed SVFT, we adopt *Low-Rank Adaptation* (LoRA) [18] for efficient fine-tuning, which significantly improves training efficiency and effectively mitigates catastrophic forgetting, as training and inference occur on different tasks. All training procedures are conducted using Hugging Face’s SFTTrainer integrated with DeepSpeed ZeRO-2 optimization [47], distributed across four RTX 6000 Ada GPUs. For evaluation, inference results and throughput metrics are also obtained using RTX 6000 Ada GPUs with the vLLM inference framework [23]. We adhere to the models’ default sampling configurations, specifically setting temperature to 0.6 and top- p to 0.95. During inference, the prompt appended to each question is: *"Please reason step by step, and put your final answer with \boxed."* To evaluate LRM’s performance, we report the reasoning accuracy and the average token count of the reasoning chain (between `<think>` and `</think>`).

Datasets. During the fine-tuning phase, we utilize our self-constructed CoT-verification dataset comprising approximately 340k question-CoT pairs, each labeled with correctness indicators. We provide more details about training set construction in the Appendix. For evaluation, we employ multiple mathematical benchmark datasets, including MATH500 [16], GSM8K [6], and two highly challenging competition datasets, AIME2024 and AIME2025. The results reported for each dataset represent averages computed over 2 to 16 independent runs, depending on the dataset’s size.

Baselines. To demonstrate the superiority of our innovative method, we compare it against several conventional CoT compression approaches, including: (1) **Truncation**, which reduces the maximum allowable token length; (2) **Fast-Prompting**, a method leveraging prompt engineering to enforce reasoning completion within a specified token limit; (3) **CoT-Valve** [41], enabling a model to dynamically adjust the length of reasoning chains; and (4) **SFT** [58], a supervised fine-tuning method that uses synthesized concise CoT chains as targets for long-to-short compression. To synthesize concise reasoning chains for the SFT baseline, we follow CoT-Valve [1] by merging the base and

Table 2: CoT correctness verification results. We apply VeriThinker to three advanced LRM_s and assess their verification accuracy on CoT solutions generated by two short-CoT models. For a comprehensive analysis, we report classification accuracy, precision, recall, and F1 score.

Method	MATH500				GSM8K			
	Acc. \uparrow	Precision \uparrow	Recall \uparrow	F1 Score \uparrow	Acc. \uparrow	Precision \uparrow	Recall \uparrow	F1 Score \uparrow
<i>QWEN-2.5-MATH-1.5B-Instruct</i>								
R1-Distill-Qwen-7B+VeriThinker	88.4%	0.926	0.924	0.926	93.6%	0.964	0.962	0.963
R1-Distill-Qwen-14B+VeriThinker	90.6%	0.953	0.927	0.940	95.7%	0.971	0.978	0.975
R1-Distill-Llama-8B+VeriThinker	88.0%	0.954	0.892	0.922	91.5%	0.954	0.947	0.950
<i>QWEN-2.5-MATH-7B-Instruct</i>								
R1-Distill-Qwen-7B+VeriThinker	89.4%	0.946	0.931	0.939	94.8%	0.981	0.965	0.973
R1-Distill-Qwen-14B+VeriThinker	91.0%	0.973	0.922	0.947	95.5%	0.986	0.966	0.976
R1-Distill-Llama-8B+VeriThinker	87.4%	0.972	0.880	0.924	93.9%	0.981	0.955	0.968

Table 3: Speculative Reasoning Results. We applied VeriThinker to three LRM_s and employed two short-CoT LLMs as draft models to evaluate the performance of solution-wise speculative reasoning. We report accuracy, token counts, throughput, and AcR (long-CoT reasoning Activation Rate). Underlined numbers indicate the token counts during the draft phase for short-CoT LLMs.

Method	MATH500				GSM8K			
	Acc \uparrow	Tokens \downarrow	Throughput \uparrow	AcR \downarrow	Acc \uparrow	Tokens \downarrow	Throughput \uparrow	AcR \downarrow
R1-Distill-Qwen-7B	94.0%	3791	1.0x	100.0%	92.8%	1555	1.0x	100.0%
+Qwen-2.5-Math-1.5B-Instruct	91.8%	<u>589+889</u>	4.4x	20.8%	93.3%	<u>321+229</u>	5.1x	14.0%
+Qwen-2.5-Math-7B-Instruct	93.4%	<u>614+656</u>	4.2x	14.6%	96.1%	<u>294+113</u>	7.1x	5.0%
R1-Distill-Qwen-14B	95.2%	3529	1.0x	100.0%	95.6%	1309	1.0x	100.0%
+Qwen-2.5-Math-1.5B-Instruct	93.0%	<u>589+1130</u>	3.6x	22.8%	95.1%	<u>321+175</u>	5.3x	13.2%
+Qwen-2.5-Math-7B-Instruct	95.7%	<u>614+954</u>	3.5x	17.6%	96.6%	<u>294+93</u>	5.4x	5.5%
R1-Distill-Llama-8B	90.6%	4361	1.0x	100.0%	89.2%	1643	1.0x	100.0%
+Qwen-2.5-Math-1.5B-Instruct	90.4%	<u>589+1589</u>	3.3x	25.8%	91.7%	<u>321+307</u>	4.7x	14.5%
+Qwen-2.5-Math-7B-Instruct	91.6%	<u>614+1265</u>	3.2x	21.2%	96.4%	<u>294+161</u>	4.8x	6.0%

reasoning models at a 0.2:0.8 ratio to generate concise reasoning chains on PRM12K and GSM8K. Only correct CoT solutions are retained, and the average length of these concise chains is about 60% of the original. Both SFT and our VeriThinker method are finetuned with same LoRA configuration.

4.2 Experimental Results and Analysis

CoT Compression Results. We present comprehensive experimental results on CoT compression in Table 1. Our VeriThinker significantly reduces the number of tokens while maintaining or even slightly improving reasoning accuracy. In contrast, other baseline methods fail to achieve a good trade-off between efficiency and accuracy. When the accuracy is successfully maintained, the length of the reasoning chain shows little variation; when the token count is significantly reduced, the reasoning accuracy inevitably decreases substantially - this phenomenon is particularly evident in challenging problems. Among the baselines, the SFT method using target chain as optimization objective, while significantly reducing token count, leads to notable degradation in the model’s self-reflection capability. Consequently, some incorrect steps fail to be double-checked, resulting in erroneous outcomes. Our VeriThinker, by contrast, enables the model to distinguish between correct and incorrect solutions, enhancing its ability to judge when self-checking is needed, thereby maximally preserving reasoning accuracy with even slight improvements.

As shown in the Table 1, our method demonstrates consistent superior performance across all three LLMs, with particularly outstanding results on the challenging AIME dataset. Our approach reduces the CoT length by approximately 29% (from 13,108 to 9,381 tokens) for the R1-Distill-Qwen-7B model on AIME 2024 while increasing reasoning accuracy by 2.4%. On AIME 2025, the token count decreases by about 28% (from 14,321 to 10,287) with a 2.1% accuracy improvement. We also observe that our method shows higher sensitivity to CoT compression on LLaMA architecture models. Although VeriThinker maintains good accuracy preservation on R1-Distill-LLaMA-8B, the compression ratio of reasoning chains is relatively smaller. These comprehensive experimental results strongly support and highlight the contributions of our method.

CoT Correctness Verification Results. As VeriThinker trains LLMs to verify the correctness of CoT solutions, we conducted additional experiments to analyze its verification accuracy. Specifically, we generated CoT solutions using Qwen-2.5-Math-1.5B-Instruct and Qwen-2.5-Math-7B-Instruct on GSM8K and Math500 datasets. We then employed SVFT LRM_s to evaluate the correctness of these

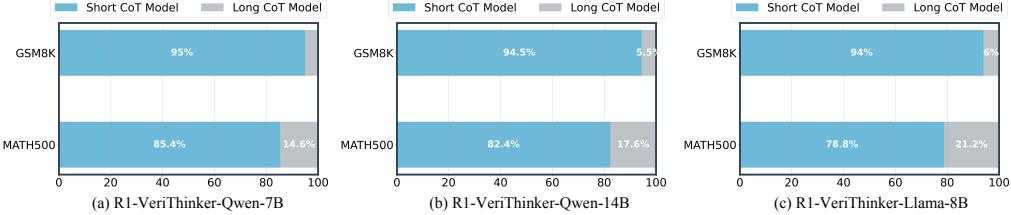


Figure 3: Speculative reasoning results on three reasoning models. When using Qwen-2.5-Math-Instruct-7B as the draft model, most problems in MATH500 and GSM8K can be solved with short CoT model, while only a few require activation of the long CoT model for more complex solutions.

solutions. As shown in Table 2, all three SVFT LRM demonstrate high verification accuracy. The verification accuracy on GSM8K is higher than on MATH500, indicating that more concise and clear solutions are easier to classify correctly. We also observe a positive correlation between the model’s verification accuracy and its reasoning capability. For reasoning tasks, the performance ranking is R1-Distill-14B > R1-Distill-7B > R1-Distill-8B, and the verification accuracy follows exactly the same trend. Furthermore, we find that LLMs generally exhibit notably higher precision than recall. This suggests that LLMs adopt a conservative approach when judging solution correctness - they rarely misclassify incorrect solutions as correct ones.

Speculative Reasoning Results. The above experiments demonstrate that SVFT LRM achieve high verification accuracy, particularly in precision. Building on this strength, we conduct extensive experiments to assess their performance in speculative reasoning tasks. We employ Qwen-2.5-Math-1.5B-Instruct and Qwen-2.5-Math-7B-Instruct as draft models to observe the performance of SVFT-enhanced R1-Distill-7B, R1-Distill-8B, and R1-Distill-14B on solution-wise speculative reasoning. In addition to accuracy and average token count, we report throughput (the time cost for completing all problems in the dataset) and AcR (the activation ratio of LRM), which indicates the proportion of problems that activate the LRM’s long-CoT reasoning. As shown in Table 3, speculative reasoning significantly improves the LRM’s throughput while maintaining or even enhancing reasoning accuracy. This is attributed to its remarkably low AcR. For instance, as presented in Figure 3, when using Qwen-2.5-Math-7B-Instruct as the draft model, R1-Distill-7B only needs to conduct its own reasoning for 14.6% of problems in MATH500 and 5% in GSM8K. This implies that the draft model solves the majority of problems, while the LRM is only engaged for the few truly challenging problems requiring long-CoT reasoning, resulting in substantial efficiency gains. Speculative reasoning also boosts accuracy, particularly on GSM8K, because the LRM sometimes underperforms the short-CoT model on simple problems, and in these cases, it accepts the correct draft solution. The overall accuracy of speculative reasoning approximates the union of the draft model’s and LRM’s accuracies.

Unlike traditional speculative decoding, we observe that for speculative reasoning, a smaller draft model does not necessarily yield higher throughput. This is because the computational cost of short-CoT LLMs is negligible compared to the substantial inference cost of LRM. For example, on the MATH500 dataset, Qwen-2.5-Math-7B-Instruct achieves approximately 20x the throughput of R1-Distill-7B. Thus, the primary factor affecting speedup is AcR: the fewer problems requiring LRM activation, the greater the throughput improvement. Larger draft models typically exhibit lower AcR due to their higher accuracy, thus not suffering throughput disadvantages compared to smaller draft models. However, this raises a potential issue: as problem difficulty increases, the throughput benefits of speculative reasoning may diminish.

Applied to Short-CoT LLM. We also applied VeriThinker to Qwen-2.5-Math-Instruct and Qwen-2.5-Instruct models to explore the effect of SVFT on short-CoT LLMs. As shown in Table 4, since short-CoT does not suffer from over-thinking, our method does not significantly alter the average token count. However, SVFT improves reasoning accuracy on both MATH500 and GSM8K datasets, indicating that learning to verify helps the LLM better focus on key elements that influence reasoning correctness, thereby enhancing reasoning performance.

Table 4: Results on Short-CoT LLMs. We apply VeriThinker to three short-CoT models and evaluate their reasoning performance.

Method	MATH500		GSM8K	
	Tokens ↓	Acc. ↑	Tokens ↓	Acc. ↑
Qwen-2.5-Math-7B-Instruct	700	85.0%	319	95.6%
+ VeriThinker	614	87.6%	304	96.7%
Qwen-2.5-Math-1.5B-Instruct	568	77.0%	314	85.6%
+ VeriThinker	589	80.2%	321	86.1%
Qwen-2.5-7B-Instruct	635	78.6%	294	91.8%
+ VeriThinker	577	80.2%	285	92.4%

5 Limitations

The primary limitation of our approach is that it does not effectively enable CoT compression in smaller models (e.g., a 1.5B-parameter reasoning model). This is largely due to our fine-tuning strategy: instead of optimizing directly on the original reasoning task, we fine-tune the model on CoT verification as an auxiliary task. Since smaller models have limited capacity, they are more prone to catastrophic forgetting during SVFT. As a result, they struggle to maintain high reasoning accuracy while performing effective CoT compression.

6 Social Impacts

In this paper, we propose VeriThinker, a simple yet effective method for compressing reasoning chains while preserving high accuracy. As large reasoning models become increasingly prevalent, their lengthy reasoning chains lead to dramatically higher inference costs, hindering efficient deployment and limiting practical utility. Our method addresses this critical challenge by significantly reducing token usage without compromising reasoning performance, thereby enhancing the real-world applicability of reasoning models.

7 Conclusion

In this paper, we introduce VeriThinker, a novel approach for CoT compression. Our key innovation is a new fine-tuning method called supervised verification fine-tuning. For the first time, we fine-tune the LRM on an auxiliary verification task instead of the reasoning task itself to achieve effective CoT compression. This approach eliminates the dependency on target chain data, which can be difficult and expensive to obtain. We have performed an in-depth analysis to explain the underlying principles of the proposed methods. Extensive experiments demonstrate that our method significantly shortens the reasoning chain while preserving accuracy, even on highly challenging problems. Additionally, VeriThinker can be generalized to speculative decoding, achieving substantially higher throughput.

Acknowledgement

This project is supported by the National Research Foundation, Singapore, and Cyber Security Agency of Singapore under its National Cybersecurity R&D Programme and CyberSG R&D Cyber Research Programme Office (Award: CRPO-GC1-NTU-002).

References

- [1] Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with reinforcement learning. *arXiv preprint arXiv:2503.04697*, 2025.
- [2] Daman Arora and Andrea Zanette. Training language models to reason efficiently. *arXiv preprint arXiv:2502.04463*, 2025.
- [3] Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. *arXiv preprint arXiv:2401.10774*, 2024.
- [4] Xinghao Chen, Zhijing Sun, Wenjin Guo, Miaoran Zhang, Yanjun Chen, Yirong Sun, Hui Su, Yijie Pan, Dietrich Klakow, Wenjie Li, et al. Unveiling the key factors for distilling chain-of-thought reasoning. *arXiv preprint arXiv:2502.18001*, 2025.
- [5] Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuwei Liu, Mengfei Zhou, Zhiheng Zhang, et al. Do not think that much for $2+3=?$ on the overthinking of o1-like llms. *arXiv preprint arXiv:2412.21187*, 2024.
- [6] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.
- [7] Karan Dalal, Daniel Koceja, Gashon Hussein, Jiarui Xu, Yue Zhao, Youjin Song, Shihao Han, Ka Chun Cheung, Jan Kautz, Carlos Guestrin, et al. One-minute video generation with test-time training. *arXiv preprint arXiv:2504.05298*, 2025.
- [8] Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit cot to implicit cot: Learning to internalize cot step by step. *arXiv preprint arXiv:2405.14838*, 2024.
- [9] Yuntian Deng, Kiran Prasad, Roland Fernandez, Paul Smolensky, Vishrav Chaudhary, and Stuart Shieber. Implicit chain of thought reasoning via knowledge distillation. *arXiv preprint arXiv:2311.01460*, 2023.
- [10] Gongfan Fang, Xinyin Ma, and Xinchao Wang. Thinkless: Llm learns when to think. *arXiv preprint arXiv:2505.13379*, 2025.
- [11] Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson, Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with latent reasoning: A recurrent depth approach. *arXiv preprint arXiv:2502.05171*, 2025.
- [12] Xinyu Guan, Li Lyu Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang. Rstar-math: Small llms can master math reasoning with self-evolved deep thinking. *arXiv preprint arXiv:2501.04519*, 2025.
- [13] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- [14] Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-budget-aware llm reasoning. *arXiv preprint arXiv:2412.18547*, 2024.
- [15] Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. Training large language models to reason in a continuous latent space. *arXiv preprint arXiv:2412.06769*, 2024.
- [16] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv preprint arXiv:2103.03874*, 2021.
- [17] Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang. Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. *arXiv preprint arXiv:2504.01296*, 2025.
- [18] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.
- [19] Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models. *arXiv preprint arXiv:2503.06749*, 2025.

[20] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Hel-
yar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint arXiv:2412.16720*, 2024.

[21] Dongzhi Jiang, Ziyu Guo, Renrui Zhang, Zhuofan Zong, Hao Li, Le Zhuo, Shilin Yan, Pheng-Ann Heng, and Hongsheng Li. T2i-r1: Reinforcing image generation with collaborative semantic-level and token-level cot. *arXiv preprint arXiv:2505.00703*, 2025.

[22] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In *European conference on machine learning*, pages 282–293. Springer, 2006.

[23] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the 29th Symposium on Operating Systems Principles*, pages 611–626, 2023.

[24] Ayeong Lee, Ethan Che, and Tianyi Peng. How well do llms compress their own chain-of-thought? a token complexity approach. *arXiv preprint arXiv:2503.01141*, 2025.

[25] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative decoding. In *International Conference on Machine Learning*, pages 19274–19286. PMLR, 2023.

[26] Chen Li, Nazhou Liu, and Kai Yang. Adaptive group policy optimization: Towards stable training and token-efficient reasoning. *arXiv preprint arXiv:2503.15952*, 2025.

[27] Chenglin Li, Qianglong Chen, Liangyue Li, Caiyu Wang, Yicheng Li, Zulong Chen, and Yin Zhang. Mixed distillation helps smaller language model better reasoning. *arXiv preprint arXiv:2312.10730*, 2023.

[28] Chengzu Li, Wenshan Wu, Huanyu Zhang, Yan Xia, Shaoguang Mao, Li Dong, Ivan Vulić, and Furu Wei. Imagine while reasoning in space: Multimodal visualization-of-thought. *arXiv preprint arXiv:2501.07542*, 2025.

[29] Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang, Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau, Guillaume Lample, and Stanislas Polu. Numinamath. [<https://huggingface.co/AI-M0/NuminaMath-1.5>] (https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf), 2024.

[30] Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires rethinking feature uncertainty. *arXiv preprint arXiv:2401.15077*, 2024.

[31] Baohao Liao, Yuhui Xu, Hanze Dong, Junnan Li, Christof Monz, Silvio Savarese, Doyen Sahoo, and Caiming Xiong. Reward-guided speculative decoding for efficient llm reasoning. *arXiv preprint arXiv:2501.19324*, 2025.

[32] Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In *The Twelfth International Conference on Learning Representations*, 2023.

[33] Fangfu Liu, Hanyang Wang, Yimo Cai, Kaiyan Zhang, Xiaohang Zhan, and Yueqi Duan. Video-t1: Test-time scaling for video generation. *arXiv preprint arXiv:2503.18942*, 2025.

[34] Ruikang Liu, Yuxuan Sun, Manyi Zhang, Haoli Bai, Xianzhi Yu, Tiezheng Yu, Chun Yuan, and Lu Hou. Quantization hurts reasoning? an empirical study on quantized reasoning models. *arXiv preprint arXiv:2504.04823*, 2025.

[35] Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Jiayang, Yue Zhang, Xipeng Qiu, and Zheng Zhang. Can language models learn to skip steps? *arXiv preprint arXiv:2411.01855*, 2024.

[36] Yule Liu, Jingyi Zheng, Zhen Sun, Zifan Peng, Wenhan Dong, Zeyang Sha, Shiwen Cui, Weiqiang Wang, and Xinlei He. Thought manipulation: External thought can be efficient for large reasoning models. *arXiv preprint arXiv:2504.13626*, 2025.

[37] Haotian Luo, Haiying He, Yibo Wang, Jinluan Yang, Rui Liu, Naiqiang Tan, Xiaochun Cao, Dacheng Tao, and Li Shen. Adar1: From long-cot to hybrid-cot via bi-level adaptive reasoning optimization. *arXiv preprint arXiv:2504.21659*, 2025.

[38] Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao, and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning. *arXiv preprint arXiv:2501.12570*, 2025.

[39] Chang Ma, Haiteng Zhao, Junlei Zhang, Junxian He, and Lingpeng Kong. Non-myopic generation of language models for reasoning and planning. *arXiv preprint arXiv:2410.17195*, 2024.

[40] Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan Yang, Yandong Li, Tommi Jaakkola, Xuhui Jia, et al. Inference-time scaling for diffusion models beyond scaling denoising steps. *arXiv preprint arXiv:2501.09732*, 2025.

[41] Xinyin Ma, Guangnian Wan, Rupeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-compressible chain-of-thought tuning. *arXiv preprint arXiv:2502.09601*, 2025.

[42] Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-free reward. *Advances in Neural Information Processing Systems*, 37:124198–124235, 2024.

[43] Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. Self-training elicits concise reasoning in large language models. *arXiv preprint arXiv:2502.20122*, 2025.

[44] Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang, Huazhong Yang, and Yu Wang. Skeleton-of-thought: Prompting llms for efficient parallel generation. *arXiv preprint arXiv:2307.15337*, 2023.

[45] Jiayi Pan, Xiuyu Li, Long Lian, Charlie Snell, Yifei Zhou, Adam Yala, Trevor Darrell, Kurt Keutzer, and Alane Suhr. Learning adaptive parallel reasoning with language models. *arXiv preprint arXiv:2504.15466*, 2025.

[46] Rui Pan, Yinwei Dai, Zhihao Zhang, Gabriele Oliaro, Zhihao Jia, and Ravi Netravali. Specreason: Fast and accurate inference-time compute via speculative reasoning. *arXiv preprint arXiv:2504.07891*, 2025.

[47] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimizations enable training deep learning models with over 100 billion parameters. In *Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining*, pages 3505–3506, 2020.

[48] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In *First Conference on Language Modeling*, 2024.

[49] Xuan Shen, Yizhou Wang, Xiangxi Shi, Yanzhi Wang, Pu Zhao, and Jiuxiang Gu. Efficient reasoning with hidden thinking. *arXiv preprint arXiv:2501.19201*, 2025.

[50] Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai Wang, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reasoning models, 2025. *URL https://arxiv.org/abs/2503.04472*.

[51] Gaurav Srivastava, Shuxiang Cao, and Xuan Wang. Towards reasoning ability of small language models. *arXiv preprint arXiv:2502.11569*, 2025.

[52] Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. *arXiv preprint arXiv:2410.20290*, 2024.

[53] Yi Sun, Han Wang, Jiaqiang Li, Jiacheng Liu, Xiangyu Li, Hao Wen, Huiwen Zheng, Yan Liang, Yuanchun Li, and Yunxin Liu. Time up! an empirical study of llm reasoning ability under output length constraint. *arXiv preprint arXiv:2504.14350*, 2025.

[54] Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with llms. *arXiv preprint arXiv:2501.12599*, 2025.

[55] Qwen Team. *https://qwenlm.github.io/blog/qwq-32b-preview/*, 2024.

[56] Junlin Wang, Shang Zhu, Jon Saad-Falcon, Ben Athiwaratkun, Qingyang Wu, Jue Wang, Shuaiwen Leon Song, Ce Zhang, Bhuwan Dhingra, and James Zou. Think deep, think fast: Investigating efficiency of verifier-free inference-time-scaling methods. *arXiv preprint arXiv:2504.14047*, 2025.

[57] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. *arXiv preprint arXiv:2203.11171*, 2022.

[58] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. *arXiv preprint arXiv:2109.01652*, 2021.

[59] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.

[60] Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Controllable chain-of-thought compression in llms. *arXiv preprint arXiv:2502.12067*, 2025.

[61] Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey of speculative decoding. *arXiv preprint arXiv:2401.07851*, 2024.

[62] Enze Xie, Junsong Chen, Yuyang Zhao, Jincheng Yu, Ligeng Zhu, Chengyue Wu, Yujun Lin, Zhekai Zhang, Muyang Li, Junyu Chen, et al. Sana 1.5: Efficient scaling of training-time and inference-time compute in linear diffusion transformer. *arXiv preprint arXiv:2501.18427*, 2025.

[63] Guowei Xu, Peng Jin, Li Hao, Yibing Song, Lichao Sun, and Li Yuan. Llava-o1: Let vision language models reason step-by-step. *arXiv preprint arXiv:2411.10440*, 2024.

[64] Haoran Xu, Baolin Peng, Hany Awadalla, Dongdong Chen, Yen-Chun Chen, Mei Gao, Young Jin Kim, Yunsheng Li, Liliang Ren, Yelong Shen, et al. Phi-4-mini-reasoning: Exploring the limits of small reasoning language models in math. *arXiv preprint arXiv:2504.21233*, 2025.

[65] Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing less. *arXiv preprint arXiv:2502.18600*, 2025.

[66] An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024.

[67] Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Zheng Lin, Li Cao, and Weiping Wang. Dynamic early exit in reasoning models. *arXiv preprint arXiv:2504.15895*, 2025.

[68] Junjie Yang, Ke Lin, and Xing Yu. Think when you need: Self-adaptive chain-of-thought learning. *arXiv preprint arXiv:2504.03234*, 2025.

[69] Wenkai Yang, Shuming Ma, Yankai Lin, and Furu Wei. Towards thinking-optimal scaling of test-time compute for llm reasoning. *arXiv preprint arXiv:2502.18080*, 2025.

[70] Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for reasoning. *arXiv preprint arXiv:2502.03387*, 2025.

[71] Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-of-thought reasoning in llms. *arXiv preprint arXiv:2502.03373*, 2025.

[72] Runpeng Yu, Xinyin Ma, and Xinchao Wang. Introducing visual perception token into multimodal large language model. *arXiv preprint arXiv:2502.17425*, 2025.

[73] Nan Zhang, Yusen Zhang, Prasenjit Mitra, and Rui Zhang. When reasoning meets compression: Benchmarking compressed large reasoning models on complex reasoning tasks. *arXiv preprint arXiv:2504.02010*, 2025.

[74] Xunyu Zhu, Jian Li, Can Ma, and Weiping Wang. Improving mathematical reasoning capabilities of small language models via feedback-driven distillation. *arXiv preprint arXiv:2411.14698*, 2024.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the paper's contributions and scope.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of the work in the Appendix.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: No theoretical results in the paper.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In section 4, we provide all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Justification: We provide the code and data in the supplemental materials.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [\[Yes\]](#)

Justification: In section 4 and appendix, we specify all the training and test details

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[Yes\]](#)

Justification: In section 4, we provide experiment results obtained by averaging multiple inference results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: In section 4, we provide sufficient information on the computer resources needed to reproduce the experiments

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification: We follow the NeurIPS Code of Ethics

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [\[Yes\]](#)

Justification: We discuss broader societal impacts of the work in the appendix.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code package or dataset.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.

- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in the paper are well documented.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: Our research topic is around efficient reasoning LLM.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.

In this document, we provide supplementary materials that extend beyond the scope of the main manuscript, constrained by space limitations. These additional materials include in-depth information about training details, dataset construction, and case studies.

A Training Details

We provide additional training details in this section. We employ *Low-Rank Adaptation* (LoRA) [18] for efficient fine-tuning, which significantly enhances training efficiency and effectively mitigates catastrophic forgetting, as training and inference are performed on different tasks.

Our LoRA configurations are presented in Table 5. We utilized different LoRA ranks and alpha values for the three distinct models to achieve the optimal balance between underfitting and catastrophic forgetting. All other training hyperparameters remain consistent across models: learning rate = 3e-5, LoRA dropout = 0.05, weight decay = 0.01, and batch size = 64. All models were trained for 2 epochs on our self-constructed CoT-Verification dataset.

Table 5: The LoRA configuration in our training process.

Models	LoRA Module	LoraLoRARank	LoRA Alpha
DeepSeek-R1-Distill-Qwen-7B	QKVO	256	512
DeepSeek-R1-Distill-Qwen-14B	QKVO	128	128
DeepSeek-R1-Distill-Llama-8B	QKVO	128	128

B Construct the CoT-Verification Dataset

As SVFT trains the LLM to directly distinguish whether a CoT solution is correct, a crucial challenge lies in constructing the CoT verification dataset for SVFT.

Problem Collection. The first step involves collecting problems for our dataset. To ensure a diverse range of topics and difficulty levels, we aggregate problems from four mathematical datasets known for their breadth of content and varying difficulties: PRM12K [32], GSM8K [6], LIMO [70], and Numina-Math [29]. Specifically, we extract all problems from the training set of PRM12K, GSM8K, and LIMO. For Numina-Math, we only select problems whose solutions are integer-valued math-word-problems, simplifying correctness labeling. Following this procedure, we collected approximately 300K mathematical problems spanning diverse topics and difficulty levels.

CoT Solution Collection. The second step entails generating numerous CoT solutions for the collected problems, which will serve as targets for our verification task. To achieve efficiency and variety, we employ several small, non-reasoning language models: Qwen-2.5-0.5B-Instruct, Qwen-2.5-1.5B-Instruct, Qwen-2.5-7B-Instruct, Qwen-Math-1.5B-Instruct, and Qwen-Math-7B-Instruct [66]. We utilize a CoT prompting strategy to generate step-by-step solutions for the previously collected 300K problems. Notably, none of our CoT solutions are generated by reasoning models, and none include explicit self-reflection steps. Experiments indicate that reasoning models producing long-chain solutions complicate optimization in SVFT, as a single response might contain multiple correct or incorrect sub-steps. This collection method offers two main advantages:

- Computational efficiency: All selected models are lightweight and only generating short-CoT solutions, significantly accelerating the data generation process. For instance, using Qwen-Math-1.5B-Instruct, we generate solutions for all 300K problems within 3 to 4 hours using only four NVIDIA A6000 GPUs.
- Solution diversity: The selected models exhibit varying reasoning capabilities, producing a diverse set of correct and incorrect solutions for each problem. This diversity greatly enhances the robustness of subsequent fine-tuning.

Consequently, we obtain five different short CoT solutions per problem, yielding a total of 1.5 million problem-solution pairs.

Original Long-CoT Data	# Tokens: 3100
Prompt: What is the least positive integer multiple of 30 that can be written with only the digits 0 and 2? Please reason step by step.	
Response: Okay, so I need to find the least positive integer multiple of 30 that can be written using only the digits 0 and 2. Hmm, let's break this down.\n\nFirst, I know that 30 is equal to 3 multiplied by 10. So, any multiple of 30 must be a multiple of both 3 and 10. That means the number I'm looking for has to satisfy the divisibility rules for both 3 and 10 Wait , hold on. Let me check if there's a smaller number with five digits that might be smaller..... Wait , 2220 is a four-digit number, so it's smaller than any five-digit **Final Answer** \nThe least positive integer multiple of 30 that can be written with only the digits 0 and 2 is \boxed{2220}.	
Synthetic Concise-CoT Data	# Tokens: 1084
Prompt: What is the least positive integer multiple of 30 that can be written with only the digits 0 and 2? Please reason step by step.	
Response: Okay, so I need to find the least positive integer multiple of 30 that can be written using only the digits 0 and 2. Hmm, let's break this down.\n\nFirst, I know that 30 is equal to 3 multiplied by 10. So, any multiple of 30 must be a multiple of both 3 and 10. That means the number I'm looking for has to satisfy the divisibility rules for both 3 and 10 **Final Answer** \nThe least positive integer multiple of 30 that can be written with only the digits 0 and 2 is \boxed{2220}.	
CoT-Verification Data (Ours)	# Tokens: 421
Prompt: ## Instruction: Please carefully verify each step of the solution, tell me if every step is absolutely correct. ## Question: What is the least positive integer multiple of 30 that can be written with only the digits 0 and 2? Please reason step by step. ## Solution: To find the least positive integer multiple of 30 that can be written with only the digits 0 and 2, we need to.....Therefore, the least positive integer multiple of 30 that can be written with only the digits 0 and 2 is \boxed{2220}.	
✓ Response A: Yes, I'm sure that every step is absolutely correct. ✗ Response B: No, I think there might be some mistakes in the proposed solution.	

Figure 4: Training data format comparison.

Correctness Labeling. In the third step, we label the correctness of each generated CoT solution. Rather than evaluating each reasoning step, we simplify labeling by verifying only the final answers against known ground-truth solutions. As all collected problems have deterministic solutions, correctness labeling is straightforward: we employ the Hugging Face `math_verify` function to automatically extract final answers from CoT solutions and compare them against ground truths. Following this procedure, each of the 1.5 million problem-solution pairs is labeled as either correct or incorrect.

Verification Data Selection. Finally, we select a subset from the 1.5 million labeled pairs for fine-tuning. Initially, we discard problems where all five CoT solutions are uniformly correct or incorrect. Such problems lack informative training signals due to being either too trivial or excessively challenging, and this process also helps filter out inherently problematic data. Next, we apply a straightforward deduplication strategy using `Qwen-Math-1.5B-Instruct` as a reference model. Specifically, for problems correctly solved by the reference model, we retain its correct solutions along with incorrect solutions generated by the other models. Conversely, for problems incorrectly solved by the reference model, we retain its incorrect solutions and also incorrect solutions from the other models. This selection strategy ensures each problem contributes at least one correct and one incorrect CoT solution. Ultimately, this process yields a fine-tuning dataset consisting of 350K instances, comprising approximately 160K correct and 190K incorrect CoT solutions. Each instance is reformatted according to the structure illustrated in Figure 1.

C Cross-Domain Generalization

Our proposed VeriThinker method demonstrates strong generalization ability. Even when there exists a domain gap between the verification data used for training and the reasoning tasks during inference, our method continues to perform effectively. To substantiate this claim, we conduct two additional experiments.

We first construct a small CoT verification dataset using only questions from PRM12K and GSM8K, and fine-tune our reasoning model on this restricted data. We then evaluate the model on the much more challenging AIME datasets. As shown in Table 6, even with training data limited to PRM12K and GSM8K, our method significantly reduces token usage while maintaining comparable accuracy on the AIME benchmarks.

Table 6: Fine-tuned on PRM12K and GSM8K, evaluated on the more difficult AIME datasets.

Model	MATH500	AIME24	AIME25
R1-Distill-7B	94.0% (3791 tokens)	54.1% (13108 tokens)	38.7% (14321 tokens)
+VeriThinker	95.0% (2534 tokens)	56.4% (10302 tokens)	39.8% (11270 tokens)
R1-Distill-14B	95.2% (3529 tokens)	69.0% (11724 tokens)	49.6% (13409 tokens)
+VeriThinker	95.2% (2505 tokens)	68.7% (8425 tokens)	49.2% (10580 tokens)

To further illustrate this generalization ability, we evaluate our model, trained exclusively on mathematical reasoning tasks, on the GPQA-Diamond dataset [48]. This benchmark consists of multiple-choice questions spanning diverse scientific domains (e.g., chemistry, physics, biology), and differs substantially in both format and content from our training data. As shown in Table 7, our approach consistently compresses the length of CoTs while maintaining accuracy.

Table 7: Cross-domain performance on GPQA-Diamond.

Model	GPQA-Diamond
R1-Distill-7B	51.0% (7407 tokens)
+VeriThinker	50.0% (4984 tokens)
R1-Distill-14B	60.1% (6996 tokens)
+VeriThinker	60.6% (4309 tokens)

Overall, these results demonstrate that VeriThinker achieves robust performance even in the presence of substantial domain shifts between training and testing, confirming its strong cross-domain generalization capability.

D Comparison of Verification Capability

To further validate our approach, we use Qwen-2.5-1.5B-Instruct to generate CoT solutions on MATH500 and evaluated the verification accuracy of several models. We compared our VeriThinker-7B with two strong open-source models (Qwen-2.5-7B-Instruct and LLaMA-3.1-8B-Instruct) and two advanced closed-source models (OpenAI GPT-4o and GPT-4.1). As shown in Table 8, our method achieves substantially higher verification accuracy than the open-source models and even surpasses the two large closed-source models from OpenAI.

Table 8: Comparison of CoT correctness verification capability.

Model	Accuracy (%)	Precision	Recall	F1
Qwen-2.5-7B-Instruct	74.8	0.714	0.934	0.810
LLaMA-3.1-8B-Instruct	70.0	0.668	0.948	0.783
OpenAI GPT-4o	85.0	0.889	0.843	0.866
OpenAI GPT-4.1	86.4	0.910	0.847	0.877
VeriThinker-7B (Ours)	90.4	0.972	0.857	0.911

E Case Study

We also present additional case studies on cot compression in Figure 5 and Figure 6.

CoT Compression Case Study

Prompt: The set of points (x,y,z) that satisfy $2x = 3y = -z$ is a line. The set of points (x,y,z) that satisfy $6x = -y = -4z$ is another line. Find the angle between these lines, in degrees.

Our Response: Okay, so I need to find the angle between two lines in 3D space. The lines are given by the equations:
 First line: $\langle 2x = 3y = z = 0 \rangle$
 Second line: $\langle 6x - y = -4z = 0 \rangle$, I remember that to find the angle between two lines, I can use the direction vectors of the lines and then compute the angle between those vectors using the dot product formula. So, first, I need to find the direction vectors for both lines.
 Let me start with the first line: $\langle 2x = 3y = z = 0 \rangle$. I think this can be written in parametric form by setting each expression equal to a parameter, say $\langle t \rangle$. So, let me set $\langle 2x = 3y = z = t \rangle$. Then, I can express $\langle x(t) \rangle$, $\langle y(t) \rangle$, and $\langle z(t) \rangle$ in terms of $\langle t \rangle$:
 $\langle 2x = t \rangle \Rightarrow x(t) = \frac{t}{2}$
 $\langle 3y = t \rangle \Rightarrow y(t) = \frac{t}{3}$
 $\langle z = t \rangle \Rightarrow z(t) = t$
 So, the parametric equations are: $\langle x(t) = \frac{t}{2}, y(t) = \frac{t}{3}, z(t) = t \rangle$.
 Therefore, the direction vector for the first line is given by the coefficients of $\langle t \rangle$ in each component, which is $\langle \frac{1}{2}, \frac{1}{3}, 1 \rangle$.
 Similarly, I can set each expression equal to a parameter, say $\langle s \rangle$. So, let me set $\langle 6x - y = -4z = s \rangle$. Then, express each variable in terms of $\langle s \rangle$:
 $\langle 6x = s \rangle \Rightarrow x(s) = \frac{s}{6}$
 $\langle -y = s \rangle \Rightarrow y(s) = -s$
 $\langle -4z = s \rangle \Rightarrow z(s) = -\frac{s}{4}$
 So, the direction vector for the second line is $\langle \frac{s}{6}, -1, -\frac{s}{4} \rangle$.
 Therefore, the direction vector is given by the coefficients of $\langle s \rangle$, which is $\langle \frac{1}{6}, -1, -\frac{1}{4} \rangle$.
 To make it an integer vector, I can find a common denominator. The denominators are 6, 1, and 4, so the least common multiple is 12. Multiply each component by 12: $\langle 2, -12, -3 \rangle$. So, the direction vector for the second line is $\langle 2, -12, -3 \rangle$.
 Now, I have the two direction vectors: $\langle \frac{1}{2}, \frac{1}{3}, 1 \rangle$ and $\langle 2, -12, -3 \rangle$. The formula for the angle $\langle \theta \rangle$ between two vectors is:
 $\langle \cos \theta \rangle = \frac{\langle \mathbf{v} \cdot \mathbf{w} \rangle}{\| \mathbf{v} \| \| \mathbf{w} \|}$
 First, let's compute the dot product $\langle \mathbf{v} \cdot \mathbf{w} \rangle$:
 $\langle \mathbf{v} \cdot \mathbf{w} \rangle = \langle \frac{1}{2} \cdot 2 + \frac{1}{3} \cdot (-12) + 1 \cdot (-3) \rangle = \frac{1}{2} \cdot 2 + \frac{1}{3} \cdot (-12) + 1 \cdot (-3) = 1 - 4 - 3 = -6$
 Now, let's compute the magnitudes of the vectors:
 $\| \mathbf{v} \| = \sqrt{\langle \frac{1}{2}^2 + \frac{1}{3}^2 + 1^2 \rangle} = \sqrt{\frac{1}{4} + \frac{1}{9} + 1} = \sqrt{\frac{13}{36}} = \sqrt{13}/6$
 $\| \mathbf{w} \| = \sqrt{\langle 2^2 + (-12)^2 + (-3)^2 \rangle} = \sqrt{4 + 144 + 9} = \sqrt{157} \approx 12.53/\sqrt{6}$
 Now, let's compute the angle:
 $\langle \theta \rangle = \cos^{-1} \left(\frac{-6}{\sqrt{13}/6 \cdot \sqrt{157}} \right) = \cos^{-1} \left(\frac{-6 \cdot 6}{\sqrt{13} \cdot \sqrt{157}} \right) = \cos^{-1} \left(\frac{-36}{\sqrt{2041}} \right) \approx \cos^{-1} (-0.87) \approx 150^\circ$
 Therefore, the angle between the lines is 150 degrees.

Tokens: 2330

Figure 5: Case study 2 on CoT Compression

CoT Compression Case Study

Prompt: Evaluate $\$(1+2i)6-3i\$$.

Original Response: Okay, so I need to evaluate the expression $(1 + 2i)6 - 3i$. Hmm, let me think about how to approach this. I remember that when dealing with complex numbers, we can perform operations like addition, subtraction, multiplication, and division. In this case, it seems like we have a complex number multiplied by 6 and then subtracting $3i$. Let me break it down step by step. First, I need to multiply the complex number $(1 + 2i)$ by 6. I think multiplying a complex number by a real number is straightforward. You just distribute the real number to both the real and imaginary parts of the complex number. So, 6 times 1 is 6, and 6 times $2i$ is $12i$. Therefore, $(1 + 2i)$ multiplied by 6 should give me $6 + 12i$. Let me write that down: $(1 + 2i) * 6 = 6 * 1 + 6 * 2i = 6 + 12i$. Okay, so the first part is $6 + 12i$. Now, the expression is this result minus $3i$. So, I need to subtract $3i$ from $6 + 12i$. Let me do that. Subtracting $3i$ from $6 + 12i$ is the same as adding $-3i$ to $6 + 12i$. So, I can write that as: $6 + 12i - 3i$. Now, I can combine the like terms, which are the imaginary parts. So, $12i$ minus $3i$ is... let me calculate that. $12 - 3$ is 9, so that should be $9i$. Putting it all together, the real part is 6, and the imaginary part is $9i$. Therefore, the result is $6 + 9i$. Wait, let me make sure I didn't make a mistake. So, starting with $(1 + 2i) * 6$. Multiplying each term: $1 * 6 = 6$, $2i * 6 = 12i$. So, that gives $6 + 12i$. Then subtracting $3i$: $6 + 12i - 3i$. $12i - 3i$ is indeed $9i$, so $6 + 9i$. That seems correct. I guess another way to think about it is to factor out the $3i$ or something, but in this case, since it's just subtracting $3i$, combining like terms is straightforward. Let me also consider if there was a different interpretation of the original expression. It could be interpreted as $(1 + 2i)$ multiplied by $(6 - 3i)$, but the original expression is $(1 + 2i)6 - 3i$, which is written with the 6 right after the parenthesis, so I think it's 6 times $(1 + 2i)$, then subtract $3i$. But just to be thorough, what if it was $(1 + 2i)(6 - 3i)$? How would that be different? Let me calculate that for fun. Using the distributive property, $(1)(6) + (1)(-3i) + (2i)(6) + (2i)(-3i)$. Calculating each term: $1 * 6 = 6$, $1 * (-3i) = -3i$, $2i * 6 = 12i$, $2i * (-3i) = -6i^2$. Now, combine the terms: $6 - 3i + 12i - 6i^2$. Simplify like terms: $-3i + 12i$ is $9i$. So, $6 + 9i - 6i^2$. Wait, i^2 is equal to -1 , so $-6i^2$ is $-6*(-1)$ which is $+6$. So, that gives $6 + 6 + 9i = 12 + 9i$. Hmm, so if the original expression was $(1 + 2i)(6 - 3i)$, the result would be $12 + 9i$. But in our problem, the original expression is $(1 + 2i)6 - 3i$, which is $6*(1 + 2i) - 3i$, resulting in $6 + 9i$. So, the initial interpretation was correct. Therefore, I think my answer is $6 + 9i$. Just to recap, the steps are: 1. Multiply $(1 + 2i)$ by 6: $6 * 1 + 6 * 2i = 6 + 12i$. 2. Subtract $3i$ from the result: $6 + 12i - 3i = 6 + 9i$. Yes, that seems correct. I don't think I made any mistakes here. Alternatively, if I were to represent this in the form $a + bi$, 6 is the real part and 9 is the imaginary coefficient, so the expression is simplified as $6 + 9i$. Let me also consider if I can represent this in polar form, but since the question just asks to evaluate it, probably Cartesian form is sufficient. But just for practice, let me convert $6 + 9i$ to polar form. First, find the modulus: $\sqrt{(6^2 + 9^2)} = \sqrt{36 + 81} = \sqrt{117}$. Hmm, $\sqrt{117}$ can be simplified as $\sqrt{9*13} = 3\sqrt{13}$. So, modulus is $3\sqrt{13}$. Then, the argument θ is $\arctan(9/6)$ which is $\arctan(3/2)$. So, $\theta = \arctan(3/2)$. That's approximately 56.31 degrees, but we can leave it as $\arctan(3/2)$ radians. In polar form, it's $3\sqrt{13}(\cos(\arctan(3/2)) + i \sin(\arctan(3/2)))$. But I don't think the question requires this, so I can stick with the Cartesian form. So, after evaluating $(1 + 2i)6 - 3i$, the result is $6 + 9i$. I think that's the final answer. Final Answer: $6 + 9i$.

Tokens: 1406

Our Response: Okay, so I need to evaluate the expression $(1 + 2i)6 - 3i$. Hmm, let me think about how to approach this. I remember that when dealing with complex numbers, you have to distribute and then combine like terms. So, first, I should probably handle the multiplication part, which is $(1 + 2i)$ multiplied by 6, and then subtract $3i$ from the result. Let me write that down step by step. The original expression is $(1 + 2i)6 - 3i$. I can rewrite this as $6*(1 + 2i) - 3i$. Now, distributing the 6 across the terms inside the parentheses. So, $6*1$ is 6, and $6*2i$ is $12i$. That gives me $6 + 12i$. Then, I need to subtract $3i$ from that. So, putting it all together, $6 + 12i - 3i$. Now, I can combine the like terms, which are the imaginary parts. $12i - 3i$ is $9i$. Therefore, the expression simplifies to $6 + 9i$. Wait, let me make sure I did that correctly. So, $6*(1 + 2i)$ is indeed $6 + 12i$. Then subtracting $3i$ gives me $6 + 12i - 3i$. Yes, combining $12i$ and $-3i$ gives $9i$. So, the final result is $6 + 9i$. Is there anything else I need to do here? I don't think so. It seems straightforward. I just multiplied the complex number by 6 and then subtracted $3i$. Let me double-check my multiplication to be sure. 6 times 1 is 6, that's correct. 6 times $2i$ is $12i$, that's right. Then subtracting $3i$ gives $9i$. So, yes, the answer should be $6 + 9i$. I guess that's it. I don't see any mistakes in my calculations. So, I can confidently say that the evaluated expression is $6 + 9i$. Final Answer: $6 + 9i$.

Tokens: 489

Figure 6: Case study 3 on CoT Compression.