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Figure 1: The key distinction between VeriThinker and traditional SFT or RL-based long-to-short
methods. We uniquely train LRMs on an auxiliary CoT verification task, achieving effective CoT
compression without relying on synthetic target reasoning chains.

Abstract

Large Reasoning Models (LRMs) excel at complex tasks using Chain-of-Thought
(CoT) reasoning. However, their tendency to overthinking leads to unnecessarily
lengthy reasoning chains, dramatically increasing inference costs. To mitigate this
issue, we introduce VeriThinker, a novel approach for CoT compression. Unlike
conventional methods that fine-tune LRMs directly on the original reasoning task
using synthetic concise CoT data, we innovatively fine-tune the model solely
through an auxiliary verification task. By training LRMs to accurately verify the
correctness of CoT solutions, the LRMs inherently become more discerning about
the necessity of subsequent self-reflection steps, thereby effectively suppressing
overthinking. Extensive experiments validate that VeriThinker substantially reduces
reasoning chain lengths while maintaining or even slightly improving accuracy.
When applied to DeepSeek-R1-Distill-Qwen-7B, our approach reduces reasoning
tokens on MATHS00 from 3790 to 2125 while improving accuracy by 0.8% (94.0%
to 94.8%), and on AIME25, tokens decrease from 14321 to 10287 with a 2.1%
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accuracy gain (38.7% to 40.8% ). Additionally, our experiments demonstrate that
VeriThinker can also be zero-shot generalized to speculative reasoning. Code is
available athttps://github. com/czgl1225/VeriThinker

1 Introduction

Large Reasoning Models (LRMs), such as GPT-o1 [20]], DeepSeek-R1 [13]], Kimi-k1.5 [54]], and QwQ
[S5], have shown exceptional performance in tackling complex reasoning tasks. Their success stems
from the ability to generate effective Chain-of-Thought (CoT) reasoning [59} 32]]. By decomposing
intricate problems into manageable steps and meticulously verifying each intermediate result, these
models achieve superior reasoning performance. Furthermore, this test-time scaling method has
demonstrated notable potential beyond reasoning tasks, extending its impact to diverse fields such as
vision-language models [19, 163l 72, 28], image generation [40, 21} 62]], and video synthesis [7, 33]].

However, the long reasoning chains generated by LRMs often contain numerous redundant self-
checking steps—a phenomenon commonly known as "overthinking" [5]. Specifically, these models
incorporate frequent self-verification steps to ensure the accuracy of their reasoning, but most of these
self-verifications prove ineffective or even add confusion to the reasoning process. This extensive
overthinking dramatically inflates inference costs and hinders the efficient deployment of LRM:s.

Several recent studies [41} 144160} 135143138 [71} 12, [1]] have focused on compressing lengthy reasoning
chains into shorter, more concise forms. These methods typically generate concise reasoning chain
data through extensive sampling, model merging, or selective truncation of original long reasoning
chains. Subsequently, these synthetic reasoning chains serve as targets, with Supervised Fine-Tuning
(SFT) (58] or Reinforcement Learning (RL) used to align the LRM’s output distribution closely
to these target chains. Thus, the performance of these compression strategies heavily depends on
the quality and quantity of the synthesized reasoning chain data. However, generating high-quality
concise reasoning chains is computationally intensive and time-consuming. Moreover, simultaneously
achieving brevity while preserving essential self-reflection steps remains challenging. Consequently,
models compressed through these methods struggle to balance conciseness and high accuracy,
especially when tackling highly complex reasoning tasks. A key question arises: Can we effectively
compress lengthy reasoning chains without relying on synthetic target reasoning chains?

Our Approach. To address this challenge, we introduce VeriThinker, a straightforward yet effective
method for CoT compression without the dependence on synthetic target data. VeriThinker’s core
innovation lies in a novel fine-tuning strategy named Supervised Verification Fine-Tuning (SVFT).
Unlike previous methods that directly fine-tune LRMs on reasoning tasks through SFT or RL, SVFT
uniquely fine-tunes the model on an auxiliary verification task to achieve CoT compression. Specif-
ically, we create a CoT verification dataset, providing the LRM with question-solution pairs and
training it to verify the correctness of the CoT solution through binary classification. By learning to
distinguish between correct and incorrect solutions, the LRM can more accurately determine when
self-reflection is necessary. Empirical studies demonstrate that after SVFT, the model significantly
reduces unnecessary double-checking of correct reasoning steps while slightly increasing verification
of incorrect steps. This effectively mitigates overthinking and maintains or slightly improves rea-
soning accuracy. Furthermore, by utilizing its ability to recognize correctness, VeriThinker can also
generalize to solution-wise speculative reasoning for higher inference throughput.

We evaluate VeriThinker on three state-of-the-art reasoning models: DeepSeek-R1-Distill-Qwen-7B,
DeepSeek-R1-Distill-Qwen-14B, and DeepSeek-R1-Distill-Llama-8B [13]]. Extensive experiments
show that fine-tuning solely on the CoT verification task enables LRMs to substantially reduce token
usage while preserving high accuracy, even on extremely challenging problems like the AIME dataset.
Additional experiments show that VeriThinker can also be applied to speculative reasoning, achieving
a significant throughput increase when using a short-CoT LLM as the draft model.

In conclusion, we present VeriThinker, a simple yet effective CoT compression method that elim-
inates the need for synthetic target chain data. Key to our approach is the proposed SVFT, which
innovatively mitigates the overthinking problem by fine-tuning the LRM exclusively on an auxiliary
CoT verification task. Comprehensive experiments demonstrate that VeriThinker efficiently shortens
reasoning chains while preserving or slightly improving model accuracy, even on highly challenging
reasoning tasks. Additionally, our method can also generalize to speculative decoding, achieving
significant improvements in inference throughput.


https://github.com/czg1225/VeriThinker

2 Related Works

Chain-of-thought. Chain-of-thought [59] [32] enables large reasoning models (LRMs) to solve
complex reasoning tasks, such as mathematical and coding problems, by leveraging inference-time
scaling laws. Advanced LRMs, including GPT-o1 [20], DeepSeek-R1 [[13], Kimi-k1.5 [54], and
QwQ [55], have set new benchmarks in reasoning capabilities. These models utilize reinforcement
learning to encourage multiple self-reflection steps during inference, substantially increasing response
accuracy. Furthermore, other methods, such as self-consistency [S7]], beam search, and Monte Carlo
Tree Search (MCTS) [22,[12], have been employed to facilitate parallel inference scaling laws, further
enhancing LRM reasoning effectiveness. Beyond language models, the principles underlying CoT
have also demonstrated significant performance improvements in domains like visual reasoning
[19,163}[72]], image generation [40} 21} 162], and video synthesis [7}33]].

Efficient Reasoning Models. Despite these substantial gains, the tendency of LRMs towards
overthinking often results in excessively extended reasoning chains, significantly raising inference
costs. Recent research has investigated methods for compressing CoT to enable more efficient
reasoning processes. Specifically, [S] comprehensively analyzes the overthinking phenomenon
and employs SimPO [42] to fine-tune LRMs. Kimi-K1.5 [54] proposes weight merging strategies
between long-CoT and short-CoT models and introduces length-penalized loss functions to effectively
compress CoT. Additional studies [41} [14]] achieve lengthy-controllable CoT compression, while
others [60, 135143} 169] synthesize concise reasoning chain data to guide long-to-short compression via
SFT. Methods [38. 711 12, [1, 126} [17] adopt reinforcement learning and extensive sampling to reduce
the number of tokens required in CoT processes. Furthermore, adaptive methods [[68l, (37, 150} [10]]
have been proposed to conditionally activate long-CoT modes based on input query. Simpler yet
effective prompt-guidance methods for direct CoT compression have also been explored [36 |65]
24, 153]]. Additionally, there is increasing interest in converting explicit CoT processes into latent
CoT [9,18, 149, [11}[15]. However, these latent approaches currently face significant challenges about
accuracy degradation.

Beyond CoT compression, other techniques involving model compression and optimized decoding
have also gained prominence. Knowledge distillation approaches have allowed smaller reasoning
models to approximate the performance of larger counterparts effectively [64} 4,127, [74]. Additionally,
[S51} 134, [73] explore model pruning and quantization techniques on LRMs. Decoding optimization
techniques have also been widely adopted to accelerate inference [56 152} 39} 64, 67]. Methods such
as speculative decoding [31}, 46] and parallel inference strategies [45) 44] demonstrate a notable
decoding acceleration ratio, further enhancing the practical applicability of LRMs.

3 Methods

3.1 Problem Setup

Recent efforts in improving the efficiency of LRMs have focused on compressing lengthy reasoning
chains into shorter, more concise reasoning sequences without redundant over-thinkings. Formally,
let My represent an LRM parameterized by 6. Given a query ¢, the model generates a long reasoning
chain Cj, obtained by sampling from the model’s conditional output distribution: C; ~ Mjy(- | q).
We hypothesize the existence of an ideal concise reasoning chain Cj;, characterized by minimality in
length and maximal retention of essential self-verification steps, ensuring the correctness of the final
solution. The objective of CoT compression is thus to finetune My such that the generated reasoning
chain closely approximates the ideal concise chain C;:

min B, [D(Mo (- | 4),C) M)

where D denotes a suitable distance metric in the distribution space.

A commonly employed approach involves constructing a synthetic short reasoning chain C;. In
SFT-based variants [60, 135,143} 69} 41]], this is typically done via model merging or by selectively
truncating the original long chain data, whereas RL-based approaches [38. 71 2} [1} [26] [17] rely on
extensive sampling. Under the assumption that the synthetic chain Cj is distributionally close to
the ideal chain C;, they train the LRMs either by supervised fine-tuning on Cs or by reinforcement
learning—rewarding the shorter sequences Cs more highly than the longer ones C.



In essence, these approaches regard the synthesized short CoT sequences as the target reasoning chain
and train the model to approximate them. Therefore, their efficacy depends critically on both the
quality and volume of the generated C's. However, generating high-quality short chains is extremely
costly in computing and time, which limits efficient scalability. Furthermore, synthetic short reasoning
chains typically struggle to simultaneously achieve brevity and retain the essential self-reflection
steps, resulting in a mismatch from the ideal distribution C;. This discrepancy often inevitably leads
to substantial degradation in the model’s reasoning capabilities during the long-to-short process,
particularly when confronted with complex, high-difficulty problems.

A critical problem arises: Can we devise a method that effectively compresses an LRM’s overex-
tended reasoning chains while preserving its original reasoning ability, without relying on explicitly
synthesized target chains?

3.2 Supervised Verification Finetuning

To address the aforementioned issue, we begin by revisiting the fundamental principles underlying
LRM’s overthinking. During reasoning, when determining whether to engage in additional self-
reflection, the LRM essentially operates as a binary classifier that evaluates the correctness of
previously generated reasoning steps. Formally, the LRM encodes a prior solution into a hidden state,
denoted as h, and the language modeling head (LM head) subsequently classifies this state as either
correct or incorrect. If the classification is correct, the model proceeds to subsequent reasoning steps;
if incorrect, it triggers further self-verification.

The prevalence of overthinking stems from insufficient accuracy in this binary classification task.
Specifically, the hidden state h fails to adequately encode the critical information required for
precise correctness judgments. Consequently, LRMs frequently misclassify correct solutions as
incorrect, leading to unnecessary self-reflection steps. Let p(acc | k) denote the probability that the
LRM accurately classifies the correctness of a prior solution. By increasing p(acc | k), redundant
reflections are progressively reduced, preserving only essential verification steps for genuinely
incorrect solutions. In the ideal case where p(acc | h) = 100%, the LRM outputs the optimal
reasoning chain C;, invoking self-reflection solely when prior solutions are indeed erroneous.

Existing methods that employ synthetic target chains for CoT compression implicitly aim to maximize
p(acc | h). These methods synthesize a concise target chain approximating the optimal scenario
where p(acc | h) =~ 100%. As the LRM’s output distribution aligns with this target, p(acc | h)
naturally increases, thereby mitigating overthinking. However, such approaches are inefficient
and indirect, as most tokens in the synthetic chains contribute negligibly to improving p(acc | h).
Consequently, these methods yield only marginal gains in p(acc | k). Moreover, the probability of
triggering self-reflection decreases even when errors occur in earlier steps, inadvertently leading to
performance degradation on highly complex problems.

Since the primary cause of overthinking in LRMs arises from their inability to accurately determine
the correctness of a solution, a natural and intuitive strategy is to explicitly train LRMs to discern
solution correctness, thus fundamentally addressing the overthinking issue. Motivated by this insight,
we introduce VeriThinker, a straightforward yet effective method for CoT compression. The key idea
of VeriThinker is a novel fine-tuning strategy, termed Supervised Verification Fine-Tuning (SVFT).
Distinct from prior approaches, SVFT does not rely on optimizing the model to match a target
reasoning chain distribution. Instead, it aims to directly enhance the model’s capability to classify
solutions as correct or incorrect, optimizing the binary classification accuracy p(acc|h). Specifically,
we fine-tune the reasoning model on an auxiliary CoT verification task, providing the LRM with a
question paired with a CoT solution, and the model is explicitly trained to accurately classify whether
this provided solution is entirely correct or not.

Firstly, we need to construct a CoT verification dataset, denoted as: Dyerir = (g, Si, v;) Where each
data instance consists of a problem description ¢;, a CoT solution s; without self-reflection steps, and
a verification result v; indicating the correctness of the solution. The prompt for each instance is
formed by the pair (g;, s;), and the corresponding verification response v; is explicitly defined as:

@)

"Yes, I’m sure that every step is absolutely correct."” if s; is correct
ry step y ) )
vy = : : . . . )
! "No, I think there might be some mistakes in the proposed solution.", otherwise.
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Figure 2: (a)-(b): Token counts and accuracy in reasoning tasks across different training datasets. (c)
Probability of self-reflection during reasoning for correct and incorrect solutions.

Then we used this CoT-verification dataset to fine-tune the LRMs. During finetuning, only tokens
within the verification response v; contribute to the training loss. This design effectively mitigates
potential undesirable biases introduced by the input solution from affecting the model’s output
distribution. Formally, given a tokenized prompt-response pair (z,y), the SVFT training loss is

defined as:
Lsvrr = — Z logpe(ytlx, y<t) 3)

tey
where pg denotes the probability distribution output by the LRM parameterized by 6.

Since the judgments of correct and incorrect in the data are represented as two completely fixed
responses, and we only compute the loss on the response tokens, the entire SVFT essentially performs
a binary classification on the question-solution pairs which is fundamentally similar to how the LRM
decides whether to perform self-reflection after each step during reasoning.

Experiments demonstrate that by learning to verify the correctness of CoT solutions, SVFT effectively
mitigates LRM’s overthinking phenomenon. While significantly reducing the number of tokens
required for reasoning, SVFT does not lead to noticeable degradation in reasoning capability.

3.3 Empirical Analysis

To better understand why SVFT facilitates effective compression of CoT without compromising the
original reasoning capability of LRMs, we conducted additional experiments to thoroughly investigate
the underlying mechanisms of SVFT.

What Capabilities Does SVFT Impart to the Model? A primary question we sought to explore
was the specific competencies instilled in the LRM through SVFT. To this end, we constructed five
distinct CoT-verification datasets and conducted SVFT on the R1-Distill-Qwen-7B model, observing
differences in outcomes across these datasets. These five datasets shared identical prompts, each
consisting of a question, a CoT solution, and concise instructions. However, we varied the response
tokens in five distinct ways: Dataset (1): Maintained the original setting. Dataset (2): Reversed
responses, assigning affirmative responses to incorrect solutions and negative responses to correct
solutions. Dataset (3): Simplified responses to single tokens, “Yes” and “No,”. Dataset (4): Further
simplified responses to semantically neutral tokens “North” and “South.” Dataset (5): Randomly
assigned responses irrespective of solution correctness.

Figure [4] (a) and (b) illustrate the changes in average tokens per response and accuracy on the
MATHS00 [16] dataset after SVFT training with the aforementioned datasets. We observed that,
apart from Dataset (5), all other datasets showed similar trends: a significant reduction in reasoning
chain length, accompanied by maintained or slightly improved accuracy. These findings suggest that
SVFT is fundamentally akin to contrastive learning. The model learns the capability to distinguish
differences between correct and incorrect solutions through binary classification rather than learning
explicit correctness semantics. In contrast, Dataset (5), which utilized responses entirely unrelated to
solution correctness, did not facilitate CoT compression. This indicates that SVFT does not merely
cause the LRM to adopt a more concise expression style or to directly output conclusions, reinforcing
our earlier conclusions.

Conclusion: In summary, SVFT empowers the LRM to differentiate between correct and incorrect
solutions rather than intrinsically learning which solution is right. The core mechanism of SVFT
closely resembles that of contrastive learning.



Why Does SVFT Enhance CoT Compression? Next, we investigate the reasons behind SVFT’s
effectiveness in achieving CoT compression. As SVFT trains the model to perform binary classifica-
tion based on the correctness of CoT solutions, the model inherently learns to focus on the crucial
elements in the CoT affecting solution correctness. We hypothesize that this enhanced attention
allows the model, during reasoning tasks, to more accurately determine whether a self-reflection step
is necessary, thereby eliminating redundant double-checking and enabling effective CoT compression.

To empirically validate this hypothesis, we randomly selected 50 problems from the MATHS500
dataset and generated correct long CoT solutions for each problem using the R1-distill-Qwen-7B
model. We extracted sub-solutions from each solution, spanning from the start until the appearance
of the first pivot word "Wait." We then performed forward computations using the original R1-Distill-
Qwen-7B, the SFT model and the SVFT model on these question-sub-solution pairs, examining the
generation probabilities of the pivot word "Wait." As shown in Figure ] (c), we found that both the
SFT and SVFT models exhibit a significantly lower probability of generating the pivot word for
correct sub-solutions compared to the original model.

Next, we manually introduced mistakes into each correct sub-solution—for instance, changing
"3 X7 =21"to"3 x 7 = 27"—and evaluated the models’ probabilities for generating the pivot word
"Wait" again. In this case, the SVFT model showed no probability reduction but instead a marginal
(1%) increase compared to the original model, while the SFT model continued to exhibit significantly
reduced probabilities.

These results strongly support our hypothesis: SVFT enhances the LRM’s precision in evaluating
reflection necessity. Specifically, for the SVFT model, we observe: (1) substantial reduction in
redundant verification when preceding steps are correct, and (2) slight increase in reflection probability
when mistakes are introduced. This adaptive behavior enables effective CoT compression while
preserving and occasionally improving reasoning accuracy. In contrast, the SFT model uniformly
reduces reflection probability regardless of solution correctness, explaining its chain-shortening
capability at the cost of accuracy degradation.

To further validate this hypothesis, we compared the changes in response token counts of the SVFT-
finetuned model on the MATH500 dataset. For questions correctly answered by the SVFT model, the
token count in the reasoning chain decreased by 41% compared to the original model. In contrast,
for incorrectly answered questions, the token count decreased by only 8%. This experimental result
further robustly supports our hypothesis.

Conclusion: In summary, SVFT achieves effective CoT compression primarily by enhancing the ac-
curacy of LRMs’ self-reflection decisions during reasoning. It minimizes unnecessary self-reflections
for correct steps while retaining critical verification steps for mistaken steps, significantly reducing
token usage without compromising reasoning accuracy.

3.4 Solution-wise Speculative Reasoning

As LRMs acquire the capability to verify solution correctness through SVFT, we leverage this ad-
vancement to propose a collaborative inference pipeline termed Solution-wise Speculative Reasoning
(SSR). This approach significantly boosts inference throughput by orchestrating interactions between
a short-CoT LLM and an SVFT-enhanced LRM.

Distinct from conventional token-wise speculative decoding methods [25} 3} 130} 61], where a smaller
draft model proposes multiple candidate tokens subsequently verified in parallel by a larger LLM
through token probability evaluation (accepting or rejecting each individual draft token), our approach
introduces a novel solution-level paradigm specifically tailored for reasoning tasks. Given a problem,
the short-CoT LLM first rapidly generates a concise solution candidate. This candidate is then
assessed by the SVFT-enhanced LRM for correctness verification. If the proposed solution is deemed
correct, it is immediately output as final answer; otherwise, the system activates the LRM’s full
long-CoT reasoning process to ensure accurate results.

This pipeline adaptively engages the LRM: For simple problems, the LRM only validates the draft
solution without invoking costly long-CoT; For challenging problems, the LRM intervenes to ensure
accuracy when the draft fails. By selectively triggering long-CoT reasoning based on problem
difficulty and draft quality, our speculative reasoning pipeline achieves substantial throughput gains
while preserving high reasoning accuracy.



Table 1: CoT compression performance. We evaluate the proposed VeriThinker on three advanced
reasoning models, comparing token efficiency and accuracy against the original model and baseline
methods over three mathematical reasoning benchmarks.

Method MATHS500 AIME 2024 AIME 2025 Average
Tokens | Accuracy? Tokens| Accuracy! Tokens| Accuracy? Tokens | Accuracy?
Deepseek-R1-Distill-Qwen-7B
Original Model 3791 94.0% 13108 54.1% 14321 38.7% 10407 62.3%
Truncating 2306 80.4% 9550 45.3% 10232 36.3% 7363(-29%)  54.0%(-8.3%)
Fast-Prompting 2425 83.8% 11867 53.3% 13378 38.3% 9223(-30%)  58.5%(-3.8%)
CoT-Valve 2440 92.4% 11238 39.2% 10884 30.4% 8187(-22%)  54.0%(-8.3%)
SFT 2064 91.2% 8843 49.1% 9686 32.1% 6864(-34%)  57.5%(-4.8%)
VeriThinker 2125 94.8% 9381 56.5% 10287 40.8 % 7264(-30%)  64.0% (+1.7%)
Deepseek-R1-Distill-Qwen-14B
Original Model 3529 95.2% 11724 69.0% 13409 49.6% 9554 71.2%
Truncating 2479 85.8% 8658 57.1% 9247 42.9% 6795(-30%)  61.9%(-9.3%)
Fast-Prompting 2405 82.0% 8288 64.0% 10645 49.3% T113(-26%)  65.1%(-6.1%)
CoT-Valve 2102 91.0% 8691 41.7% 9558 25.0% 6783(-29%)  52.6%(-18%)
SFT 2226 92.8% 9021 58.3% 10644 43.3% 7297(-24%)  64.8%(-7.4%)
VeriThinker 2255 95.0% 7423 73.0% 9304 54.8% 6327(-34%)  74.3% (+3.1%)
Deepseek-R1-Distill-Llama-8B
Original Model 4361 90.6% 14005 44.6% 14420 30.1% 10928 55.1%
Truncating 3193 81.6% 11577 39.1% 11635 28.6% 8802(-20%)  49.8%(-5.3%)
Fast-Prompting 3378 86.2% 12615 40.4% 13292 29.4% 9762(-11%)  52.0%(-3.1%)
CoT-Valve 4614 81.4% 12650 23.3% 12520 17.5% 9928(-9%) 40.7%(-14%)
SFT 2439 81.2% 9500 31.3% 10136 26.0% 7358(-33%)  46.2%(-8.7%)
VeriThinker 2953 89.9% 11285 46.9% 10557 29.7 % 8265(-24%)  55.5%(+0.4%)

4 [Experiments

4.1 Experimental Setup

Models. To comprehensively evaluate our approach, we apply the proposed VeriThinker to three
state-of-the-art long-CoT reasoning models with varying architectures and sizes, including DeepSeek-
R1-Distill-Qwen-7B, DeepSeek-R1-Distill-Qwen-14B, and DeepSeek-R1-Distill-LLaMA-8B [13]].
Additionally, we also evaluate our approach on three short-CoT models: Qwen-2.5-Math-7B-Instruct,
Qwen-2.5-Math-1.5B-Instruct [[66], and Qwen-2.5-7B-Instruct [66]].

Training and Evaluation Details. For the proposed SVFT, we adopt Low-Rank Adaptation (LoRA)
[L8] for efficient fine-tuning, which significantly improves training efficiency and effectively mitigates
catastrophic forgetting, as training and inference occur on different tasks. All training procedures
are conducted using Hugging Face’s SFTTrainer integrated with DeepSpeed ZeRO-2 optimization
[47], distributed across four RTX 6000 Ada GPUs. For evaluation, inference results and throughput
metrics are also obtained using RTX 6000 Ada GPUs with the vVLLM inference framework [23]. We
adhere to the models’ default sampling configurations, specifically setting temperature to 0.6 and
top-p to 0.95. During inference, the prompt appended to each question is: "Please reason step by step,
and put your final answer with \bozed." To evaluate LRM’s performance, we report the reasoning
accuracy and the average token count of the reasoning chain (between <think> and </think>).

Datasets. During the fine-tuning phase, we utilize our self-constructed CoT-verification dataset
comprising approximately 340k question-CoT pairs, each labeled with correctness indicators. We
provide more details about training set construction in the Appendix. For evaluation, we employ
multiple mathematical benchmark datasets, including MATHS00 [[16], GSMS8K [6], and two highly
challenging competition datasets, AIME2024 and AIME2025. The results reported for each dataset
represent averages computed over 2 to 16 independent runs, depending on the dataset’s size.

Baselines. To demonstrate the superiority of our innovative method, we compare it against several
conventional CoT compression approaches, including: (1) Truncation, which reduces the maximum
allowable token length; (2) Fast-Prompting, a method leveraging prompt engineering to enforce
reasoning completion within a specified token limit; (3) CoT-Valve [41]], enabling a model to
dynamically adjust the length of reasoning chains; and (4) SFT [58], a supervised fine-tuning method
that uses synthesized concise CoT chains as targets for long-to-short compression. To synthesize
concise reasoning chains for the SFT baseline, we follow CoT-Valve [1] by merging the base and



Table 2: CoT correctness verification results. We apply VeriThinker to three advanced LRMs and
assess their verification accuracy on CoT solutions generated by two short-CoT models. For a
comprehensive analysis, we report classification accuracy, precision, recall, and F1 score.

M MATHS500 GSMSK
ethod
Acc. T Precision!T Recallt F1Score?T Acc.T Precision?T Recall? F1 Score
QWEN-2.5-MATH-1.5B-Instruct
R1-Distill-Qwen-7B+VeriThinker 88.4% 0.926 0.924 0.926 93.6% 0.964 0.962 0.963
R1-Distill-Qwen-14B+VeriThinker ~ 90.6% 0.953 0.927 0.940 95.7% 0.971 0.978 0.975
R1-Distill-Llama-8B+VeriThinker ~ 88.0% 0.954 0.892 0.922 91.5% 0.954 0.947 0.950
QWEN-2.5-MATH-7B-Instruct

R1-Distill-Qwen-7B+VeriThinker 89.4% 0.946 0.931 0.939 94.8% 0.981 0.965 0.973
R1-Distill-Qwen-14B+VeriThinker ~ 91.0% 0.973 0.922 0.947 95.5% 0.986 0.966 0.976
R1-Distill-Llama-8B+VeriThinker ~ 87.4% 0.972 0.880 0.924 93.9% 0.981 0.955 0.968

Table 3: Speculative Reasoning Results. We applied VeriThinker to three LRMs and employed
two short-CoT LLMs as draft models to evaluate the performance of solution-wise speculative
reasoning. We report accuracy, token counts, throughput, and AcR (long-CoT reasoning Activation
Rate). Underlined numbers indicate the token counts during the draft phase for short-CoT LLMs.

MATHS500 GSMSK

Method

Ace 1 Tokens | Throughputt AcR] AccT Tokens| Throughput! AcR/|
R1-Distill-Qwen-7B 94.0% 3791 1.0x 100.0%  92.8% 1555 1.0x 100.0%
+Qwen-2.5-Math-1.5B-Instruct  91.8% 589+889 4.4x 20.8%  933% 3214229 5.1x 14.0%
+Qwen-2.5-Math-7B-Instruct 93.4% 614+656 4.2x 14.6%  96.1%  294+113 7.1x 5.0%
R1-Distill-Qwen-14B 95.2% 3529 1.0x 100.0%  95.6% 1309 1.0x 100.0%
+Qwen-2.5-Math-1.5B-Instruct  93.0%  589+1130 3.6x 22.8%  95.1%  321+175 5.3x 13.2%
+Qwen-2.5-Math-7B-Instruct 95.7% 614+954 3.5x 17.6%  96.6% 294+93 5.4x 5.5%
R1-Distill-Llama-8B 90.6% 4361 1.0x 100.0%  89.2% 1643 1.0x 100.0%
+Qwen-2.5-Math-1.5B-Instruct  90.4%  589+1589 3.3x 258% 91.7%  321+307 4.7x 14.5%
+Qwen-2.5-Math-7B-Instruct 91.6%  614+1265 3.2x 212%  96.4%  294+161 4.8x 6.0%

reasoning models at a 0.2:0.8 ratio to generate concise reasoning chains on PRM12K and GSM8K.
Only correct CoT solutions are retained, and the average length of these concise chains is about 60%
of the original. Both SFT and our VeriThinker method are finetuned with same LoRA configuration.

4.2 Experimental Results and Analysis

CoT Compression Results. We present comprehensive experimental results on CoT compression
in Table[I] Our VeriThinker significantly reduces the number of tokens while maintaining or even
slightly improving reasoning accuracy. In contrast, other baseline methods fail to achieve a good
trade-off between efficiency and accuracy. When the accuracy is successfully maintained, the length
of the reasoning chain shows little variation; when the token count is significantly reduced, the
reasoning accuracy inevitably decreases substantially - this phenomenon is particularly evident in
challenging problems. Among the baselines, the SFT method using target chain as optimization
objective, while significantly reducing token count, leads to notable degradation in the model’s
self-reflection capability. Consequently, some incorrect steps fail to be double-checked, resulting
in erroneous outcomes. Our VeriThinker, by contrast, enables the model to distinguish between
correct and incorrect solutions, enhancing its ability to judge when self-checking is needed, thereby
maximally preserving reasoning accuracy with even slight improvements.

As shown in the Table[I] our method demonstrates consistent superior performance across all three
LLMs, with particularly outstanding results on the challenging AIME dataset. Our approach reduces
the CoT length by approximately 29% (from 13,108 to 9,381 tokens) for the R1-Distill-Qwen-7B
model on AIME 2024 while increasing reasoning accuracy by 2.4%. On AIME 2025, the token
count decreases by about 28% (from 14,321 to 10,287) with a 2.1% accuracy improvement. We
also observe that our method shows higher sensitivity to CoT compression on LLaMA architecture
models. Although VeriThinker maintains good accuracy preservation on R1-Distill-LLaMA-8B, the
compression ratio of reasoning chains is relatively smaller. These comprehensive experimental results
strongly support and highlight the contributions of our method.

CoT Correctness Verification Results. As VeriThinker trains LLMs to verify the correctness of
CoT solutions, we conducted additional experiments to analyze its verification accuracy. Specifically,
we generated CoT solutions using Qwen-2.5-Math-1.5B-Instruct and Qwen-2.5-Math-7B-Instruct on
GSMS8K and Math500 datasets. We then employed SVFT LRMs to evaluate the correctness of these
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Figure 3: Speculative reasoning results on three reasoning models. When using Qwen-2.5-Math-
Instruct-7B as the draft model, most problems in MATH500 and GSMS8K can be solved with short
CoT model, while only a few require activation of the long CoT model for more complex solutions.

solutions. As shown in Table[2] all three SVFT LRMs demonstrate high verification accuracy. The
verification accuracy on GSMS8K is higher than on MATHS500, indicating that more concise and clear
solutions are easier to classify correctly. We also observe a positive correlation between the model’s
verification accuracy and its reasoning capability. For reasoning tasks, the performance ranking is
R1-Distill-14B > R1-Distill-7B > R1-Distill-8B, and the verification accuracy follows exactly the
same trend. Furthermore, we find that LLMs generally exhibit notably higher precision than recall.
This suggests that LLMs adopt a conservative approach when judging solution correctness - they
rarely misclassify incorrect solutions as correct ones.

Speculative Reasoning Results. The above experiments demonstrate that SVFT LRMs achieve
high verification accuracy, particularly in precision. Building on this strength, we conduct extensive
experiments to assess their performance in speculative reasoning tasks. We employ Qwen-2.5-Math-
1.5B-Instruct and Qwen-2.5-Math-7B-Instruct as draft models to observe the performance of SVFT-
enhanced R1-Distill-7B, R1-Distill-8B, and R1-Distill-14B on solution-wise speculative reasoning.
In addition to accuracy and average token count, we report throughput (the time cost for completing
all problems in the dataset) and AcR (the activation ratio of LRM), which indicates the proportion of
problems that activate the LRM’s long-CoT reasoning. As shown in Table 3] speculative reasoning
significantly improves the LRM’s throughput while maintaining or even enhancing reasoning accuracy.
This is attributed to its remarkably low AcR. For instance, as presented in Figure [3] when using
Qwen-2.5-Math-7B-Instruct as the draft model, R1-Distill-7B only needs to conduct its own reasoning
for 14.6% of problems in MATHS500 and 5% in GSM8K. This implies that the draft model solves
the majority of problems, while the LRM is only engaged for the few truly challenging problems
requiring long-CoT reasoning, resulting in substantial efficiency gains. Speculative reasoning also
boosts accuracy, particularly on GSMS8K, because the LRM sometimes underperforms the short-CoT
model on simple problems, and in these cases, it accepts the correct draft solution. The overall
accuracy of speculative reasoning approximates the union of the draft model’s and LRM’s accuracies.

Unlike traditional speculative decoding, we observe that for speculative reasoning, a smaller draft
model does not necessarily yield higher throughput. This is because the computational cost of
short-CoT LLMs is negligible compared to the substantial inference cost of LRMs. For example,
on the MATHS00 dataset, Qwen-2.5-Math-7B-Instruct achieves approximately 20x the throughput
of R1-Distill-7B. Thus, the primary factor affecting speedup is AcR: the fewer problems requiring
LRM activation, the greater the throughput improvement. Larger draft models typically exhibit lower
AcR due to their higher accuracy, thus not suffering throughput disadvantages compared to smaller
draft models. However, this raises a potential issue: as problem difficulty increases, the throughput
benefits of speculative reasoning may diminish.

Applied to Short-CoT LLM. We also applied
VeriThinker to Qwen-2.5-Math-Instruct and Table 4: Results on Short-CoT LLMs. We apply
Qwen-2.5-Instruct models to explore the effect VeriThinker to three short-CoT models and evalu-
of SVFT on short-CoT LLMs. As shown in Ta- ate their reasoning performance.

ble[d] since short-CoT does not suffer from over-

i . MATHS00 GSMSK
thinking, our method does not significantly alter =~ Method Tokens | Ace Tokems, Ace.T
. okens CcC. oKkens CC.
the average token count. However, SVFT im-

. Qwen-2.5-Math-7B-Instruct 700 85.0% 319 95.6%
proves reasoning accuracy on both MATHS500  + VeriThinker 614  87.6% 304  96.7%
and GSMB8K datasets, indicating that learning  Qwen-2.5-Math-1.5B-Instruct 568~ 77.0% 314  85.6%
to verify helps the LLM better focus on key —_* YeriThinker X9 802% 1 861%

l t th t . ﬂ . t Qwen-2.5-7B-Instruct 635 78.6% 294 91.8%
elements that influence reasoning correctness, . veriThinker 577 802% 285 92.4%

thereby enhancing reasoning performance.



5 Limitations

The primary limitation of our approach is that it does not effectively enable CoT compression in
smaller models (e.g., a 1.5B-parameter reasoning model). This is largely due to our fine-tuning
strategy: instead of optimizing directly on the original reasoning task, we fine-tune the model on CoT
verification as an auxiliary task. Since smaller models have limited capacity, they are more prone to
catastrophic forgetting during SVFT. As a result, they struggle to maintain high reasoning accuracy
while performing effective CoT compression.

6 Social Impacts

In this paper, we propose VeriThinker, a simple yet effective method for compressing reasoning chains
while preserving high accuracy. As large reasoning models become increasingly prevalent, their
lengthy reasoning chains lead to dramatically higher inference costs, hindering efficient deployment
and limiting practical utility. Our method addresses this critical challenge by significantly reduc-
ing token usage without compromising reasoning performance, thereby enhancing the real-world
applicability of reasoning models.

7 Conclusion

In this paper, we introduce VeriThinker, a novel approach for CoT compression. Our key innovation
is a new fine-tuning method called supervised verification fine-tuning. For the first time, we fine-tune
the LRM on an auxiliary verification task instead of the reasoning task itself to achieve effective CoT
compression. This approach eliminates the dependency on target chain data, which can be difficult
and expensive to obtain. We have performed an in-depth analysis to explain the underlying principles
of the proposed methods. Extensive experiments demonstrate that our method significantly shortens
the reasoning chain while preserving accuracy, even on highly challenging problems. Additionally,
VeriThinker can be generalized to speculative decoding, achieving substantially higher throughput.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in the Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: No theoretical results in the paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In section 4, we provide all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide the code and data in the supplemental materials.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: In section 4 and appendix, we specify all the training and test details
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In section 4, we provide experiment results obtained by averaging multiple
inference results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In section 4, we provide sufficient information on the computer resources
needed to reproduce the experiments

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss broader societal impacts of the work in the appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the original paper that produced the code package or dataset.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The new assets introduced in the paper are well documented.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: Our research topic is around efficient reasoning LLM.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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In this document, we provide supplementary materials that extend beyond the scope of the main
manuscript, constrained by space limitations. These additional materials include in-depth information
about training details, dataset construction, and case studies.

A Training Details

We provide additional training details in this section. We employ Low-Rank Adaptation (LoRA) [18]
for efficient fine-tuning, which significantly enhances training efficiency and effectively mitigates
catastrophic forgetting, as training and inference are performed on different tasks.

Our LoRA configurations are presented in Table[5] We utilized different LoRA ranks and alpha values
for the three distinct models to achieve the optimal balance between underfitting and catastrophic
forgetting. All other training hyperparameters remain consistent across models: learning rate = 3e-5,
LoRA dropout = 0.05, weight decay = 0.01, and batch size = 64. All models were trained for 2
epochs on our self-constructed CoT-Verification dataset.

Table 5: The LoRA configuration in our training process.

Models \ LoRA Module LoraLoRARank LoRA Alpha
DeepSeek-R1-Distill-Qwen-7B QKVO 256 512
DeepSeek-R1-Distill-Qwen-14B QKVO 128 128
DeepSeek-R1-Distill-Llama-8B QKVO 128 128

B Construct the CoT-Verification Dataset

As SVFT trains the LLM to directly distinguish whether a CoT solution is correct, a crucial challenge
lies in constructing the CoT verification dataset for SVFT.

Problem Collection. The first step involves collecting problems for our dataset. To ensure a
diverse range of topics and difficulty levels, we aggregate problems from four mathematical datasets
known for their breadth of content and varying difficulties: PRM12K [32], GSMS8K [6], LIMO [70],
and Numina-Math [29]. Specifically, we extract all problems from the training set of PRM12K,
GSMBSK, and LIMO. For Numina-Math, we only select problems whose solutions are integer-valued
math-word-problems , simplifying correctness labeling. Following this procedure, we collected
approximately 300K mathematical problems spanning diverse topics and difficulty levels.

CoT Solution Collection. The second step entails generating numerous CoT solu-
tions for the collected problems, which will serve as targets for our verification task.
To achieve efficiency and variety, we employ several small, non-reasoning language
models: Qwen-2.5-0.5B-Instruct, Qwen-2.5-1.5B-Instruct, Qwen-2.5-7B-Instruct,
Qwen-Math-1.5B-Instruct, and Qwen-Math-7B-Instruct [66]. We utilize a CoT prompting
strategy to generate step-by-step solutions for the previously collected 300K problems. Notably, none
of our CoT solutions are generated by reasoning models, and none include explicit self-reflection
steps. Experiments indicate that reasoning models producing long-chain solutions complicate opti-
mization in SVFT, as a single response might contain multiple correct or incorrect sub-steps. This
collection method offers two main advantages:

» Computational efficiency: All selected models are lightweight and only generating short-
CoT solutions, significantly accelerating the data generation process. For instance, using
Qwen-Math-1.5B-Instruct, we generate solutions for all 300K problems within 3 to 4
hours using only four NVIDIA A6000 GPUs.

* Solution diversity: The selected models exhibit varying reasoning capabilities, producing
a diverse set of correct and incorrect solutions for each problem. This diversity greatly
enhances the robustness of subsequent fine-tuning.

Consequently, we obtain five different short CoT solutions per problem, yielding a total of 1.5 million
problem-solution pairs.
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Original Long-CoT Data # Tokens: 3100

Prompt: What is the least positive integer multiple of 30 that can be written with only the digits 0 and 2? Please reason step by step.

Response: Okay, so I need to find the least positive integer multiple of 30 that can be written using only the digits 0 and 2. Hmm, let's break this
down.\n\nFirst, I know that 30 is equal to 3 multiplied by 10. So, any multiple of 30 must be a multiple of both 3 and 10. That means the number
I'm looking for has to satisfy the divisibility rules for both 3 and 10 ......... Wait, hold on. Let me check if there's a smaller number with five digits
that might be smaller....... Wait, 2220 is a four-digit number, so it's smaller than any five-digit .......... **Final Answer**\nThe least positive integer
multiple of 30 that can be written with only the digits 0 and 2 is \\boxed {2220}.

Synthetic Concise-CoT Data # Tokens: 1084

Prompt: What is the least positive integer multiple of 30 that can be written with only the digits 0 and 2? Please reason step by step.

Response: Okay, so I need to find the least positive integer multiple of 30 that can be written using only the digits 0 and 2. Hmm, let's break this
down.\n\nFirst, I know that 30 is equal to 3 multiplied by 10. So, any multiple of 30 must be a multiple of both 3 and 10. That means the number
I'm looking for has to satisfy the divisibility rules for both 3 and 10 ......... **Final Answer**\nThe least positive integer multiple of 30 that can be
written with only the digits 0 and 2 is \\boxed{2220}.

Y@g CoT-Verification Data (Ours) # Tokens: 421

Prompt:

## Instruction: Please carefully verify each step of the solution, tell me if every step is absolutely correct.

## Question: What is the least positive integer multiple of 30 that can be written with only the digits 0 and 2? Please reason step by step.

## Solution: To find the least positive integer multiple of 30 that can be written with only the digits 0 and 2, we need to....... Therefore, the least
positive integer multiple of 30 that can be written with only the digits 0 and 2 is \\(\\boxed {2220}\\).

0 Response A: Yes, I'm sure that every step is absolutely correct.
Q Response B: No, I think there might be some mistakes in the proposed solution.

Figure 4: Training data format comparison.

Correctness Labeling. In the third step, we label the correctness of each generated CoT solution.
Rather than evaluating each reasoning step, we simplify labeling by verifying only the final answers
against known ground-truth solutions. As all collected problems have deterministic solutions,
correctness labeling is straightforward: we employ the Hugging Face math_verify function to
automatically extract final answers from CoT solutions and compare them against ground truths.
Following this procedure, each of the 1.5 million problem-solution pairs is labeled as either correct or
incorrect.

Verification Data Selection. Finally, we select a subset from the 1.5 million labeled pairs for
fine-tuning. Initially, we discard problems where all five CoT solutions are uniformly correct or
incorrect. Such problems lack informative training signals due to being either too trivial or excessively
challenging, and this process also helps filter out inherently problematic data. Next, we apply a
straightforward deduplication strategy using Qwen-Math-1.5B-Instruct as a reference model.
Specifically, for problems correctly solved by the reference model, we retain its correct solutions
along with incorrect solutions generated by the other models. Conversely, for problems incorrectly
solved by the reference model, we retain its incorrect solutions and also incorrect solutions from
the other models. This selection strategy ensures each problem contributes at least one correct and
one incorrect CoT solution. Ultimately, this process yields a fine-tuning dataset consisting of 350K
instances, comprising approximately 160K correct and 190K incorrect CoT solutions. Each instance
is reformatted according to the structure illustrated in Figure 1.

C Cross-Domain Generalization

Our proposed VeriThinker method demonstrates strong generalization ability. Even when there exists
a domain gap between the verification data used for training and the reasoning tasks during inference,
our method continues to perform effectively. To substantiate this claim, we conduct two additional
experiments.

We first construct a small CoT verification dataset using only questions from PRM 12K and GSMS8K,
and fine-tune our reasoning model on this restricted data. We then evaluate the model on the much
more challenging AIME datasets. As shown in Table[6] even with training data limited to PRM12K
and GSMBK, our method significantly reduces token usage while maintaining comparable accuracy
on the AIME benchmarks.
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Table 6: Fine-tuned on PRM12K and GSMS8K, evaluated on the more difficult AIME datasets.
Model MATH500 AIME24 AIME25

R1-Distill-7B 94.0% (3791 tokens)  54.1% (13108 tokens)  38.7% (14321 tokens)
+VeriThinker 95.0% (2534 tokens) 56.4% (10302 tokens) 39.8% (11270 tokens)
R1-Distill-14B  95.2% (3529 tokens)  69.0% (11724 tokens)  49.6% (13409 tokens)
+VeriThinker 95.2% (2505 tokens) 68.7% (8425 tokens) 49.2% (10580 tokens)

To further illustrate this generalization ability, we evaluate our model, trained exclusively on mathe-
matical reasoning tasks, on the GPQA-Diamond dataset [48]]. This benchmark consists of multiple-
choice questions spanning diverse scientific domains (e.g., chemistry, physics, biology), and differs
substantially in both format and content from our training data. As shown in Table[7} our approach
consistently compresses the length of CoTs while maintaining accuracy.

Table 7: Cross-domain performance on GPQA-Diamond.
Model GPQA-Diamond

R1-Distill-7B 51.0% (7407 tokens)
+VeriThinker 50.0% (4984 tokens)
R1-Distill-14B  60.1% (6996 tokens)
+VeriThinker  60.6% (4309 tokens)

Overall, these results demonstrate that VeriThinker achieves robust performance even in the pres-
ence of substantial domain shifts between training and testing, confirming its strong cross-domain
generalization capability.

D Comparison of Verification Capability

To further validate our approach, we use Qwen-2.5-1.5B-Instruct to generate CoT solutions on
MATHS500 and evaluated the verification accuracy of several models. We compared our VeriThinker-
7B with two strong open-source models (Qwen-2.5-7B-Instruct and LLaMA-3.1-8B-Instruct) and two
advanced closed-source models (OpenAl GPT-40 and GPT-4.1). As shown in Table @ our method
achieves substantially higher verification accuracy than the open-source models and even surpasses
the two large closed-source models from OpenAl

Table 8: Comparison of CoT correctness verification capability.

Model Accuracy (%) Precision Recall F1

Qwen-2.5-7B-Instruct 74.8 0.714 0.934 0.810
LLaMA-3.1-8B-Instruct 70.0 0.668 0.948 0.783
OpenAl GPT-40 85.0 0.889 0.843 0.866
OpenAl GPT-4.1 86.4 0.910 0.847 0.877
VeriThinker-7B (Ours) 90.4 0.972 0.857 0911

E Case Study

We also present additional case studies on cot compression in Figure[5]and Figure[6]
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CoT Compression Case Study

Prompt: The set of points $(x,y,z)$ that satisfy\n\\[2x = 3y = -z\\]is a line.\n\nThe set of points $(x,y,z)$ that satisfy\n\\[6x =
between these lines, in degrees.

= -47\]is another line.\n\nFind the angle

Original Response: Okay, so I need to find the angle between two lines in 3D space. The lines are given by the equations:\n\nFirst line: \\(2x = 3y = -z\\)\n\nSecond line: \\(6x
= -y = -4z\\)\n\nHmm, I remember that to find the angle between two lines, I can use the dot product formula involving their direction vectors. So, first, I need to find the
direction vectors of both lines.\n\nLet me start with the first line: \\(2x = 3y = -z\\). I think this is a standard symmetric equation of a line. The general form is \\(\\frac {x -
x_0}{a} =\\frac{y - y_0} {b} = \\frac{z - z 0} {c}\)), where \\((x_0, y_0, z_0)\\) is a point on the line and \\((a, b, ¢)\\) is the direction vector.\n\nLooking at the first line, \\(2x
=3y =-7\\)), I can set each of these equal to a parameter, let's say \\(k\\). So,\n\n\\(2x = k\\), which implies \\(x = \\frac {k} {2}\\)\n\n\\(3y = k\\), which implies \\(y =

\Wrac{k} {3}\\)\n\n\\(-z = k\\), which implies \\(z = -k\\)\n\nSo, if I write the parametric equations:\n\n\\(x = \\frac {k} {2}\\)\n\n\\(y = \\frac {k} {3}\\)\n\n\\(z = -k\\)\n\nTherefore,
the direction vector for the first line can be found by looking at the coefficients of \\(k\\) in each parametric equation. So, direction vector \\( \\vec{v_1} =\\left( \\frac{1} {2},
\Wrac{1} {3}, -1 \\right) \\).\n\nWait, but direction vectors are usually given in integers, so maybe I can scale this vector to eliminate the fractions. If I multiply each component
by 6, which is the least common multiple of 2 and 3, T get \\( \\vec{v_1} = (3, 2, -6) \\). That should work because scaling a vector doesn't change its direction.\n\nOkay,
moving on to the second line: \\(6x = -y = -4z\\). I'll do the same process.\n\nLet me set each part equal to another parameter, say \\(m\\):\n\n\\(6x = m\\) — \\(x =

Wrac {m} {6}\)\n\n\\(-y = m\\) — \\(y = -m\\)\n\n\\(-4z = m\\) — \\(z = -\\frac {m} {4}\\)\n\nSo, parametric equations:\n\n\\(x = \\frac {m} {6}\\)\n\n\\(y = -m\\)\n\n\\(z = -

\\frac {m} {4}\\)\n\nTherefore, the direction vector \\( \\vec{v_2} =\left(\\frac {1} {6}, -1, -\\frac {1} {4} \\right) \\). Again, maybe I should scale this vector to make it simpler.
The denominators are 6, 1, and 4, so the least common multiple is 12. Multiply each component by 12:\n\n\\( \\vec{v_2} = (2, -12, -3) \\). Hmm, let me check:\n\n12*(1/6) =
12%(-1) =-12, 12*(-1/4) = -3. Yeah, that works.\n\nWait, actually, 12 is the LCM of 6, 1, and 4? Let me confirm:\n\n6 factors into 2*3, 1is 1, and 4 is 22. So LCM is 2**3 =
12. Yeah, that's correct. So sca]mg by 12 gives the direction vector \\( (2, -12, -3) \\). \n\nAIlcmauvcly, maybe I could have found the d|rcc!|0n vector differently. Let me
see:\n\nFrom the symmetric the direction ratios are the d i So for the second line, \\(6x = -y = -4z\\), if I write it as \(\frac{x} {1/6} = \\frac{y} {-1} =
Wfrac {z} {-1/4}\\), so direction vector is \\( (1/6, -1, -1/4) \\), which is what I had before, just scaled. So scaling up gives \\( (2, -12, -3) \\). Okay, that seems consistent.\n\nNow,
1 have two direction vectors:\n\n\\( \\vec{v_1} = (3, 2, -6) \\)\n\n\\( \\vec{v_2} = (2, -12, -3) \\)\n\nTo find the angle between the two lines, I can use the dot product
formula:\n\n\\( \\vec {v_1} \\cdot \\ec{v_2} = [\wec{v_1}||\\Wec{v_2}|\\cos \\theta \\)\n\nSo, solving for \\( \\theta \\):\n\n\\( \\cos \\theta = \\frac{ \\vec{v_1} \\cdot
\Wec{v_2} H{ Nvec{v_1}| \wvec{v_2}| } \\)\n\nFirst, compute the dot product:\n\n\\( \\vec{v_1} \\cdot \\Wec{v_2} = (3)(2) + (2)(-12) + (-6)(-3) \\)\n\nCalculate each
term:\n\n3*2 = 6\n\n2*(-12) = -24\n\n-6*(-3) = 18\n\nAdd them up: 6 - 24 + 18 = (6 + 18) - 24 = 24 - 24 = 0\n\nWait, the dot product is zero? That means the vectors are
perpendicular. So, does that mean the angle between the lines is 90 degrees?\n\nBut let me double-check my calculations because sometimes scaling can affect things.\n\nWait,
no, the direction vectors are just scaled versions of the original vectors, so their dot product being zero implies that the original vectors are also perpendicular. So the angle is
90 degrees.\n\nBut just to make sure, let me compute the magnitudes as well.\n\nCompute \\( [\Wec {v_1}| \\):\n\n\( [\Wvec {v_1}]| =\\sqrt {372 + 22 + (-6)"2} =\\sqrt{9 + 4 +
36} =\\sqrt{49} = 7 \\)\n\nCompute \\( [\\vec{v_2}[ \):\n\n\\( [\\ee{v_2}|=\\sqrt{2/2 + (-12)"2 + (-3)"2} = \\sqrt{4 + 144 + 9} = \\sqrt{157} \\)\n\nSo, then, the dot product
is 0, so \\( \\cos \\theta = 0 \\), which means \\( \\theta = 90"\\circ \\).\n\nWait, but just to make sure, is that correct? Because sometimes, depending on how you parameterize,
you might get a different direction vector, but in this case, both direction vectors were scaled appropriately, so the angle should be the same.\n\nAlternatively, let's think about
the initial direction vectors before scaling.\n\nOriginal direction vectors:\n\n\\( \\vec{v_1} = (3, 2, -6) \\)\n\n\\( \\vec{v_2} = (2, -12, -3) \\)\n\nDot product:\n\n3*2 + 2*(-12) +
(-6)*(-3) = 6 -24 +18 = 0\n\nSame result. So, yeah, the angle is 90 degrees.\n\nBut wait, let me visualize this. If two lines have direction vectors that are perpendicular, then
the lines themselves are perpendicular. So, that seems right.\n\nAlternatively, maybe I can compute the angle using the original direction vectors before

scaling:\n\n\\( \\ec{v_1} = (3, 2, -6) \\), W( \Wec{v_2} = (2, -12, -3) \\)\n\nDot product is 0, as before. So, yeah, the angle is 90 degrees.\n\nWait, but just to be thorough, let
me compute the angle step by step.\n\nCompute \\( \\ec{v_1} \\edot \\ec{v_2} =3*2 + 2*(-12) + (-6)*(-3) = 6 -24 +18 = 0 \\)\n\nCompute \\( N\vec{v_1}|=\\sqrt{3/2 +2"2
+(-6)"2} = \\sqrt{9 + 4 + 36} = \\sqrt{49} =7 \\)\n\nCompute \\( \\vec{v_2}| =\\sqrt{2"2 + (-12)"2 + (-3)"2} = \\sqrt{4 + 144 + 9} = \\sqrt{157} \\)\n\nSo, \\( \\cos \\theta = 0
/(7 * \\sqrt{157}) = 0 \\)\n\nThus, \\( \\theta = \\arccos(0) = 90™\circ \\)\n\nTherefore, the angle between the two lines is 90 degrees.\n\nWait, that seems a bit surprising. Let
me think again.\n\nAlternatively, maybe I made a mistake in computing the direction vectors. Let me double-check.\n\nFirst line: \\(2x = 3y = -z\\). Let me write it as \\(2x =
3y =-z=k\\). Then:\n\nx = k/2\n\ny = k/3\n\nz = -k\n\nTherefore, direction vector is (1/2, 1/3, -1). To eliminate denominators, multiply by 6, getting (3, 2, -6). That seems
correct.\n\nSecond line: \\(6x = -y = -4z\\). Let me set each equal to m:\n\n6x = m — x = m/6\n\n-y = m — y = -m\n\n-4z = m — z = -m/4\n\nTherefore, direction vector is
(1/6, -1, -1/4). Multiply by 12 to eliminate denominators: (2, -12, -3). That also seems correct.\n\nDot product: (3)(2) + (2)(-12) + (-6)(-3) = 6 -24 +18 = 0. So, correct.\n\nSo,
the angle is indeed 90 degrees. So, the two lines are perpendicular.\n\nTherefore, the angle between them is 90 degrees.\n\n**Final Answer**\nThe angle between the lines is

\\boxed {90} degrees.
# Tokens: 2330

Our Response: Okay, so I need to find the angle between two lines in 3D space. The lines are given by the equations:\n\nFirst line: \\(2x = 3y = -z\\)\n\nSecond line: \\(6x = -
y = -4z\\)\n\nHmm, I remember that to find the angle between two lines, I can use the direction vectors of the lines and then compute the angle between those vectors using the
dot product formula. So, first, I need to find the direction vectors for both lines.\n\nLet me start with the first line: \\(2x = 3y = -z\\). I think this can be written in parametric
form by setting each expression equal to a parameter, say \\(t\\). So, let me set \\(2x = 3y = -z = t\\). Then, I can express \\(x\\), \\(y\\), and \\(z\\) in terms of \\(t\\):\n\n- \\(2x =t
\\Rightarrow x = t/2\\)\n- \\(3y = t \\Rightarrow y = t/3\\)\n- \\(-z = t \\Rightarrow z = -t\\)\n\nSo, the parametric equations are:\n\\(x = \\frac{t} {2}\\),\n\(y =

\Wrac {t} {3}\1),\n\\(z = -t\\).\n\nTherefore, the direction vector for the first line is given by the coefficients of \\(t\\) in each component, which is \\(\\left(\\frac {1} {2},

\rac{1} {3}, -1\\right)\\). Bul usually, direction vectors are given as integer vectors, so I can multiply by 6 to elimi the d i n\nMultiply each by 6:
(6 \\times \\left(\\frac {1} {2}, \\frac {1} {3}, -1\\right) = (3, 2, -6)\\). So, the direction vector for the first line is \\(\mathbf{v} = (3, 2, 6)\\) \n\nNow, moving on to the second
line: \\(6x = -y = -4z\). Sumlarly I can set each expression equal to a parameter, say \\(s\\). So, let me set \\(6x = -y = -4z = s\\). Then, express each variable in terms of
W\(s\W):\n\n- \\(6x = s \\Rightarrow x = s/6\\)\n- \\(-y = s \\Rightarrow y = -s\\)\n- \\(-4z = s \\Rightarrow z = -s/4\\)\n\nSo, the parametric equations are:\n\\(x =

Wrac{s} {6}\)),\n\\(y = -s\\),\n\\(z = -\\frac {s} {4}\\).\n\nTherefore, the direction vector is given by the coefﬁuems of \\(s\\), which is W(\left(\frac {1} {6}, -1, -

\\frac {1} {4}\\right)\\). Again, to make it an integer vector, I can find a d inator. The d are 6, 1, and 4, so the least common mulnple is 12. Multiply
each component by 12:\n\n\\(12 \\times \\left(\\frac {1} {6}, -1, -\\frac {1} {4}\\right) = (2, -12, -3)\\). So, the direction vector for the second line is \\(\\mathbf{w} = (2, -12, -
3)\\).\n\nNow, I have the two direction vectors:\n\\(\mathbf{v} = (3, 2, -6)\\) and \\(\mathbf{w} = (2, -12, -3)\\).\n\nThe formula for the angle \\(\\theta\\) between two vectors
is:\n\n\\[\n\\cos\\theta = \\frac {\\mathbf{v} \\cdot \\mathbf{w} } {|\\mathbf{v}|| \\cdot |\\mathbf{w?}||}\n\\]\n\nFirst, let's compute the dot product \\(\\mathbf{v} \\cdot
\\mathbf{w}\\):\n\n\\[\n3 \\times 2 + 2 \\times (-12) + (-6) \\times (-3) = 6 - 24 + 18 = 0\n\\]\n\nWait, the dot product is 0? That means the vectors are perpendicular, so the
angle between them is 90 degrees. Hmm, that seems surprising, but let me double-check my calculations.\n\nCalculating again:\n\n- \\(3 \\times 2 = 6\\)\n- \\(2 \\times (-12) = -
24\\)\n- \\(-6 \\times (-3) = 18\\)\n\nAdding them up: \\(6 - 24 + 18 = 0\\). Yes, that's correct. So the dot product is indeed 0, which means the vectors are
orthogonal.\n\nTherefore, the angle between the lines is 90 degrees.\n\nBut just to be thorough, let me compute the magnitudes of the vectors as well to ensure I didn't make a
mistake there.\n\nCompute \\(|\\mathbf{v}|\\):\n\n\\[\n|\\mathbf{v}|| = \\sqrt {372 + 22 + (-6)"2} = \\sqrt{9 + 4 + 36} = \\sqrt{49} = 7\n\\]\n\nCompute
W(Nmathbf{w}|\\):\n\n\\[\n|[\\mathbf{w }|| = \\sqrt {22 + (-12)"2 + (-3)"2} = \\sqrt{4 + 144 + 9} =\\sqrt{157} \\approx 12.53\n\\]\n\nBut since the dot product is 0, the angle
is 90 degrees regardless of the magnitudes. So, yeah, I can confidently say that the angle between the two lines is 90 degrees.\n\n**Final Answer**\nThe angle between the

lines is \\boxed {90} degrees. # Tokens: 1267

Figure 5: Case study 2 on CoT Compression.
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CoT Compression Case Study

Prompt: Evaluate $(1+2i)6-3i$.

Original Response: Okay, so I need to evaluate the expression (1 + 2i)6 - 3i. Hmm, let me think about how to approach this. I remember that when dealing
with complex numbers, we can perform operations like addition, subtraction, multiplication, and division. In this case, it seems like we have a complex number
multiplied by 6 and then subtracting 3i. Let me break it down step by step.\n\nFirst, I need to multiply the complex number (1 + 2i) by 6. I think multiplying a
complex number by a real number is straightforward. You just distribute the real number to both the real and imaginary parts of the complex number. So, 6
times 1 is 6, and 6 times 2i is 12i. Therefore, (1 + 2i) multiplied by 6 should give me 6 + 12i.\n\nLet me write that down:\n\n(1 +2i) * 6=6* 1 +6 *2i=6+
12i.\n\nOKkay, so the first part is 6 + 12i. Now, the expression is this result minus 3i. So, I need to subtract 3i from 6 + 12i. Let me do that.\n\nSubtracting 3i
from 6 + 12i is the same as adding -3i to 6 + 12i. So, I can write that as:\n\n6 + 12i - 3i.\n\nNow, I can combine the like terms, which are the imaginary parts.
So, 12i minus 3i is... let me calculate that. 12 minus 3 is 9, so that should be 9i.\n\nPutting it all together, the real part is 6, and the imaginary part is 9i.
Therefore, the result is 6 + 91.\n\nWait, let me make sure I didn't make a mistake. So, starting with (1 + 2i) * 6. Multiplying each term:\n\nl * 6 = 6,\n\n2i * 6 =
12i.\n\nSo, that gives 6 + 12i. Then subtracting 3i: 6 + 12i - 3i. 12i - 3i is indeed 9i, so 6 + 9i. That seems correct.\n\nI guess another way to think about it is to
factor out the 3i or something, but in this case, since it's just subtracting 3i, combining like terms is straightforward.\n\nLet me also consider if there was a
different interpretation of the original expression. It could be interpreted as (1 + 2i) multiplied by (6 - 3i), but the original expression is (1 + 2i)6 - 3i, which is
written with the 6 right after the parenthesis, so I think it's 6 times (1 + 2i), then subtract 3i.\n\nBut just to be thorough, what if it was (1 + 2i)(6 - 3i)? How
would that be different? Let me calculate that for fun.\n\nUsing the distributive property, (1)(6) + (1)(-3i) + (2i)(6) + (2i)(-3i).\n\nCalculating each term:\n\n1 *
6=6,\n\nl * (-3i) = -3i,\n\n2i * 6 = 12i,\n\n2i * (-3i) = -61"2.\n\nNow, combine the terms:\n\n6 - 3i + 12i - 6i*2.\n\nSimplify like terms: -3i + 12i is 9i.\n\nSo,
6 + 9i - 61"2.\n\nBut wait, i*2 is equal to -1, so -6i"2 is -6*(-1) which is +6.\n\nSo, 6 + 6 + 91 = 12 + 9i.\n\nHmm, so if the original expression was (1 + 2i)(6 -
3i), the result would be 12 + 9i. But in our problem, the original expression is (1 + 2i)6 - 3i, which is 6*(1 + 2i) - 3i, resulting in 6 + 9i. So, the initial
interpretation was correct.\n\nTherefore, I think my answer is 6 + 9i.\n\nJust to recap, the steps are:\n\nl. Multiply (1 + 2i) by 6: 6*1 + 6*2i = 6 + 12i.\n\n2.
Subtract 3i from the result: 6 + 12i - 31 = 6 + 9i.\n\nYes, that seems correct. I don't think I made any mistakes here.\n\nAlternatively, if I were to represent this
in the form a + bi, 6 is the real part and 9 is the imaginary coefficient, so the expression is simplified as 6 + 9i.\n\nLet me also consider if I can represent this in
polar form, but since the question just asks to evaluate it, probably Cartesian form is sufficient.\n\nBut just for practice, let me convert 6 + 9i to polar
form.\n\nFirst, find the modulus: sqrt(6"2 + 9"2) = sqrt(36 + 81) = sqrt(117). Hmm, sqrt(117) can be simplified as sqrt(9*13) = 3*sqrt(13). So, modulus is
3v13.\n\nThen, the argument 0 is arctangent of (9/6) which is arctangent(3/2). So, = arctan(3/2). That's approximately 56.31 degrees, but we can leave it as
arctan(3/2) radians.\n\nSo, in polar form, it's 3v13 (cos(arctan(3/2)) + i sin(arctan(3/2))). But I don't think the question requires this, so I can stick with the
Cartesian form.\n\nSo, after evaluating (1 + 2i)6 - 3i, the result is 6 + 9i.\n\n[ think that's the final answer.\n\n**Final Answer**\nThe result of evaluating \\((1
+2i)6 - 3i\\) is \\boxed {6 + 9i}. # Tokens: 1406

Our Response: Okay, so I need to evaluate the expression (1 + 2i)6 - 3i. Hmm, let me think about how to approach this. I remember that when dealing with
complex numbers, you have to distribute and then combine like terms. So, first, I should probably handle the multiplication part, which is (1 + 2i) multiplied by
6, and then subtract 3i from the result.\n\nLet me write that down step by step. The original expression is (1 + 2i)6 - 3i. I can rewrite this as 6*(1 + 2i) - 3i. Now,
distributing the 6 across the terms inside the parentheses. So, 6*1 is 6, and 6*2i is 12i. That gives me 6 + 12i. Then, I need to subtract 3i from that.\n\nSo,
putting it all together, 6 + 12i - 3i. Now, I can combine the like terms, which are the imaginary parts. 12i - 3i is 9i. Therefore, the expression simplifies to 6 +
9i.\n\nWait, let me make sure I did that correctly. So, 6*(1 + 2i) is indeed 6 + 12i. Then subtracting 3i gives me 6 + 12i - 3i. Yes, combining 12i and -3i gives
9i. So, the final result is 6 + 9i.\n\nIs there anything else I need to do here? I don't think so. It seems straightforward. I just multiplied the complex number by 6
and then subtracted 3i. Let me double-check my multiplication to be sure. 6 times 1 is 6, that's correct. 6 times 2i is 121, that's right. Then subtracting 3i gives 9i.
So, yes, the answer should be 6 + 9i.\n\nl guess that's it. I don't see any mistakes in my calculations. So, I can confidently say that the evaluated expression is 6
+ 9i.\n\n**Final Answer**\nThe value of the expression is \\boxed {6 + 9i}. # Tokens: 489

Figure 6: Case study 3 on CoT Compression.
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