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Abstract

Contrastive Learning (CL) plays a crucial role in molecular representation learning,1

enabling unsupervised learning from large scale unlabeled molecule datasets. It2

has inspired various applications in molecular property prediction and drug de-3

sign. However, existing molecular representation learning methods often introduce4

potential false positive and false negative pairs through conventional graph augmen-5

tations like node masking and subgraph removal. The issue can lead to suboptimal6

performance when applying standard contrastive learning techniques to molecular7

datasets. To address the issue of false positive and negative pairs in molecular repre-8

sentation learning, we propose a novel probability-based contrastive learning (CL)9

framework. Unlike conventional methods, our approach introduces a learnable10

weight distribution via Bayesian modeling to automatically identify and mitigate11

false positive and negative pairs. This method is particularly effective because it dy-12

namically adjusts to the data, improving the accuracy of the learned representations.13

Our model is learned by a stochastic expectation-maximization process, which14

optimizes the model by iteratively refining the probability estimates of sample15

weights and updating the model parameters. Experimental results indicate that16

our method outperforms existing approaches in 13 out of 15 molecular property17

prediction benchmarks in MoleculeNet dataset and 8 out of 12 benchmarks in the18

QM9 benchmark, achieving new state-of-the-art results on average.19

1 Introduction20

We investigate the problem of learning representations from molecules, a field known as molecular21

representation learning (MRL). MRL has gained significant attention due to its critical role in enabling22

learning from limited supervised data for applications such as molecular property prediction [1,2,3]23

and drug design [4,5,6]. Molecular representation learning involves creating models that can derive24

meaningful and generalizable representations of molecules, which can then be used to enhance25

various downstream applications. Among the most common methods in MRL is contrastive learning26

(CL), which leverages large-scale unlabeled molecular datasets to learn robust representations. CL27

works by contrasting different augmentations of the same molecule to ensure that the model learns to28

recognize the essential features of the molecule, thereby improving performance on tasks such as29

molecular property prediction and drug design.30

With the success of contrastive learning methods in computer vision and multi-modality pretrain-31

ing [7,8], various contrastive learning approaches have been proposed for molecular representation32

learning. MolCLR [9] introduces a contrastive learning framework specifically for molecular represen-33

tation learning. It employs atom masking and edge removal as data augmentations, which enhances34

the performance of Graph Neural Network (GNN) models on a variety of downstream molecular35

property prediction benchmarks. In contrast, GraphMVP [10] incorporates both 2D topology and36

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



3D geometry during pre-training, though its downstream tasks primarily utilize 2D topology. These37

methods highlight different strategies for applying contrastive learning to molecular data, focusing on38

unique aspects of molecular structures to improve learning efficacy.39

Although existing works have demonstrated the success of contrastive learning in molecular property40

predictions, they still face a significant drawback: the reliability of "positive" and "negative" labels41

in augmented molecule pairs. For example, MolCLR [9] uses augmentations like atom masking42

and edge removal, which can lead to false negative pairs when molecules with similar structures43

and chemical properties are labeled as negatives. Similarly, GraphMVP [10], which incorporates44

both 2D topology and 3D geometry, can also mislabel structurally similar augmented molecules45

as negatives due to its augmentation processes. These augmentations often remove parts of the46

molecular graph, such as nodes, edges, and subgraphs, resulting in potentially incorrect pairings. This47

issue is exacerbated by the large volume and extensive augmentations applied to molecular datasets,48

naturally leading to numerous falsely aligned pairs.49

The fundamental problem lies in the random nature of these augmentations. Existing molecular50

contrastive learning methods assign hard positive and negatives to molecule pairs and do not account51

for the probabilistic relationships between molecules. Figure 3 provides an example of false positives52

and negatives resulting from graph augmentations in MolCLR [9] ,where two distinct graph augmen-53

tations are applied to enhance two different molecules. The augmented molecule pair originating54

from the same molecule is categorized as positive, while other molecule pairs within the same batch55

are considered negative. However, as illustrated in the figure, the correct contrastive learning setup56

should consider molecules with structural similarities as positive pairs, even when they originates57

from different molecules. In contrast, the same molecule subjected to different augmentation methods58

may also be considered negative due to structural dissimilarities. Existing methods like MolCLR [9]59

fail to maintain this distinction, where augmented pairs from the same molecule are always treated as60

positive, while pairs from different molecules within the same batch are always treated as negative,61

regardless of their structural similarity. This mislabeling results in false positives and negatives,62

undermining the effectiveness of the contrastive learning process.63
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Figure 1: Existing problem in molecular contrastive learning. Adopt node removal and edge
removal for molecular contrastive learning can lead to false positive and false negative problems.
Blue lines indicate positive pairs and yellowing lines indicate negative pairs. The numbers on each
line indicate the chemical similarity between the augmented pair of molecules. In this case, positive
pairs indeed have lower similarity than negative pairs.

To overcome the aforementioned issue, we introduce a generalization of existing contrastive learn-64

ing frameworks for molecular representation learning with probabilistic modeling. Our approach65

introduces data-pair weights as additional random variables, and dynamically infers optimal weights66

to account for false positive and false negative pairs, which can effectively address the mislabeling67

problem in previous methods. By incorporating a probability framework, we can effectively manage68

the uncertainty in data pair assignments. Specifically, we introduce a novel Bayesian inference69

methods with Bayesian data augmentation to automatically infer these weights through posterior70

sampling. This allows us to optimize the model parameters efficiently using stochastic expectation71

maximization.72
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It is worth mentioning that while MolCLR [9] authors introduced i-MolCLR [45] to address similar73

issues by penalizing faulty negatives with a fingerprint-based similarity metric and a motif-level data74

augmentation called fragment contrast, our method offers distinct advantages. Unlike i-MolCLR75

which relies on direct fingerprint similarity, our approach introduces a novel probabilistic contrastive76

learning framework. This framework dynamically infers weight distributions and optimizes through77

stochastic expectation maximization, eliminating the need for explicit Tanimoto similarity calculations.78

Our method addresses the issue of false negative pairs more fundamentally and efficiently, providing79

a more robust solution for molecular contrastive learning.80

In addition, our method is flexible and can be applied to different molecular representation learning81

framework. In this paper, we first integrate our method into MolCLR [9] series model and benchmark82

the performance on 2D non-charality MoleculeNet [11] dataset. We then integrated our method into83

Uni-Mol [21] and evaluate its performance on MoleculeNet [11]. We also trained and evaluated our84

model on the QM9 [44] dataset, following Equiformer [46]. With molecular property prediction tasks,85

we aim to test our model’s ability in extracting useful features from molecular. Extensive experiments86

show that our method outperforms all other molecular representation learning baselines, including87

contrastive and non-contrastive methods.88

The contributions of this paper can be summarized as follows:89

• To tackle the challenges posed by false positive and negative pairs, we introduce a probability90

method for molecular contrastive learning. By introducing different weights as random91

variables to various false positive and negative pairs, we effectively mitigate the impact of92

these erroneous pairs on the learning process.93

• To optimize our probabilistic contrastive learning framework, we propose a novel and effec-94

tive optimization algorithm based on Bayesian data augmentation and stochastic expectation95

maximization, to simultaneously perform posterior inference and model optimization.96

• Through extensive and large-scale experiments, we demonstrate enhanced performance97

across multiple public benchmarks for molecular representation learning, validating the98

effectiveness of our proposed method.99

2 Methods100

2.1 Learning Representations from Molecular Graphs101

We begin by elucidating the foundational setup and notation in molecular contrastive learning.102

Molecules can be represented as 2D or 3D graphs depending on datasets. 2D molecule graphs have103

atoms as nodes and bond as edges. 3D molecule graphs additionally adds spacial positions of the104

atoms. For simplicity, we adopt static atom positions in this paper.105

In molecular representation learning, as illustrated in Figure 2, we start by randomly sampling a batch106

of N molecules. Each molecule, represented as xi, undergoes stochastic augmentation strategies107

to generate two augmented versions, denoted as (xi,x
′
i). These augmentations involve methods108

such as atom masking, edge perturbation, and subgraph removal, transforming the original molecular109

structure while preserving its core characteristics. Among the resulting 2N augmented molecules,110

each pair (xi,x
′
i) is treated as a positive pair, while the remaining 2(N − 1) augmented molecules111

within the same batch are considered negative samples. This setup allows us to utilize contrastive112

learning effectively by distinguishing between similar and dissimilar molecular structures. A neural113

network encoder f(x;θ), parameterized by θ, is employed to extract representation vectors z from114

the augmented molecular samples. In this paper, we utilize three different types of encoders in various115

experiments, as depicted in Figure 2 B, C, and D. These encoders include Graph Neural Networks116

(GNNs) and Transformers, each providing unique advantages for capturing the intricate features of117

molecular structures.118

Let si+ ≜ sim(zi, z
′
i) represent the similarity score between the positive pair (xi,x

′
i) after the119

encoder, and sik− ≜ sim (zi, zk) signifies the similarity score between the negative pair (xi,xk),120

and sim(·, ·) represents any positive-valued similarity metric. In this paper, we adopt the commonly121

used exponential cosine similarity, defined as sim(z1, z2) ≜ ez
T
1 z2/∥z1∥∥z2∥τ , where τ denotes a122

temperature parameter.123

3



Figure 2: (A) Molecular contrastive learning Molecules are represented as 2D or 3D molecule
graphs. Two stochastic augmentation strategies are applied to each graph, resulting in two aug-
mentations. A feature extractor is used to extract features and contrastive loss is used to maximize
the similarity of positive pairs and minimize the similarity of negative pairs B,C,D: Different ar-
chitectures used as feature extractors in different experiments. (B) Uni-Mol [21] architecture used
in MoleculeNet [11] Dataset experiment. (C) GCN [50] architecture from MolCLR [9] used in
Non-Chirality MoleculeNet [11] experiment. (D) Equiformer [46] architecture used in QM9 [44]
dataset experiment.

2.2 Probability Weighted Contrastive Learning124

We describe the proposed probability framework for molecular contrastive learning. In standard125

contrastive learning, one tries to encode data samples to a latent space such that positive pairs stay126

close to each other while negative pairs are pushed away. The contrastive loss function is:127

L =
1

N

N∑
k=1

[ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)], with ℓ(i, j) = − log
si+

si+ +
∑2N

k=1 I[k ̸=i,j]si,k−

As mentioned, one issue of directly applying the contrastive learning into molecular representation128

learning is the potential false positive positive and negative molecular pairs, as discussed in the129

introduction. This could confuse the learning, ending up with sub-optimal representations. Is there130

a way to automatically identify and differentiate these pair data? In the following, we propose a131

Bayesian approach to address this issue that allows the algorithm for automatic inference of the132

degree of positiveness and negativeness of data pairs, involving enhancing the standard contrastive133

loss by incorporating learnable stochastic weights for all data pairs. To be more specific, we introduce134

local learnable weights, denoted as w+
i for each positive pair and w−

ik for each negative pair. We135

then define a weighted contrastive loss based on these introduced weights. This modification aims136

to mitigate the issues by automatically assigning relatively lower weights (or no weights) to false137

positive and false negative pairs;138

Lw =
1

N

N∑
k=1

[ℓ̄(2k − 1, 2k) + ℓ̄(2k, 2k − 1)], ℓ̄(i, j) = − log
w+

i si+

w+
i si+ +

∑2N
k=1 I[k ̸=i,j]w

−
iksik−

(1)

One problem with this formulation, however, is that it is not realistic to compute and store all the139

weights in the learning process. This precaution arises from the quadratic growth in the number of140

weights to be calculated as the training data size increases. Furthermore, the random nature of our141

augmentation method further adds complexity to the pre-calculation and storage of these weights.142
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A straightforward baseline for calculating these weights can be envisioned as follows: we can consider143

these weights in a binary fashion, with all weights initialized to one. In the learning process, if for144

some positive pairs the similarity score falls below a specified threshold, we set the corresponding145

weights to zero, marking these positive pairs as false positives. Conversely, if for some negative146

pairs the similarity score exceeds a threshold, we set the associated weights to zero, indicating false147

negatives. A challenge associated with this baseline method, however, lies in the establishment of a148

rigid similarity threshold to create a binary division of weights between zero and one. This approach149

proves less suitable for our molecular contrastive task as these heuristically chosen thresholds might150

not be optimal.151

To address this challenge, we propose a principled Bayesian approach that allows adaptively inferring152

the optimal weights by Bayesian inference. Specifically, we treat the weights to be random variables153

and assign appropriate priors to them. We consider two types of priors: a Bernoulli prior to model154

weights as binary random variables and a Gamma prior to represent them as positive values. For155

simplicity, we model positive weights using the Gamma distribution and negative weights using either156

the Gamma distribution or the Bernoulli distribution, as expressed by the following formulas:157

Option 1 - Gamma priors for continuous weighting:158

159

w+
i ∼ Gamma(a+, b+), w

−
ik ∼ Gamma(a−, b−).

Option 2 - Bernoulli priors for selective weighting:160

161

w+
i ∼ Gamma(a+, b+), w−

ik ∼ Bernoulli(ā−).

here, a+, b+, a− and b−are shape and rate parameters for Gamma distribution and ā− is the162

probability parameter for Bernoulli distribution.163

With our reformulation, we can define a joint distribution over the global model parameter and local164

random weight variables w+
i and w−

ik, as:165

p
({

w+
i

}
,
{
w−

ik

}
,θ;D

)
∝

∏
xi∈D

w+
i si+

w+
i sij+ +

∑K
k=1 w

−
iksik−

p({w+
i })p({w

−
ik})p(θ). (2)

One problem with the above formulation, however, is that posterior inference of the weights is166

challenging, due to the lack of convenience posterior distributions.167

Fortunately, inspired by [27], we can introduce an augmented random variable ui that is associated to168

data point xi. Consequently, we can define an augmented joint posterior distribution of the random169

variables θ,u,w, denoted as p
({

w+
i

}
,
{
w−

ik

}
,θ | D

)
1, to be170

p(θ,u,w | D) ∝
∏

i:xi∈D
w+

i si + e−uiw
+
i si+

∏
k

e−uiw
−
iksik−p

({
w+

i

})
p
({

w−
ik

})
p(θ), (3)

where u ≜
{
u1, u2, · · · , u|D|

}
and w ≜

{
w+

i

}
∪
{
w−

ik

}
. It is worth noting that this joint distribution171

is equivalent to the original distribution (2), because (2) is recovered if one marginalize out the172

auxiliary random variables u in (3). In other words, optimization thought (3) is equivalent to173

optimization over (2). Consequently, we can perform learning and inference based on the augmented174

posterior of p(θ,u,w | D), which preserves a much convenient form for posterior inference. In the175

following, we propose an efficient algorithm based on stochastic expectation maximization (stochastic176

EM) to alternatively infer the local random variables w and optimize the global model parameter θ.177

2.3 Efficient Inference and Learning with Stocastic Expectation Maximization178

We propose a stochastic EM algorithm for efficient inference and learning of our model. Stochastic179

EM [31] is a stochastic variant of the EM algorithm, which is an iterative method for finding the180

maximum likelihood of model parameters in statistical models when data is only partially, or when181

model depends on unobserved latent variables [35].182

1In the sense that marginalizing over the augmented random variables
{
w+

i

}
and

{
w−

ik

}
in

p
(
θ,U,

{
w+

i

}
,
{
w−

ik

}
| D

)
gives back to the original p

({
w+

i

}
,
{
w−

ik

}
,θ;D

)
. Thus, learning and infer-

ences on the two forms are equivalent.
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In our setting, the objective of stocastic EM is to maximize the posterior in equation 4. The basic idea183

is to alternatively 1) optimizing model parameter θ with fixed (u,w) and 2) sampling (u,w) with184

fixed θ. To this end, we follow standard procedures in stochastic EM to divide the learning into three185

steps: Simulation, Stochastic Expectation, and Maximization. Specifically, simulation corresponds to186

sampling local random variables u and w for a batch of data; stochastic expectation then uses the187

sampled auxiliary random variables to update the model parameter θ by maximizing a stochastic188

objective Q(θ), defined as: Qt+1(θ) = Qt(θ) + λt (log p(θ,u,w | D)−Qt(θ)) at iteration t+ 1,189

where {λt} is a sequence of decreasing weights. And maximization corresponds to maximizing the190

stochastic objective constructed in the previous step. In the following, we detail the three steps.191

Simulation Given the joint posterior distribution in equation 3 and the current batch of data, the192

posterior distributions of the local random variables u and w can be directly read out, which simply193

follow Gamma or Bornoulli distributions of the following forms:194

ui |
{
w+

i , w
−
ik,θ

}
∼ Gamma

(
au, bu + w+

i si+ +
∑

w−
iksik−

)
,∀i, and

w+
i | {u,θ} ∼ Gamma (1 + a+, uisi+ + b+) , and

Option 1: w−
ik | {u,θ} ∼ Gamma (a−, uisik− + b−) ,∀i, k

Option 2: w−
ik | {u,θ} ∼ Bernoulli

(
a−e

−uisik−

1− a− + a−e−uisik−

)
Stochastic Expectation We then proceed to calculate the stochastic expectation based on the sim-195

ulated local random variables above. For notation simplicity, we define Q0(θ) = 0. Then we can196

reformulate Qt+1(θ) by decomposing the recursion, resulting in197

Qt+1(θ) =

t∑
τ=0

λ̃τ log p (θ,uτ ,wτ | Dτ ) , where λ̃τ ≜ λτ

t∏
t′=τ+1

(1− λt′) , (4)

where τ indexes the minibatch and the corresponding local random variables at the current time τ .198

Algorithm 1 Contrastive Learning with Stochastic EM
1: Initialize θ; set t = 1
2: for a batch of molecules in loader do
3: Augment each molecule xi into a pair (xi,x

′
i)

4: Calculate positive/negative similarity scores s+ and s−

for all the molecule pairs
5: Initialize all the weights w+ and w− to be one
6: for k = 1 to iter [4 in practice] do
7: Sample u and w according to distributions
8: end for
9: Calculate the weighted contrastive loss in equation 2 with

the sampled w on the current batch of data
10: Update the model parameter by stochastic gradient de-

scent with the calculated weighted contrastive loss
11: t = t+ 1
12: end for

Maximization The stochastic199

expectation objective (4) pro-200

vides a convenient form for201

stochastic optimization over202

time, similar to online optimiza-203

tion (Bent & Van Hentenryck,204

2005). Specifically, at each time205

t, we can initialize the param-206

eter θ from the last step, and207

update it by stochastic gradient208

ascent on the log-likelihood,209

log p (θ,uτ ,wτ | Dτ ) calcu-210

lated from the current batch of211

data. To reduce variance, we212

propose to optimize a marginal213

version by integrating out214

uτ from p (θ,uτ ,wτ | Dτ ),215

which essentially reduces to our216

original weighted contrastive loss in equation (1). With the above steps, it is ready to optimize the217

model by stochastic EM. The detailed steps are described in the Algorithm 1.218

3 Related works219

Contrastive Learning As a popular self-supervised learning paradigm, contrastive learning focuses220

on learning semantically informative representations for downstream tasks [13-16]. The most widely221

used loss function is InfoNCE [17] which pulls in the representations between positive sample pairs222

while pushing away that between negative sample pairs.223

Molecular Representation Learning Representation learning on large-scale unlabeled molecules224

attracts much attention recently. SMILES-BERT [18] is pretrained on SMILES strings of molecules225

using BERT. Subsequent works are mostly pretraining on 2D molecular topological graphs [19,20].226
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MolCLR [9] applies data augmentation to molecular graphs at both node and graph levels, using227

a self-supervised contrastive learning strategy to learn molecular representations. Further, several228

recent works try to leverage the 3D spatial information of molecules, and focus on contrastive or229

transfer learning between 2D topology and 3D geometry of molecules. For example, GraphMVP230

[10] proposes a contrastive learning GNN-based framework between 2D topology and 3D geometry.231

GEM [22] uses bond angles and bond length as additional edge attributes to enhance 3D information.232

Uni-Mol [21] is a universal 3D molecular pretraining framework that significantly enlarges the233

representation ability and application scope in drug design.234

Noisy Pairs in Contrastive Learning Noisy data pair problem have been found and studied in visual235

contrastive learning community. NLIP [28] enforces the pairs with larger noise probability to have236

fewer similarities in embedding space to improve the model training. [29] apply noise estimation237

component to adjust the consistency between different modalities for the action recognition task.238

RINCE [30] uses a ranked ordering of positive samples to improve InfoNCE loss.239

Stochastic Expectation Maximization Stochastic EM [31] stands as a pivotal algorithm in machine240

learning and probabilistic modeling for large-scale Bayesian inference. Building upon the foundations241

of the classical Expectation-Maximization (EM) algorithm [32], Stochastic EM offers an efficient242

solution for parameter estimation in situations involving vast datasets or latent variables, e.g., to243

maximize the log-likelihood of p(z,D | θ), where D is the dataset, z is the local random variable244

and θ is the global model parameter. By leveraging the power of mini-batch sampling, Stochastic EM245

strikes a balance between computational scalability and estimation accuracy. It has found widespread246

utility in various domains, including clustering [33], topic modeling [34], and latent variable modeling247

[35], making it an indispensable tool to cope with complex probabilistic models and extensive data248

and a natural fit to our problem.249

4 Experiments250

We evaluate our method on molecular property prediction tasks. Our approach is designed to be a251

versatile component that can be seamlessly integrated with various molecular property prediction252

datasets and models. In this study, we integrate our model into three different existing models:253

Uni-Mol [21], I-MolCLR [45], Equiformer [46] and assess its performance on three distinct datasets:254

MoleculeNet [11], MoleculeNet without chirality, and the QM9 [44] dataset. For all experiments, we255

provide detailed experiment settings in Appendix C.256

4.1 The MoleculeNet Dataset257

MoleculeNet [11] is a popular benchmark for molecular property prediction, including datasets258

focusing on different molecular properties, from quantum mechanics and physical chemistry to259

biophysics and physiology. For a fair comparison, we integrated our method into Uni-Mol [21]260

framework. We applied both the Gamma and Bernoulli versions of our method, as shown in Table261

1. In our contrastive learning framework, we used the representation of the [CLS] token as the262

final encoded representation, representing the entire molecule. Additionally, we incorporated the263

original three-dimensional recovery loss as an extra loss function. The model was trained on the same264

large-scale dataset, including 19 million molecules and 209 million conformations, as in the original265

paper. We used the same evaluation metrics: ROC AUC for classification tasks and RMSE and266

MAE for regression tasks.267

As shown in Table 1 and 2, our method outperforms Uni-Mol [21] and GEM [22], the current268

state-of-the-art methods, with an average gain of 1.3 percent in classification tasks and 7.6 percent in269

regression tasks. This substantiates that our approach facilitates more flexible training with a higher270

tolerance for false positive and false negative data pairs, thereby enhancing the model’s performance271

in molecular representation learning.272

4.2 Non-Chirality version MoleculeNet273

In order to make a fair comparison with I-MolCLR [45], we also integrated our method into MolCLR274

[9] framework. MolCLR and I-MolCLR are 2D based methods, their experiments are conducted275

on different version of MoleculeNet dataset that does not consider chirality. We adopted the same276

dataset, augmentation, GNN-based encoder and other settings. As shown in Table 3, our method277

outperforms I-MolCLR on 7 out of 9 downstream tasks and got an average of 2 points increase on278

non-chirality MoleculeNet classification datasets.279
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Table 1: ROC AUC on molecular property prediction classification tasks (Higher is better)
Datasets BBBP BACE ClinTox Tox21 ToxCast SIDER HIV PCBA MUV
# Molecules 2039 1513 1478 7831 8575 1427 41127 437929 93078
# Tasks 1 1 2 12 617 27 1 128 17
D-MPNN [52] 71.0 80.9 90.6 75.9 65.5 57.0 77.1 86.2 78.6
Attentive FP [53] 64.3 78.4 84.7 76.1 63.7 60.6 75.7 80.1 76.6
N-GramRF [54] 69.7 77.9 77.5 74.3 − 66.8 77.2 − 76.9
N-GramXGB [54] 69.1 79.1 87.5 75.8 − 65.5 78.7 − 74.8
PretrainGNN [55] 68.7 84.5 72.6 78.1 65.7 62.7 79.9 86.0 81.3
GraphMVP [10] 72.4 81.2 79.1 75.9 63.1 63.9 77.0 − 77.7
GEM [22] 72.4 85.6 90.1 78.1 69.2 67.2 80.6 86.6 81.7
MolCLR [9] 72.2 82.4 91.2 75.0 − 58.9 78.1 − 79.6
Uni-Mol [21] 72.9 85.7 91.9 79.6 69.6 65.9 80.8 88.5 82.1
Ours (Gamma) 76.7 88.2 89.4 80.1 69.9 63.6 83.0 89.6 79.0
Ours (Bernoulli) 73.7 84.3 85.3 79.8 68.8 64.9 80.8 89.3 82.9

Table 2: Performance on molecular property prediction regression tasks (Lower is better)
Datasets ESOL FreeSolv Lipo QM7 QM8 QM9 MEAN (RMSE) MEAN (MAE)
# Molecules 1128 642 4200 6830 21786 133885
# Metric RMSE↓ MAE↓
D-MPNN [52] 1.050 2.082 0.683 103.5 0.0190 0.00814 1.272 34.509
GROVERlarge [56] 0.895 2.272 0.823 92.0 0.0224 0.00986 1.33 30.67
MolCLR [9] 1.271 2.594 0.691 66.8 0.0178 - 1.519 -
GraphMVP [10] 1.029 - 0.681 - - - - -
GEM [22] 0.798 1.877 0.660 58.9 0.0171 0.00746 1.112 19.642
Uni-Mol [21] 0.788 1.480 0.603 41.8 0.0156 0.00467 0.957 13.940
Ours (Gamma) 0.775 1.420 0.590 38.5 0.0142 0.00395 0.928 12.839
Ours (Bernoulli) 0.664 1.358 0.626 55.6 0.0154 0.0056 0.883 18.541

4.3 QM9 Dataset280

The QM9 dataset [44](CC BY-NC SA 4.0 license) is another popular dataset in molecular property281

prediction, it consists of 134k small molecules, and the goal is to predict their quantum properties.282

For this dataset, we choose equiformer [46] as a baseline method. The data partition we use has283

110k,10k,and 11k molecules in training, validation and testing sets. We use both our contrastive loss284

function and original minimize mean absolute error(MAE) as training objectives.As shown in 4, we285

get state of the art result in 8 out of 12 baselines. The increase is relatively subtle compared with286

other dataset, we argue that this is due to the fact that QM9 is relatively small regarding number of287

molecules in training set, and also the saturation on performance achieved by different methods.288

4.4 Ablation Study289

Distribution of similarity scores Our method is largely motivated by the observation that previous290

MCL approaches neglect potential semantic dissimilarity between positive samples and that account-291

ing for this phenomenon can improve learned molecule representations. In Figure A(See Appendix292

A), we plot the distribution of similarity scores for both positive and negative samples. Figure A left293

reveals that our method yields larger similarity scores with lower variance for positive pairs compared294

to MolCLR [9] baseline which uses standard contrastive learning method. Figure A right reveals that295

our method also mitigates the false negative problem in standard CL. It also shows that our method296

sometimes assigns lower similarity scores to positive pairs. While it may seem counter intuitive297

to assign lower similarity scores to positive samples, we argue that doing so is the very reason our298

method captures dissimilarity between positive pairs. By allowing some degree of alignment between299

the right set of negative examples, our method is able to minimize the inconsistencies between shared300

context of related positives and negatives. This in turn allows us to learn an overall more coherent301

representation space, resulting in increased robustness and downstream performance.302

Table 3: Comparison against i-MolCLR on non-chirality MoleculeNet dataset

Without Chirality BBBP BACE ClinTox Tox21 SIDER HIV MUV MEAN
I-MOLCLR [45] 76.4 88.5 95.4 79.9 69.9 80.8 90.8 83.1

Our Method 78.3 94.8 91.4 84.9 72.7 85.5 88.0 85.1
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Table 4: Experiment results on QM9 dataset

Methods α ∆E E homo E lumo µ Cv G H R∧2 µ µ0 ZPVE
GraphCL [47] 0.066 45.5 26.8 22.9 0.027 0.028 10.2 9.6 0.095 9.7 9.6 1.42
JOAOv2 [48] 0.066 45.0 27.8 22.2 0.027 0.028 9.9 9.2 0.087 9.8 9.5 1.43
3D-MGP [49] 0.057 37.1 21.3 18.2 0.020 0.026 9.3 8.7 0.092 8.6 8.6 1.38

Transformer-M [50] 0.041 27.4 17.5 16.2 0.037 0.022 9.63 9.39 0.075 9.41 9.37 1.18
Equiformer [46] 0.046 30 15 14 0.011 0.023 7.63 6.63 0.251 6.74 6.59 1.26

Ours 0.037 24.2 21.1 13.7 0.022 0.022 6.2 6.31 0.082 7.22 9.40 1.09

Comparisons with the Standard Contrastive Learning We conducted an ablation study to show-303

case that our method of probablistic framework of contrastive learning has already achieved strong304

emperical results and demonstrate the improvement brought by adding the 3D-aware loss functions305

on MoleculeNet [11] classification dataset. We first examined the effect of adding the probabilistic306

framework to the standard contrastive loss, and the 3D-aware loss functions as implemented in307

Uni-Mol [21].308

Table 5: Ablation Study on MoleculeNet Classification Datasets

BBBP BACE ClinTox Tox21 ToxCast SIDER HIV PCBA MUV MEAN
Standard CL 69.3 81.5 84.1 75.5 63.4 58.9 78.3 84.1 72.5 75.2

CL + 3D Loss 75.1 86.8 87.9 78.9 68.5 62.8 81.8 88.0 77.1 78.1
CL + Probabilistic Framework 74.1 86.3 88.2 79.5 68.2 63.1 82.5 88.4 77.1 78.6

CL + Both 76.7 88.2 89.4 80.1 69.9 63.6 83.0 89.6 79.0 80.1

Table 6 presents the results of our ablation study. Incorporating the probabilistic framework resulted309

in a great improvement of 3.4-point increase in ROC-AUC, significantly enhances the model’s310

performance. On the other hand, introducing the additional loss component led to an increase in311

ROC-AUC by 2.9 points, demonstrating its secondary role in enhancing the model’s performance.312

When we adopt both of them, we can get the final ROC-AUC of 80.1 average on MoleculeNet313

classification datasets.314

Hyperparameters We also conducted an ablation study to determine the optimal hyperparameters315

(e.g., a+, a−) on MoleculeNet classification datasets. We selected a+, a−, b+, and b− from the316

range [1, 5, 10]. Table 6 indicates that our method achieves the best performance with a+ = 5 and317

a− = b+ = b− = 1. Tuning different hyperparameters affects performance, with an increase in a+318

from 1 to 5 leading to a 1.6 percent performance gain.319

Table 6: Abalation studies on hyperparameters for MoleculeNet classification tasks

a+ 1 5 10 5 5 5 5
a− 1 1 1 1 1 5 10
b+ 1 1 1 5 10 5 5
b− 1 1 1 1 1 5 10

Avg. ROC-AUC (%) 78.8 80.4 79.6 79.3 80.0 79.4 79.3

5 Conclusion320

In this paper, we investigate an important yet unnoticeable limitation of molecular contrastive learning,321

where augmented graph data come with false positive and false negative data pairs. As a remedy, we322

propose a principled solution to molecular contrastive learning by reformulating it into a probability323

framework and introducing random weights for data pairs. With a Bayesian data augmentation324

technique, the random weights can be efficiently inferred via sampling, and the model parameter can325

be effectively optimized via stochastic expectation maximization.326

The effectiveness of our innovative approach has been proven through rigorous evaluations on327

multiple molecular property prediction and protein-ligand binding pose benchmarks. The results also328

showcase the wide-ranging applicability and improved robustness of our proposed method over both329

standard contrastive learning method and non-contrastive learning method for learning molecular330

representations.331

We believe our method is a valuable addition to the literature on molecular contrastive representation332

learning, which can further boost the performance of state-of-the-art molecular representation learning333

models for drug design.334
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A Similarity Score Distribution448

Figure 3: Similarity Scores – Similarity scores distribution for negative pairs in joint space after
pre-training with original MolCLR loss and our proposed loss is provided. Compared to Using
pretrained MolCLR model, our method yields similarity scores with lower mean and lower variance
for negative pairs. While MolCLR have two peaks of negatives similarity scores around 1 and 2.7,
our method concentrates them at only one peak of 1.Our method yields similarity scores with higher
mean and lower variance for positive pairs. Our method concentrates at higher levels as it allows for
some degree of semantic dissimilar between positives. The similarity scores are dot similarity, they
are not normalized to enhance the difference for visual purposes.

B Limitations449

In this section, we discuss the limitations of our proposed EM-based algorithm for molecular contrastive learning.450

B.1 Assumptions and Robustness451

Our approach relies on several strong assumptions, such as the independence of molecular features and the452

noisiness nature of the input data. In practice, these assumptions may be violated, potentially affecting the453

performance and robustness of the model. For instance, correlated features could lead to biased estimates of454

weights, while unnoisy data might degrade the necessity to apply our method in learning representations. Future455

work could explore methods to relax these assumptions and enhance the model’s robustness to such violations.456

B.2 Scope of Claims457

The empirical results presented in this paper are based on experiments conducted on a specific set of datasets:458

MoleculeNet and QM9. While these datasets are commonly used in molecular machine learning research, they459

may not fully represent all possible application domains. Consequently, the generalizability of our findings to460

other datasets or real-world scenarios might be limited. Further validation on a broader range of datasets is461

necessary to confirm the wide applicability of our approach.462

Also, one limitation of our method is that the performance gains brought by the proposed architectural im-463

provements can depend on datasets and tasks. For small datasets like QM9, the performance gain is not464

significant.465

B.3 Privacy and Fairness466

While our work does not specifically address issues of privacy and fairness, these are important considerations467

for any machine learning model, especially those used in sensitive domains such as healthcare. The potential for468

bias in molecular datasets, as well as privacy concerns related to molecular data, are areas that require further469

exploration. Ensuring that our model adheres to ethical standards and mitigates bias is an avenue for future work.470

By acknowledging these limitations, we aim to provide a transparent account of our research and encourage471

future studies to build upon and address these challenges.472
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Table 7: hyperparameter search space for MoleculeNet dataset

Hyperparameter Small Large HIV
Learning rate [5e− 5, 8e− 5, 1e− 4, 4e− 4, 5e− 4] [2e− 5, 1e− 4] [2e− 5, 5e− 5]
Batch size [32, 64, 128, 256] [128, 256] [128, 256]
Epochs [40, 60, 80, 100] [20, 40] [2, 5, 10]
Pooler dropout [0.0, 0.1, 0.2, 0.5] [0.0, 0.1] [0.0, 0.2]
Warmup ratio [0.0, 0.06, 0.1] [0.0, 0.06] [0.0, 0.1]

C Training details for experiments473

C.1 MoleculeNet dataset474

We report the detailed hyperparameters setup of during pretraining in 7. Molecular pretraining runs on 4 A6000475

GPUs, and the training time is about 48 hours.476

C.2 MoleculeNet non-charality477

In pre-training, the GNN encoder embeds each molecule graph into a 512-dimension representation h. The478

projection head is modeled by an MLP with one hidden layer maps h into 256-dimensional latent vector479

z.ReLU is implemented as the non-linear activation function. The whole model is pre-trained for 50 epochs480

with batch size 512 . We use Adam optimizer with an initial learning rate 5 × 10−4 and the weight decay481

1× 10−5. Additionally. cosine learning rate decay is performed during pre-training.482

During fine-tuning, we replace the projection head with a randomly initialized MLP which maps the repre-483

sentation h into the desired property prediction while keeping the pre-trained GNN encoder. The pre-trained484

model is trained individually for 100 epochs on each task from the benchmarks. We perform a random search485

of hyperparameters on validation sets and report the results on test sets. For each benchmark, we run three486

individual runs and report the average. The whole model is implemented on PyTorch Geometric.487

C.3 QM9 dataset488

We follow the data partitioning scheme used by Equiformer. For the tasks involving µ, α, εHOMO, εLUMO,∆ε,489

and Cν , our experimental setup includes a batch size of 64, training for 300 epochs, a learning rate of 5× 10−4,490

and Gaussian radial basis functions with 128 bases. The architecture comprises 6 Transformer blocks, a weight491

decay of 5× 10−3, and a dropout rate of 0.2. Mixed precision training is employed for these tasks.492

For the R2 task, we use a batch size of 48, 300 epochs, a learning rate of 1.5 × 10−4, Gaussian radial basis493

functions with 128 bases, 5 Transformer blocks, a weight decay of 5× 10−3, and a dropout rate of 0.1, training494

in single precision.495

The ZPVE task also uses a batch size of 48, 300 epochs, a learning rate of 1.5× 10−4, Gaussian radial basis496

functions with 128 bases, 5 Transformer blocks, a weight decay of 5× 10−3, and a dropout rate of 0.2, with497

single precision training.498

For the tasks of G,H,U , and U0, the setup includes a batch size of 48, 300 epochs, a learning rate of 1.5×10−4,499

Gaussian radial basis functions with 128 bases, 5 Transformer blocks, no weight decay, and no dropout, with500

single precision training.501

We used a single A6000 GPU for training, with the mixed precision tasks taking 81 GPU-hours and single502

precision tasks taking 151 GPU-hours. The model contains 11.20 million parameters for 6-block configurations503

and 9.35 million parameters for 5-block configurations.504

D Protein-ligand binding task505

We also conducted the protein-ligand binding pose prediction task. This is one of the most important tasks in506

structure based drug design. The task is to predict the complex structure of a protein binding site and a molecular507

ligand. We need to consider how ligand lays in the pocket, that is, the 6 degrees (3 rotations and 3 translations)508

of freedom of a rigid movement.509

Following Uni-Mol [21], the molecular representation and pocket representation are firstly obtained from their510

own pretraining models by their own conformations; then, their representations are concatenated as the input of511

an additional 4-layer Transformer decoder, which is finetuned to learn the pair distances of all heavy atoms in512

molecule and pocket. Then, with the predicted pair-distance matrix as a scoring function, we first randomly513
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place the ligand and then optimize the coordinates of its atoms by directly back-propagation the loss between514

current pair-distance and predicted pair-distance.515

For the training data used in finetuning, we use PDBbind General set v.2020[38] (19,443 complexes).516

We evaluate our method using the metric binding pose accuracy. Specifically, we keep the pocket conformation517

fixed, while the ligand conformation is fully flexible. We evaluate the RMSD(root mean squared distance)518

between the prediction and the ground truth. Following previous works, we use the percentage of results below519

predefined RMSD thresholds as metrics.520

Table 8: Performance on binding pose prediction.

Methods 1.0 Å 1.5 Å 2.0 Å 3.0 Å 5.0 Å
Autodock Vina 44.21 57.54 64.56 73.68 84.56
Vinardo 41.75 57.54 62.81 69.82 76.84
Smina 47.37 59.65 65.26 74.39 82.11
Autodock4 21.75 31.58 35.44 47.02 64.56
Uni-Mol [21] 43.16 68.42 80.35 87.02 94.04
Ours (Bernoulli) 48.77 70.18 78.95 85.26 94.04
Ours (Gamma) 45.61 69.47 80.70 88.42 96.84

We compare our method with current state-of-the-art baselines, including Autodock Vina[39,40], Vinardo[41],521

Smina[42], Autodock4[43] and Uni-Mol[21].522

The binding pose accuracy results are shown in Table 3. Not surprisingly, our model again outperforms all the523

baseline methods, achieving state-of-the-art results with our Gamma-prior version model.524

E Code525

Please refer to supplementry material for code.526
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NeurIPS Paper Checklist527

The checklist is designed to encourage best practices for responsible machine learning research, addressing528

issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: The529

papers not including the checklist will be desk rejected. The checklist should follow the references and follow530

the (optional) supplemental material. The checklist does NOT count towards the page limit.531

Please read the checklist guidelines carefully for information on how to answer these questions. For each532

question in the checklist:533

• You should answer [Yes] , [No] , or [NA] .534

• [NA] means either that the question is Not Applicable for that particular paper or the relevant535

information is Not Available.536

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).537

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area538

chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions)539

with the final version of your paper, and its final version will be published with the paper.540

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While541

"[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a proper542

justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or543

"we were unable to find the license for the dataset we used"). In general, answering "[No] " or "[NA] " is not544

grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is545

often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting546

evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer547

[Yes] to a question, in the justification please point to the section(s) where related material for the question can548

be found.549

IMPORTANT, please:550

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",551

• Keep the checklist subsection headings, questions/answers and guidelines below.552

• Do not modify the questions and only use the provided macros for your answers.553

1. Claims554

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s555

contributions and scope?556

Answer: [Yes]557

Justification: The abstract and introduction clearly state the key contributions of the paper, including the558

development and evaluation of the proposed EM-based algorithm for molecular contrastive learning,559

as well as the comparison with baseline methods.560

2. Limitations561

Question: Does the paper discuss the limitations of the work performed by the authors?562

Answer: [Yes]563

Justification: The paper includes a dedicated "Limitations" section where it discusses the strong564

assumptions made in the model, such as the independence assumptions and the potential impact565

of noisy data. It also reflects on the scope of the claims, emphasizing that the results are based on566

experiments conducted on specific datasets.567

3. Theory Assumptions and Proofs568

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete569

(and correct) proof?570

Answer: [Yes]571

Justification: The paper includes a detailed presentation of all theoretical results, with each theorem572

and lemma clearly numbered and cross-referenced. All assumptions are explicitly stated within the573

statements of the theorems, and complete proofs are included in the main text.574

4. Experimental Result Reproducibility575

Question: Does the paper fully disclose all the information needed to reproduce the main experimental576

results of the paper to the extent that it affects the main claims and/or conclusions of the paper577

(regardless of whether the code and data are provided or not)?578
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Answer: [Yes]579

Justification: The paper provides comprehensive details on the experimental setup, including dataset580

descriptions, preprocessing steps, model architectures, hyperparameter settings, and evaluation metrics.581

Additionally, the paper outlines the exact procedures followed during experimentation and includes582

detailed pseudocode in the appendix. These disclosures ensure that the main experimental results can583

be reproduced and verified independently.584

5. Open access to data and code585

Question: Does the paper provide open access to the data and code, with sufficient instructions to586

faithfully reproduce the main experimental results, as described in supplemental material?587

Answer: [Yes]588

Justification: The paper provides open access to both the data and the code. Detailed instructions are589

included in the supplemental material, covering the exact commands and environment settings needed590

to reproduce the results. The data access instructions encompass steps for obtaining the raw data,591

preprocessing methods, and generating the necessary datasets. Scripts to reproduce all experimental592

results, including those for the proposed method and baselines, are provided. Any deviations or593

omitted experiments are clearly stated with justifications.594

6. Experimental Setting/Details595

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,596

how they were chosen, type of optimizer, etc.) necessary to understand the results?597

Answer: [Yes]598

Justification: The paper provides comprehensive details on the experimental setup, including specific599

data splits, hyperparameters, and their selection process. It also covers the type of optimizer used and600

all other relevant parameters. These details are presented clearly in the appendix of the paper.601

7. Experiment Statistical Significance602

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-603

tion about the statistical significance of the experiments?604

Answer: [No]605

Justification: The paper does not report error bars, confidence intervals, or statistical significance tests606

for the experimental results. Instead, all the experiments are carried out for three times and the average607

is reported.608

8. Experiments Compute Resources609

Question: For each experiment, does the paper provide sufficient information on the computer610

resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?611

Answer: [Yes]612

Justification: The paper provides detailed information on the computer resources required for each613

experiment. It specifies the type of compute workers (GPU), memory usage, and the time of execution614

for each experimental run.615

9. Code Of Ethics616

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code617

of Ethics https://neurips.cc/public/EthicsGuidelines?618

Answer: [Yes]619

Justification: There is no consider of ethics according to the NeurIPS Code of Ethics.620

10. Broader Impacts621

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts622

of the work performed?623

Answer: [NA]624

Justification: There is no societal impact discussed in the paper.625

11. Safeguards626

Question: Does the paper describe safeguards that have been put in place for responsible release of627

data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or628

scraped datasets)?629

Answer: [NA]630

Justification: The paper does not pose such risks.631
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12. Licenses for existing assets632

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,633

properly credited and are the license and terms of use explicitly mentioned and properly respected?634

Answer: [Yes]635

Justification: The authors have cited the original paper that produced the code package or dataset,636

stated its’ versions, included the license and provided the copyright and terms of services.637

13. New Assets638

Question: Are new assets introduced in the paper well documented and is the documentation provided639

alongside the assets?640

Answer: [Yes]641

Justification: The assets are anonymized, details about training, license, limitations,etc are provided in642

structured templates.643

14. Crowdsourcing and Research with Human Subjects644

Question: For crowdsourcing experiments and research with human subjects, does the paper include645

the full text of instructions given to participants and screenshots, if applicable, as well as details about646

compensation (if any)?647

Answer: [NA]648

Justification: the paper does not involve crowdsourcing nor research with human subjects649

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects650

Question: Does the paper describe potential risks incurred by study participants, whether such651

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an652

equivalent approval/review based on the requirements of your country or institution) were obtained?653

Answer: [NA]654

Justification: This paper does not involve studying participants655
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