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Abstract

Graph auto-encoders are widely used to construct graph representations in Euclidean vector
spaces. However, it has already been pointed out empirically that linear models on many
tasks can outperform graph auto-encoders. In our work, we prove that the solution space
induced by graph auto-encoders is a subset of the solution space of a linear map. This
demonstrates that linear embedding models have at least the representational power of graph
auto-encoders based on graph convolutional networks. So why are we still using nonlinear
graph auto-encoders? One reason could be that actively restricting the linear solution
space might introduce an inductive bias that helps improve learning and generalization.
While many researchers believe that the nonlinearity of the encoder is the critical ingredient
towards this end, we instead identify the node features of the graph as a more powerful
inductive bias. We give theoretical insights by introducing a corresponding bias in a linear
model and analyzing the change in the solution space. Our experiments are aligned with
other empirical work on this question and show that the linear encoder can outperform the
nonlinear encoder when using feature information.

1 Introduction

Many real-world data sets have a natural representation in terms of a graph that illustrates relationships
or interactions between entities (nodes) within the data. Extracting and summarizing information from
these graphs is the key problem in graph learning, and representation learning is an important pillar in this
work. The goal is to represent/encode/embed a graph in a low-dimensional space to apply machine learning
algorithms to solve a final task.
In recent years neural networks and other approaches that automate learning have been employed as a
powerful alternative to leverage the structure and properties of graphs (Tang et al., 2015; Grover & Leskovec,
2016; Ribeiro et al., 2017; Dong et al., 2017; Hamilton et al., 2017a; Chamberlain et al., 2017; Cao et al.,
2016; Wang et al., 2016; Chang et al., 2015). For example, Hamilton et al. (2017b) review key advancements
in this area of research, including graph convolutional networks (GCNs). Graph auto-encoders (GAEs), first
introduced in Kipf & Welling (2016b), are based on a graph convolutional network (GCN) architecture. They
have been heavily used and further refined for representation learning during the past couple of years (see
Li et al. (2021); Pan et al. (2018); Vaibhav et al. (2019); Davidson et al. (2018), to name a few). Recently,
Salha et al. (2020) discovered that the original GAE architecture, which has been used as a basis for several
enhancements, can be outperformed by simple linear models on an exhaustive set of tasks. The equivalence
or even superiority of (almost) linear models has also been empirically shown for standard GCN architectures
for link prediction and community detection (Wu et al., 2019). The question arises as to why we still use
and improve these models when simpler models with comparable performance exist. What is the theoretical
relation between linear and nonlinear encoders, and does the empirical work provide a reason to replace
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Figure 1: The architecture of a linear auto-encoder and a relu auto-encoder. The only difference is the
encoder function: The linear encoder is a simple linear map, whereas the relu encoder is a two-layer GCN
network with relu activation in the first layer and linear output activation. In both cases, the input is the
graph pA,Xq. Hp1q is the hidden layer of the GCN. A row in the matrix Z gives the latent representation
of the respective row/node in the input matrix X. In both cases the decoder is the inner product, and the
target is to recover the adjacency matrix A.

graph convolutional networks with linear equivalents? In this paper, we contribute to understanding the
underlying inductive bias of the graph auto-encoder model.

Contributions: (1) We draw a theoretical connection between linear and non-linear encoders and prove
that, under mild assumptions, for any function fpA,Xq on a graph, there exists a linear encoder that
can achieve the same training loss. We use this result to show that the representational power of relu
encoders is, at most, as large as the one of linear encoders. (2) We investigate the bias that is relevant for
good generalization and give theoretical insights into how features influence the solution space of a linear
model. (3) We empirically find that the nonlinearity in the relu encoder is not the critical ingredient for
generalization. Indeed we discover that if the graph features are taken into account appropriately, the linear
model outperforms the relu model test data.

2 Preliminaries

We consider a connected, unweighted and undirected graph G with adjacency matrix A P t0, 1unˆn and
a feature matrix X P Rnˆg. The feature matrix X contains g-dimensional feature vectors that describe
additional properties of each node of the graph. For example, if the graph consists of a social network, the
features could describe additional properties of the individual persons, such as age and income. If we do not
have any feature information for the nodes (“featureless graph”), then we set X as the nˆn identity matrix.
We always assume that all nodes are connected to themselves, that is, aii “ 1 for all i. We call D P Nnˆn

the degree matrix with diagonal entries dii “
řn

j“1 Aij and 0 everywhere else, and Ã “ D´1{2AD´1{2 the
symmetrically normalized adjacency matrix.

Graph convolutional networks. Inspired by convolutional neural networks, graph convolutional networks
(GCNs, Kipf & Welling (2016a)) are one of the most widely used graph neural network architectures. The
input consists of a graph pA,Xq. The graph convolution is applied to a matrix Ã that encodes the adjacency
structure of the graph. This matrix Ã, called diffusion matrix, is the symmetrically normalized adjacency
matrix in our case but could be replaced by any matrix encoding the graph structure, for example, the graph
Laplacian. In each layer of the network, a node in the graph updates its latent representation, aggregating
feature information within its neighbourhood, and learns a low-dimensional representation of the graph and
its features. More precisely, in layer l, each node update is some function of the diffusion of the weighted
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features: Hpl`1q “ ψpÃHplqW plqq with learnable weights W plq, (nonlinear) activation function ψ and Hp0q

as the feature matrix X. The output of the GCN for each node in the graph is a d-dimensional vector
representing this node’s embedding. This representation can be used for downstream tasks such as node or
graph classification or regression.

Graph auto-encoders. Graph auto-encoders aim to learn a mapping of the graph input pA,Xq to an
embedding Z P Rnˆd. This embedding is optimized such that, given a decoder, we can recover the adja-
cency matrix A from the embedding. As visualized in Figure 1, the encoder consists of a two-layer graph
convolutional network with no output activation and hidden layer with size h P N. The decoder is a simple
dot product:

Zrelu “ GCNpX,Aq “ Ã relupÃXW p0qqW p1q
loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

encoder

, Ârelu “ σpZreluZ
T
reluq

loooooooooooomoooooooooooon

decoder

. (1)

Here Zrelu P Rnˆd is the latent space representation with embedding dimension d, and the matrix Â is the
reconstructed adjacency matrix. Note that Â is a real-valued matrix that aims to capture the likelihood of
each edge in the graph. To obtain a binary adjacency matrix as a final result, we discretize by thresholding
the values at 0.5. The loss function optimized by the auto-encoder is the cross-entropy between the target
matrix A and the reconstructed adjacency matrix Â. It is minimized over the encoder’s parameters W plq.
The decoder is a deterministic function and is not learned from the data. For a graph with adjacency matrix
A, latent space embedding Z, and with σp¨q denoting the sigmoid function, the loss is formalized as follows:

lApZq “

n
ÿ

ij“1
aij logpσpziz

T
j qq ` p1 ´ aijqp1 ´ logpσpziz

T
j qqq. (2)

Below we compare GAEs based on a relu encoder with a simplified model based on a linear encoder.

3 Relu encoders have at most the representational power of linear encoders

Graph auto-encoders are widely used for representation learning of graphs. However, it has also been
observed that linear models outperform them on several tasks. In this section, we investigate this empirical
observation from a theoretical point of view. We define a graph auto-encoder that uses a simple linear map
as the encoder and prove that the derived model has larger representational power than a relu encoder. To
this end, we introduce a linear encoder based on a linear map of the diffusion matrix Zlin “ ÃW , where Zlin
is the latent space representation. The loss function and the decoder remain as in the relu model. For a
relu encoder, the dimension h of the hidden layer satisfies g ą h ą d (for the linear encoder, the parameter
h does not exist). We now define the solution spaces to help us describe the respective models’ behavior.
They will represent the embeddings that can be learned by relu and linear encoders, both with and without
node features and more general functions on graphs:

Zlin “ tZ P Rnˆd|Z “ ÃW for W P Rnˆdu

Zlin,X “ tZ P Rnˆd|Z “ ÃXW for W P Rgˆdu

Zrelu “ tZ P Rnˆd|Z “ Ã relupÃW p0qqW p1q for W p0q P Rnˆh,W p1q P Rhˆdu

Zrelu,X “ tZ P Rnˆd|Z “ Ã relupÃXW p0qqW p1q for W p0q P Rgˆh,W p1q P Rhˆdu

Zf “ tZ P Rnˆd|Z “ fpÃ,X; θq for θ P Θu.

Here f can be any parameterized function on a graph f : Rnˆn ˆ Rnˆg ˆ Θ Ñ Rnˆd and Θ can be an
arbitrary set of parameters. It is easy to see that Zlin,X Ď Zlin. In words: when we compare two linear
encoders, one with node features and one without node features, the one with node features has a more
restricted solution space. The reason is that the feature matrix X is at most rank g and typically has a
low rank compared to the diffusion matrix Ã, which restricts the image of ÃX. The same holds for the
relu encoder: Zrelu,X Ď Zrelu. The relation between the linear encoder and the relu encoder is less obvious.
One might guess that the relu encoder can learn more mappings than a linear encoder. However, we now
show that this is not the case: we will see that Zlin Ě Zrelu, focusing on the featureless model. This relation
implies that the linear encoder has a larger representational power than a relu encoder.
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While this paper focuses on a specific architecture that has been introduced in previous work and is heavily
used in practice, some of our insights extend to any encoder function f under mild assumptions on the input
graph. Thus, we first state our result in a more general way. We make the following assumptions:
Assumption 1. The number of nodes n is larger than the feature dimension g.
Assumption 2. The rank of the diffusion matrix Ã is larger than or equal to the embedding dimension d.
Assumption 3. The loss-function l is invariant to orthogonal transformations, that is, lApZq “ lApRZq for
any orthogonal matrix R.

‚ Assumption 1 is typically fulfilled in practice. Vertices are typically described by a moderate number of
features. Especially for larger graphs, this is a weak assumption.
‚ Assumption 2 is usually satisfied because the embedding dimension is a choice, and a graph auto-encoder
aims to find a low-dimensional representation. We can also think about this assumption in the context of
the informational content of our data. If the input matrix is of low rank, it holds little information; we will
not gain information by embedding it into a higher dimensional space. Setting the embedding dimension d
smaller than the rank of the input matrix rankpÃq makes sense.
‚ Assumption 3 is fulfilled in the graph auto-encoder setting; the loss given in Equation 2 is based on pairwise
distances given by the dot-product. This loss is invariant to orthogonal transformations. Generally, one could
construct loss functions not invariant to orthogonal transformations. However, orthogonal transformations
usually preserve pairwise metrics, and as a result, all loss functions based on a decoder incorporating pairwise
distances will also be invariant to orthogonal transformations.

To prove our main theorem, we first observe that given Assumption 2, for any set P of n points in a
d-dimensional subset of Rn, we can find an orthogonal transformation that maps the span of A so that it
contains all points in P .

Lemma 4. For P P Rnˆd, A P Rnˆm with rankpP q ď rankpAq, there exists an orthogonal matrix R with
spanpP q Ď spanpRAq.

We can now prove that the linear model can outperform any other function f on the graph G during training.

Theorem 5 (Minimal Loss). Consider a fixed graph G “ pA,Xq. Let Ã be the diffusion matrix of G
and let Z P tZ P Rnˆd | Z “ fpA,X; θq for P Θu be any latent space representation of any graph function
fpA,X; θq. Let l be a loss function and assume that Assumptions 1-3 are satisfied. Then the linear model
can find a a latent space representation with loss at least as good as the relu encoder.

Proof. With Lemma 4 it holds that for any Z P Rnˆd and any matrix Ã P Rnˆm with rankpÃq ě rankpZq,
there exists an orthogonal matrix R P Rnˆn such that all points in latent space representation Z are in the
image of RÃ:

DR orthogonal s.t. tRÃW | W P Rmˆdu Ě tZ | Z “ fpA,X; θq P Rnˆdu.

This implies that there exists a weight matrix W P Rmˆd with lpZq “ lpRÃW q “ lpÃW q. In other words,
the minimal loss over the set of possible solutions that is learnable by the linear model is smaller or equal
to any loss over the solution space achievable by the function f :

inftlpZf q | Zf P Zf u ě inftlpZlinq | Zlin P Zlinu

Theorem 5 considers a quite general statement. The graph auto-encoder architecture is one particular
instance of a function f . Given the specific architecture of the auto-encoder we can show that the solution
space of the relu-encoder is contained in the solution space of the linear model.

Corollary 6 (Representational power of GAEs). For any (trained) graph auto-encoder in
Zrelu Ě Zrelu,X , there exists an equivalent, featureless linear encoder in Zlin that can achieve the
same training loss because we have Zlin Ě Zrelu.
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We refer to Appendix A for the proof. Note that if we assume that rankpAF q ą d, then the rank of AF is
larger than the embedding dimension d. Theorem 5 and Corollary 6 hold for the solution space of the linear
model, including features: Zlin,X. We discuss the influence of the features on the representational power of
the linear model in Section 4.

Corollary 6 has a simple but strong implication: in principle, the (featureless) linear model is more powerful
than the traditional GAE (with or without features). Here “more powerful” means that the linear model
can achieve better training loss.

The issue of representational power. Note that we do not claim that

tf : Rnˆg Ñ Rnˆd | fpA,Xq is any nonlinear GNNu Ď tf : Rnˆg Ñ Rnˆd | fpA,Xq “ A W for W P Rgˆdu,

which would mean that the function class of linear models contains the function class of nonlinear models.
However, in the setting of a graph neural network, we usually have a single graph as an input with a fixed
number of nodes n. In this setting, the goal is to find an embedding of this fixed graph. Our result says that
Zf Ď Zlin and in particular Zrelu,X Ď Zrelu Ď Zlin. In words: The solution space of the nonlinear model
is contained in the solution space of the linear one, showing that the representational power of the linear
model is larger than the one of the nonlinear model.

Generalization properties. Note that Corollary 6 does not claim that the linear model without features
outperforms the relu model. This corollary only considers the training loss. Thus we can not derive anything
about the test performance or the solution that an optimization algorithm might find. So far, we are just
consider training loss and the existence of a weight matrix W . From the above discussion, it is apparent
that the linear encoder is less restricted, which means that it introduces a weaker inductive bias than the
relu encoder. Note that this is independent of the fact that we used the relu activation function or the depth
of the convolutional network. Regarding the test performance, the question is whether the restriction that
the relu encoder puts on the solution space induces a “good” inductive bias that helps improve the model’s
test error. As we see below, we empirically find that when using features, a relu encoder does outperform
the (featureless) linear encoder on test data. The relu activation and the features both restrict the solution
space and introduce an inductive bias. Next, we investigate which of these two ingredients helps to restrict
the representational power in a meaningful way.

4 The inductive bias of adding features

This section investigates how features influence the solution space of the linear model and the inductive bias
that we introduce by adding features. While Corollary 6 shows the superior representational power of the
linear model without features, in Section 5, we will observe improved test performance for models that do
use feature information. Whenever the features are low rank compared to the diffusion matrix, they restrict
the solution space and introduce an inductive bias that facilitates learning and can improve generalization
if they hold helpful information. We observe this behaviour for both considered architectures, the relu and
the linear encoder. Consequently, we conjecture that the presence of features, and not the relu nonlinearity,
introduces the necessary bias to restrict the solution space in a meaningful way. However, some care is
needed. As we will see, adding features can also harm performance if they contradict the structure of the
target graph. In order to quantify the harm, we derive a measure for misalignment between graph structure
and feature information. Based on this, we give theoretical insights about the restriction of the solution
space when including features in the linear model.

Intuitively, we want to call a graph A and the corresponding features X “aligned” if they encode “similar”
information. In our setting, this would be the case if A is “close to” XXT: considering the features X P Rnˆg

as node embeddings, the matrix XXT reconstructed adjacency matrix in a similar way as the dot product
decoder. In other words, nodes should be close together in the feature space if and only if an edge connects
them. Since the adjacency matrix is symmetric, a decomposition A “ Y Y T for Y P Cnˆn always exists.
The error that we might introduce by adding features then comes from the fact that XXT is a (low rank)
approximation of Y Y T “ A: Even for perfectly aligned features, the feature dimension g is typically much
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smaller than n. Note that if we consider one graph and two different feature matrices with the same span,
both features restrict the solution space in the same way and give rise to the same optimal embedding:

Proposition 7 (Features with the same span induce the same solution space). Let Ã P Rnˆn

be the diffusion matrix of a fixed graph and U,F P Rnˆg two different feature matrices for this graph. If
spanpUq “ spanpF q, then Zlin,U “ Zlin,F .

Intuitively, this means that if U and F span the same space, the corresponding models can, in principle,
learn the same mappings and output the same embeddings.

Proof. We show that for every weight matrix WU with Z “ ÃUWU , there exists a weight matrix WF with
Z “ ÃFWF . From spanpUq “ spanpF q it follows that spanpÃUq “ spanpÃF q. We define corresponding
linear maps fU , fF : Rd Ñ Rn with fU pxq “ ÃUx and fF pxq “ ÃFx. Since ImpfU q “ ImpfF q we know that
every point fU pxq “ y has at least one pre-image in fF . Let WU “ rwU1 , ..., wUd

s and Z “ rz1, ..., zds be
such that zi “ fU pwUi

q. For every zi there exists at least one wFi
with fF pwFi

q “ zi “ fU pwUi
q. Since this

holds for any matrix WU we can conclude that Zlin,U “ Zlin,F .

We have seen that two different feature matrices with the same span restrict the solution space equivalently.
Next, we derive a condition for the alignment between features X and graph structure Ã that quantifies when
features are potentially helpful. To do so, we investigate two settings. In the first setting, the features align
with the graph structure and can introduce a valuable restriction of the solution space. In the second setting,
the features contradict the graph structure and restrict the solution space in such a way that the optimal
embedding can no longer be recovered. The intuition for helpful features corresponds with the one for good
embeddings: If points are connected in the graph, they should have similar feature vectors. Consequently,
if we were not to embed the nodes into a low-dimensional space but were simply interested in any latent
representation of the graph, the features themselves would represent desirable embeddings.

Proposition 8 (Features cannot hurt if they perfectly align with the graph structure). Let X be
the feature matrix of the graph with diffusion matrix Ã and let the embedding dimension coincide with the
feature dimension g. If ImpÃXq “ ImpXq, then there exists a weight matrix W with X “ ÃXW .

This proposition shows that if ImpÃq “ ImpÃXq, then the model can recover the features.

Proof. Since ÃX and X span the same subspace, we can find a w2 for any w1 with Xw1 “ ÃXw2 and
w1, w2 P Rg. We interpret every column in a matrix as an independent vector to derive that for any matrix
W1 we can find a matrix W2 with XW1 “ ÃXW2 and W1,W2 P Rgˆg.

The proposition suggests that if the features encode the same structure as the graph’s adjacency matrix,
they do not negatively restrict the solution space. We now consider the opposite case: if the node relations
encoded by their features contradict the adjacency structure of the graph, we can neither recover the features
nor the adjacency matrix. In this setting, features restrict the function space in a harmful way, preventing
the easiest and trivially optimal embedding. From these observations, we then derive a definition to measure
the alignment between a graph’s structure and node features.

Proposition 9 (Features can hurt if they do not align with the graph structure). Let X be
the graph’s feature matrix, and assume that the embedding dimension coincides with the feature dimension,
d “ g. Let Ã be the diffusion matrix and let Y P Rnˆd be a matrix such that Ã “ Y Y T . Assume that the
graph can be perfectly represented in g dimensions, that is, there exists a Z P Rnˆg with ZZT “ Ã. Let
rankpY q “ rankpÃq “ g.

1. If ImpÃXq ‰ ImpXq, then there exists no weight matrix W with X “ ÃXW .

2. If ImpÃXq X ImpXqK ‰ H, then there exists no weight matrix W with Y “ ÃXW .

The intuition is that if the adjacency matrix and the node features define two different structures, then
neither of the structures can be encoded by the linear model. The alignment of the structures is captured
by the condition on the image of ÃX and X.
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Proof of Part 1. We prove the contraposition: If there exists a weight matrix W with X “ ÃXW then
ImpÃXq “ ImpXq. Let Ã P Rnˆn and let X P Rnˆg be full rank. Let W be such that X “ ÃXW . Since X
is full rank, the rank of W is full and thus ImpXq “ ImpÃXW q “ ImpÃXq. 2

Proof of Part 2. For Y “ ÃXW “ Y Y TXW to hold we need W to be the gˆg inverse of pY TXq. We prove
that if ImpÃXq X ImpXqK ‰ H, then Y TX P Rgˆg is of rank smaller g and thus not invertible. We again
prove the contraposition: If XTY is full rank then ImpÃXq X ImpXqK “ t0u. Note that Y TX is full rank
by assumption and thus: ImpÃXq “ ImpY Y TXq “ ImpY q. Generally it holds that ImpXqK “ kerpXTq. Let
w P ImpY q X kerpXTq. Since w is in ImpY q there exists a v P Rd with w “ Y v. Since w in kerpXTq, it follows
that XTY v “ XTw “ 0. This implies v “ pXTY q´10 “ 0 and thus w “ 0 and thus ImpY qXkerpXTq “ t0u. 2

Note that the dot product is invariant under orthogonal transformations; thus, for the features, every
orthogonal transformation can be absorbed in the weight matrix. Proposition 9 also holds for orthogonally
transformed features and embeddings. Thus given the dot-product as a decoder there is no other embedding
Ỹ ‰ Y that recovers the adjacency structure of the graph.

Based on all these insights, we propose a misalignment definition between a graph and its node features.
Intuitively, we want to say that A and X are misaligned if ÃX and X do not span the same subspace.
Definition 10 (Misalignment of graph and features). Let Ã be the symmetrically normalized adjacency
matrix and X̃ the normalized feature matrix such that each column has l2-norm 1. We measure misalignment
of a graph A and its features X using the distance dalgn : Rnˆn ˆ Rnˆg Ñ R, where the arccos function
is applied to every entry in the matrix:

dalgnpA,Xq ÞÑ TrparccospÃX̃X̃Tqq.

We got inspired to this measure by the geodesic distance on the Grassmannian manifold, which measures
the principal angles of two subspaces AX and X. If dalgn is low, the alignment between A and X is high. It
is easy to see that with this formulation, dalgnpA,Xq “ 0 if A “ XXT . This is consistent with our intuition
that the features and structure of the graph are perfectly aligned if they encode the same structure.

The generalization error of linear encoders is task dependent. Learning and generalization can only
work if the learning architecture encodes the correct bias for the given task. We now consider two tasks to
demonstrate the negative and positive impact of the bias that we introduce when using features.

In recent work, the most common task is link prediction. For this task we consider a graph given by its
adjacency matrix A P t0, 1unˆn and a feature matrix X P Rnˆg. We construct a train graph Ā by deleting
a set of edges from the graph, which we later, during test time, would like to recover. We train to minimize
the loss lpĀ,Xq, while the test loss is given by lpA,Xq. In our opinion, link prediction is a somewhat strange
task when talking about generalization. We assume that the input graph is incomplete or perturbed. During
training, we optimize the GAE for an adjacency matrix that we do not wish to recover during test time
(because we also want to discover the omitted edges). However, this cannot be encoded in the loss of the
auto-encoder (compare Eq. (2)). For the encoding to discover the desired embedding, the necessary bias
to prevent the model from optimally fitting the training data must be somewhere else in the model. We
claim that the features introduce this necessary bias, and we evaluate the link prediction task because it is
so prominent in the literature.

We consider a second task, node prediction. For this task, the is graph given by its adjacency matrix
A P t0, 1unˆn and the feature matrix X P Rnˆg. We construct a train graph Ā, X̄ by deleting a set of nodes
from the graph A and the corresponding features from the feature matrix X. We train to optimize lpĀ, X̄q.
We then compute the test loss on the larger graph A,X: lpA,Xq with the goal of predicting the omitted
nodes. The goal is to learn a mapping from the input graph to the latent space that generalizes to new,
unseen vertices.
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Figure 2: When features help. In the link prediction task, features help to regularize if they align with Ã
because they encode the target structure. Along the x-axis we plot the alignment between the graph and
the features with two different scores: on the bottom, we plot misalignment as measured by dalgn, described
in Definition 10 (low is good alignment, high is bad alignment). On the top, we show the alignment given
by the number of overlapping dimensions of the two subspaces. The figures show train and test performance
for the link prediction task on the synthetic dataset described in Section 5. We embed the points into eight
dimensions. We plot values for ten independently sampled graphs. The left figure shows results for the
architecture with the relu encoder and the right figure shows results for the linear model.

Intuitively it is clear that, depending on the task, the usefulness of the introduced bias might vary. We
empirically evaluate the influence of features and compare the performance of the linear and the nonlinear
encoder with and without the bias of features.

5 Empirical evaluation

In this section, we evaluate the influence of node features and the role of their alignment both for linear and
relu encoders. We will see that the results support the theory that linear encoders outperform relu encoders.

Setting. We consider two models for empirical evaluation. The first is the relu encoder defined in Equa-
tion (1) based on the implementation of Kipf & Welling (2016b), and the second is the linear encoder. Since
the relu encoder has two layers and thus two weight matrices, we realize the weights for the linear model
accordingly: Zlin “ ÃXW p0qW p1q. This definition does not contradict the one from above; we can simply
choose W “ W p0qW p1q. Regarding the representational power of the model, this makes no difference. How-
ever, from an optimization perspective, it can influence the training (see Saxe et al. (2013)), and we aim
to compare the models as fair as possible. We use the same objective function as Kipf & Welling (2016b),
weighting the edges to tackle the sparsity of the graph and regularizing by their mean squared norm to
prevent the point embeddings from diverging. We train using gradient descent and the Adam optimizer for
200 epochs. Due to sparsity, the accuracy of the recovered adjacency matrix is not very insightful. As is
done in previous work, we measure the performance of the auto-encoders by the area under the receiver
operating characteristic curve (AUC). To get a representative metric we use all present (positive) edges from
the graph and uniformly sample the a number of what we call ‘negative’ edges, that is, edges that are not
present in the graph’s adjacency matrix. As a result, we only use some of the entries of the adjacency matrix
for evaluation and get a balanced set of present and non present edges in the graph. To get representative
results, we run every experiment 10 times. In real-world datasets, we randomize over the test set, drawing
different edges or nodes each time. For the synthetic datasets, we draw ten independent graphs from the
same generative model described below, then construct the test and train sets on these.

Datasets. We use the following generative model to get a synthetic dataset with aligned features. We
draw n “ 1000 data points from a standard Gaussian distribution in g “ 64 dimensions. We normalize the
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Figure 3: When features harm. Adding features can harm the node prediction task performance, preventing
optimal graph fitting. The x-axis shows the alignment between the graph and the features with two different
scores: we plot the misalignment as measured by dalgn, described in Definition 10 (low is good alignment,
high is bad alignment). On the top, we show alignment given by the number of overlapping dimensions
of the two subspaces. The figures show train and test performance for the node prediction task on the
synthetic dataset described in Section 5. We embed the nodes into eight dimensions. We plot values for ten
independently sampled graphs. The left figure shows results for the architecture with the relu-encoder and
the right figure shows results for the linear model.

points to lie on the unit sphere and store their coordinates in a feature matrix X P Rnˆg. We then construct
the graph by thresholding the matrix XXT to get a 0-1-adjacency matrix of density between 0.01 and 0.02.
With this construction, the feature matrix and the graph adjacency matrix are as aligned as possible, given
the dimensional restriction. We generate data that simulates misalignment as follows. We aim to construct
features that overlap in d dimensions with the graph’s optimally aligned, true features. Recall that changing
the span does not restrict the solution space, so we can replace the features with any other basis of the same
space. The feature matrix X is spanned by tu1, ..., ugu. We construct a perturbed feature matrix Xperturbed
that has the same rank as X and spans the first d dimensions of the space; spanpu1, ..., udq, but is orthogonal
to the remaining space; spanpud`1, ..., ugq. We do so by calculating the singular value decomposition X “

UΣV T, then choose the first d columns and the last g ´ d columns from U . Let U “ ru1, ..., uns, we
set Xperturbed “ ru1, ..., ud, un´pg´dq, ..., uns. Note that the vectors un´pg´dq, ..., un lie completely in the
orthogonal complement of spanpu1, ..., ugq, which means that the span of the optimal features X and the
perturbed features Xperturbed overlap in exactly d dimensions. We calculate the misalignment between the
graph A and the perturbed features Xperturbed as in Definition (10). By this construction, we do not fix the
degree of rotation of the non-overlapping dimensions. As a result, the misalignment values for an overlap of
a specified dimension d can vary slightly in different runs. However, as we normalize the values with regard
to the dimensions, we still get insights for quantitative comparison. For example, we get a misalignment
value dalgn of about 0.92 for an overlap of 32 dimensions on the synthetic dataset with 64 dimensions overall.
This corresponds to an overlap of approximately 50% of the dimensions. We get a misalignment value dalgn
of approximately 1.11 for an overlap of 16 dimensions, corresponding to an overlap of approximately 25% of
the dimensions.

As real world datasets we consider three standard benchmarks: Cora, Citeseer, and Pubmed. Similar to
previous work, we embed the nodes into 16 dimensions when considering the link prediction task. For the
node prediction task, embedding into 16 dimension turns out to be too simple a task. We thus use 4 as the
embedding dimension. For graph statistics of all used datasets and more details on the experimental setup,
see Appendix B.

When features help for link prediction. In Figure 2, we plot the AUC performance of both encoder
variants, relu and linear, both with and without features, on the link prediction task. We observe that
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Figure 4: Train and test performance for the three real-world datasets CoraCiteseerand Pubmed. Vertical
lines indicate standard deviation. We consider relu and linear encoder models with and without features.
Top: Link prediction task; we embed points into 16 dimensions. Bottom: Node prediction task, points are
embedded into four dimensions. The normalized misalignment scores are 0.67 for Cora, 0.69 for Citeseerand
0.86 for Pubmed.

both models’ test performances usually decrease with increasing misalignment between the features and the
graph. Adding features decreases the train performance, indicating that features restrict the solution space.
Features may encode similarities in the feature space that are not present in the (incomplete) graph. This
information restricts the solution space and can help to recover those missing structures. Moreover, the
featureless model shows high train performance while the test performance is low. This behavior is expected
in link prediction as optimal train performance implies sub-optimal test performance. In Figure 4, we observe
the same behavior for the real-world datasets. The features add information about the target structure and
improve the test performance. We suggest the following perspective: In the link prediction task, features
act as a regularizer preventing the model from encoding the training adjacency matrix optimally. If they
encode the desired graph structure, this regularization makes the model more robust to perturbations in
the adjacency matrix, which is basically the task for link prediction. Here we assume the input graph is
incomplete or perturbed, and we want to be robust against these perturbations and still recover the original
graph. If the features do not encode the desired structure, including them can harm the performance. The
relu encoder, where the features are passed through a weight multiplication and a relu activation, turns
out to be more robust to false information, possibly learning to ignore (parts) of the features. The linear
model can not compensate for erroneous feature information, which becomes visible in Figure 2, where, with
more significant misalignment, the training error for the relu encoder drops slowly compared to the linear
encoder. We can suspect slight overfitting in both settings when the overlapping dimension exceeds the
embedding dimension. The effect is declining test performance, even for very aligned features. In this case,
the introduced bias via the features might be too weak.

When features harm. In Figure 3, we visualize the performance of the models in the node prediction task.
We observe similar behavior for the architectures using features as in the previous task. As expected, the
performance decreases for an increasing distance of alignment dalgn. Interestingly, the test performance stays
close to the train performance, which indicates that both models generalize well to unseen nodes and larger
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graphs. Supporting our intuition, we observe that for both encoders, the featureless versions outperform the
architectures using features. In the node prediction task, restricting the representational power by adding
features harms the model’s performance. Our experiments for the node prediction task show that featureless
models can outperform the versions including features. Contrary to the link prediction task, in the node
prediction setting, we assume that the given graph adjacency matrix already encodes the target structure of
every node in the graph. Even if the features align optimally with the adjacency matrix, they do not hold
additional information that is not already encoded in the adjacency matrix. In this setting, features still
add a bias, but assuming that the given adjacency matrix is noiseless, they restrict the solution space in an
undesired way.

In practice and real-world data, we usually do not know whether the given features encode the correct
structure or if the graph is complete. So, not all of the intuition discussed above directly applies. We
compute the normalized distance as given by dalgn and observe that the alignment is generally very good,
with values of 0.6709 and 0.6940 for Cora and Citeseer, respectively. Misalignment is still good but slightly
worse for Pubmed with a value of 0.8577, which indicates that almost 50% of the dimensions are misaligned.
For the three benchmarks and the node prediction task, embedding into 16 dimensions already achieves
nearly perfect recovery for all models. This reinforces our discussion about Assumption 2 being weak to
no restriction. Usually, one would choose the smallest possible embedding dimension that shows promising
results. See Appendix C for the performance when embedding into 16 dimensions. We embed the data into
only four dimensions to get more insightful results. In Figure 4, we see that for the Cora and the Citeseer
datasets, the models using features perform slightly better than those without features. This behavior could
indicate noise in the input adjacency matrix, which the feature information regularizes. For the Pubmed
dataset, where the features are slightly less aligned, not using the features seems to perform better. However,
this difference is minimal. Compared to the synthetic dataset and Pubmed, the two networks from Cora and
Citeseer have significantly higher feature dimensions in relation to the number of nodes possibly encoding
redundancy. In summary, our findings indicate that the features encode mostly the correct structure, and
adding them can improve optimization even for features with almost no additional information.

6 Conclusion

This work presents a theoretical perspective on the representational power and the inductive bias of graph
auto-encoders. We consider a relu architecture and a linear architecture for the encoder. We prove that the
linear encoder has greater representational power than nonlinear encoders. Theorem 5 also extends to more
advanced models with similar encoder architecture and even to other nonlinear graph functions. Based on
our experiments and empirical work in the literature, the nonlinear structure of the relu auto-encoder does
not improve learning compared to the linear encoder. Our evaluations support the idea that the introduced
bias from the nonlinearity is not the crucial ingredient to reducing the solution space in a meaningful way.
On the other hand, the features can introduce a powerful inductive bias to both encoder architectures,
improving their test performance. Whether features improve training and test performance heavily depends
on the task we want to solve. For the two example tasks we consider in this paper, features help with link
prediction but do not help node prediction. However, supporting the idea that linear encoders have larger
representational power in training and can generalize, the linear encoder outperforms the nonlinear one in
both tasks.
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A Proofs

In this Section, we provide the proofs of Lemma 4 and Corollary 6 and discuss the consequences.

Lemma 4 (Orthogonal Transformation). For P P Rnˆd, A P Rnˆm, rankpP q ď rankpAq, there exists
an orthogonal matrix R with spanpRAq Ě spanpP q.

Proof of Lemma 4. rankpZq ď rankpAq “ k.
ImpAq is spanned by an orthogonal normal basis tui“1,...,d,...ku

ImpZq is spanned by an orthogonal normal basis tvi“1,...,du.

Let U :“

¨

˝

| ¨ ¨ ¨ |

u1 ¨ ¨ ¨ ud ¨ ¨ ¨

| ¨ ¨ ¨ |

˛

‚ and V :“

¨

˝

| ¨ ¨ ¨ |

v1 ¨ ¨ ¨ wd ¨ ¨ ¨

| ¨ ¨ ¨ |

˛

‚ .

Then with R “ V

ˆ

Id 0
0 0

˙

UT , spanpZq Ď spanpRAq.

Corollary 6 (Representational power of GAEs). For any (trained) graph auto-encoder in
Zrelu Ě Zrelu,X , there exists an equivalent, featureless linear encoder in Zlin, that can achieve the same
training loss: Zlin Ě Zrelu.

Proof of Corollary 6. Let ZlinpW q “ Ã ¨ W for W P Rnˆf be the latent representation of the linear
model with weights W . We can write the latent representation for any GAE as a linear function of the
form ZrelupW q “ Ã ¨ W for some matrix W P W, where W is the set of matrices that can be represented
by the relu term in the function: W “ trelupÃXW p0qqW p1q : W p0q P Rnˆd,W p1q P Rdˆf u Ď Rnˆf . We
now define the possible latent embeddings that the two models can learn. For the relu encoder we have
Zrelu “ tZrelupW q for all W P Wu, and for the linear model we get Zlin “ tZlinpW q for all W P Rnˆgu.
Since W Ď Rnˆg, the set of learnable embeddings of the relu encoder is a true subspace of all learnable
embeddings of the linear encoder: Zrelu “ tÃW : W P Wu Ď tÃW : W P Rnˆgu “ Zlin. It follows
that, given any loss l, the linear model can achieve at least as good performance as the relu encoder:

inf
ZreluPZrelu

lpZreluq ě inf
ZlinPZlin

lpZlinq.

Consequences. To better understand the implications of Corollary 6, it is instructive to engage in the
following thought experiment. Consider the standard supervised learning setting with a training data matrix
U P Rnˆd and labels y P R. For any function (say a deep neural network) f : Rnˆd Ñ Rn, it is possible
to express fpUq “ UU`fpUq “ UW , for some W P Rdˆ1 if and only if U has a right inverse. This is a
mild requirement if d ą n. Note that this is precisely the ”underdetermined” or ”high-dimensional” setting
where it is possible to find a linear map that perfectly fits the training data to the function values. If d ă n,
the right inverse cannot exist; therefore, one cannot find such a W . Let us contrast this with our setting
of GNNs in Corollary 6. Since we consider graph networks, the input is the adjacency matrix Ã P Rnˆn;
that is, we have feature dimensions equal to sample size pn “ dq. If Ã is full rank, one can similarly find a
linear map that perfectly fits the outputs of any nonlinear mapping of the input data. While it may seem
surprising at first glance, it is intuitively clear that in high dimensions, one can always find a linear map
that perfectly fits the outputs of any nonlinear mapping. If the model is restricted to the input data domain,
we can attain the same “training loss”. But even if Ã was not full rank, in the graph auto-encoder setting,
the GCN’s last layer has linear activation, restricting the solution space in exactly the same way the linear
model does.
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B Experimental details

For our empirical evaluation we consider one synthetic dataset and three real world citation networks; Cora,
Citeseer and Pubmed. Table 1 shows the graph statistics for the considered datasets.

dataset nodes edges density dim. features
Cora 2708 5278 0.00143 1433
Citeseer 3327 4614 0.00083 3703
Pubmed 19717 44324 0.00023 500
Synthetic „ 1000 „ 10000 ´ 20000 „ 0.01 ´ 0.02 64

Table 1: Graph statistics of the real world datasets and averaged values in the synthetic setting.

For every dataset we compute the performances for two different tasks; node and link prediction, and four
different models: using the relu encoder and the linear encoder once with features and also without features.
So we compute performances in eight different settings for each dataset.

Every graph is split into train, validation and test sets with a ration of 70{10{20. So training always happens
on either 70% of the edges and all nodes for the link prediction task, or on only a set of 70% of the nodes
for the node prediction task. Test performance is then evaluated on 90% of the edges / nodes. We do not
use the parts of the graph used for validation.

The code for the relu graph auto-encoder is publicly available with an MIT license.

We run the experiments on an internal cluster on Intel XEON CPU E5-2650 v4 and GeForce GTX 1080 Ti.
All experiments on the synthetic dataset take about 9 hours on single CPU and single GPU. Experiments
for Cora and Citeseer take about 4 and 5 hours respectively. For the Pubmed dataset, which is the largest
one, running all 8 setups took about 4 days on a single CPU and two GPUs.

C Additional experiments

For the real world datasets and the link prediction task we show result for embedding into 4 dimensions in
the main paper. Table 2 show results when embedding into 16 dimensions. All models show near to optimal
performance which indicates that embedding into 16 dimensions is barely a restriction and too simple of a
task.
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cora
edge node

linear GAE linear GAE
features 0.91 ˘ 0.0088 0.88 ˘ 0.0123 0.99 ˘ 0.0009 0.99 ˘ 0.0014

featureless 0.84 ˘ 0.0078 0.85 ˘ 0.0122 0.98 ˘ 0.0027 0.98 ˘ 0.0016

citeseer
edge node

linear GAE linear GAE
features 0.92 ˘ 0.0087 0.84 ˘ 0.0264 0.99 ˘ 0.0010 0.99 ˘ 0.0012

featureless 0.78 ˘ 0.0131 0.78 ˘ 0.0149 0.98 ˘ 0.0015 0.98 ˘ 0.0014

pubmed
edge node

linear GAE linear GAE
features 0.96 ˘ 0.0018 0.92 ˘ 0.0037 0.98 ˘ 0.0006 0.97 ˘ 0.0055

featureless 0.83 ˘ 0.0056 0.83 ˘ 0.0049 0.99 ˘ 0.0009 0.99 ˘ 0.0006

Table 2: Test performance in terms of AUC for the three real world datasets Cora Citeseer and
Pubmed with given standard deviations. We consider relu and linear encoder models with and without
features. Top row: Link prediction task, points are embedded into 16 dimensions. Bottom row: Node
prediction task, points are embedded into 16 dimensions.

15


	Introduction
	Preliminaries
	Relu encoders have at most the representational power of linear encoders
	The inductive bias of adding features
	Empirical evaluation
	Conclusion
	Proofs
	Experimental details
	Additional experiments

