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Abstract

This research project explores the hypothesis that, given a bounded number of
steps in an environment, agents that most efficiently optimize their model of the
environment are more likely to induce emergent intelligent behavior in a reward-
free scenario. We refer to this as the optimal explorer hypothesis. The project
aims to formalize and analyze this hypothesis, investigating its theoretical impli-
cations and connections to related areas such as open-ended learning and active
inference. Building on this foundation, we will develop a practical implementation
of an approximate “optimal explorer” agent by formulating it as a combinatorial
optimization problem and leveraging established methods from the field. Finally,
we will conduct extensive experiments to evaluate whether the proposed agent
induces emergent behaviors in diverse and challenging environments.

1 Introduction

Agents—understood as systems acting by themselves according to certain goals or norms in an
environment [Barandiaran et al., 2009]—are the substrates of intelligent life as we know it. However,
not all agents can be classified as intelligent. For instance, a thermostat fits into most definitions of
agency, while not exhibiting intelligence as found in biological agents. This raises the question: what
are intelligent agents doing? In other words, what are the objectives that intelligent agents pursue
that give rise to the incredibly complex emergent behaviors that we broadly observe in natural life?

On the Artificial Intelligence (AI) field side, Reinforcement Learning (RL) has been the area of
research that has most prominently focused on the subject of intelligent agents [Kaelbling et al., 1996,
Sutton and Barto, 2018]. Although RL has led to many breakthroughs in the last decades [Silver
et al., 2016, Abramson et al., 2024], most RL literature has focused on developing agents to pursue a
single, well-defined objective. In fact, Sutton’s reward hypothesis states that all goals can be framed
as cumulative reward maximization [Sutton, 2004, Bowling et al., 2023]. This led Silver et al. [2021]
to hypothesize that optimizing reward can lead to the emergence of general intelligence and complex
behavior in a sufficiently rich environment Silver et al. [2021].

On the other hand, as discussed by Stanley and Lehman [2015] and Soros et al. [2017], following
an explicit objective can lead to dead ends. These works challenge the effectiveness of explicit
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objectives, arguing that direct goal optimization often fails to discover necessary stepping stones. It
emphasizes open-ended exploration over direct optimization, suggesting that breakthroughs arise
from serendipity and novelty search rather than predefined goals [Lehman and Stanley, 2011, Kumar
et al., 2024]. The emergence of intelligent behavior via open-ended novelty search has inspired a
growing number of works in recent years [Bauer et al., 2023, Bruce et al., 2024, Matthews et al.,
2025], even characterizing it as essential for superhuman-level intelligence [Hughes et al., 2024].
Many of these works focus on automating an open-ended environment (task) generation process
[Bruce et al., 2024, Faldor et al., 2025] and learn a robust policy that will generalize to unseen tasks,
known as Unsupervised Environment Design (UED) [Parker-Holder et al., 2022, Bauer et al., 2023,
Rigter et al., 2024, Beukman et al., 2024]. However, most open-ended literature assumes that the
learning method has access to and control of the environment to generate vast amounts of tasks (e.g.,
UED) or high-level control (e.g., Voyager by Wang et al. [2024]).

Instead, in natural life, agents interact with a (single) complex environment only through perception
and (low-level) action. Since Helmholtz [1867], most prominent theories of cognition of today agree
that the brain maintains and updates a model of its environment (i.e., the real world) [Doya, 2002,
Friston, 2009]. Based on these ideas and recent work on lifelong learning and open-endedness theory
[Abel et al., 2023, Hughes et al., 2024] this work hypothesizes that (informally):

The agents that most efficiently learn an internal model of the environment are more likely
to produce emergent intelligent behavior in reward-free scenarios over a bounded time
scope.

In this context, the agent’s model of the environment—referred to as the world model—is trained
on agent-generated trajectories (i.e., sequences of interactions with the environment). Efficiency is
measured as the expected sum across timesteps of the world model’s prediction error with respect to
the environment over all the possible trajectories. We refer to this as the optimal explorer hypothesis.
Note that this hypothesis does not state that the agents that most efficiently learn their world model
are the only or the most likely ones to induce emergent behaviors, just that they are more likely to
cause them by doing so.

In the search for emergent behavior, this hypothesis directly introduces the intrinsic objective of
acting to generate the most informative trajectories for the world model in the long run. Based on
this hypothesis and literature on active inference [Friston, 2009] and model-based RL [Chua et al.,
2018], the next part of this project will propose a practical implementation of an agent to optimize
this long-term intrinsic objective. Equipped with a deep Neural Network (NN) ensemble-based world
model [Lakshminarayanan et al., 2017], we aim to introduce an agent that plans and selects the
sequences of actions that maximize the world model’s epistemic uncertainty, in the long run, using
the Cross-Entropy Method (CEM) [Rubinstein, 1999]. This way, the action selection policy and
the world model (constantly updated with the trajectories sampled by the latter) play a minimax
game that explores in face of the unknown while otherwise exploiting to explore. Finally, we will
conduct an extensive empirical evaluation on challenging environments to analyze the behavior of the
proposed agent. We expect the agent to solve complex games (in episodic setups) even without having
a reward signal, and to improve the sample efficiency of reward-based RL methods model-based (e.g.,
DreamerV3 [Hafner et al., 2023]) and non-model-based methods (e.g., proximal policy optimization
[Schulman et al., 2017]).

In summary, the main objectives of this project are the following:

1. Formalization of the optimal explorer hypothesis. Define and analyze the hypothesis,
establishing its theoretical foundations and connections to related research areas such as
open-ended learning and active inference.

2. Combinatorial optimization formulation. Frame the problem of optimal exploration as a
Combinatorial Optimization (CO) task, identifying suitable problem representations and
constraints.

3. Algorithm development. Design and implement an approximate optimal explorer agent
by leveraging techniques from model-based RL and combinatorial optimization, such as
Estimation of Distribution Algorithms [Larrañaga and Lozano, 2002] (employed in the
CEM).
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4. Empirical evaluation. Conduct experiments in diverse and challenging environments to
assess the effectiveness of the proposed agent in inducing emergent behaviors in reward-free
scenarios.

2 Previous work

The following lines provide a brief overview of the fields and work upon which this work is mainly
based.

Lifelong and open-ended learning. Lifelong and open-ended learning focus on agents that con-
tinuously acquire and refine knowledge over time, adapting to novel scenarios by leveraging past
experiences. However, learning continuously introduces many challenges as catastrophic forgetting
and interference, loss of plasticity, or computational cost [Hadsell et al., 2020]. Addressing these
issues is an active area of research [Khetarpal et al., 2022, Wolczyk et al., 2024, Malagon et al., 2024].
Other works depart from sequential tasks and focus on meta-learning a robust policy on a distribution
of environments [Parker-Holder et al., 2022, Beukman et al., 2024]. Although these deeply connected
fields have gained increasing attention in recent years, they are still in the phase of formally defining
themselves [Abel et al., 2023, Hughes et al., 2024].

Exploration strategies. Although many goals can be framed as a reward maximization problem
[Sutton, 2004], learning a policy can be extremely difficult in the absence of a dense informative
reward signal. Thus, the field of RL has come with a vast body of work on intrinsic reward: an
auxiliary reward function to guide exploration to promising trajectories [Pathak et al., 2017, Burda
et al., 2019, Nikulin et al., 2023]. Even with intrinsic motivation, RL agents greatly suffer from
sample efficiency. In this realm, model-based methods learn (or directly employ when available) a
model of the environment which is used to plan the actions [Kaiser et al., 2020, Hafner et al., 2023].
However, model-based RL incorporates additional complexity and agents can exploit biases in the
model that lead to substantial degradation of performance in these types of methods [Janner et al.,
2019].

Active inference. Active inference is based on Friston’s Free Energy Principle (FEP) [Friston,
2009]. According to the FEP, living beings minimize expected free energy, maximizing the probability
of being in desirable states (maintaining homoeostatic equilibrium) while maximizing information
gain (minimizing epistemic uncertainty) in the long run [Friston et al., 2015]. Despite the appeal of
biologically plausible active inference agents [Friston, 2010] and recent efforts to incorporate deep
neural networks [Fountas et al., 2020], scaling beyond toy environments remains a challenge for these
methods [Sajid et al., 2021].

3 The optimal explorer hypotheis

As described in the introduction, we focus on agents that maintain and update an internal model (i.e.,
world model) of their environment.2 Moreover, the environment is only composed of a transition
function and without a reward function (i.e., reward-free environments). Every timestep the agent
interacts with the environment by generating a new transition, and the world model is updated
accordingly.

In this setup, we hypothesize that the agents that generate the trajectories (sequences of interactions)
that most efficiently update their world model are more likely to induce emergent intelligent behavior
in a finite scope of time. In this context, we define the efficiency of an agent as the expected sum of
the global world model error at each timestep by following the agent’s policy.3 In turn, we refer to
global error as the world model’s error modeling of the environment given all the possible trajectories.
Thus, if the global error is zero, the world model and the environment define the same probability
distribution.

2The world model can be naturally defined as the distribution over all the possible states given the current
state and action, pϕ(st+1|st, at).

3We refer to an agent’s policy in the classic RL sense, that is, the probability distribution over actions given
the current state p(a|s).
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Intuitively, those agents that most efficiently optimize their world models will be those that find (often
by exploiting shorcuts in complex environments) the best trajectories to explore their environments.
Note that this substantially differs from random exploration (e.g., ϵ-greedy exploration), as the most
efficient agents will be those that exploit to explore. For instance, in an episodic environment such as
an Atari game [Machado et al., 2018] (and most games) an efficiently exploring agent (in terms of
our hypothesis) would have to solve the game as fast as possible to update its model with interactions
from advanced stages of the game.

4 Proposing a practical implementation based on CO

In this part of the project, we aim to explore the implications of the hypothesis proposed in the
previous section. Specifically, we leverage the ideas from the optimal explorer hypothesis to propose
an agent that efficiently explores its environment in the absence of a reward function (i.e., without
explicit objectives). Note that many possible implementations of such an agent exist and that the
one from this part of the project is just a proposal to analyze the experimental implications of the
hypothesis.

Specifically, we aim to leverage previous work on uncertainty quantification for deep NN models
[Gal and Ghahramani, 2016, Lakshminarayanan et al., 2017] to select those trajectories that are more
informative to the world model (a deep NN). Finding the action that will cause the most efficient
world model update (in terms of the hypothesis) at each timestep can be framed as searching for
the action sequence that will lead the agent toward the most informative interactions—of highest
epistemic uncertainty—for the world model.

Note that this problem can be framed as a combinatorial optimization problem where the space
of possible solutions Ω are the sequences of actions, a ∈ A, x = (a1, a2, . . . , an) of a given length
n (that corresponds to the planning horizon).4 Accordingly, the objective function f(x) is the
cumulative epistemic uncertainty of the world model at each interaction, where the interactions are
autoregressively sampled from the world model itself. Formally, considering the world model a
probability distribution parametrized by ϕ over the next states of the environment conditioned on the
current action and state, the objective function f can be written as,

f(x, i, s) = EU(pϕ(·|s,xi)) + Es′∼pϕ(·|s,xi)[f(x, i+ 1, s′)]. (1)

Where EU(pϕ(·|s,xi)) is the epistemic uncertainty of the state s and action x in the world model pϕ.
Note that the fitness of a solution x is always given with respect to a specific state s, as the utility of
a given action sequence is completely dependent on the initial state in which it is taken. Thus, our
agent proposal, being in a state s, would select the action a such that,

a = argmax
a1∈A

f((a1, . . .), 1, s). (2)

Intuitively, at each state, the agent would choose the action that maximizes the expected long-term
epistemic uncertainty of its world model.

5 Conclusion

This project outlines a novel approach to emergent intelligent behavior in the absence of explicit
objectives (i.e., without reward function). We first (informally) introduce the optimal explorer
hypothesis, which connects the efficiency of learning a model of the environment and the likelihood
of inducing emergent behaviors. From this hypothesis, we structure the project into four objectives:
(1) formalizing the hypothesis, (2) formulating it as a combinatorial optimization problem, (3)
developing an agent based on the combinatorial optimization problem formulation, and (4) extensive
empirical analysis of the agent. The project aims to advance our comprehension of exploration
strategies and learning dynamics in artificial agents, paving the way for more adaptable and intelligent
systems and their formal understanding.

4Where A is finite and its elements discrete.
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