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Using Temporal Graph Isomorphism to Understand
the Expressivity of Temporal Graph Neural Networks
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Extended Abstract
Graph neural networks (GNNs) are a cornerstone of deep learning in complex networks. They
have recently been generalized to temporal GNNs (TGNNs) that capture patterns in time series
data on temporal graphs, where edges carry timestamps. An important characteristic of tempo-
ral graphs is how the directed arrow of time influences their causal topology, i.e., which nodes
can possibly influence each other causally via time-respecting paths:
Definition 1 (Time-respecting path). A path of length k in a temporal graph Gτ = (V,Eτ) is
an alternating sequence of nodes and timestamped edges p = (v0,e1,v1, . . . ,ek,vk) with ei =
(vi−1,vi; ti) ∈ Eτ for i ∈ {1, . . . ,k}. For a maximum time difference (or waiting time) δ ∈ N,
we say that p is time-respecting if 1 ≤ ti − ti−1 ≤ δ for i ∈ {1, . . . ,k}. We denote the set of
time-respecting paths in Gτ as Pτ(Gτ).

Many works in network science have shown how the temporal ordering of edges in temporal
graphs influences processes like spreading or diffusion, node centralities or communities [1, 2].
Considering the arrow of time is thus an important prerequisite for causality-aware machine
learning in complex networks. However, many TGNNs do not account for time-respecting
paths, limiting their expressivity and performance. Limitations of static GNNs have recently
been investigated in works studying their expressivity based on the Weisfeiler-Leman (WL)
algorithm to heuristically distinguish non-isomorphic graphs [3]. These works yield insights
into fundamental limitations of GNNs, e.g. regarding which non-isomorphic graphs cannot be
distinguished in graph classification tasks. To leverage these results to understand limitations
of temporal GNNs (TGNNs), we lack a generalization of isomorphism to temporal graphs
that captures their causal topology. Addressing this gap, we propose the following temporal
generalization of graph isomorphism, which preserves time-respecting paths:
Definition 2 (Time-respecting path isomorphism). Let Gτ

1 = (V1,Eτ
1 ) and Gτ

2 = (V2,Eτ
2 ) be two

temporal graphs. We say that Gτ
1 and Gτ

2 are time-respecting path isomorphic if there is a
bijective node mapping πV : V1 →V2 and a bijective timestamped edge mapping πE : Eτ

1 → Eτ
2

such that the following holds for all alternating node/edge sequences (v0,e1,v1, . . . ,ek−1,vk)
with k ∈ N: (v0,e1,v1, . . . ,ek−1,vk) ∈ Pτ(Gτ

1)

⇐⇒ (πV (v0),πE(e1),πV (v1), . . . ,πE(ek−1),πV (vk)) ∈ Pτ(Gτ
2).

In our work, we show that this definition is equivalent to static graph isomorphism on the
augmented event graph, a static line graph expansion of temporal graphs that (i) captures time-
respecting paths, and (ii) is augmented by nodes in the original graph:

Definition 3 (Augmented event graph). Let Gτ = (V,Eτ) be a temporal graph. The temporal
event graph is given by GE = (Eτ ,E ) with

E = {((u,v; t),(v,w; t ′)) | (u,v; t),(v,w; t ′) ∈ Eτ ,1 ≤ t ′− t ≤ δ}.
An augmented event graph is a static, directed, node-labeled graph Gaug = (V aug,Eaug, ℓ) with

V aug =V ∪Eτ ,

ℓ(v) =

{
0 if v ∈V,
1 if v ∈ Eτ ,

Eaug = E ∪Eout ∪E in,

Eout = {(u,(u,v; t) | (u,v; t) ∈ Eτ},
E in = {((u,v; t),v) | (u,v; t) ∈ Eτ}.
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The following theorem (ref. to preprint with proof blinded for review) reduces time-
respecting path isomorphism to a static graph isomorphism on two augmented event graphs.

Theorem 1. Let Gτ
1 and Gτ

2 be two temporal graphs with corresponding augmented event
graphs Gaug

1 and Gaug
2 . Then the following statements are equivalent:

(i) Gτ
1 and Gτ

2 are time-respecting path isomorphic.
(ii) Gaug

1 and Gaug
2 are isomorphic.

We use our insights to derive a new TGNN architecture generating representations that al-
low to distinguish non-isomorphic temporal graphs. We further prove that the resulting TGNN
has the same expressive power as the WL algorithm on the augmented event graph1. We ex-
perimentally evaluate our TGNN in synthetic temporal graphs constructed such that all classes
share the same time-aggregated static graph, differing only in terms of time-respecting paths.

Experiment A: Starting from random graphs, we generate temporal edge sequences and
shuffle timestamps of a fraction α of edges. Increasing α destroys more causal dependencies
without changing the time-aggregated graph. Our TGNN reliably separates original graphs
from their shuffled counterparts, achieving near-perfect accuracy for α > 0.2 (Fig. 1, left).

Experiment B: We generate temporal graphs with two communities and vary the likeli-
hood of time-respecting paths between communities using a parameter σ . For σ < 0 cross-
community paths are suppressed, while for σ > 0 they are overrepresented. We assign graphs
with σ = 0 to one class and graphs with σ ̸= 0 to the other. Our TGNN detects these differences
with high accuracy, while accuracy peaks as |σ | increases (Fig. 1, middle/right).
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Figure 1: Results of classification experiment A (left) and B (middle), averaged over 100 runs
(hull curve = std. dev.). Right panel: mean classification accuracy for temporal graphs gener-
ated with σ1 vs. σ2 (25 runs per pair).

Our work contributes to the theoretical foundation of temporal graph learning, providing a
basis for the design and analysis of TGNN architectures that consider how the arrow of time
shapes the causal topology of temporal graphs. It also shows how concepts from network
science can help to improve our understanding of deep graph learning models.
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1details on TGNN message passing scheme and proof in preprint, ref. blinded for review
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