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Abstract

Consistency in the output of language models is critical for their reliability and
practical utility. Due to their training objective, language models learn to model the
full space of possible continuations, leading to outputs that can vary significantly in
style, content, and tone, even for similar inputs. To address this, we propose a novel
decoding algorithm that enhances response consistency across different prompts
with no degradation in response quality. By incorporating a latent variable into
the next-token sampling process based on the Gumbel reparametrisation trick, our
method outperforms standard sampling by up to 10% across semantic and stylistic
consistency benchmarks. Additionally, our approach integrates seamlessly with
existing sampling methods with negligible computational overhead, providing a
practical solution for improving the reliability of language model outputs.

1 Introduction

In recent years, state-of-the-art language models (LMs) have demonstrated remarkable performance
across a wide range of benchmarks, often rivaling human capabilities in tasks such as translation,
summarization, and question-answering [1; 2]. However, these advancements have not always
translated into practical usefulness for real-world applications, where reliability and consistency are
crucial [3].

One of the primary challenges is the inconsistency of these models’ responses, which can vary signif-
icantly in style, factual accuracy, and tone [4]. This inconsistency, a byproduct of the probabilistic
nature of language model training, can lead to a range of issues, including reduced trust in outputs,
exposure to more diverse failure modes and less reliable behaviour [5].

Although traditional methods (e.g the use of random seeds) can be applied to introduce determinism
in natural language generation, ensuring identical responses for identical inputs, they do not help
ensure similar responses when inputs are similar. In practice, due to the richness of language, input
queries can often be reworded in many ways while retaining their meaning. To achieve greater
consistency, it is desirable for the model to generate similar responses across all these variations.

In this paper, we investigate whether next-token sampling procedures can be modified to enhance
consistency across different prompts. Our main contributions include:

1. We propose a simple, computationally inexpensive sampling procedure that (i) can be
applied to any model, (ii) does not require any additional training, and (iii) has negligible
impact on inference costs. We also ensure that the probability of any individual response is
unchanged and so does not compromise response quality.
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2. We also leverage an auxiliary approach to further improve consistency between model
responses using distributional ensembling, which can be applied in conjunction with our
aforementioned sampling procedure.

3. We investigate the performance of our approach against standard sampling across a number
of benchmarks covering semantic and stylistic similarity, across a number of different
models.

In particular, we highlight that our combined sampler outperforms standard sampling across all
benchmark suites and models tested, by up to 10% in some cases.

2 Related works

Decoding approaches Language model decoding strategies can be broadly classified into two
categories: optimization and sampling-based approaches [6]. Optimization-based approaches, such as
greedy decoding and beam search [7; 8], frame text generation as an optimization problem, searching
for sequences that maximize a specific metric such as probability, whereas sampling-based approach
incorporate stochasticity into the next-token selection process. Optimization-based approaches are
typically perceived as yielding less engaging but more accurate responses and so are often favoured
for closed-ended tasks expecting a fixed answer [9]. However, recent work has put into question the
greater accuracy of their responses [10].

In contrast, sampling-based approaches are usually preferred for open-ended tasks, as they typically
yield more engaging answers [11; 6]. Our proposed method falls within this category. Many existing
methods in the literature, such as nucleus sampling and mirostat [9; 11; 12], aim to improve text
generation quality by directly modifying the probability distribution from which tokens are sampled.
We consider these methods, which directly alter the next-token distribution, as complementary to our
approach, which maintains the next-token distribution and instead modifies the joint distribution over
responses.

Our approach is methodologically most closely related to methods [13; 14] which also adjust the
joint distribution of sampled responses. However, while these methods aim to maximize response
diversity—an advantage when ensembling multiple responses as done in self-consistency voting
[15]—our approach is distinct in its focus on minimizing response diversity to achieve more consistent
outputs.

Self-Consistency Language models lack robustness to prompt variations [16; 17] and give contra-
dictory responses in such cases, motivating the need for enhanced self-consistency. Self-consistency
in language models has been studied from many different angles, but usually with a focus on factual
rather than stylistic consistency. Prior work has proposed a number of fine-tuning approaches for
increasing self-consistency, including fine-tuning approaches for increasing the ability of language
models to respond consistently to paraphrases of questions [17; 18], and approaches for correcting
model contradictions using a factor graph over beliefs [19].

Our approach is methodologically orthogonal to previous approaches for enhancing self-consistency.
Previous work has relied on fine-tuning which not only is more cumbersome to implement but also
modifies the raw next-token probabilities, potentially affecting responses in unforeseen ways or
contributing to catastrophic forgetting.

Since our approach only modifies the joint distribution over responses without modifying the next-
token probability distribution, it does not suffer from the same issues, and comes with principled
guarantees around maintaining the model’s original response style and quality. Additionally, it
enhances all aspects of self-consistency, not just factual consistency of responses.

3 Problem statement

Let X be a language model prompt composed of a sequence of tokens drawn from a vocabulary of size
Nv, and let πθ be a language model trained on the task of next-token-prediction. For the remainder
of the paper we denote a forward pass through the language model by ht = πθ(X,Y1:t−1) where
ht ∈ ∆Nv−1 is a probability distribution over the token vocabulary and Y1:T is the full response
obtained by auto-regressively applying the language model with the next token at each step sampled
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Figure 1: Motivating toy example highlighting the aim of our approach. Even when language
models yield similar probability distributions over responses, responses sampled independently
can be inconsistent or contradictory due to the inherent stochasticity of sampling. By generating
responses in a correlated manner it is possible to alleviate inconsistencies across responses while still
respecting the marginal probabilities of each response. In this paper we propose, Gumbel Consistent
Sampling, an approach for increasing response consistency through drawing correlated responses, by
conditioning all responses on a shared latent variable, that is robust to differences between probability
distributions over responses.

from the categorical distribution parameterized by the model, Yt ∼ Cat(ht). In what follows, we use
a subscript to represent position in a sequence, and a superscript to represent the token index. So for
example, hi

t represents the probability of sampling token i at position t.

Suppose that U is a different prompt that is semantically similar to X for which we generate a
response V = V1:M . Motivated by the inconsistency of LM responses, our goal is to modify the LM
sampling procedure in a way that increases the similarity between responses Y and V according
to some yet-to-be-specified notion of similarity. Furthermore, we focus on sampling approaches
that modify the joint probability of responses p(Y, V ) without affecting the marginal probability of
individual responses, p(Y ) and p(V ), to guarantee that quality of the original responses is maintained.

4 Approach

Our proposed sampling approach, motivated in Figure 1, modifies the joint probability distribution
over responses by introducing a latent variable g to the sampling process. Conditioning the generation
of distinct responses on a common realisation of this latent variable introduces a statistical dependency
between them. Generating responses with greater similarity can then be straightforwardly done by
conditioning the generation of all responses on a common realisation of the latent variable, that is to
say to sample Y ∼ p(Y |X, g) and V ∼ p(V |U, g).
To ensure efficacity of the approach, we design the latent variable in such a way that conditioning
responses on a common value of the latent variable makes responses as similar as possible. To ensure
the preservation of the probability distribution parameterized by the language model, we sample
the latent variable from a probability distribution g ∼ p(g) such that marginalising over the latent
variable recovers the original distribution over responses, Eg[p(Y |g)] = p(Y ).

To construct a latent variable with the above properties, we employ the reparametrization trick for
categorical distributions. Introduced for normal distributions in [20] and extended to categorical
distributions in [21; 22; 23], the reparametrization trick is a procedure that refactors the sampling
from a distribution into a deterministic function of the parameters and a draw from some independent
noise with a fixed distribution. For a categorical distribution with parameters p1, ..., pNv , this can be
cast as first drawing random noise g = (g1, ..., gNv ) where each gi ∼ G(0, 1) is independently drawn
from the Gumbel distribution [24] and selecting a category k according to k = argmaxi(log p

i+ gi).
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Theorem 4.1. Suppose we have two different categorical distributions parametrized by p1, ..., pNv

and q1, ..., qNv . Define a joint distribution over pairs of categories (Y, V ) by defining

Y = argmax
i

(log pi + gi), V = argmax
i

(log qi + gi), (1)

where g1, ..., gNv ∼ G(0, 1) are independent. We have that

P (Y = k, V = k) =
pkqk

pkqk +
∑

i̸=k max{piqk, qipk}
.

Theorem 4.1 (proved in Appendix A) shows that interpreting the Gumbel noise as a latent variable and
conditioning sampling events on the same realisation of this latent variable increases the probability
of selecting the same category with both distributions compared to sampling from each categorical
distribution independently, with identical sampling outcomes in the limit where p and q become
identical.

Since generating a response using a LM consists of successive draws from categorical distributions,
the above idea can be applied to language modelling in order to increase the token overlap across
distinct responses. Indeed, we can generate ahead of time a sequence of independent Gumbel latent
vectors, g1:t, one for each position in the sequence up to the maximum sequence length, and sample
each token using the Gumbel latent vector assigned to that position in the sequence when generating
a response. That is to say, drawing Yt ∼ p(Yt|hy,t, gt) and Vt ∼ p(Vt|hv,t, gt), where here we
denote by hy,t and hv,t, the next-token probabilities obtained by running the language model on
the context-up-to-now (i.e. hy,t = πθ(X,Y1:t−1), hv,t = πθ(U, V1:t−1) ). We refer to the above
approach as Gumbel Consistency Sampling, GCS.

This sequential Gumbel sampling approach increases similarity of responses by increasing the rate at
which identical tokens are generated at fixed positions in the sequence p(Yi = k, Vi = k) but has
the limitation of not increasing the co-occurrence across sequence positions p(Yj = k, Vi = k). We
expect that two similar responses are likely to contain some of the same tokens, but likely in different
positions, so it would be advantageous for our final sampling approach to reflect this.

Introducing such an inter-position correlation in sampling outcomes across sequences is made chal-
lenging by the requirement of conditional independence between sampling steps. Indeed, to respect
the LM’s probability distribution, it is necessary for sequential sampling steps to be independent of
each other, i.e. for p(Yt+1|X,Y1:t) = p(Yt+1|ht+1) = Cat(Yt+1;ht+1) which prevents the direct
reuse of Gumbel samples across sequence positions.

The procedure denoted in Algorithm 1, which we henceforth refer to as Gumbel Consistency
Sampling with Recycling, (GCSwR), respects this property and thus recovers the correct marginal
distribution over responses, which we prove in Appendix B.1.

Algorithm 1 Gumbel Consistency Sampling with Recycling (GCSwR)

Input: Context X , sequence length T , language model parameters θ
Output: Generated token sequence Y1:T

1: Initialize g ∼ G(0, 1) ∈ RNvocab×T and c = [0, 0, . . . , 0] ∈ RNvocab

2: for t = 1 to T do
3: ht ← πθ(X,Y1:t−1)

4: k ← argmaxj

(
gjcj + log hj

t

)
5: Yt ← k
6: ck ← ck + 1
7: for each i ̸= k do

8: gici ← Q

(
Q−1(gi

ci
)

Q−1(gk
ck

+log hk
t −log hi

t)

)
{Q(·): Gumbel quantile function}

9: end for
10: end for
11: return Y1:T

This approach relies on the observation that awareness of the value of a token Yt only reveals the
value of argmaxj(log h

j
t + gjt ) rather than fully revealing gt. From one sequence position to the
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next, the recycling procedure involves resampling a new Gumbel noise value for this position in
the Gumbel latent vector, but recycling (a rescaled version of) the existing Gumbel values for every
other position in the vector. In practice, we generate all Gumbel samples for the resampling ahead of
time so that we may use the same sequence of Gumbel vectors independent of each other for each
response.

The standard procedure for autoregressive token sampling, which is equivalent to independent
sampling of a new Gumbel latent vector for every sequence position and every sequence, acts as a
baseline for subsequent experiments, and is denoted as Independent Sampling, (IS).

5 Ensembling semantically similar responses

A complementary approach to enhance consistency between responses given semantically similar
prompts is to reduce the impact of semantically irrelevant prompt attributes on the next-token
probability distributions, which can be achieved by increasing the similarity between the sampling
distributions.

In our experiments, we explore sampling tokens from an ensembled probability distribution over
semantically equivalent prompts as a means of minimising impact of semantically irrelevant prompt
variations on responses. Specifically, we generate semantically equivalent variations of the user
prompt by asking a separate LM (gpt-4o mini) to rephrase the prompt. We then run the target LM
separately on all of the prompts, producing a set {Pi} of next-token probability distributions. We
then sample from an ensembled distribution, ensembled using the following formula:

Qj =
1

Z

n∏
i=1

(P j
i )

1
n (2)

where Z is the normalisation constant that ensures Q defines a valid probability distribution function:

Z =
∑
j

n∏
i=1

(P j
i )

1
n

This formula corresponds to selecting the categorical distribution that minimizes the average forward-
KL divergence over all next-token probability distributions (see Appendix D). We found that direct
averaging (which can equivalently be shown to minimize the reverse-KL distribution) tended to
generate worse-quality responses due to at times sampling tokens that were only high-probability for
a subset of question rewordings.

Note that, contrary to our proposed Gumbel sampling approach, ensembling comes at a cost of
additional inference-time compute and also modifies the language model probability distributions.
We highlight that ensembling can be applied in conjunction with any of the three samplers discussed
in section 4, and we investigate the performance of each sampler with and without ensembling in our
experiments.

6 Experiments

In our experiments, we empirically demonstrate the utility and limitations of GCS and GCSwR. We
begin by quantifying the utility of the procedure for enhancing semantic similarity of responses,
and highlight a number of stylistic dimensions of text along which Gumbel sampling improves
consistency. Details for reproducing experiments are shown in Appendix E.

6.1 Semantic similarity

We start by quantifying the improvement in the semantic similarity between responses for semantically
equivalent queries by using our Gumbel sampling variants (GCS and GCSwR). To measure semantic
similarity, we use E5mistral-7b, a specialised state-of-the-art model trained specifically on the task of
semantic similarity [25].

We create semantically equivalent pairs of questions for evaluation by randomly sampling 300
questions from the Alpaca dataset [26] — a popular human-preference dataset - and rephrasing
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them using gpt-4o mini. We then generate responses to the original and rephrased version
of each question using Meta-Llama-3-8B-Instruct, Meta-Llama-3-8B, Mistral-7B-v0.1,
Llama-2-7b-chat-hf[27; 28; 29]. In all cases we sample from the raw unmodified next-token
probabilities predicted by the language models (i.e. temperature of 1) and for Gumbel sampling, we
resample the Gumbel latent vector for each pair of questions such that responses are correlated within
but not between pairs.

The aggregated results, shown in Table 1, demonstrate that the most performant sampling scheme
tested (GCSwR with ensembling) significantly increases response similarity to semantically equivalent
questions across all models considered, by more than 10% when compared to the baseline in some
cases. We note more pronounced enhancements from Gumbel sampling for unaligned models like
Mistral and Llama3 Base, which we hypothesise is caused by their lower base semantic similarity
compared to their instruction fine-tuned counterparts.

Table 1: Model results by sampler type. Scores shown as mean±std.err with std.err obtained
from 3 independent runs. Bold indicates highest scores for each model in both ensembling
categories.

Model Sampler Without Ensembling With Ensembling

Llama2 Chat
IS 86.34±0.07 87.56±0.29
GCS 88.28±0.10 90.26±0.27
GCSwR 88.61±0.15 90.38±0.25

Mistral
IS 72.00±0.27 72.34±0.93
GCS 78.55±0.22 81.17±0.77
GCSwR 80.94±1.05 82.74±0.81

Llama3 Instruct
IS 85.61±0.18 86.90±0.16
GCS 86.81±0.46 89.01±0.35
GCSwR 87.37±0.27 89.68±0.08

Llama3 Base
IS 71.23±0.41 71.46±0.70
GCS 76.68±0.80 78.71±0.82
GCSwR 80.10±0.80 82.04±0.81

6.2 Semantic similarity as a function of temperature

Next, we investigate how the effectiveness of GCSwR varies with sampling temperature. We compare
the semantic similarity metric on the Alpaca dataset as a function of temperature in Figure 2 with IS
as a baseline, without using ensembling in both cases. GCSwR improves the semantic consistency
of responses across all temperatures, except temperature 0, where the model probabilities with and
without GWSwR become identical due to the fully deterministic nature of model outputs at this
temperature1 Example responses for Llama3 models at temperature 0.8 can be found in Appendix G.

It is also interesting to note that although GCSwR improves self-consistency at all non-zero tempera-
tures, the highest self-consistency achieved is with greedy decoding (i.e. temperature 0) which is
where both approaches behave identically. However, we caution that this result does not imply that
greedy decoding will always be preferable to higher-temperature Gumbel sampling. Using greedy
decoding is widely considered to decrease the quality of responses across a number of important
dimensions and so model providers typically use non-zero default temperatures [11; 6; 30]. Gumbel
sampling offers a way of increasing the consistency of responses without the negative side-effects
associated with excessively lowering the sampling temperature. We also note that using Gumbel
sampling is much more effective at increasing self-consistency of responses than decreasing tempera-
ture, with temperatures needing to be roughly halved in order to match the benefits of using Gumbel
consistency sampling.

1We note that responses can still differ under greedy decoding if several tokens are tied for maximum
probability. In experiments this occurred a non-negligible amount of times due to the limited numerical precision
of bfloat16.
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Figure 2: Mean semantic consistency between responses to paraphrased questions as a
function of temperature, comparing independent sampling (IS) against GCSwR.

6.3 Stylistic similarity

In this section, we study Gumbel consistency sampling’s ability to enhance stylistic consis-
tency across several distinct stylistic dimensions, evaluating GCSwR without ensembling using
Mistral-7B-v0.1.

We conduct our experiments on two datasets: Code-Alpaca and Aleatoric-List. The Code-Alpaca
dataset [31] consists of coding-related questions, from which we select a subset of 20 random
questions that are agnostic to programming languages. For this dataset, we assess stylistic consistency
based on several factors: whether the response contains a code snippet, whether the response starts
directly with the code snippet or begins with freeform text, whether the code snippet includes
comments, and the programming language used in the response (such as Python, JavaScript, or C++).

The second dataset, Aleatoric-List, is a synthetic dataset we created containing 20 questions that ask
for five different items fitting a specific category. An illustrative example question is "Give me the
names of five capital cities in Europe." For this dataset, we evaluate stylistic consistency based on
whether the answer is terse, whether it contains bullet points, and whether these bullet points are
numerical.

To evaluate stylistic consistency along each dimension, we begin by generating 100 Gumbel latent
vectors. Then, for each Gumbel vector, we generate a response to all questions in the dataset which
we classify along each of the stylistic dimensions through prompting gpt-4o mini (with prompts
shown in Appendix F). For each factor, we then define the stylistic consistency as the probability
that responses to two randomly selected questions share the same label, denoted as prepeat. We then
compare this probability with the equivalent probability when the responses are generated with our
independent sampling baseline (IS).

Let Z be a Bernoulli random variable that denotes whether a randomly sampled response is labelled
with a given stylistic dimension, p(Z = 1) = p. For IS, prepeat = p2 + (1 − p)2. However, for
GCS and GCSwR, prepeat = Eg[p

2
g + (1 − pg)

2] where pg denotes the probability of a randomly
sampled response generated using Gumbel latent vector g taking value Z = 1. These expressions
follow directly from the conditional independence of responses generated with a common initial
Gumbel latent vector g and generated independently, and additionally from marginalisation over
initial Gumbel latent vectors g.
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Although the estimator p̂ = 1
n

∑n
i=1 Zi is an unbiased estimator of p, p̂2 + (1− p̂)2 yields a biased

estimator of p2 + (1− p)2. To correct for this bias, we use the following estimator N
N−1 (p̂

2 + (1−
p̂)2)− 1

N−1 which we show in Appendix C to be unbiased.

Table 2: Comparison of GCSwR vs. IS on Stylistic Consistency

Dataset Stylistic Dimension Sampler
IS GCSwR

Code-Alpaca Is Python 0.67 0.73
Is JavaScript 0.78 0.84

Is C++ 0.92 0.94
Contains Code Snippet 0.71 0.81

Answers Directly 0.50 0.73
Contains Comments 0.71 0.80

Aleatoric-List Does Not Use Bullets 0.75 0.82
Uses Numerical Bullets 0.82 0.87

Terseness 0.50 0.64

We show, in Table 2, the results of this experiment, using Mistral-7B to generate responses. Across
all stylistic dimensions considered, using GCSwR increases the frequency with which generated
responses follow a common style. For many factors, the increase is significant (>10%), showing that
Gumbel consistency sampling can have an appreciable impact on style consistency.

7 Conclusion

We have introduced Gumbel consistency sampling, a straightforward and computationally inexpensive
sampling approach for increasing consistency amongst model responses. The method requires no
additional fine-tuning, additional language model calls or apriori knowledge of what prompts will
be used, and guarantees responses indistinguishable to those obtained using standard sampling at
the level of individual responses. The approach enhances consistency by sampling responses in a
correlated manner through the introduction of a latent variable, in a way that increases the token
overlap across responses. In our experiments, we find that this approach is not only able to enhance
semantic similarity between responses but also stylistic similarity. These results showcase how
Gumbel consistency sampling offers a principled quick and easy way of enhancing language model
consistency.

Future work could extend the Gumbel consistency sampling to imposing local rather than global
correlation to responses. Currently, all responses are globally coupled due to dependence on the same
global latent variable, which makes localised adjustments to model behaviour impossible. However,
the framework could easily enable for latent variables to be varied locally depending on question
specifics, which would enable finer-grain control of model behaviour. Another, promising direction
for extending the work could be to treat the Gumbel noise as a learnable task-specific parameter.
Such an approach may be especially useful for building stronger model safeguards while preserving
general utility.
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A Proof for Theorem 4.1

Theorem. Suppose we have two different categorical distributions parametrised by p1, ..., pNv and
q1, ..., qNv . Define a joint distribution over pairs of categories (Y, V ) by defining

Y = argmax
i

(log pi + gi), V = argmax
i

(log qi + gi), (3)

where g1, ..., gNv ∼ G(0, 1) are independent. We have that

P (Y = k, V = k) =
pkqk

pkqk +
∑

i̸=k max{piqk, qipk}
.

Proof. If
k = argmax

i
{log pi + gi} = argmax

i
{log qi + gi},
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then we must have that for all i ̸= k,

gi < log pk + gk − log pi and gi < log qk + gk − log qi,

i.e.,
gi < gk +min{log(pk/pi), log(qk/qi)} ∀i ̸= k.

Denoting by F the CDF of the Gumbel distribution, we can write

P (Y = k, V = k|gk) =
∏
i ̸=k

F (gk +min{log pk/pi, log qk/qi}).

Denoting the PDF of the Gumbel distribution by f and marginalising we deduce that

P (Y = k, V = k) =

∫ ∞

−∞

∏
i ̸=k

F (g +min{log pk/pi, log qk/qi})f(g)dg.

Expanding, we can write this as

P (Y = k, V = k) =

∫ ∏
i ̸=k

exp{− exp{−g −min{log pk/pi, log qk/qi}}} exp{−g − exp(−g)}dg

=

∫
exp{−g − exp(−g)−

∑
i ̸=k

exp{−g −min{log pk/pi, log qk/qi}}}dg

=

∫
exp{−g − exp(−g)(1 +

∑
i̸=k

exp{−min{log pk/pi, log qk/qi}}}dg.

Recall that
d

dx
ee

x

= exee
x

= ex+ex ,

and so for any A independent of x we have that

d

dx
e−Ae−x

= Ae−xe−Ae−x

= Ae−x−Ae−x

.

Therefore, we may deduce that

P (Y = k, V = k) =

[
1

1 +
∑

i ̸=k exp{−min{log pk/pi, log qk/qi}}
e−Ae−g

]∞
−∞

=
1

1 +
∑

i̸=k exp{−min{log pk/pi, log qk/qi}}
.

Since

exp{−min{log pk/pi, log qk/qi}} = max{exp{− log pk/pi}, exp{− log qk/qi}}
= max{pi/pk, qi/qk},

we deduce

P (Y = k, V = k) =
1

1 +
∑

i̸=k max{pi/pk, qi/qk}
.

as claimed.

B Proofs relating to Gumbel recycling procedure

Note that in the following proofs, we denote for notational simplicity that for a random vector x,
where each element of x is independently sampled according to a Gumbel distribution, xk ∼ G(0, 1),
p(x) =

∏
k G(xk; 0, 1) = G(x; 0, 1).
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B.1 Overall proof

Theorem B.1. Consider a sequence of tokens Y1:T generated auto-regressively according to the
following update rule, where k := argmaxj(g

j
t + log hj

t ), Q(·) is the quantile function for the
G(0, 1) distribution and πθ(·) is a language model:

g1 ∼ G(0, 1)

ht+1 = πθ(X,Y1:t)

gkt+1 | gt, ht ∼ G(0, 1)

git+1 | gt, ht = Q

(
Q−1(git)

Q−1(gkt + log hk
t − log hi

t)

)
, for i ̸= k

Yt+1 = argmax
j

(
log hj

t+1 + gjt+1

)
With this update procedure, the probability distribution over a given token conditioned on preceding
tokens is

p(Yt+1 | X,Y1:t) = Cat(Yt+1;ht+1)

Proof. We proceed through proof by induction. We make two assumptions that following expressions
hold for t, then prove that the expressions hold for t+ 1 under those assumptions (and that they hold
for the base case). The assumptions are that:

Assumption 1.
p(Yt | X,Y1:t−1) = Cat(Yt;ht+1)

Assumption 2.
p(gt | X,Y1:t−1) = G(gt; 0, 1)

N.B that in the base cases (p(Y1 | X) and p(g1 | X)), the expressions are trivially valid by the
Gumbel reparameterization trick and by construction of g1 respectively.

Now, let’s prove that the expressions hold for t+ 1. We will first prove the following:

p(gt+1 | X,Y1:t) = G(gt+1; 0, 1)

by first considering the probability p(git+1 < a | X,Y1:t):

p(git+1 < a | X,Y1:t) =

∫
p(git+1 < a, gt | X,Y1:t) dgt

=

∫
p(git+1 < a | X,Y1:t, gt)p(gt | X,Y1:t−1, Yt) dgt

=

∫
p(git+1 < a | X,Y1:t, gt)

p(Yt | X,Y1:t−1, gt)p(gt | X,Y1:t−1)

p(Yt | X,Y1:t−1)
dgt

=
1

p(Yt | X,Y1:t−1)

∫
p(git+1 < a | ht, Yt, gt)p(Yt | ht, gt)G(gt; 0, 1) dgt

Firstly, consider the case where Yt = i. In this case, we know that git+1 is newly sampled from
G(0, 1). Therefore, using the Gumbel reparameterization trick for the last step, we have that:

p(git+1 < a | X,Y1:t) =
1

hi
t

∫
p(git+1 < a | ht, Yt, gt)p(Yt | ht, gt)G(gt; 0, 1) dgt

=
1

hi
t

∫
Q−1(a)p(Yt | ht, gt)G(gt; 0, 1) dgt

=
hi
t

hi
t

Q−1(a) = Q−1(a)

12



Turning our attention to the case where Yt = j ̸= i

p(git+1 < a | X,Y1:t) =
1

p(Yt = j | X,Y1:t−1)

∫
p(git+1 < a | ht, Yt = j, gt)p(Yt = j | ht, gt)G(gt; 0, 1) dgt

=
1

hj
t

∫
p(git+1 < a | ht, Yt = j, gt)p(Yt = j | ht, gt)G(gt; 0, 1) dgt

We simplify notation by denoting the following events:

E′ =

{
Q

(
Q−1(git)

Q−1(gjt + log hj
t − log hi

t)

)
< a

}
Ep =

{
gpt + log hp

t < gjt + log hj
t

}
Now, we can rewrite the following probabilities using these definitions:

p(git+1 < a | ht, Yt = j, gt) = 1E′(gt)

p(Yt = j | ht, gt) =

∏
p ̸=j

1Ep(gt)


p(git+1 < a | X,Y1:t) =

1

hj
t

∫
1E′(gt)

∏
p ̸=j

1Ep(gt)

G(gt; 0, 1) dgt

Since Q−1(x) is a monotonic function, Ei is equivalently defined as:

Ei =
{
Q−1

(
git
)
< Q−1

(
gjt + log hj

t − log hi
t

)}
Additionally, E′ can be rewritten as

E′ =
{
Q−1

(
git
)
< Q−1(a)Q−1

(
gjt + log hj

t − log hi
t

)}
Since Q−1(a) ∈ [0, 1], the occurrence of E′ is a sufficient condition for the occurrence of Ei.
Therefore, we can simplify the integral to:

p(git+1 < a | X,Y1:t) =
1

hj
t

∫
1E′(gt)

∏
p ̸=i,j

1Ep(gt)

G(gt; 0, 1) dgt

The CDF of the Gumbel distribution can be written Q−1(x) = e−e−x

, so Q−1(x+c) =
(
Q−1(x)

)e−c

.
With this fact and application of the monotonic transformation Q(·), we can rewrite the events :

E′ =

{
Q−1

(
git
)
Q−1

(
gjt

)− hi
t

h
j
t < Q−1(a)

}

Ep =

{
Q−1 (gpt ) < Q−1

(
gjt

)h
p
t

h
j
t

}
We now use the fact that Q−1(git) := U i

t ∼ U [0, 1] ∀i to rewrite the events like so:

E′ =

{
U i
t

(
U j
t

)− hi
t

h
j
t < Q−1(a)

}

Ep =

{
Up
t <

(
U j
t

)h
p
t

h
j
t

}
In conjunction with lemma B.1, this gives us the desired cumulative density function:

p(git+1 < a | X,Y1:t) =
1

hj
t

(hj
t )Q

−1(a) = Q−1(a)
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Since the cumulative density function in both cases (Yt = i and Yt ̸= i) is Q−1(a), we have that,
under our initial assumptions, p(gt+1 | X,Y1:t) = G(gt+1; 0, 1).

Finally, we then introduce and marginalise over the Gumbel noise vector at the previous timestep for
the distribution over Yt+1, where the final step follows from the Gumbel reparameterization trick:

p(Yt+1 | X,Y1:t) =

∫
p(Yt+1, gt+1 | X,Y1:t) dgt+1

=

∫
p(Yt+1 | X,Y1:t, gt+1)p(gt+1 | X,Y1:t) dgt+1

=

∫
p(Yt+1 | ht+1, gt+1)G(gt+1; 0, 1) dgt+1

= Cat(Yt+1;ht+1)

Therefore, since the expressions are valid for the base case of t = 1, and we have shown them to be
valid for t+ 1 if assumptions 1 and 2 hold, they must be true for all t, by induction.

B.2 Statement and Proof of lemma B.1

Lemma B.1. X , Y and Z1:N are random variables each independently drawn from U [0, 1]. A, B,
C1:N and D are positive constants between 0 and 1, and A+B +

∑
n Cn = 1. Defining the events

E∗ =
{
XY −A

B < D
}

and En =
{
Zn < Y

Cn
B

}
, the probability of the intersection of events is

given by:

P

(
E∗ ∩

N⋂
n=1

En

)
= BD

Proof. We can write down the following probabilities that are conditional on Y :

P (E∗|Y ) = P
(
X ≤ DY

A
B

)
= DY

A
B

P (En|Y ) = P
(
Zn ≤ Y

Cn
B

)
= Y

Cn
B

Therefore, the probability of the complement is given by integrating the product of these quantities
over p(y):

P

(
E∗ ∩

N⋂
n=1

En

)
=

∫ 1

0

P (E∗|Y )

N∏
n=1

P (En|Y )dY

=

∫ 1

0

(
DY

A
B

) N∏
n=1

(
Y

Cn
B

)
dY

=

∫ 1

0

(
DY

A+
∑

n Cn
B

)
dY

= D
1

A+
∑

n Cn

B + 1

= D
1(

A+
∑

n Cn+B

B

) = BD

C Proof of unbiased estimator for prepeat

Claim. Let p denote the probability of some Bernoulli event. an unbiased estimator of p given by a
finite set N of samples Z1:N from the distribution is given by:

p̂ =
1

N

N∑
i=1

Zi

14



An unbiased estimator of prepeat = p2 + (1− p)2 is:

N

N − 1
(p̂2 + (1− p̂)2)− 1

N − 1

Proof. Calculate the expectation of p̂2:

E(p̂2) = E

( 1

N

N∑
i=1

Zi

)2


Expand the square inside the expectation:

E(p̂2) =
1

N2
E

 N∑
i=1

Z2
i +

∑
i ̸=j

ZiZj


Since Z2

i = Zi, and by linearity of expectation:

E(p̂2) =
1

N2

(
Np+N(N − 1)p2

)
Simplify the expression:

E(p̂2) =
Np+N2p2 −Np2

N2
=

p+ (N − 1)p2

N

Using this result, we have the following:

E(p̂2 + (1− p̂)2) = E
(
2p̂2 − 2p̂+ 1

)
= 2E(p̂2)− 2E(p̂) + 1

= 2

(
1

N
p+

N − 1

N
p2
)
− 2p+ 1

=
1

N

(
(N − 1)(2p2 − 2p+ 1) + 1

)
=

N − 1

N

(
(2p2 − 2p+ 1) +

1

N − 1

)
=

N − 1

N
prepeat +

1

N

Therefore, we can debias the naive estimator using the following expression:

N

N − 1
(p̂2 + (1− p̂)2)− 1

N − 1

D Justification for ensembling procedure

Theorem. Suppose we have a set of categorical distributions {Pi}ni=1, define Q∗ as the distribution
minimizing the average forward Kullback-Leibler divergence to each {Pi}ni=1:

Q∗ = argmin
Q

1

n

n∑
i=1

DKL(Q∥Pi) (4)

then Q∗(x) can be expressed as

Q∗(x) =
1

Z

n∏
i=1

Pi(x)
1
n (5)
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where Z is the normalisation constant to ensure Q∗ defines a valid probability distribution function

Z =
∑
x

n∏
i=1

Pi(x)
1
n

Proof. Expanding the KL divergence

1

n

n∑
i=1

DKL(Q∥Pi) =
1

n

n∑
i=1

∑
x

Q(x) log
Q(x)

Pi(x)

Changing the order of sums, this can be re-expressed as

1

n

n∑
i=1

DKL(Q∥Pi) =
1

n

∑
x

Q(x) log
Q(x)n∏n
i=1 Pi(x)

=
∑
x

Q(x) log
Q(x)∏n

i=1 Pi(x)
1
n

Introducing the normalisation constant Z

1

n

n∑
i=1

DKL(Q∥Pi) =
∑
x

Q(x) log
1
ZQ(x)

1
Z

∏n
i=1 Pi(x)

1
n

=
1

n

n∑
i=1

DKL(Q∥Pi)

separating the Z in the numerator

1

n

n∑
i=1

DKL(Q∥Pi) =
∑
x

Q(x) log
Q(x)

1
Z

∏n
i=1 Pi(x)

1
n

+ log
1

Z

thus
1

n

n∑
i=1

DKL(Q∥Pi) = DKL(Q∥
1

Z

n∏
i=1

P
1
n
i ) + log

1

Z

this will be minimised when the right-hand side KL is equal to zero which occurs at Q∗(x) =
1
Z

∏n
i=1 Pi(x)

1
n

E Experimental details

For all experiments, answer generation is done using language models quantised to bfloat16 [32].
Chat and instruction-tuned models are prompted using default templates whereas base models (mistral,
llama3-base) are prompted with a template consisting of a single in-context example to help steer
away from off-topic answers. The addition of this in-context example was found to not materially
impact the efficacity of Gumbel sampling but impact the quality of responses.

To avoid excessive experiment run-times, we restrict generated responses to a maximum length after
which we interrupt text generation. This limit was set to 50 new tokens for semantic similarity experi-
ments and to 200 new tokens for stylistic similarity experiments. We ran small-scale experiments
with larger maximum response length and did not find material evidence of experimental findings
being impacted by this response truncation.

When measuring semantic similarity between responses we measure consistency between responses
rather than response-question pairs with any follow-up questions or answers hallucinated by the
language model removed programmatically.

F Stylistic consistency prompts

F.1 Aleatoric-list

Listing 1: Zero-shot classification prompt for whether model-generated response contains bulletpoints.
Placeholders for question-specific content are shown in red.

1 Does t h e f o l l o w i n g r e s p o n s e s e p a r a t e i t e m s i n t h e answer u s i n g b u l l e t
p o i n t s ( * / − ) , l e t t e r s ( a / b / c . . . ) , n u m e r i c s ( 1 , 2 , 3 ) o r i f i t e m s a r e n o t

s e p a r a t e d r e s p o n d wi th ‘ doesn ’ t s e p a r a t e ‘ ?
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2

3 Response : ‘ ‘ ‘ {response} ‘ ‘ ‘ .
4 To make your answer easy t o e x t r a c t r e s p o n d wi th on ly one of t h e

f o l l o w i n g o p t i o n s ‘ u s e s b u l l e t s ‘ / ‘ u s e s l e t t e r s ‘ / ‘ u s e s numer ics ‘ / ‘
doesn ’ t s e p a r a t e ‘

Listing 2: Zero-shot classification prompt for whether model-generated response is terse. Placeholders
for question-specific content are shown in red.

1 I s t h e r e s p o n s e t e r s e o r n o t ?
2 Response : ‘ ‘ ‘ {response} ‘ ‘ ‘ .
3 To make your answer easy t o e x t r a c t r e s p o n d wi th on ly one of t h e

f o l l o w i n g o p t i o n s ‘ t e r s e ‘ / ‘ n o t t e r s e ‘ .

F.2 Code-Alpaca

Listing 3: Zero-shot classification prompt for determining programming language of model-generated
response. Placeholders for question-specific content are shown in red.

1 What i s t h e programming l a n g u a g e used i n t h e p r o v i d e d r e s p o n s e . I f no
programming l a n g u a g e i s used r e t u r n None

2 Response : ‘ ‘ ‘ {response} ‘ ‘ ‘ .
3 Your r e s p o n s e s h o u l d on ly c o n t a i n t h e answer and n o t h i n g e l s e .

Listing 4: Zero-shot classification prompt for determining if model-generated response contains
comments. Placeholders for question-specific content are shown in red.

1 Does t h e code s n i p p e t i n t h e f o l l o w i n g r e s p o n s e c o n t a i n comments .
2 Response : ‘ ‘ ‘ {response} ‘ ‘ ‘ .
3 Answer e i t h e r w i th yes / no . Your r e s p o n s e s h o u l d on ly c o n t a i n t h e answer

and n o t h i n g e l s e .

Listing 5: Zero-shot classification prompt for determining if model-generated response contains code
snippet. Placeholders for question-specific content are shown in red.

1 Does t h e f o l l o w i n g r e s p o n s e c o n t a i n a code s n i p p e t .
2 Response : ‘ ‘ ‘ {response} ‘ ‘ ‘ .
3 Answer e i t h e r w i th yes / no . Your r e s p o n s e s h o u l d on ly c o n t a i n t h e answer

and n o t h i n g e l s e .
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G Example responses and semantic similarity

G.1 Llama3-base-7B without gumbel consistency sampling at T=0.8

Table 3: Examples of semantic similarity between responses for various questions

Question Response 1 Response 2 Similarity
(%)

Break down the application
of word embeddings in Nat-
ural Language Processing /
Illuminate the use of word
embeddings in Natural Lan-
guage Processing

Natural Language Process-
ing(NLP) is a branch of
Artificial Intelligence (AI)
which deals with the interac-
tion between computers and
human languages. Word2vec is
the most popular class of word
embeddin...

It is used to represent words
and their context with numer-
ical values.

68.0

Expound on the function of
a computer motherboard. /
Illustrate the function of a
computer motherboard.

The motherboard is the frame-
work of the computer. It houses
the CPU, RAM, and other com-
ponents.

The computer’s motherboard
serves a number of functions.
It directs information from the
CPU to the memory, makes
sure the proper voltage levels
are reached, and directs the data
flow in and out of th...

80.5

Decode the abbreviation
DNA. / Share the meaning
behind DNA.

DNA is an abbreviation for de-
oxyribonucleic acid.

DNA is also known as Deoxyri-
bonucleic Acid. It is found in
every single cell in the body
and each cell contains the com-
plete set of genetic information.
It is the genetic blueprint that
determines the...

78.0

G.2 Llama3-base-7B with gumbel consistency sampling (recycling) at T=0.8

Table 4: Examples of semantic similarity between responses for various questions

Question Response 1 Response 2 Similarity
(%)

Break down the application
of word embeddings in Nat-
ural Language Processing /
Illuminate the use of word
embeddings in Natural Lan-
guage Processing

Embedding is the encoding of
words in the context with a real-
valued vector of a certain di-
mension. The low dimension
helps to reduce the computa-
tional complexity of the models.
Embedding can be learn...

Embedding is the encoding of
words in the context of a sen-
tence with a real-valued vector.
The use of word embeddings
helps to solve the problem of
‘Word sense disambiguation’.

85.0

Expound on the function of
a computer motherboard. /
Illustrate the function of a
computer motherboard.

The motherboard of a computer
is responsible for providing a
workspace where all the hard-
ware components can be con-
nected. The motherboard also
controls the communication be-
tween the various component...

The motherboard of a com-
puter is responsible for provid-
ing communication between all
the various components. The
motherboard also controls ba-
sic functions such as the timing
of the hardware, start-up ...

90.0

Decode the abbreviation
DNA. / Share the meaning
behind DNA.

DNA stands for deoxyribonu-
cleic acid

DNA means Deoxyribonucleic
acid

98.0
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G.3 Llama3-instruct-7B without gumbel consistency sampling at T=0.8

Table 5: Examples of semantic similarity between responses for various questions

Question Response 1 Response 2 Similarity
(%)

Break down the application
of word embeddings in Nat-
ural Language Processing /
Illuminate the use of word
embeddings in Natural Lan-
guage Processing

Word embeddings are a fun-
damental component in Natu-
ral Language Processing (NLP)
that allow machines to under-
stand the nuances of language
by mapping words to vectors in
a high-dimen...

The wonders of word embed-
dings!

Word embeddings are a
fundamental concept in Natural
Language Processing (NLP)
that revolutionized the way we
represent words as vect...

91.0

Expound on the function of
a computer motherboard. /
Illustrate the function of a
computer motherboard.

The motherboard is the main
circuit board of a computer,
connecting and supporting all
the hardware components of the
system. It serves as a communi-
cation highway, allowing differ-
ent...

The computer motherboard is
the main circuit board of a com-
puter that connects all the hard-
ware components together. It is
responsible for facilitating com-
munication and data transfe...

91.0

Decode the abbreviation
DNA. / Share the meaning
behind DNA.

A classic one!

The abbreviation DNA
stands for:

D - Deoxy
N - Nucleic
A - Acid

In other words, DNA is
Deoxyribose N...

What an fascinating topic!
DNA (Deoxyribonucleic acid)
is a molecule that contains the
genetic instructions used in the
development and function of all
living organisms. It’s often r...

78.0

G.4 Llama3-instruct-7B with gumbel consistency sampling (recycling) at T=0.8

Table 6: Examples of semantic similarity between responses for various questions

Question Response 1 Response 2 Similarity
(%)

Break down the application
of word embeddings in Nat-
ural Language Processing /
Illuminate the use of word
embeddings in Natural Lan-
guage Processing

Embedding is the encoding of
words in the context with a real-
valued vector of a certain di-
mension. The low dimension
helps to reduce the computa-
tional complexity of the models.
Embedding can be learn...

Embedding is the encoding of
words in the context of a sen-
tence with a real-valued vector.
The use of word embeddings
helps to solve the problem of
‘Word sense disambiguation’.

85.0

Expound on the function of
a computer motherboard. /
Illustrate the function of a
computer motherboard.

The motherboard of a computer
is responsible for providing a
workspace where all the hard-
ware components can be con-
nected. The motherboard also
controls the communication be-
tween the various component...

The motherboard of a com-
puter is responsible for provid-
ing communication between all
the various components. The
motherboard also controls ba-
sic functions such as the timing
of the hardware, start-up ...

90.0

Decode the abbreviation
DNA. / Share the meaning
behind DNA.

DNA stands for deoxyribonu-
cleic acid

DNA means Deoxyribonucleic
acid

98.0
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