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Abstract

In this paper, we address the issue of learning fair policies in
decentralized cooperative multi-agent reinforcement learning
(MARL), with a focus on traffic light control systems. We
show that standard MARL algorithms that optimize the ex-
pected rewards often lead to unfair treatment across differ-
ent intersections. To overcome this limitation, we design con-
trol policies that optimize a generalized Gini welfare func-
tion that explicitly encodes two aspects of fairness: efficiency
and equity. Specifically, we propose three novel adaptations
of MARL baselines that enable agents to learn decentralized
fair policies, where each agent estimates its local value func-
tion while contributing to welfare optimization. We validate
our approaches through extensive experiments across six traf-
fic control environments with varying complexities and traffic
layouts. The results demonstrate that our proposed methods
consistently outperform existing MARL approaches both in
terms of efficiency and equity.

Introduction
Efficient traffic light control is essential for improving traf-
fic flow, reducing commute times, and preventing acci-
dents (Ghazal et al. 2016). Studies indicate that inefficient
traffic light control can increase commute times by 12-
55% and exacerbate traffic congestion (Ault, Hanna, and
Sharon 2019). Beyond time delays, traffic congestion also
imposes significant economic costs and increases the like-
lihood of car accidents. For instance, in the United States,
the trucking industry incurred a record cost of $94.6 billion
in 2021 due to traffic congestion, as reported by the Amer-
ican Transportation Research Institute (ATRI)1. A standard
method for managing traffic lights and reducing congestion
is the fixed-time strategy, which operates on pre-determined
schedules. While straightforward to implement, this ap-
proach suffers significant limitations, particularly in adapt-
ing to non-stationary traffic patterns or emergencies. For ex-
ample, during accidents or when emergency vehicles are
present, fixed-time strategies often fail, leading to increased
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Figure 1: Example scenarios illustrating traffic imbalance:
(left) a simulated 3x3 grid environment with non-uniform
traffic injection across intersections and (right) a single in-
tersection with unbalanced directional traffic flow.

delays and inefficiencies. This highlights the need for adap-
tive, data-driven methods capable of responding to real-time
traffic conditions.

Reinforcement learning (RL) has emerged as a promis-
ing approach for traffic signal control which enables agents
to observe the state of the system—such as vehicle counts,
queue lengths, elapsed time, and approaching vehicle
speeds—and take actions that determine phase transitions
(e.g., green, yellow, or red signals) at intersections (Wiering
et al. 2000). The main objective of RL-based traffic control
is to minimize total waiting times or cumulative delays at
intersections. Despite the significant progress that has been
made in both single-agent and multi-agent RL (MARL) for
traffic signal control (Wiering et al. 2000; Chu et al. 2020;
Wu et al. 2021; Kazemkhani et al. 2024), a critical aspect
often overlooked is ensuring fairness among all road users.

Consider a 3x3 grid of intersections with varying traf-
fic densities. In this grid, certain intersections may experi-
ence heavy congestion, while others have minimal conges-
tion. Many simulated environments assume uniform traffic
injection across intersections and use deep RL agents for
optimization. However, such assumptions are far from re-
ality, where traffic patterns are inherently non-uniform. For
instance, during peak hours, intersections near downtown
areas may experience significantly higher traffic volumes.
Even within a single intersection, directional traffic flows
can be imbalanced (see Figure 1 for an example). Standard



RL approaches, which prioritize the minimization of over-
all waiting time, may allocate disproportionate green time
to high-traffic lanes while neglecting others. Although this
approach improves overall efficiency, it raises concerns that
some vehicles may be overlooked, which could lead to un-
fair treatment. Therefore, to gain public trust and broaden
the adoption of intelligent traffic control systems, fairness
considerations are crucial.

Fairness has been explored in various forms in multi-
agent systems. Early works on fair division (Beynier et al.
2019), fair mixing (Aziz, Bogomolnaia, and Moulin 2019),
and fairness in non-cooperative games (de Jong, Tuyls, and
Verbeeck 2008; Hao and Leung 2016) emphasized concepts
such as demographic parity and proportionality but were
limited to static settings without the need for learning. Re-
cent works investigated fairness in MARL. For instance,
Zhang and Shah (2014) used an egalitarian welfare function
to optimize for the least advantaged agents but did not guar-
antee optimal outcomes for all agents. Similarly, Jiang and
Lu (2019) proposed FEN, a decentralized approach combin-
ing Pareto dominance and symmetry, but it required agents
to share utility information, which is not always feasible.
Zimmer et al. (2021) introduced SOTO, a method that learns
self-oriented and team-oriented policies for individual and
collective utility optimization, respectively, but it relied on
hierarchical structures and utility sharing. Within traffic sig-
nal control, fairness has been investigated to some extent.
For example, Maslekar et al. (2011) developed adaptive
systems to reduce outlier waiting times, while Wunder-
lich et al. (2008) incorporated queue lengths to enhance ser-
vice quality. More recently, Wan et al. (2024) proposed a
DQN-based algorithm to minimize waiting time disparities
among drivers while maintaining traffic throughput. How-
ever, these methods either rely on simplified assumptions or
are restricted to single-agent settings, which limits their ap-
plicability to real-world scenarios.

To address these limitations, this paper presents novel ap-
proaches designed to scale and operate in complex, real-
world traffic conditions. Unlike existing fairness MARL
baselines, our approaches eliminate the need for specialized
network architectures or hierarchical structures. Instead of
optimizing the discounted sum of rewards—a common ob-
jective in standard MARL algorithms—our methods opti-
mize the generalized Gini welfare function to ensure equi-
table reward distribution among agents. By focusing on fair-
ness within traffic light control, our work fills a significant
gap where fairness considerations have been largely ignored.

Contributions. In this paper, we investigate an unresolved
problem of learning fair solutions for large-scale, decentral-
ized traffic signal control. We propose a novel MARL frame-
work where agents independently learn policies optimized
for a generalized Gini welfare function (GGF), ensuring fair-
ness and equitable treatment across all agents. Our meth-
ods are validated across multiple traffic control environ-
ments with varying intersection densities and traffic patterns,
demonstrating their scalability and adaptability. Through ex-
tensive experiments, we show that our approaches achieve
fair outcomes while maintaining competitive performance

against state-of-the-art MARL baselines.

Related Work
As artificial intelligence solutions are increasingly used to
make decisions that affect human lives, fairness has be-
come a crucial topic (Rawls 1971). With the widespread
applications of machine learning (ML) algorithms, ensur-
ing fairness becomes necessary to avoid harmful biases,
particularly when these algorithms influence multiple end-
users (Thomas et al. 2019). Numerous works have stud-
ied fairness in ML, both in supervised and unsupervised
learning, using various definitions of fairness (Dwork et al.
2012; Zafar et al. 2017; Sharifi-Malvajerdi, Kearns, and
Roth 2019; Agarwal et al. 2018). Among these, social wel-
fare functions have seen increased interest, particularly in
supervised learning (Cousins 2021, 2023).

In RL, defining fairness raises unique challenges due to
the sequential nature of decision-making (Nashed, Sveg-
liato, and Blodgett 2023; Wu et al. 2024). Unlike ML set-
tings, RL requires fairness to be distributed both tempo-
rally and across agents. Recently, fairness in RL has gained
significant attention, notably through early work by Jabbari
et al. (2017), which introduced a fairness constraint specif-
ically suited for Markov Decision Processes (MDPs). This
work also provided a provably fair algorithm under an ap-
proximate notion of this constraint. Other approaches have
focused on group fairness in online RL (Huang et al. 2022;
Schumann et al. 2019), often employing fairness metrics like
demographic parity. In the context of multiple objectives in
RL, recent works have begun addressing fairness through
social welfare function optimization (Siddique, Weng, and
Zimmer 2020; Yu, Siddique, and Weng 2023a,b; Fan et al.
2022; Cousins 2022). Notably, Siddique, Weng, and Zim-
mer (2020) and Yu, Siddique, and Weng (2023b) proposed to
learn welfare-optimal policies for multi-objective deep RL,
while Cousins (2022) examined welfare objectives in a tab-
ular setting. Fan et al. (2022) presented methods for opti-
mizing the Nash social welfare function by utilizing its dif-
ferentiability and linearizability. Siddique, Sinha, and Cao
(2023) introduced FPbRL, a fairness-enhanced method in
preference-based RL, to learn fair policies without relying
on explicit rewards.

Building on the success of fairness in RL, fairness in
multi-agent RL (MARL) has emerged as an active research
area (Zhang and Shah 2014; Jiang and Lu 2019; Mandal and
Gan 2022; Ju, Ghosh, and Shroff 2023; Siddique, Li, and
Cao 2024). In a multi-agent MDP model, Zhang and Shah
(2014) proposed a regularized maximin policy, where the
regularizer balances utilitarian and max-min fairness. Jiang
and Lu (2019) introduced FEN, a decentralized method us-
ing a gossip algorithm to estimate average utility, coupled
with a hierarchical policy structure to choose a policy from
the Pareto frontier. The closest work to ours is Zimmer et al.
(2021), which proposed SOTO, a method that learns self-
oriented and team-oriented policies, optimizing individual
utility and social welfare functions, respectively. However,
unlike FEN and SOTO, our methods do not assume the need
to share individual utilities to learn a fair solution, nor does
it rely on hierarchical or specialized network architectures.



Instead, our methods independently learn decentralized poli-
cies that ensure fairness through the optimization of social
welfare functions.

RL and particularly MARL for traffic light control has
received growing attention for its potential to optimize ur-
ban traffic systems. Early work by Mousavi, Schukat, and
Howley (2017) applied deep RL agents to optimize traffic
lights at a single intersection. Wei et al. (2018) proposed
IntelliLight, an interpretable deep RL framework for real-
time traffic signal control, while Wu et al. (2021) introduced
Flow, a modular deep RL framework for managing complex
traffic dynamics. Similarly, Chen et al. (2020) developed
a MARL approach for controlling multi-intersection traffic
systems. Other notable works include MARL algorithms for
urban traffic (Wu et al. 2020) and GPU-accelerated simula-
tors for scalable RL research (Kazemkhani et al. 2024). De-
spite these advances, fairness in traffic light control remains
underexplored, with few exceptions. Maslekar et al. (2011)
addressed fairness by designing adaptive systems to reduce
extreme waiting times, while Wunderlich et al. (2008) in-
corporated queue lengths to improve service quality. Re-
cently, Wan et al. (2024) proposed a DQN-based method to
minimize waiting time disparities while optimizing overall
throughput. However, these approaches either rely on single-
agent settings or make simplified assumptions that limit their
applicability in real-world scenarios. In this paper, we tackle
the issue of fairness in large-scale, decentralized traffic light
control. Unlike existing methods, our methods learn fully
decentralized fair policies using a generalized Gini welfare
function to ensure equitable treatment across diverse inter-
sections and traffic patterns.

Preliminaries
Dec-POMDPs
Cooperative multi-agent tasks are formalized as de-
centralized partially observable Markov decision pro-
cesses (Dec-POMDPs) (Oliehoek, Amato et al. 2016). A
Dec-POMDP model is defined by the following tuple
⟨S,U ,P,R,Z,O, N, ρ, γ⟩, where S describes the set of the
true state of the environment, U represents the action space
(which can be discrete or continuous), P : S × U × S →
[0, 1] denotes the transition function, N = {1, . . . , n} de-
notes the set of n agents, ρ represents the initial state distri-
bution, and γ ∈ [0, 1) is the discount factor that determines
the importance of future rewards. In this model, at each time
step t, each agent a ∈ A ≡ {1, . . . , n} selects an action
ua
t ∈ U , resulting in a joint action ut = {ua

t }na=1 in the en-
vironment. This causes a transition on the environment ac-
cording to the state transition function P(s′t | st,ut). Since
we are in a fully decentralized setting, each agent receives an
individual reward rat , which is part of the joint reward vector
rt = R(st,ut). While rewards are distributed, they are not
independent among agents. Each agent’s reward depends on
the state and the joint actions of all agents.

We consider a partially observable scenario, which means
that the agents have access only to partial observations of the
environment zt ∈ Z instead of the full state st, according to
the observation function O(st, a) : S × A → Z . The joint

observation zt = {zat }na=1 represents the collective obser-
vations of all agents and can be referred to as the full state
of the environment. Each agent has an action-observation
history, which is denoted by τat ∈ Tt ≡ (Z × U)t × Z ,
where Tt is the set of all possible histories up to time t for
each agent, and τt = {τat }na=1 is the set of all agents’ his-
tories. Each agent a selects its actions with a decentralized
policy ua

t ∼ πa(· | τat ) based only on its individual action-
observation history. All agents in a team aim to learn a joint
policy π(ut|τt) ≡

∏n
a=1 π

a(ua
t |τat ) that maximizes some

performance metric, such as the expected discounted return:
J(π) = E [

∑∞
t=0 γ

trt].

Centralized Training and Decentralized Execution
We adopt the centralized training with decentralized exe-
cution (CTDE) learning paradigm (Oliehoek, Amato et al.
2016; Sunehag et al. 2017; Foerster et al. 2018), a widely
adopted approach in MARL systems. This paradigm effec-
tively balances the advantages of having global knowledge
during training with the scalability and independence needed
during execution. In CTDE, centralization is exploited dur-
ing the training phase while maintaining decentralization
during the execution phase. In other words, during training,
agents have access to the full environment state in addition to
their local observation histories, and they can also share poli-
cies and experiences. This access to global state information
is essential in mitigating the non-stationarity issues that of-
ten arise in dynamic multi-agent environments, where the
constantly evolving system makes it difficult for agents to
learn stable policies when operating independently. By con-
sidering the global state and the actions of other agents dur-
ing training, the learning process becomes more stable and
allows agents to converge on more effective strategies (Pa-
poudakis et al. 2019). However, during execution, agents
must operate in a decentralized manner as agents may not
have access to other agents’ observations or full state infor-
mation. This decentralization is important in real-world ap-
plications, where access to global information is often im-
practical due to bandwidth constraints, latency issues, or se-
curity concerns. By adhering to this paradigm, agents trained
under CTDE can adapt to environments where real-time
communication is limited or costly.

The Generalized Gini Function
In this paper, we require a fair solution to satisfy three
key properties: efficiency, equity, and impartiality. The ef-
ficiency property requires that, between two feasible solu-
tions, if one is (weakly or strictly) preferred by all users, it
should be chosen. This ensures that the solution is Pareto-
optimal, meaning no agent’s utility can be improved with-
out reducing another’s utility. Formally, a solution x Pareto-
dominates another solution x′ if ∀i, xi ≥ x′

i and ∃j, xj >
x′
j , denoted as x ≻ x′. Equity, a stronger property than effi-

ciency, ensures that a fair solution follows the Pigou-Dalton
principle (Pigou 1912; Dalton 1920), which states transfer-
ring utility from more advantaged agents to less advantaged
ones, provided this transfer does not reverse their ranking.
Finally, impartiality property ensures fairness by treating



identical agents equally. This property implies that permu-
tations of the utility vector represent equivalent solutions.

To make this notion of fairness operational, social welfare
functions are commonly used (Siddique, Weng, and Zim-
mer 2020; Fan et al. 2022; Mandal and Gan 2022; Zim-
mer et al. 2021; Yu, Siddique, and Weng 2023a; Siddique,
Sinha, and Cao 2023) A social welfare function, denoted as
ϕ : Rn → R, aggregates the utilities of all agents and mea-
sures how good it is in terms of social welfare. It establishes
a preference or ranking over policies and the goal becomes
to select a policy that maximizes this social welfare util-
ity instead of rewards. For example, the utilitarian welfare
function, defined as ϕ(x) = 1

n

∑n
i=1 xi, prioritizes aggre-

gate efficiency but ignores equity. In contrast, the egalitarian
welfare function, defined as ϕ−∞(x) = minni=1 xi, maxi-
mizes the utility of the least advantaged agent, potentially at
the expense of overall efficiency.

The Generalized Gini Function (GGF) lies between these
extremes and provides a balanced approach that incentivizes
equity without disproportionately focusing on the least ad-
vantaged agents. The GGF is defined as:

GGFw(x) =

n∑
i=1

wix
↑
i , (1)

where x ∈ Rn and w ∈ ∆n is a fixed positive weight vector
whose components are strictly decreasing (i.e., w1 > . . . >
wn > 0). Intuitively, by assigning higher weights to smaller
agents’ utilities, the GGF generated a balanced distribution
of rewards, naturally encouraging fairness.

The GGF satisfies all three fairness properties. Because
of positive weights, it ensures monotonicity with respect to
Pareto dominance, satisfying efficiency property. The sym-
metry in the reordering of utilities guarantees impartiality, as
identical agents are treated equally regardless of their posi-
tions in the utility vector. Lastly, its adherence to the Pigou-
Dalton principle implies equity, as it is Schur-concave (i.e.,
favors utility redistributions that reduce disparities).

As discussed in Siddique, Weng, and Zimmer (2020), the
GGF generalizes several social welfare functions by vary-
ing the weight configuration. For instance, it reduces to
the egalitarian welfare function by setting w1 → 1 and
w2, . . . , wn → 0 (Rawls 1971). A regularized egalitarian
function is reduced by introducing small weights ϵ for the
lower-ranked utilities. The leximin fairness approach is ob-
tained by setting wi/wi+1 → ∞. Finally, equal weights re-
duce the GGF to the utilitarian welfare function.

Proposed Method
We consider fully cooperative MARL tasks, where a set of
agents cooperate to solve a shared task. In such tasks, the
final decision can impact multiple end-users. Therefore, it
is crucial to consider fairness in the design of these sys-
tems to ensure their successful deployment. We propose to
achieve this by optimizing a generalized Gini welfare func-
tion (GGF), which provides a balanced trade-off between
utility maximization and fairness. Thus, our objective be-
comes to learn fair policies by maximizing the GGF, which

can be formulated as:

max
πθ

GGFw(J(πθ)), (2)

where πθ represents the joint policy parameterized by θ,
J(πθ) = Eπθ

[
∑∞

t=0 γ
trt] denotes the joint expected dis-

counted returns, and GGFw is the welfare function. Since
we are in an independent learning setting, this optimization
objective can be reformulated as:

max
πθ

GGFw(J1(πθ1), . . . , J
n(πθn)), (3)

where Ja(πθa) represents the expected return for agent a.

GGF-Based Policy Optimization
To optimize the GGF, we adopt multi-agent policy gradi-
ent methods. Our proposed framework is general and can be
adapted to any policy gradient method, as it primarily modi-
fies the optimization objective while preserving the underly-
ing learning mechanism. The key to our proposed methods is
that instead of directly optimizing expected returns, we op-
timize the GGF of expected returns using a variant of policy
gradient theorem (Sutton et al. 2000):

∇θGGFw(J(πθ)) =∇J(πθ)GGFw(J(πθ))
⊤ · ∇θJ(πθ)

=w⊤
σ ∇θJ(πθ), (4)

where ∇θJ(πθ) is a n × D matrix representing the joint
policy gradient over the n agents, wσ is a weight vector
sorted based on the approximated values of initial states
computed by the critic, and D denotes the number of policy
parameters. This weighting scheme, following GGF formu-
lation (1), ensures equitable treatment across all agents by
giving higher weights to agents with lower expected returns.
The generality of our framework allows it to be seamlessly
integrated with various policy gradient methods. To demon-
strate this, next we explain how three popular independent
MARL algorithms can be adapted to optimize GGF.

GGF-IPPO. Building on IPPO (de Witt et al. 2020),
GGF-IPPO learns individual policies for agents based on
local observations. Each agent maintains a local critic and
computes advantages using TD(λ) estimation:

Aa
IPPO =

∑
t

(γλ)t−1(rt(z
a
t , u

a
t ) + γVθ(z

a
t+1)− Vθ(z

a
t ))

The policy update Ja(πθa) for each agent a derives from the
policy gradient obtained from:

Eza
t ∼ρπ,ua

t ∼πθ(·|za
t )
[min(ρθA

a
IPPO(u

a
t |zat ), ρ̄θAa

IPPO(u
a
t |zat ))] ,

where ρθ =
πθ(u

a
t |zat )

πθold(u
a
t |zat )

, ρ̄θ = clip(ρθ, 1 − ϵ, 1 + ϵ), πθold

represents the policy generating the transitions, and ϵ is a
hyperparameter controlling the constraint. The GGF-IPPO
policy gradient becomes:

∇JIPPO(πθ)GGFw(JIPPO(πθ))
⊤ · ∇θJIPPO(πθ)



(a) Double Intersections. (b) 2x2 Grid. (c) 3x3 Grid.

(d) 4x4 Grid. (e) 4x4 Loop Grid. (f) Arterial Grid.

Figure 2: Illustration of traffic environments used in our experiments.

GGF-MAPPO. GGF-MAPPO extends MAPPO (Yu et al.
2022) by employing a centralized critic for advantage esti-
mation while maintaining decentralized execution:

Aa
MAPPO =

∑
t

(γλ)t−1(rt(z
a
t , u

a
t ) + γVθ(st+1)− Vθ(st)).

The policy update Ja(πθa) for agent a follows:
Est∼ρπ,ua

t ∼πθ(·|za
t )
[min(ρθA

a
MAPPO(u

a
t |st), ρ̄θAa

MAPPO(u
a
t |st))] .

The final GGF-MAPPO policy gradient reformulates as:
∇JMAPPO(πθ)GGFw(JMAPPO(πθ))

⊤ · ∇θJMAPPO(πθ).

GGF-IA2C. This method uses one-step advantages with
local critics as, Aa

IA2C = rt(z
a
t , u

a
t )−Vθ(z

a
t ). In GGF-IA2C,

each actor update derives from the policy gradient obtained
from:

Ja
IA2C(πθa) = Eza

t ∼ρπ,ua
t ∼πθ(·|za

t )
[Aa

IA2C(u
a
t |zat )] ,

with the GGF-modified policy gradient:
∇JIA2C(πθ)GGFw(JIA2C(πθ))

⊤ · ∇θJIA2C(πθ).

Experimental Setup and Results
To evaluate the effectiveness of the proposed methods, we
run extensive experiments in six different traffic light con-
trol environments shown in Figure 2. These environments
are ranked by increasing complexity and number of inter-
sections. For GGF, we use decreasing weights wi = 1/2i

where i ∈ N . All experiments are repeated five times with
different random seeds, and we report the averaged results.
To simulate the traffic signals, we employed the Simulation
of Urban MObility (SUMO) (Lopez et al. 2018) frame-
work. The synthetic environments are adapted from (Ale-
gre 2019), while realistic traffic scenario layouts are sourced
from RESCO (Ault and Sharon 2021) where we inject high
traffic in some intersections to mimic the real-world traffic
patterns.

Environment Design. In traditional traffic control opti-
mization problems, the main objective typically focuses on
minimizing the total waiting time of all vehicles traversing
intersections. However, such an objective can lead to un-
fair treatment of certain vehicles, particularly in real-world
scenarios where traffic density varies across intersections.
This disparity becomes particularly problematic as adap-
tive agents, trained to minimize overall waiting times, natu-
rally prioritize high-traffic routes while potentially neglect-
ing lower-traffic areas. Our work specifically addresses this
fairness consideration in traffic light control management.

In our experiments, each intersection is modeled as an in-
dependent agent capable of controlling traffic coming from
all sides of the road at an intersection. Traffic lights at an
intersection are managed via four phases, with each phase
specifying which lanes receive green lights. In these envi-
ronments, the global state comprises the current traffic light
phases, traffic density, queue lengths, and waiting times of
vehicles at each intersection. Each agent’s action space con-
sists of four phase transitions that influence traffic flow. The
reward for each agent is defined as the negative total waiting
time at its respective intersections. Given that each intersec-
tion affects multiple road users or sides, we define fairness
as achieving consistently low waiting times while ensuring
equitable treatment across all sides/users. This fairness ob-
jective becomes particularly challenging in scenarios with
naturally uneven traffic flow, requiring careful balancing be-
tween prioritizing less congested routes without dispropor-
tionately impacting overall system efficiency.

Experimental Environments. Our experimental setup
encompasses six different traffic grid environments of in-
creasing complexities. Our first environment is a simple en-
vironment consisting of two consecutive intersections. The
2x2 grid consists of four intersections formed by two hor-
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Figure 3: Performances of IPPO, MAPPO, IA2C, and their GGF counterparts in double intersection environment.
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Figure 4: Performances of IPPO, MAPPO, IA2C, and their GGF counterparts in 2x2 grid environment.
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Figure 5: Performances of IPPO, MAPPO, IA2C, and their GGF counterparts in 3x3 grid environment.

izontal and two vertical lanes. The 3x3 grid environment
contains nine intersections arranged in three horizontal and
three vertical intersections. The 4x4 grid and 4x4 loop con-
tain sixteen intersections in a grid, where the latter allows
vehicles to cycle recursively at the endpoint of each lane,
hence generating increased traffic stress. The arterial grid
features two-lane arterial horizontal streets intersecting with
single-lane vertical avenues, causing unbalanced traffic flow
due to turning and potential traffic congestion. The diverse
set of environments provides a rich and comprehensive eval-
uation of our methods across varying levels of complexity
and traffic patterns.

Results. Figure 3 presents the results for the double inter-
section environment. The learning curves (Figure 3a) show
the performance of IPPO, MAPPO, IA2C, and their GGF
counterparts. It also includes results for two baseline ap-
proaches: a random strategy that arbitrarily selects actions,
and a fixed strategy that cycles between all phases at a pre-
determined frequency. As expected, the random agent per-
forms the worst. Although the fixed strategy works better

than the random agent, it is outperformed by MARL base-
lines and their GGF counterparts. The GGF-based methods,
sometimes exhibit a higher overall waiting times as com-
pared to their MARL algorithms. However, they achieve
a more equitable distribution of waiting times as demon-
strated in Figure 3b, where GGF-based methods achieve a
lower Coefficient of Variation (CV), indicating more equi-
table waiting time distribution across intersections. Recall
that, CV measures the level of dispersion in waiting times
across intersections, with a lower CV indicating a fair and
equitable solution. Additionally, the MARL algorithms that
optimize GGF obtain higher GGF scores which further val-
idate the successful optimization of the GGF objective.

Figure 4 depicts the results for the 2x2 Grid environ-
ment. The learning curves (Figure 4a) and bar plots (Fig-
ure 4b) show training and testing results, respectively. Once
again, GGF-based methods consistently achieve lower CV
scores, which indicates they achieve fair outcomes than stan-
dard MARL algorithms. Interestingly, while IA2C, IPPO,
and MAPPO lower minimum and maximum waiting times,
their reward distributions are much higher than GGF-based
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Figure 6: Performances of IPPO, MAPPO, IA2C, and their GGF counterparts in 4x4 grid environment.
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Figure 7: Performances of IPPO, MAPPO, IA2C, and their GGF counterparts in 4x4 loop grid environment.
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Figure 8: Performances of IPPO, MAPPO, IA2C, and their GGF counterparts in arterial grid environment.

methods. That is why, they have higher CVs and lower GGF
scores. On other hand, our proposed methods have higher
GGF scores which indicates the effectiveness of our meth-
ods in balancing overall performance and fairness.

Similar trends are observed in more complex environ-
ments, as illustrated in Figures 5 to 8, which include 3x3
grid, 4x4 grid, 4x4 Loop, and arterial layouts. These sce-
narios contain a larger number of intersections, which sig-
nificantly increases the complexity of fairness optimization.
Notably, the 4x4 Loop and Arterial environments are chal-
lenging as they simulate realistic traffic patterns. Further-
more, these environments exhibit notable variations in traf-
fic distribution, as demonstrated in Figures 6b and 8b. In
certain cases, we observe substantial disparities in traffic
density across intersections, where a subset of intersections
experiences high traffic volumes while others remain rela-
tively uncongested. Under these challenging conditions, our
proposed methods demonstrate better performance, achiev-
ing higher GGF scores while effectively minimizing wait-
ing times, as shown in Figures 6a and 8a. These results un-
derscore the robustness of our approaches in managing het-

erogeneous traffic distributions while maintaining equitable
outcomes across all intersections.

Conclusions and Future Work
In this work, we formalized and addressed the challenge
of incorporating fairness in decentralized MARL for traffic
signal control through the optimization of generalized Gini
welfare functions. We proposed three novel adaptations of
MARL algorithms that enable agents to independently learn
policies that are both efficient and equitable. Through exten-
sive experimental validation across six diverse traffic con-
trol environments with varying numbers of intersections and
complexities, we demonstrated that our approaches can con-
sistently achieve better performance in terms of efficiency
and equity than the standard MARL methods.

Our future work includes (1) exploration of different wel-
fare functions beyond the generalized Gini welfare func-
tions, (2) scalability study of the proposed approaches in
more complex environments with city-level infrastructure,
and (3) quantitative measure and analytic study of the pro-
posed approaches in achieving fairness.
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