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ABSTRACT

Weather forecasting and time series prediction can be modeled as autoregressive prediction
tasks and optimized through a pretraining-finetuning paradigm. We discovered that simply
incorporating an element-wise logarithmic operation following the standard square error
loss, which we term MLSE, noticeably enhances long-term forecast performance in the
fine-tuning phase. Remarkably, MLSE acts as a plug-and-play, zero-cost enhancement
for autoregressive tasks. In this paper, we conduct a series of comprehensive experiments
that support the effectiveness of MLSE. Furthermore, we present a phenomenological
theory to dive into the feasibility and limitations of MLSE, by modeling the rate of error
accumulation. Our findings propose a promising direction for understanding long-term
prediction based on finite history.

1 INTRODUCTION

Autoregressive prediction tasks, such as series prediction, are commonly modeled as sequential tasks where
each prediction relies on previous outputs. The goal of these models is to produce a coherent and consistent
sequence of outputs, capturing the intricate dependencies within the data. Such models find wide applications
in language modeling Radford et al. (2018), machine translation Vaswani et al. (2017), image generation
Salimans et al. (2017), speech synthesis Oord et al. (2016) , and notably, weather forecasting.

This paper concentrates on time series prediction, such as weather forecasting. In such contexts, autoregressive
machine learning (ML) models have demonstrated their efficacy by offering precise worldwide forecasts
that outperform traditional methods. Most of these ML models Lam et al. (2022); Chen et al. (2023) adopt
the pretrain-finetune paradigm. Initially, a model is pretrained on a two-time-stamp prediction task, and
subsequently finetuned on a three or more time-stamp prediction task. As this paradigm optimizes the error
per time stamp in a recurrent manner, these models are all prone to a well-known challenge called "error
accumulation," which errors tend to accumulate as the forecast extends into the future, posing a significant
challenge for long-term predictions.

Several efforts have been made to overcome the error accumulation problem. GraphCast Lam et al. (2022)
rigorously extends the finetuning process to 12-stage predictions, while PanguWeather Bi et al. (2022)
configures multiple models to directly model multi-length predictions, thereby bypassing the recurrent
process. FengWu Chen et al. (2023), on the other hand, maintains a replay buffer to store the detached time
state during prediction. However, all of these methods require significant additional resources to gain better
control over long-term forecast errors.

In this paper, we present a simpler solution: by merely integrating an element-wise logarithmic operation
after the standard Mean Square Error(MSE) loss - a strategy we term Mean Log Square Error (MLSE), we
noticeably enhance the long-term forecast performance during the fine-tuning phase. As it only involves
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a minor modification to the loss format, MLSE serves as a plug-and-play, zero-cost enhancement for
autoregressive tasks.

This paper is organized as follows: First, we provide a brief overview of autoregressive modeling for sequential
data and introduce the pretrain-finetune paradigm. Second, we present a series of experiments to validate the
effects of the logarithmic operation. Third, we propose a phenomenological theory to analyze the rate of error
accumulation, a concept we refer to as the error "amplifier". This theoretical perspective affords a deeper
understanding of error behavior in autoregressive tasks. It inspires numerous advanced ’amplifier’ tricks,
including MLSE. Consequently, we conduct a series of ablation studies to identify the most efficient way.
Finally, we analyze the applicability of our method and discuss the limitations of our theoretical framework.

2 AUTOGRESSIVE MODELING AND PRETRAIN-FINETUNE PARADIGM

The autoregressive procedure requires a parametrized model fθ capable of accurately predicting the future
state XN

t+n at time t+ n, given the historical data XO
t at time t.

Figure 1: The diagram of pretrain-finetune paradigm for autoregressive procedure.

As illustrated in Fig.1, we can generate two sequences: the predicted states XI
t+1,X

II
t+2, · · · ,XN

t+n and the
ground truth states XO

t ,XO
t+2, · · · ,XO

t+n. Here, we use superscripts (in roman numerals) to represent the
number of times fθ is applied (denote the term ‘order‘), and subscripts to denote the actual timestamp. We
use m to indicate the timestamp used for model training and n to denote the timestamp used for evaluating
forecast performance. Each state XN

t+n = [XN
t+n,0,X

N
t+n,1, · · · ,XN

t+n,K ] is a K-dimension vector.

The goal of series prediction tasks is to generate an accurate estimate of XN
t+n for n >> 1. Typically,

numerical weather forecasts consider n ≈ 20, while time series predictions consider n ≈ 4. The most
straightforward approach is to train the model supervised from the near future (m = 1) to the further
future (m = n = 20) directly, referred to the end-to-end-forecast paradigm for smaller systems Wu et al.
(2022). However, for larger systems with large n, this method becomes impractical due to the large memory
requirements and the slow training speed. Hence, researchers frequently adopt the pretrain-finetune paradigm.
This approach initially involves training the model on the immediate next time stamp (m = 1) for a significant
number of epochs, followed by finetuning the model on the subsequent timestamps (m = 2) over a few
epochs. In other words, it optimizes both εIt+1 and εIIt+2 during finetune.

In practice, there are various fine-tuning strategies to effectively minimize long-term future error. For example,
one can extend finetuning to more time stamps, as demonstrated by Lam et al. (2022), who successfully
extended the finetuning stage to m = 12 and observed improved performance with an increasing number
of finetuning stages. Bi et al. (2022) configured multiple models to directly model multi-length predictions,
thereby circumventing the recurrent process. On the other hand, Chen et al. (2023) maintained a replay buffer
to store the detached time state during prediction, thus avoiding the need for the large gradient cache and
achieving superior performance.

The error utilized for optimization and the error metric used for evaluation in all frameworks, denoted
[εIt+1, ε

II
t+2, · · · , εMt+m, · · · , εNt+n]. The Mean Squared Error (MSE), also known as the L2 loss, is defined
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as MSEN
t = ϵNt+n = ||εNt+n|| = 1

K

∑
s[(X

N
t+N,s −XO

t+N,s)
2]. We found that it is possible to endow the

model with the ability to perceive long-term future errors by optimizing in the near future. This leads to the
development of the "Logarithm Trick", which simply integrates the logarithmic operation before computation
of the average MSE loss, denoted by the MLSE loss.

MLSEN
t =

1

K

∑
s

ln[(XN
t+N,s −XO

t+N,s)
2] (1)

3 EXPERIMENT

In this section, we will demonstrate how the series prediction task reaps benefits from the Mean Logarithmic
Square Error (MLSE) within the pretraining-finetuning framework. The underlying reasons and the theoretical
analysis explaining these benefits will be elaborated in Section 4. We will use two systems as examples: a
numerical weather forecasting system and a time-series prediction task.

3.1 RESULT FOR WEATHER FORECASTING SYSTEM

Weather forecasting attempts to uncover the laws of latent physical evolution in large datasets. It divides
the atmosphere of the globe into a grid and simulates the weather conditions at each grid point at different
time steps. This implies that the transition between two time steps is determined by the entire global spatial
information and can be formulated as an implicit neural network simulator such as FourCastNet Pathak et al.
(2022). Weather forecast datasets, such as WeatherBench Rasp et al. (2020), are very large, making the
training system complex and extensive. By examining the evolution of its physical fields, we can observe that
changes in the state at each time stamp follow a comprehensive rule, exhibiting a certain degree of stability.
As a result, the weather forecasting task is usually configured as a stamp-to-stamp task.

Dataset WeatherBench32x64-55k WeatherBench32x64-300k WeatherBench64x128-300k
Model FourCastNet FourCastNet Lgnet FourCastNet Lgnet
T+m T+1 T+2 T+3 T+1 T+2 T+1 T+2 T+1 T+2 T+1 T+2
Loss - L2 Ln L2 Ln - L2 Ln - L2 Ln - L2 Ln - L2 Ln

T
85

0 n=4 1.17 1.09 1.01 1.08 1 1.10 1.03 0.97 0.92 0.89 0.85 0.83 0.77 0.76 0.75 0.70 0.70
n=12 1.75 1.6 1.52 1.57 1.49 1.68 1.56 1.45 1.46 1.38 1.34 1.42 1.30 1.27 1.34 1.19 1.16
n=20 2.52 2.34 2.28 2.29 2.23 2.48 2.39 2.23 2.20 2.11 2.05 2.18 2.02 1.99 2.07 1.90 1.85

Z
50

0 n=4 93 82 71 81.7 70 83 76 70 65 63 60 72 53 51 51 47 44
n=12 256 225 213 220 209 218 203 196 192 183 177 180 162 159 160 145 140
n=20 479 437 422 424 412 393 381 371 394 378 362 377 346 338 341 318 310

Table 1: The results of long term forecast error (T850 and Z500) at Day1(n=4), Day3(n=12) and Day5(n=20)
for different loss type on various datasize , data resolution and model structure. The best score for each setting
is highlighted in red. The L2 label signifies the usage of MSE while Ln for MLSE.

• Setup: We will assess the generalizability of the MLSE across various parameters, including the size and
resolution of the dataset. The WeatherBench dataset is split into three parts: WeatherBench32 × 64-55k,
which has around 55,000 samples with a resolution of 32 × 64; WeatherBench32 × 64-300k, which has
around 330,000 samples with a resolution of 32× 64; and WeatherBench64× 128-300k, which has around
330,000 samples with a resolution of 64× 128. Due to the resource limitation, we have to postpone the larger
resolution test into future. The MLSE trick is only applicable in the finetuning phase. Hence, all finetuning
experiments were initiated with the same pretrained weights, and they all shared the same hyper-configuration.
More details about the dataset and training can be found in the Supplementary. We present the results in terms
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of the Root Mean Square Error (RMSE) for two weather states, T850 and Z500, following the convention in
weather simulation tasks. Meanwhile, we will assess the generalizability of MLSE across different structures
with two major structures: the AFNOnet, referred to as FourCastNet Pathak et al. (2022), and the Vision
Transformer, referred to as Lgnet Chen et al. (2023).

• Result: Table 1 presents the RMSE values for T850 and Z500 at different time steps using both MSE and
MLSE, with varying training data lengths at m = 1 (T+1), m = 2 (T+2), and m = 3 (T+3). T+1 represents
the pretrained model and serves as the initial weight for the T+2 and T+3 models. This model uses the current
time stamp as input and predicts the state of the next time stamp by minimizing the MSE loss. The T+2
and T+3 models are finetuned on the next-next (m = 2) and next-next-next (m = 3) time stamp datasets,
respectively. Please note that during evaluation, we autoregressively generate future states up to n = 4, 12, 20.
The time unit for our dataset is 6 hours, hence the Day1, Day3, and Day5 in real. As demonstrated in Table 1,
the long-term forecasting performance is significantly enhanced by accounting for higher-order error and the
application of MLSE. The results of Table 1 suggest several points: To achieve reliable long-term forecast
estimation, the finetuning process (guided by next-next prediction) is essential; This effect is general and
independent of the model structure and dataset properties; Incorporating more future information can guide
the model towards better performance; The marginal utility of future information decays very rapidly; The
effect of MLSE is orthogonal to the factors above, and it can notably catalyze the influence of future time
stamps.

3.2 RESULTS ON TIME SERIES DATASET

In contrast, time series datasets have distinct characteristics, such as a smaller number of features and sample
frequency, more pronounced periodicity, and more explicit time dependencies. Therefore, time series usually
combine a sequence of timestamps into a single state to increase the flexibility of the data. Modern time-series
machine learning research Wu et al. (2022) often uses an end-to-end-forecasting paradigm for long-term
predictions. For instance, they input 96 timestamps and directly generate the subsequent 960 timestamps.
In this paper, we find that in most cases, the pretraining-finetuning paradigm with MLSE yields better
performance than the end-to-end forecasting paradigm.

Figure 2: The long-term forecast errors for six models in Table 2 on the ETTm2 dataset are presented. The
red line is the prediction result after training with ATT-MLSE, and the black line is the prediction result of
end-to-end modeling 96× 720. The blue line

• Setup: We evaluate the long-term forecasting performance of our proposed MLSE loss on six popular
time series datasets ETTh1 Zhou et al. (2021), ETTh2 Zhou et al. (2021), ETTm1 Zhou et al. (2021) Zhou
et al. (2021), ETTm2 Trindade (2016), Exchange Lai et al. (2018) and Weather Wet with six state-of-the-art
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methods, including Crossformer Hassanin et al. (2022), DLinear Zeng et al. (2023), LightTS Zhang et al.
(2022), MICN Wang et al. (2023), PatchTST Nie et al. (2022) and TimesNet Wu et al. (2022). All architectures
and hyperparameters are the same as the TimesNet benchmark Github repos thuml (2023).

We will compare the performance of two prediction paradigms: the end-to-end forecast (E2E) and the
autoregressive pretrain-finetune (ATT). In the E2E setting, provided by the benchmark, a fixed 96-length
sequence is received as input and subsequently produces a sequence varying from 96 to 192, 336, and 720.
The ATT paradigm uses the 96 to 96 E2E model for pretraining and finetunes the model for a few epochs on
the next and next 96 sequence.During evaluation, all models will autoregressively generate a subsequent 960
sequence from the starting 96 input sequence. For instance, a 96 to 192 E2E model uses the input to generate
stamps from 0 to 192 and employs the 0-96 portion as its input to generate stamps from 192 to 288, etc. A
more complete experimental results, which contain 12 models, are provided in the Supplementary.

model Crossformer DLinear LightTS MICN PatchTST TimesNet
E2E ATT E2E ATT E2E ATT E2E ATT E2E ATT E2E ATT
L2 L2 Ln L2 L2 Ln L2 L2 Ln L2 L2 Ln L2 L2 Ln L2 L2 Ln

E
T

T
h1

096 0.414 0.367 0.363 0.396 0.366 0.366 0.435 0.402 0.401 0.394 0.362 0.362 0.378 0.346 0.349 0.389 0.360 0.360
192 0.450 0.418 0.410 0.445 0.416 0.413 0.494 0.443 0.439 0.454 0.403 0.403 0.437 0.381 0.386 0.437 0.395 0.397
336 0.731 0.468 0.444 0.490 0.446 0.437 0.552 0.469 0.457 0.598 0.449 0.448 0.466 0.401 0.400 0.490 0.414 0.420
720 0.609 0.631 0.552 0.509 0.529 0.496 0.613 0.557 0.521 0.696 0.620 0.620 0.507 0.455 0.426 0.520 0.462 0.478

E
T

T
h2

096 0.617 0.586 0.533 0.348 0.258 0.215 0.428 0.351 0.265 0.338 0.262 0.212 0.306 0.211 0.206 0.321 0.234 0.230
192 1.585 0.915 0.830 0.479 0.362 0.257 0.582 0.495 0.311 0.494 0.353 0.252 0.377 0.259 0.248 0.390 0.271 0.260
336 2.680 1.334 1.110 0.596 0.526 0.300 0.688 0.693 0.382 0.593 0.488 0.293 0.415 0.313 0.296 0.437 0.320 0.296
720 3.497 2.017 1.491 0.825 1.014 0.371 1.006 1.118 0.586 0.827 0.852 0.369 0.449 0.398 0.365 0.487 0.388 0.357

E
T

T
m

1

096 0.374 0.364 0.340 0.345 0.327 0.331 0.402 0.376 0.376 0.322 0.313 0.306 0.323 0.306 0.306 0.336 0.332 0.327
192 0.448 0.444 0.415 0.382 0.370 0.371 0.431 0.420 0.421 0.358 0.364 0.354 0.369 0.347 0.345 0.385 0.374 0.364
336 0.715 0.541 0.506 0.414 0.428 0.420 0.466 0.474 0.475 0.393 0.437 0.415 0.399 0.398 0.387 0.415 0.428 0.406
720 0.687 0.710 0.728 0.472 0.547 0.515 0.561 0.582 0.576 0.506 0.624 0.588 0.459 0.495 0.468 0.476 0.528 0.497

E
T

T
m

2

096 0.284 0.296 0.216 0.190 0.194 0.184 0.208 0.211 0.197 0.190 0.195 0.176 0.178 0.184 0.182 0.189 0.191 0.192
192 0.374 0.500 0.298 0.275 0.280 0.252 0.317 0.299 0.262 0.270 0.262 0.243 0.241 0.250 0.248 0.251 0.254 0.252
336 0.803 0.785 0.414 0.367 0.389 0.318 0.383 0.414 0.325 0.355 0.333 0.306 0.321 0.313 0.311 0.328 0.315 0.310
720 3.200 1.570 0.774 0.550 0.660 0.421 0.778 0.705 0.425 0.535 0.528 0.409 0.401 0.415 0.409 0.422 0.414 0.409

E
xc

ha
ng

e 096 0.288 0.461 0.391 0.094 0.095 0.097 0.141 0.165 0.103 0.092 0.097 0.091 0.084 0.078 0.079 0.102 0.104 0.104
192 0.661 0.635 0.488 0.185 0.190 0.163 0.310 0.378 0.196 0.184 0.186 0.153 0.184 0.145 0.145 0.211 0.184 0.184
336 1.288 0.803 0.572 0.342 0.337 0.225 0.478 0.655 0.320 0.327 0.318 0.214 0.347 0.216 0.215 0.346 0.265 0.265
720 1.708 1.029 0.730 0.747 0.592 0.512 0.937 0.942 0.594 0.795 0.565 0.453 0.847 0.613 0.606 0.903 0.706 0.704

w
ea

th
er

096 0.175 0.172 0.165 0.196 0.188 0.188 0.173 0.168 0.167 0.183 0.184 0.184 0.175 0.171 0.175 0.169 0.166 0.165
192 0.232 0.215 0.204 0.235 0.225 0.226 0.234 0.206 0.200 0.239 0.216 0.217 0.222 0.213 0.217 0.228 0.208 0.207
336 0.277 0.266 0.243 0.282 0.268 0.272 0.266 0.250 0.237 0.275 0.254 0.250 0.279 0.260 0.264 0.283 0.254 0.254
720 0.368 0.363 0.305 0.344 0.358 0.349 0.344 0.338 0.296 0.349 0.329 0.311 0.355 0.345 0.350 0.354 0.340 0.341

Table 2: The table presents the forecast performance (MSE) of the end-to-end-forecast (E2E) and autoregres-
sive pretrain-finetune (ATT) paradigms across various datasets and models. ’L2’ and ’Ln’ denote the training
losses. Red and blue highlights show where ATT outperforms or underperforms E2E, respectively. In each
row, underlined values and blue backgrounds respectively signify the best scores for current model and across
all models. The L2 label signifies the usage of MSE while Ln for MLSE.

• Result: Table 2 depict the ATT benefits the majority (83%) of tasks, as indicated by the predominance of
red figures. This suggests that while end-to-end (E2E) methods mitigate the error accumulation issue, they
still struggle to model long-term temporal relationships effectively. However, the ATT approach alleviates
this problem. Furthermore, our proposed MLSE loss significantly boosts autoregressive performance, with
approximately 76% of cases outperforming the baseline MSE loss. For longer forecasts, such as sequences of
336 and 720, MLSE outperforms other settings in 10 out of 12 cases, while the remaining cases demonstrate
very close performance to E2E. Figure 2 shows the full prediction error curves from stamp 0 to stamp 960 for
six models in the ETTm2 data set, illustrating the advantage of our proposed MLSE loss. It shows that the
ATT-MSE method (blue line) may not always improve long-term forecast performance, potentially explaining
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why previous literature has not focused on the ATT paradigm. However, simply adding a logarithmic operation
(red line) enhances all models’ long-term forecasting ability to state-of-the-art levels.

4 SUPPRESSING ERROR ACCUMULATION

This section introduces our analysis for modeling long-term forecast error and deriving the logarithmic trick.
Although many other proposals can be considered based on this analysis, our goal is to find the most efficient
solution. After thorough a comprehensive studies, we identify MLSE as the best candidate due to its zero-cost
and plug-and-play nature.

Our analysis begins with this consideration: traditional ATT methods directly back-propagate on the higher-
order loss, εNt+n, to optimize long-term future error. However, noting that we employ recurrent forward
processing and compute the average error throughout the evaluation test, EN = 1

N

∑
t ε

N
t+n. Thus, the effects

of last-order error (EN−1) and the next-order error (EN ) are not fully orthogonal. In fact, we can observe
that the long-term forecast performance significantly improves after including the second-order error, and
continues to improve with the addition of the third- and fourth-order terms, albeit with diminishing returns.
This observation motivates us to model the relationship between different order errors and find the most
effective way to incorporate the information from higher-order losses.

Figure 3: The diagram for the advanced autoregressive graph.

Fig.3 extends the autoregressive forward graph from Fig.1. We now consider predictions from the subsequent
true timestamp XI

t+2 and onward, as well as their corresponding errors relative to the ground truth. By
incorporating the vector-error term εNt+n, we can construct an equivalent training process:

XO
t+N = XI

t+N + εIt+N = XII
t+N + εIIt+N = · · · = XN

t+N + εNt+N

Notice that in the pretrain phase, we compute and optimize 1st-order error; In the finetune phase, we involve
higher-order term. Therefore, we consider the first-order shift of order N :

εNt+N = εIt+N + (XI
t+N −XN

t+N ) = εIt+N +MN−1
t+N−1ε

N−1
t+N−1

where εNt+N is the N -order error and εIt+N is the first order error at time t + N ,. The MN−1
t+N−1 is the

propagation matrix produced by the Jacobian operator followed the multi-dimension Mean Value Theorem:

XI
t+N −XN

t+N = fθ(X
O
t+N−1)− fθ(X

N−1
t+N−1) = ∇fθ(Xδ)(X

O
t+N−1 −XN−1

t+N−1) = MN−1
t+N−1ε

N−1
t+N−1.

where Xδ is a state between XO
t+N−1 and XN−1

t+N−1.

To address the final error, we take the norm-square ||v|| =
∑

v2s for each vector,

||εNt+N || = ||εIt+N +MN−1
t+N−1ε

N−1
t+N−1|| ≈ ||εIt+N ||+ ||MN−1

t+N−1ε
N−1
t+N−1||
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Figure 4: The figure displays the amplifier, computed using Equation 4, under different finetuning conditions.
The T+1[L2] (represented in black) pertains to the pretrained weight from which all other finetune originate,
and it possesses a significantly large alpha value. As more order loss per stamp are added (from T+2 to T+5),
a noticeable decrease is observed as more future information is incorporated. Conversely, the inclusion of a
zero-cost logarithmic term makes it possible to suppress the amplifier to a very low phase, only use small
order loss. The L2 label signifies the usage of MSE while Ln for MLSE.

Typically, the dimension of the state (K) is quite large, which results in εIt+N and MN−1
t+N−1ε

N−1
t+N−1 "almost"

orthogonal: ⟨εIt+N−1|M
N−1
t+N−1ε

N−1
t+N−1⟩ ≈ 0. Thus, the in-equivalent become equivalent.

We define the "error amplifier"

αN−1
t =

||MN−1
t+N−1ε

N−1
t+N−1||

||εN−1
t+N−1||

=
||XN

t+N −XI
t+N ||

||XN−1
t+N−1 −XO

t+N−1||
=

||εNt+N − εIt+N ||
||εN−1

t+N−1||
≈

||εNt+N || − ||εIt+N ||
||εN−1

t+N−1||
(2)

And define EN ≡ E(EN
t ) ≡ E(||εNt+N )|| refers to the long term forecast L2 error we evaluate in a series of

tasks, we can obtain a very straightforward relationship between the next error and the current error.

EN = EI + αN−1EN−1 = (1 + αN + αNαN−1 + αNαN−1αN−2 + . . . )EI (3)

where we make the independent assumption and decompose the expected product E[αN
t EN

t+N ] =

E[αN
t ]E[EN

t+N ] = αNE[EN
t+N ].

Therefore, the most efficient method of minimizing the long-term forecast error EN is to optimize the
first-order error EI and the error amplifier αN . In Figure4, we plot the amplifier α from α1 to α20 for
various pretraining-finetuning strategies. It is evident that the amplifier decreases as more order losses are
incorporated in the standard ATT-MSE strategy. However, the ATT-MLSE method can significantly expedite
this process, making it possible to achieve very low long-term forecast errors using only a small amount of
order information.

min{EI , α2, α3, · · · }

In the pretrain-finetune paradigm, the error function EI is already optimized during the pretraining phase.
Subsequently, during the finetuning phase, we aim to optimize the error amplifier αN . However, directly
computing αN poses a significant challenge. From definition 4, there are two methods to derive α: 1) Calculate
the Jacobin-vector-product MN

t εNt directly. Unfortunately, this approach requires huge computing resources
in the current auto-differentiation engineering landscape. 2) Compute the extra state XI

t+N = fθ(X
O
t+N−1).

For a sequence of data pointsXO
t ,XO

t+2, · · · ,XO
t+n, we need not only to store the recurrent prediction

XN
t+1,X

II
t+2, · · · ,XN

t+n but also preserve all the first-order results XI
t+2, · · · ,XI

t+n. This requirement
introduces new memory challenges for large-scale systems. Furthermore, we employ a mini-batch strategy
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for weight updates. It is under investigation that simultaneously do back-propagation for the batch error
||XN

t+N −XO
t+N || and batch of error division αN = ||XN

t+N −XI
t+N ||/||XN−1

t+N−1 −XO
t+N−1||. Moreover,

the division operation to compute α will lead to numerical instability during the train.

Figure 5: The figure shows the RMSE in terms of T850 at Day5(n=20) for different setting. The orange node
represents the normal settings that only use MSE loss. LMSE loss(green) shows no advantage. Dalpha(blue)
result in bad training stability. MASE(purple) benefits from amplifier design but require one more forward
resource. MLSE(red) providing best performance without extra computational cost. The symbol ⊗ signifies a
sum of order-based quantities, e.g., εI⊗II ≡ εI + εII denotes train on T + 1 and T + 2 normal MSE loss.

Therefore, we propose several candidates to identify the optimal method for guiding the model learning of the
amplifier information. There are several key rules to ensure numerical stability: To circumvent numerical
issues caused by division, we apply a logarithmic wrapper. Although logarithms carry their own numerical
challenges, these can be more easily mitigated by adding a small epsilon value. When combining multiple
losses, we should avoid negative coefficients.

In Figure 5, we test not only the 5 Days T850 RMSE of MSE-finetune and MLSE-finetune configurations,
but also the LMSE, MASE, and Dalpha finetune strategies. The Dalpha strategy directly minimizes the error
amplifier αN

t = ||XN
t+N −XI

t+N ||/||XN−1
t+N−1 −XO

t+N−1||. It suffers heavily from the division operation.
As an improved alternative, we propose the MASE strategy, defined as MASE=

∑
N

∑
t[||XN

t+N −XI
t+N ||+

||XI
t+N−1−XO

t+N−1||]. Original, it should be log(||XN
t+N −XI

t+N ||)+ log(||XN
t+N −XI

t+N ||). Applying
a logarithm outside the average operation is equivalent to introducing a dynamic coefficient to the gradient
and would be mitigated by using a momentum-based optimizer like Adam. Take the LMSE attempts as an
example, it computes αN ≈ E[(||εNt+N || − ||εIt+N ||)/||εN−1

t+N−1||] ≈ (EN − EI)/EN−1. When n = 2, it
minimizes {αII = E II/E I − 1, EI}, then is converted into ln[EII ]− ln[EI ] and ln[EI ]. We use the coefficients
with 1:2 and achieve: LMSE =

∑
N

∑
t ln[

∑
s(ε

N
t+N,s)

2]. The experiment shows that such a operation won’t
take any advantage. Therefore, we choose to either remove the external logarithm or move the logarithm
inside the average operation. This optimizes the geometric lower boundary of the term ln(|| 1K

∑
s ε

II
t+2,s||) ≥

1
K

∑
s(ln ||εIIt+2||). This transformation changes the LMSE into MLSE=

∑
N

∑
t

∑
s ln[(ϵ

N
t+N,s)

2].

Logarithmic forms can pose numerical challenges when the input is close to 0. However, these drawbacks
can be easily mitigated by adding a small epsilon value. In our experiment, we set the epsilon value as a
hyperparameter and test the validation of MLSE from small eps to large eps.
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model FourCastNet LgNet
eps L:1e-2 L:1e-3 L:1e-5 MSE L:1 L:1e-2 L:1e-3 L:1e-5 MSE

T
85

0 Day 1 0.99 0.99 1.01 1.08 0.86 0.83 0.84 0.85 0.88
Day 3 1.49 1.50 1.52 1.60 1.35 1.31 1.31 1.34 1.38
Day 5 2.25 2.25 2.28 2.34 2.06 2.02 2.03 2.05 2.11

Z
50

0 Day 1 70 69 70 81 61 57 56 60 63
Day 3 209 209 213 226 179 172 170 177 183
Day 5 418 415 422 438 367 357 355 361 378

Table 3: The results of RMSE in terms of T850 and Z500 at different time steps for FourCastNet and LgNet
by using various eps.

Table 3 shows that, irrespective of the epsilon (eps) value, even set to 1, the use of the logarithmic form
consistently results in noticeable improvements. This indicates that the logarithmic form is essential. Interest-
ingly, optimal performance is not achieved with the smallest epsilon value. In this study, we treat epsilon as a
hyperparameter and fix it at 1e− 5 for all experiments.

5 LIMITATION

Although we have demonstrated that ATT+MLSE can bring significant improvements to long-term perfor-
mance on many systems, there are several issues that require further exploration.

• The efficacy of ATT-MLSE is dependent on the temporal characteristics of the task. Only tasks
that are theoretically capable of making long-term forecasts, such as self-evolution, can benefit
from them. For example, it fails for the driving video prediction task. A pure video task does not
include global map information, thus it lacks the context to predict whether there is a person on
the street based solely on its own recurrent information. The time series traffic dataset, as shown in
Supplementary, serves as yet another example.

• There exists many other views for analysis. From a loss objectives viewpoint, MLSE shares a close
mathematical resemblance with p-SNR, except that p-SNR serves as a discrete digital metric. In
terms of multiclass optimization, MLSE employs a "winner-takes-all" strategy, allocating more
bias to smaller loss components. Readers may draw parallels between MLSE and Uncertainty
Loss Kendall et al. (2018), where element-wise variance is trained to balance each component’s
contributions, resulting in a similar "winner-takes-all" approach. However, it has been observed that
MLSE is effective only when applied to both order-N and order-1; applying it solely to order-1 does
not produce any significant impact. This observation implies that factors beyond the "loss math" and
"component balance" directly influence the error behavior. A more comprehensive understanding of
these factors requires in further research.

6 CONCLUSION

In this paper, we introduce the logarithm trick named Mean Log Square Error (MLSE), a plug-and-play
and zero-cost modification to the standard MSE loss function, and greatly enhances long-term forecasting
performance without necessitating any extra computation. The efficacy of MLSE was confirmed through
extensive experiments on various model architectures and datasets. We proposed a phenomenological theory
to analyze the feasibility and limitations of MLSE by modeling the rate of error accumulation. To the best
of our knowledge, such an angle of analysis has rarely been explored in this area. While our theory is not
perfect, we hope it can offer a novel viewpoint for improving the AI’s ability in long-term forecasting tasks,
such as weather forecasting, financial analysis, field dynamic evolution, and more.
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