arXiv:2505.13778v1l [csAl] 19 May 2025

Coln: Counting the Invisible Reasoning Tokens in
Commercial Opaque LLM APIs

Guoheng Sun'* Ziyao Wang!, Bowei Tian!,
Meng Liu', Zheyu Shen!, Shwai He!, Yexiao He!,
Wanghao Ye!, Yiting Wang!, Ang Li'f
"'University of Maryland, College Park

Abstract

As post-training techniques evolve, large language models (LLMs) are increasingly
augmented with structured multi-step reasoning abilities, often optimized through
reinforcement learning. These reasoning-enhanced models outperform standard
LLMs on complex tasks and now underpin many commercial LLM APIs. However,
to protect proprietary behavior and reduce verbosity, providers typically conceal
the reasoning traces while returning only the final answer. This opacity introduces a
critical transparency gap: users are billed for invisible reasoning tokens, which often
account for the majority of the cost, yet have no means to verify their authenticity.
This opens the door to token count inflation, where providers may overreport token
usage or inject synthetic, low-effort tokens to inflate charges. To address this
issue, we propose Coln, a verification framework that audits both the guantity and
semantic validity of hidden tokens. CoIn constructs a verifiable hash tree from token
embedding fingerprints to check token counts, and uses embedding-based relevance
matching to detect fabricated reasoning content. Experiments demonstrate that
CoIn, when deployed as a trusted third-party auditor, can effectively detect token
count inflation with a success rate reaching up to 94.7%, showing the strong ability
to restore billing transparency in opaque LLM services. The dataset and code are
available at https://github.com/CASE-Lab-UMD/LLM-Auditing-ColInl

1 Introduction

Large language models (LLMs) have achieved significant advances in recent years. Yet, as pre-
training begins to saturate available data resources |Zoph et al.[[2020], the research community has
increasingly turned to inference-time innovations Hu et al.|[2023]], Kumar et al.|[2025]. Among these,
reinforcement learning (RL)-optimized reasoning models have shown promise by generating longer,
structured reasoning traces that improve performance, particularly in tasks involving mathematics and
code (Guo et al.|[2025]], Muennighoff et al.|[2025]. Such models, exemplified by DeepSeek-R1|Guo
et al.|[2025] and ChatGPT-O1 Jaech et al.| [2024]], demonstrate that scaling at inference time can yield
new capabilities without further pretraining.

With this shift, providers like OpenAl increasingly adopt new service models. Reasoning traces, while
critical for quality, are often verbose, sometimes speculative Jin et al.|[2024]], Zhang et al.| [2025]],
and may reveal internal behaviors vulnerable to distillation|Gou et al.|[2021]], Sreenivas et al.|[2024]].
To protect proprietary methods and streamline outputs, commercial APIs typically suppress these
intermediate steps, exposing only the final answer. However, users are still charged for all generated
tokens, including those hidden from view. We refer to such services as Commercial Opaque LLM
APIs (COLA)—proprietary, pay-per-token APIs that conceal both intermediate text and logits.

*ghsun@umd.edu
fangliece @umd.edu

Preprint. Under review.

https://github.com/CASE-Lab-UMD/LLM-Auditing-CoIn

o Medical [
o4-mini

Math (OOD)|
o3

Code |
ol
Math |
03-mini |
General
0 10 20 30 10 50 0 5 10 15 30 35
Reasoning / Answer Token Ratio Reasoning / Answer Token Ratio
(@ (b)

Figure 1: Ratio of reasoning tokens to answer tokens across datasets and deployed APIs. (a) Token
ratios on the OpenR1-Math dataset across different OpenAl reasoning models. (b) Token ratios of
the DeepSeek-R1 DeepSeek-All [2025]] across various reasoning datasets. In both cases, the number
of reasoning tokens often exceeds answer tokens by an order of magnitude or more.

This design introduces a critical vulnerability: users have no means to verify token usage or detect
overbilling. Because reasoning tokens often outnumber answer tokens by more than an order of
magnitude (Figure[I)), this invisibility allows providers to misreport token counts or inject low-
cost, fabricated reasoning tokens to artificially inflate token counts. We refer to this practice as
token count inflation. For instance, a single high-efficiency ARC-AGI run by OpenAl’s 03 model
consumed 111 million tokens, costing $66,772f| Given this scale, even small manipulations can lead
to substantial financial impact. Such information asymmetry allows Al companies to significantly
overcharge users, thereby undermining their interests.

To tackle this problem, we design CoIn (Counting the Invisible), a verification framework that
enables third-party auditing of invisible reasoning tokens in COLA services. CoIn ensures billing
accountability by enabling users to validate token counts reported by the commercial provider, while
preserving the confidentiality of hidden content and maintaining protection against distillation.

CoIn consists of two key components: (1) Token Quantity Verification, which leverages a verifiable
hash tree Merkle|[[1987] to store fingerprint embeddings of reasoning tokens. Upon an audit request,
CoIn allow users to query a small subset of the token fingerprints in the hash tree to verify the
number of invisible tokens, avoiding accessing the actual reasoning tokens; and (2) Semantic
Validity Verification, which detects fabricated, irrelevant, or low-effort token injection via a semantic
relevance matching head. This matching head takes the embeddings of both the reasoning tokens
and the answer tokens as input, and outputs a relevance score indicating their semantic consistency.
Users can assess this score to identify token count inflation with low-effort token injection. Together,
these components enable CoIn to identify misreported token counts and fabricated reasoning traces,
enabling transparent billing without exposing proprietary data. In practice, CoIn can be deployed as a
trusted third-party auditing service that ensures billing transparency while preserving the integrity
and confidentiality requirements of COLA providers.

Our main contributions are as follows:

* We define the COLA architecture and formalize the emerging threat of foken count inflation,
categorizing both naive and adaptive inflation strategies.

* We design ColIn, a verification framework combining token quantity verification via verifi-
able hashing and semantic validity verification via embedding relevance, to audit invisible
reasoning tokens without exposing proprietary content.

* Our experiments demonstrate that CoIn can achieve a 94.7% detection success rate against
various adaptive attacks with less than 40% embedding exposure and less than 4% token
visibility. Moreover, even when 10% of tokens are maliciously forged by COLA, CoIn still
maintains a 40.1% probability of successful detection.

3https ://arcprize.org/blog/oai-o03-pub-breakthrough

https://arcprize.org/blog/oai-o3-pub-breakthrough

2 Related Work

Reasoning Model. LL.Ms have shown strong performance on complex reasoning tasks by generating
intermediate steps, a technique known as chain-of-thought prompting Wei et al.|[2022]. This paradigm
has been further enhanced by methods such as self-consistency |Wang et al.|[2022] and program-aided
reasoning Gao et al|[2023]]. Recent research reveals that generating more reasoning steps at inference
time can lead to higher answer accuracy, a phenomenon referred to as the test-time scaling law |Snell
et al.| [2024], which has become a guiding principle for optimizing LLMs. Reasoning models are
typically LLMs fine-tuned via RL |Rafailov et al.| [2023]], [Wu et al.|[2023]], Ramesh et al.| [2024]
to produce structured reasoning traces before generating final answers, thereby improving answer
quality. These reasoning traces are often longer, more indirect, and may include failed attempts, but
are nonetheless closely tied to the final answer |[Hao et al.| [2024], [Yang et al.| [2025]]. Since these
reasoning tokens are generated in the same autoregressive manner as answer tokens, COLA charge
for them based on token count. However, the indirect and verbose nature of reasoning makes it
challenging to audit their legitimacy without direct access to the reasoning traces themselves.

COLA Auditing. Several works have emerged to address the lack of transparency in COLA. |Cai et al.
[2025]] proposes a watermark-based method to audit whether a COLA uses the required LLM rather
than a cheaper LLM. Similarly, Yuan et al.|[2025] develops a user-verifiable protocol to detect nodes
that run unauthorized or incorrect LLM in a multi-agent system. Another series of works|Zheng
et al.|[2025]], Marks et al.|[2025] proposes auditing some bad behaviors of LLMs, e.g., cheating and
offensive outputs. These techniques mainly focus on the model auditing and lack attention to the
token count auditing of COLA.

3 Preliminary

Participants and Problem Formulation. The CoIn framework involves three roles: (i) COLA — a
commercial LLM service provider (e.g., OpenAl) that performs multi-step reasoning and returns only
the final output to the user; (ii) User — an end-user who submits a prompt and receives an answer
along with a billing summary; and (iii) CoIn auditor — a trusted third party responsible for verifying
the invisible reasoning tokens on behalf of the user.

In each service interaction, the user sends a prompt P to COLA. The LLM generates reasoning tokens
R={ry,ra,...,mm}, followed by answer tokens A = {a1, as, ..., ay,}. Only the final answer A is
returned to the user, while the reasoning trace R remains hidden. Billing is based on the total number
of tokens m + n, including the invisible reasoning tokens. As Figure[I|shows, reasoning tokens often
dominate the total count, i.e., m > n, resulting in a significant transparency gap.

Token Count Inflation. We consider two strategies for inflating token counts:

* Naive token count inflation. COLA reports a falsified token count m; > m, leading to direct
overbilling without modifying the output.

* Adaptive token count inflation. Anticipating user-side defenses (e.g., hash matching, spot-
checking), COLA may append low-effort fabricated reasoning tokens to the original reasoning trace.
These fabricated tokens can be generated via random sampling, retrieval from related documents,
or repetition of existing tokens, and then indistinguishably mixed with genuine reasoning tokens.
The inflated sequence is then used for billing, bypassing naive verification methods and still
overcharging the user.

To address these threats, CoIn employs two components: (1) Token Quantity Verification, which
audits the reported token count using verifiable commitments and exposes embeddings; and (2)
Semantic Validity Verification, which evaluates the relevance between reasoning and answer tokens
to detect low-quality injections.

Threat Model. COLA has access to the user prompt P, the full reasoning trace R, and the answer
A, and controls the billing report (m, n), where m is the claimed number of reasoning tokens and n
is the number of answer tokens. It can manipulate the reported count without user visibility. The
CoIn auditor operates as a trusted third party. It can access P, A, and (m,n). but cannot observe
R directly or directly query the LLM used by COLA. However, it can request COLA to return the
embeddings of IR, computed using an embedding model fixed by the auditor to prevent tampering.

-
Hash Tree Construction :I Merkle Proof

1 |: 1
1 1 1 1
1 o :I i . 12
C O I n : . Coln Inaccessible Coln Limited Accessible I COLA Provides :: Token's C Tokens |°§
1 s
1 ! " 12
i " 1
i I

N 1
Coln Received Hash Operation h D Coln Calculated
HI

Hash Tree Construction Merkle Proof Verification Workflow

O Pass or Fail
[? e ? 1 y
O O E O : E E = 54— Verifier —

PO NN

SO N QNN Qe A8 -8
IR Sy
(ing Mddel l—]L /

| — Block-to-Answer
Matching Head
. AK N M BN X X M . : :
Reasoning Tokens Reasoning Tokens Answer y rounds
(a) Token Quantity Verification (b) Semantic Validity Verification

Figure 2: CoIn Framework.

4 CoIn: Counting the Invisible Reasoning Tokens

CoIn comprises two complimentary components: token quantity verification and semantic validity
verification. The token quantity verification module treats embeddings of invisible reasoning tokens
as cryptographic fingerprints and organizes them into a verifiable hash tree. By querying a small
subset of these fingerprints, users can audit the claimed number of invisible tokens without accessing
their contents. The semantic validity verification module trains a lightweight neural network, referred
to as a matching head, to evaluate the relevance between embeddings. During auditing, CoIn retrieves
token embeddings from the hash tree and uses the matching head to compute relevance scores both
among reasoning tokens and between reasoning and answer tokens. These scores help detect token
count inflation through the injection of fabricated or irrelevant reasoning tokens. An overview of the
CoIn framework is illustrated in Figure[2]

4.1 Token Quantity Verification

Token Fingerprint Generation. In CoIn, COLA is required to generate embeddings of its reasoning
tokens using a third-party embedding model Embd(-) designated by the CoIn auditor. These embed-
dings serve as token fingerprints used to construct a verifiable hash tree for auditing. This hash tree
enables CoIn to audit the total number of invisible tokens without accessing the tokens themselves.

Specifically, given a reasoning sequence R, COLA first partitions I into a blocks. For each token
r; in block B;, COLA computes: (i) the block embedding Embd(3;), which embeds all the tokens
inside the block; and (ii) the token embedding Embd(r;), which embeds the single token itself. Each
reasoning token therefore acquires both the block embedding and the token embedding. For each
reasoning token Embd(r;), CoIn concatenated its block embedding and token embedding to form the
token fingerprint: Embd(B;) || Embd(¢;).

Fingerprint Hash Tree Construction. COLA applies a cryptographic hash function (e.g., SHA-
256), agreed upon with ColIn, to each token fingerprint to construct the leaf nodes of a Merkle Hash
Tree Merkle|[[1987]]. The number of leaf nodes is padded to the nearest power of two, and parent nodes
are built recursively by hashing concatenated sibling nodes up to the Merkle Root. This root serves
as a commitment to the full set of reasoning tokens and is submitted to CoIn. After constructing the
hash tree, COLA give the Merkle Root to CoIn for Merkle Proofs upon user’s auditing request.

Merkle Proof. Upon receiving the answer A and the token counts m and n, a user may suspect token
inflation. To verify the count of invisible reasoning tokens, the user selects a block B; and randomly
chooses token indices to audit. Upon receiving the request, CoIn auditor requests the following

information from COLA: (i) the fingerprints of the selected tokens; and (ii) the corresponding
Merkle Path, which is a sequence of sibling hashes needed to reconstruct the Merkle Root from
the corresponding token. CoIn recomputes the Merkle root from the provided data and checks for
consistency with the original commitment by COLA provider. A successful match confirms the
integrity of the selected token; a mismatch indicates possible fabrication and inflated token reporting.
The construction and Merkle Proof procedure is illustrated in Figure [2}(a) and detailed further in

Appendix [D.1],[D.2]

The Merkle proof in token quantity verification ensures both the structural integrity and the correctness
of the reported token count, effectively defending against naive token count inflation. However, a
dishonest COLA may still conduct adaptive token count inflation by injecting irrelevant or low-effort
fabricated tokens that pass count verification. To address this limitation, we introduce semantic
validity verification.

4.2 Semantic Validity Verification

To defend against adaptive token count inflation, we introduce the semantic validity verification com-
ponent, as illustrated in Figure 2}(b). This component ensures that reasoning tokens are semantically
meaningful and contribute to the final answer, preventing low-effort or fabricated token insertion.
Based on this principle, CoIn verifies the semantic validity of invisible tokens from two perspectives:

* Token-to-Block verification checks whether each reasoning token ; is semantically coherent
within its enclosing block B;. This defends against randomly injected or meaningless tokens.

* Block-to-Answer verification evaluates whether a reasoning block B; is semantically aligned
with the final answer A, thus identifying the insertion of low-cost content that is insufficiently
relevant to the task.

To support both tasks, CoIn trains two lightweight neural modules called the matching heads, which
are binary classifiers that determines whether two embeddings are semantically associated. Given two
a-b

token embeddings a and b, the matching head first computes the cosine similarity: cos_sim = EIEE
and constructs the feature vector:

h = [a; b; a — b; a ® b; cos_sim] € R4+,

where d is the embedding dimension, [; | denotes concatenation, and ® denotes element-wise
multiplication. The feature h is then passed through a two-layer feedforward network to produce a
scalar match score S € [0, 1], representing the likelihood that a and b are semantically aligned. This
process can be viewed as a regression function S = MH(a, b).

In CoIn, the matching heads MHy (), MHyp,(+) are trained offline for token-to-block and block-to-
answer verification respectively. CoIn use open-source corpora and the same embedding model in
token fingerprinting to build the datasets for matching heads training.

Verification Protocol. In each verification round, the user randomly selects some reasoning tokens 7;
(by default, 10% of the tokens within a selected block) from the hash tree. Since the token fingerprint
consists of both the token embedding Embd(r;) and the corresponded block embedding Embd(B;),
it can be directly used for Tokens-to-Block verification. For the Block-to-Answer verification, we use
Embd(B;) and the embedding of the whole answer to compute the score:

Sip = MHy, (AVG(Embd(r;)), Embd(B;)), Spa = MHya(Embd(B;), Embd(A)). (1)

Here, Sy, and S, represent the relevance scores for the two respective verification tasks. Each score
reflects the estimated likelihood that the two input embeddings are semantically relevant.

4.3 Workflow of CoIn

Enforcing Billing Integrity with CoIn. When a user suspects token count inflation in a specific
response, they can initiate an audit request to CoIn. The audit begins with the user selecting a
fraction +y of the total reasoning blocks for verification. CoIn then performs two Semantic Validity
Verifications and multiple Merkle Proofs on these selected blocks. The resulting match scores
are passed to a verifier, which issues a final decision. If the verifier accepts, the audit concludes
successfully. If the verifier rejects, the user continues by randomly selecting another unverified block
for auditing. This process repeats until either a successful judgment is reached or all blocks are

exhausted. If no verification passes, the audit concludes with COLA being flagged for token inflation.
The user may then request COLA to justify the charges by disclosing the original reasoning content.
The complete procedure is outlined in Algorithm 4]

Verifier Design. Each audit round produces a variable-length sequence of match scores, as the
number of verified blocks depends on verifier decisions. To handle this, we implement two types of
verifiers: (i) Rule-based: Averages the scores from two semantic verifications. The audit passes if
both averages exceed a threshold 7. (ii) Learning-based: Uses a lightweight DeepSets model [Zaheer
et al.|[2017] to process the unordered set of match scores and audit will succeed if the confidence
exceeds 7.

Auditing outcomes enable users to assess the trustworthiness of a COLA provider. Frequent failures
in CoIn audits may erode user trust and damage provider reputation. By introducing verifiable
accountability, the CoIn framework serves as a deterrent against token count inflation in commercial
LLM services.

Hyperparameter and Verification Cost. CoIn is governed by a few hyperparameters that control
auditing granularity and cost. Specifically, « is the number of blocks, 3 the block size, -y the initial
sampling ratio (default: 0.3), and &k the number of tokens sampled per block (default: 0.1 * j3).
A smaller 3 reduce exposure but increase overhead. The protocol begins with v - « rounds and
may proceed up to « rounds under early stopping, so the number of verification rounds satisfies
¢ € [y a, a]. As aresult, the total number of Merkle Proofs is k - £, and the number of Semantic
Judgments is 2 - £.

5 Experiments

We systematically evaluate the robustness and reliability of CoIn and its submodules under various
adaptive inflation attacks across multiple datasets. We further analyze the construction cost of the
Hash Tree, as well as whether the partially exposed block embeddings and tokens can be exploited to
recover the reasoning tokens of COLA. Finally, we assess the difficulty of the dataset we constructed.

5.1 Experiment Setup

Token Inflation Implementations. We study both naive and adaptive token count inflation strategies.
To enable fine-grained evaluation and systematic dataset construction, we design four variants of
adaptive inflation. All inflation types used in our experiments are summarized in Table[I] These
strategies are applied to generate inflated samples for both training and evaluation.

Table 1: Token inflation types used in our experiments.

Type Description

Naive Inflation =~ Randomly select tokens from the vocabulary for injection.
Ada. Inflation 1 Inject tokens with embeddings similar to P, R, or A.

Ada. Inflation 2 Inject tokens directly sampled from P, R, or A.

Ada. Inflation 3 Inject reasoning sequences extracted from other inputs.

Ada. Inflation 4 Inject retrieved sequences semantically similar to P, R, or A.

Datasets and Training Setup. We conduct experiments on five datasets derived from
DeepSeek-R1|DeepSeek-All [2025]], covering diverse reasoning domains: medical (Chen et al.| [2024]],
code [Team|[2025]], |[Face| [2025]], mathematics [Face| [2025]], general reasoningﬂ and out-of-domain
(OOD) mathematics [Team| [2025]], Face| [2025]]. For training, we randomly sample 20,000 examples
from each dataset and combine them into a joint dataset. Another 1,000 samples per dataset are held
out to form the evaluation set for the CoIn framework. We use the tokenizer of DeepSeek-R1 in our
experiments.

For the matching head, we use all-MinilLM-L6-v2Reimers and Gurevych|[2019] as model structure.
In the token-to-block verification task, we treat original samples as normal instances and apply
Naive Inflation as well as Adaptive Inflation 1 and 2 to construct inflated samples. Normal and
inflated samples are labeled O and 1 respectively and mixed at a 1:1 ratio to form the training set.

4https ://huggingface.co/datasets/glaiveai/reasoning-v1-20m

https://huggingface.co/datasets/glaiveai/reasoning-v1-20m

—e— Rule-based (Malicious Samples) Rule-based (Benign Samples)
—e— Learning-based (Malicious Samples) ~ —=- Learning-based (Benign Samples)

Naive Inflation Ada. Inflation 1 Ada. Inflation 2

1.0

' Sl / ittt | 0.869 | mfff o o o o o] 0.869
0.8
0.6

0.4

0.2

o

0.10.30.5 1.0 2.0 3.0 0.10.30.5 1.0 2.0 3.0 0.10.30.5 1.0 2.0 3.0
Ada. Inflation 3 Ada. Inflation 4 Overall Average

0.0

Average DSR Across 5 Datasets

0.0
0.10.30.5 1.0 2.0 3.0 0.10.30.5 1.0 2.0 3.0 0.10.30.5 1.0 2.0 3.0
Inflation Rate Inflation Rate Inflation Rate

Figure 3: Performance of CoIn across different inflation methods and verifiers. The red lines and the
blue lines represent the DSR of rule-based verifier and learning-based verifier, respectively. ~y

For the block-to-answer verification task, we adopt a similar setup, but use Ada. Inflation 1-4 to
construct inflated samples. This setting enables a thorough evaluation of the model’s ability to detect
both shallow and semantically sophisticated inflation attacks. The details of training and dataset are

explained in Appendix [A]

Metrics. We define the Detection Success Rate (DSR) as the classification accuracy of our module,
computed separately for malicious samples and benign samples. Inflation Rate (IR) indicates the
percentage of fabricated tokens injected by COLA relative to the number of original reasoning tokens.
For benign samples, the Average Exposure Rate (AER) refers to the proportion of blocks exposed
during the CoIn multi-step verification process out of the total number of blocks.

5.2 Detection Performance of CoIn

We evaluate CoIn’s ability to detect various token count inflation attacks. Figure [3] shows the
relationship between IR and DSR across five datasets. DSR increases with IR, indicating that more
aggressive inflation is easier to detect. For example, in the Naive Inflation setting, DSR approaches
100% when IR exceeds 0.5, suggesting near-perfect detection for heavily inflated queries. Figure]
illustrates the impact of 7. As 73, increases, DSR for malicious samples increases, while for benign
samples decreases. This highlights a tunable trade-off between user utility and COLA’s protection.

Learning-based Verifier Excels at Detecting Malicious Samples. For a fair comparison, we set the
threshold 7 = 0.5 for learning-based verifier, and 7 = 0.6 for rule-based verifier. The initial sampling
ratio «y is set to 0.3. Across all settings, the learning-based verifier consistently outperforms the
rule-based variant in detecting inflated samples, achieving up to 94.7% average DSR at an inflation
ratio (IR) of 3.0. Among the adaptive methods, Ada. Inflation 2 and Ada. Inflation 3 present greater
detection challenges. Nevertheless, CoIn still achieves an average DSR of approximately 84.3% and
93.1% at IR = 3.0 for these cases. These results demonstrate that CoIn remains robust even under
strong adaptive inflation, and that learning-based semantic verification offers significant advantages
in practical detection scenarios.

Rule-based Verifier Excels at Handling Benign Samples. T,ple 2: Influence of Block Size.
Although it is less effective at detecting inflated samples, the

rule-based verifier performs better on benign samples when] Block Size 3
properly tuned, due to its lower false positive rate. Given our Metric

verification mechanism, a higher DSR on benign samples re- 256 512 1024
sults in a lower Average Exposure Rate (AER), which makes Avg.a 168 8.6 4.5
COLA more favorable toward such mechanisms, potentially Avg. /63 37 22
even negotiating certain parameters with users. Based on the AER | 038 043 049
rule-based verifier (7 = 0.6), Table []reports the average num-
ber of blocks «, average verification rounds ¢ and AER across different block sizes 8. With increasing

—8— Rule-based (Inflated Samples) Rule-based (Benign Samples)
—8— Leaming-based (Inflated Samples) —— Learning-based (Benign Samples)

Threshold T = 0.5 Threshold T = 0.6 Threshold T = 0.7

Average DSR Across 5 Datasets

—— T T T —r— T T T —— T T T
010305 10 2.0 3.0 010305 10 2.0 3.0 010305 1.0 2.0 3.0
Inflation Rate Inflation Rate Inflation Rate

Figure 4: Impact of threshold 7 on DSR.

B, £ decreases, indicating lower cost. However, AER increases, and the results in Appendix show
that increasing the block size reduces the DSR for adaptive inflation.

5.3 Performance of the Semantic Validity Verification

Block-to-Answer Verification Task. We separately evaluate the performance of the two types of
matching heads introduced in Section [f.2] Table [3] shows the DSR of the matching heads on the
Block-to-Answer Verification task. The model achieves an average DSR of 94.8% across attack types.
Even for the Math (OOD) dataset, which was excluded from training, the model performs strongly,
indicating good generalization. The DSR drops slightly on clean (non-inflated) samples due to the
presence of reasoning blocks not directly contributing to the final answer (see Section[6)). Additionally,

Content Reuse 2 attacks introduce hard negatives that resemble real data, making separation more
difficult.

Table 3: Block-to-Answer Verification Performance Across Attack Types and Domains.

Attack Type | Medical Code Math General Math (OOD) | Avg.
Naive Inflation 994 100.0 100.0 99.3 100.0 99.7
Ada. Inflation 1 95.3 98.7 98.6 96.8 98.2 97.5
Ada. Inflation 2 94.4 92.3 92.8 94.2 92.7 93.3
Ada. Inflation 3 89.2 81.5 84.3 929 84.6 86.5
Ada. Inflation 4 94.2 97.9 99.0 96.1 97.8 97.0
Avg. With Inflation ‘ 94.5 94.1 94.9 95.8 94.7 ‘ 94.8
No Inflation ‘ 87.9 90.3 87.1 86.5 87.9 ‘ 87.9

Tokens-to-Block Verification Task. Table] shows the results for token-to-block verification. The
model performs well overall but struggles with Adaptive Inflation 2, where tokens reused from the
same sample lead to significant lexical and semantic overlap. This overlap can blur the distinction

between original and fabricated content, especially when reused tokens legitimately contribute to the
block.

Table 4: Tokens-to-Block Verification Performance Across Attack Types and Domains.

Attack Type | Medical Code Math General Math (OOD) | Avg.
Naive Inflation 90.8 90.5 95.3 84.5 94.6 91.2
Ada. Inflation 1 95.1 96.1 95.8 95.5 95.8 95.6
Ada. Inflation 2 76.0 75.2 73.9 73.6 74.8 74.7
Avg. With Inflation ‘ 87.3 87.2 88.4 84.5 88.4 ‘ 87.2
No Inflation ‘ 82.0 80.4 87.2 79.0 86.0 ‘ 82.9

Cost of Building Hash Trees. We evaluate the computational overhead of constructing the Merkle
hash tree, with respect to input size and hidden dimension. Experiments were conducted on a dual-
socket AMD EPYC 7763 system (128 cores, 256 threads). All constructions ran as single-threaded

processes on one logical core. As shown in Figure [5] the construction time grows approximately
linearly with the input length for a fixed hidden dimension, and increases more steeply with higher
dimensions. Given that most LLM inference servers have underutilized CPUs, and the Merkle Tree
construction process scales effectively with multi-core parallelism, the practical cost of building the
hash tree is nearly negligible.

6 Discussion

Can the original text be recovered from the tokens and embeddings exposed by COLA?
During the verification process in CoIn, COLA leaks
a certain number of block embeddings and tokens
within the blocks to CoIn. To quantify the impact of
such leakage, we assume a malicious CoIn leverages

Table 5: Similarity Between Blocks Recon-
structed by CoIn and Real Blocks.

. Block Size
an RAG system to retrieve documents highly similar Metric
to the exposed embeddings and tokens, then feeds 256 512 1024
all retrieved information into an LLM to reconstruct EmbedSim 0.65 0.66 0.75
the original content. The design and further details BLEU 0.04 005 0.03
are provided in Appendix [F] We randomly selected ROUGE-LL. 023 025 024
100 samples from a mathematical dataset. We eval- BERTScore 0.83 0.83 0.84

uated the similarity between the reconstructed blocks
and the original ones using embedding similarity, BLEU score |Papinent et al.| [2002], ROUGE-
L Lin/[2004] , and BERTScore Zhang et al.|[2019]. As shown in Table E], we observe that a high
BERTScore/EmbedSim combined with low BLEU/ROUGE indicates that the LLM successfully
preserves the core semantics, while significantly differing from the real block in terms of surface

expression and syntactic structure.

Merkle Tree Construction Time
— 63.0% 62.9%
_‘é —— dim=768 X 604
S 34 dim=1536 s
9 —e— dim=3072 2 43.8%
) § 40 A 36.7%
S =
£
= i} 22.5%
—_ 0 20 N 18.2%
8 s
©oe
LI T T T T
Y PP e 72° 0 T T T T T T
1

Number of Tokens

o™
\(\‘\a‘\
w©

oS o> RN
X© X0
W W@
382 32

Figure 5: Merkle Tree Construction Time with

Figure 6: Misclassification Rates of LLMs on
Fluctuation Range.

Constructed Datasets.

How difficult is the dataset we constructed? To investigate the dataset difficulty, we submitted the
failed samples from the Block-to-Answer Verification task, along with their Answer, to a LLM. Based
on the idea of LLM-as-a-Judge Zheng et al.[[2023]], |L1 et al.| [2024], we use a prompt to instruct the
LLM to perform binary classification. The prompt used is provided in Appendix [F] The relatively
high misclassification rate suggests that the LLM, after reading the original text, tends to align with
the matching head’s judgment. The LLM shows high error rates on Naive Inflation, Ada. Inflation 1
and 4, indicating strong performance of the matching head in these cases. However, it still struggles
with the remaining two adaptive inflations. Notably, 36.7% of real blocks were misclassified by the
LLM, suggesting that some parts of the true reasoning steps may be unrelated to answer derivation.

7 Limitations

We acknowledge that CoIn, despite its merits, possesses certain limitations that warrant discussion.

* Firstly, CoIn exhibits suboptimal performance in the detection of malicious samples when
the Inflation Rate is low. However, it is pertinent to note that under such circumstances, the
incentive for COLA to engage in data falsification is also correspondingly diminished.

* Secondly, CoIn is inherently probabilistic, and as such, it is susceptible to a non-zero
misclassification rate. Consequently, when benign samples are erroneously identified as
malicious, the protocol of CoIn necessitates that COLA discloses the original text to the
user for verification.

¢ Thirdly, the auditing process facilitated by CoIn requires the active cooperation of COLA.
Ideally, COLA itself could deploy CoIn to attest to its own integrity. This would allow COLA
to continue concealing its reasoning tokens, thereby mitigating the risk of its proprietary
model being subjected to distillation attacks.

* Finally, CoIn comprises multiple small-scale neural network components and is not ar-
chitected as an end-to-end system. Nevertheless, this modular design confers a distinct
advantage: it permits the independent training of each module, which significantly enhances
both the convergence speed and the overall efficacy of the training process.

8 Conclusion

This paper presents CoIn, a novel auditing framework designed to verify the token counts and
semantic validity of hidden reasoning traces in COLA. We identify and formalize the problem of
token count inflation, in which service providers can overcharge users by injecting redundant or
fabricated reasoning tokens that are not visible to the user. To address this, CoIn integrates two
complementary components: a hash tree-based token quantity verifier and a semantic relevance-based
validity checker. Our extensive experiments demonstrate that CoIn can detect both naive and adaptive
inflation strategies with high accuracy, even under limited exposure settings. By enabling transparent
and auditable billing without revealing proprietary content, CoIn introduces a practical mechanism
for accountability in commercial LLM services. We hope this work lays the foundation for future
research on LLM API auditing, transparent reasoning, and verifiable inference services.

References

Will Cai, Tianneng Shi, Xuandong Zhao, and Dawn Song. Are you getting what you pay for? auditing
model substitution in 1lm apis. arXiv preprint arXiv:2504.04715, 2025.

Junying Chen, Zhenyang Cai, Ke Ji, Xidong Wang, Wanlong Liu, Rongsheng Wang, Jianye Hou,
and Benyou Wang. Huatuogpt-ol, towards medical complex reasoning with llms, 2024. URL
https://arxiv.org/abs/2412.18925.

DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL |https://arxiv.org/abs/2501.12948.

Hugging Face. Open rl: A fully open reproduction of deepseek-rl, January 2025. URL https:
//github.com/huggingface/open-ri.

Xingcheng Gao, Swaroop Mishra, et al. Pal: Program-aided language models. arXiv preprint
arXiv:2211.10435, 2023.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129(6):1789-1819, 2021.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Shibo Hao, Yi Gu, Haotian Luo, Tianyang Liu, Xiyan Shao, Xinyuan Wang, Shuhua Xie, Haodi Ma,
Adithya Samavedhi, Qiyue Gao, et al. Llm reasoners: New evaluation, library, and analysis of
step-by-step reasoning with large language models. arXiv preprint arXiv:2404.05221, 2024.

Zhigiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. LIm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models. arXiv preprint arXiv:2304.01933, 2023.

10

https://arxiv.org/abs/2412.18925
https://arxiv.org/abs/2501.12948
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao, Wenyue Hua, Yanda Meng, Yongfeng Zhang, and
Mengnan Du. The impact of reasoning step length on large language models. arXiv preprint
arXiv:2401.04925, 2024.

Komal Kumar, Tajamul Ashraf, Omkar Thawakar, Rao Muhammad Anwer, Hisham Cholakkal,
Mubarak Shah, Ming-Hsuan Yang, Phillip HS Torr, Fahad Shahbaz Khan, and Salman Khan. Llm
post-training: A deep dive into reasoning large language models. arXiv preprint arXiv:2502.21321,
2025.

Haitao Li, Qian Dong, Junjie Chen, Huixue Su, Yujia Zhou, Qingyao Ai, Ziyi Ye, and Yiqun
Liu. Llms-as-judges: a comprehensive survey on llm-based evaluation methods. arXiv preprint
arXiv:2412.05579, 2024.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pages 74-81, 2004.

Samuel Marks, Johannes Treutlein, Trenton Bricken, Jack Lindsey, Jonathan Marcus, Siddharth
Mishra-Sharma, Daniel Ziegler, Emmanuel Ameisen, Joshua Batson, Tim Belonax, et al. Auditing
language models for hidden objectives. arXiv preprint arXiv:2503.10965, 2025.

Ralph C Merkle. A digital signature based on a conventional encryption function. In Conference on
the theory and application of cryptographic techniques, pages 369-378. Springer, 1987.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pages 311-318, 2002.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728-53741, 2023.

Shyam Sundhar Ramesh, Yifan Hu, Ilason Chaimalas, Viraj Mehta, Pier Giuseppe Sessa, Haitham
Bou Ammar, and Ilija Bogunovic. Group robust preference optimization in reward-free rlhf.
Advances in Neural Information Processing Systems, 37:37100-37137, 2024.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. As-
sociation for Computational Linguistics, 11 2019. URL https://arxiv.org/abs/1908.10084.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Sharath Turuvekere Sreenivas, Saurav Muralidharan, Raviraj Joshi, Marcin Chochowski, Ameya Sunil
Mahabaleshwarkar, Gerald Shen, Jiaqi Zeng, Zijia Chen, Yoshi Suhara, Shizhe Diao, et al. LIm
pruning and distillation in practice: The minitron approach. arXiv preprint arXiv:2408.11796,
2024.

Open Thoughts Team. Open Thoughts, January 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, et al. Self-consistency improves chain of thought
reasoning in language models. arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, et al. Chain-of-thought prompting elicits reasoning in
large language models. arXiv preprint arXiv:2201.11903, 2022.

11

https://arxiv.org/abs/1908.10084

Tianhao Wu, Banghua Zhu, Ruoyu Zhang, Zhaojin Wen, Kannan Ramchandran, and Jiantao Jiao.
Pairwise proximal policy optimization: Harnessing relative feedback for 1lm alignment. arXiv
preprint arXiv:2310.00212, 2023.

Shu Yang, Junchao Wu, Xin Chen, Yunze Xiao, Xinyi Yang, Derek F Wong, and Di Wang. Un-
derstanding aha moments: from external observations to internal mechanisms. arXiv preprint
arXiv:2504.02956, 2025.

Michael J Yuan, Carlos Campoy, Sydney Lai, James Snewin, and Ju Long. Trust, but verify. arXiv
preprint arXiv:2504.13443, 2025.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Jintian Zhang, Yuqi Zhu, Mengshu Sun, Yujie Luo, Shuofei Qiao, Lun Du, Da Zheng, Huajun
Chen, and Ningyu Zhang. Lightthinker: Thinking step-by-step compression. arXiv preprint
arXiv:2502.15589, 2025.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluating
text generation with bert. arXiv preprint arXiv:1904.09675, 2019.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595-46623, 2023.

Xiang Zheng, Longxiang Wang, Yi Liu, Xingjun Ma, Chao Shen, and Cong Wang. Calm: Curiosity-
driven auditing for large language models. arXiv preprint arXiv:2501.02997, 2025.

Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanxiao Liu, Ekin Dogus Cubuk, and Quoc Le.

Rethinking pre-training and self-training. Advances in neural information processing systems, 33:
3833-3845, 2020.

A Dataset Construction and Experimental Details

Algorithm 1 Streamlined Generation of Inflated Reasoning Sequences

Require: Original dataset D,,;,, inflation ratios I, strategies Sy;s; with weights W, tokenizer
T, embedder &, anchor source STcqnchor, segment length range [Ly,in, Limaz], insertion mode
M., and optional block range [Byin, Bmaz] if using block mode.

Ensure: Inflated dataset Dy, f14¢eq

1: Initialize D;y, frated < 0

2: Build FAISS indexes for RAG-based strategies

3: for each data point item; = (P;, R;, A;) in Doy do

4: Tom’g — T(Rz),

5: if T,,,;4 is empty then continue

6: end if

7: Tunchor < SelectAnchor(item;, Srcanchor)

8: Niaz < [[Torig| - max(K)]

9: Tpoot < CollectTokens(Nyqz, Tanchor, Siist, Ws)

10: for each k € K do

11: N |Torig| - k]

12: Ty, < Subsample(Tpo0r, Nk)

13: Tfinal — IHSGI’t(TOm‘g, Tkv Minsa [Bmznv Bmaz])
14 Add T Y(Tfinat) t0 Din fiatea With metadata
15: end for

16: end for

17: return Dy, f1ated

12

A.1 Dataset Construction Details

We construct two verification datasets for Block-to-Answer and Token-to-Block verification, each
dataset includes two types of inflated samples. The simple version consists entirely of artificially
generated (inflated) tokens, while the hard version contains a mixture of real and inflated tokens. For
Token-to-Block verification, we randomly sample between 3.125% and 12.5% of tokens from each
block to create both training and test instances.

For both verification tasks, we generate 1,200,000 positive and negative samples respectively. The
training set is uniformly distributed across four datasets. Since the difficulty levels of the samples
vary, we adjust the composition using an adaptive inflation strategy (applied in Block-to-Answer) to
ensure balanced learning.

For training the DeepSets model, we additionally sample 1,000 examples. To preserve generalization
capability, the data used for training this model does not overlap with any samples seen by the
matching heads.

A.2 Experimental Details

All evaluation results, unless stated otherwise, are reported on 1,000 examples. This applies to
Block-to-Answer, Token-to-Block, and the test sets used within the CoIn framework. Each numeric
result is computed over a minimum of 1,000 samples to ensure statistical significance. Please refer to
the Algorithm [I]for our CoIn workflow test set construction process.

A.3 Source of Dataset

To evaluate CoIn’s performance across different domains, we constructed training and test sets based
on five datasets distilled from DeepSeek-R1 [DeepSeek-All [2025]], including Medical |Chen et al.
[2024E], Code [Team| [[2025]], [Face| [2025[]°}, Math |Face [2025 Genera][ﬂ and Out-of-Domain data
Math (OOD) Team! [2025]], [Face|[2025]]"} Our final training set is a mixture of these five datasets.

B Training and Model Details

For the matching heads used in Token-to-Block verification and Block-to-Answer verification, we set
the learning rate to 2 x 1075, the batch size to 128, and train for 3 epochs. We employ the Adam
optimizer and use the Focal Loss function. The hidden dimension of the model follows that of the
embedding model, set to 384.

For the DeepSets model in the verifier, we use a batch size of 128, a hidden dimension of 256, and
train for 5 epochs. We adopt the Adam optimizer with a learning rate of 1 x 10~ and use the binary
cross-entropy (BCE) loss. All experiments are conducted with a fixed random seed of 42.

C Computational Resources

All experiments were conducted on a high-performance workstation running Ubuntu 20.04.6 LTS.
The system is equipped with a dual-socket AMD EPYC 7763 processor, providing a total of 128
physical cores and 256 threads. For GPU acceleration, we utilized an NVIDIA RTX A6000 Ada
graphics card.

5https ://huggingface.co/datasets/FreedomIntelligence/Medical-R1-Distill-Data
Shttps://huggingface.co/datasets/open-r1/0penThoughts-114k-Code_decontaminated
7https ://huggingface.co/datasets/open-r1/0penR1-Math-220k

8https ://huggingface.co/datasets/glaiveai/reasoning-v1-20m

9https ://huggingface.co/datasets/open-r1/0penThoughts-114k-math

13

https://huggingface.co/datasets/FreedomIntelligence/Medical-R1-Distill-Data
https://huggingface.co/datasets/open-r1/OpenThoughts-114k-Code_decontaminated
https://huggingface.co/datasets/open-r1/OpenR1-Math-220k
https://huggingface.co/datasets/glaiveai/reasoning-v1-20m
https://huggingface.co/datasets/open-r1/OpenThoughts-114k-math

D Details of CoIn

D.1 Merkle Tree Construction

Algorithm [3] details the process COLA uses to construct the Merkle Hash Tree from a reasoning
sequence R. This corresponds to the "Token Fingerprint Generation" and "Fingerprint Hash Tree
Construction" paragraphs.

D.2 Merkle Proof Verification

Algorithm [2] describes how the CoIn auditor verifies the integrity of a token using its fingerprint and
the Merkle path provided by COLA. This corresponds to the "Merkle Proof" paragraph.

Algorithm 2 Merkle Proof Verification

Require: Committed Merkle Root M R .ommittea (from COLA).
Require: Token fingerprint fpsoken Of the audited token (from COLA).
Require: Merkle Path P = [(h1,pos1), (ha, posa), ..., (h4,posq)] (from COLA), where hy, is a
sibling hash and posy, € {‘left’, ‘right’} indicates hy,’s position relative to the path node.
Require: Cryptographic hash function H ().
Ensure: Boolean: true if verification succeeds, false otherwise.
1: current_computed_hash < H(fpioken) > Hash the provided token fingerprint

2: for each pair (sibling_hash, position) € P do

3: if position = ‘left’ then

4: current_computed_hash < H (sibling_hash || current_computed_hash)

5: else if position = ‘right’ then

6: current_computed_hash < H (current_computed_hash || sibling_hash)

7: else

8: return false > Error: Invalid position in Merkle Path
9: end if
10: end for

11: M Rrecomputed < current_computed_hash
12: if MR'r‘ecomputed = MRcommitted then

13: return true > Verification successful: token integrity confirmed
14: else

15: return false > Verification failed: mismatch indicates potential issue
16: end if

Notes on Algorithms:

* Padding (Algorithm [3): The text states, "The number of leaf nodes is padded to the nearest
power of two." Algorithm [3]implements this by duplicating the hash of the last actual leaf
node if leaves exist. If the initial set of tokens (and thus fingerprints) is empty (N = 0), it
assumes padding to IV,,,,2 = 1 using a hash of a predefined value (e.g., an empty string).
The exact nature of this padding for an empty set should be consistently defined between
COLA and the auditor.

* Merkle Path Representation (Algorithm 2): The Merkle Path P is assumed to be a list of
(hash, position) tuples. The ‘position‘ indicates if the sibling hash is to the ’left” or 'right’ of
the node on the direct path from the audited leaf to the root.

* Concatenation for Hashing: The order of concatenation (e.g., H (leftChild || rightChild)
vs. H(rightChild || le ftChild)) must be consistent throughout construction and verifica-
tion. The algorithms assume a fixed order (left child first).

14

Algorithm 3 Merkle Tree Construction by COLA

Require: Reasoning tokens R; number of blocks «; embedding function Embd(-); cryptographic

hash function H ().

Ensure: Merkle Root M R.

PRADIL AR

—_— e = =

16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:

31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:

// Phase 1: Token Fingerprint Generation and Leaf Node Creation

: Blocks < Partition(R,) > Partition R into By, ..., B,
. Fingerprints < () > Initialize as an empty list
: for each block B; € Blocks do
€block; < Embd(B;) > Compute block embedding
for each token r; € B; do
€token; < Embd(r;) > Compute token embedding
IPi < €vlock; || €token, > Form token fingerprint
Add fp; to Fingerprints
end for
. end for
: LeafNodes <+ () > Initialize as an empty list
. for each fingerprint fp € Fingerprints do
leaf < H(fp) > Hash fingerprint to create leaf node
Add leaf to Leaf Nodes
: end for

// Phase 2: Padding Leaf Nodes
N « length(Leaf Nodes)
Let Npow2 be the smallest power of two such that Np,5,,2 > N.
if N < Npowo2 then
if N =0 and N,,,2 > 0 then >eg,N=0 = Npu2=1
padding_hash < H("") > Hash of empty string or other predefined padding value
for k£ < 1 to Npoy2 do
Add padding_hash to Lea f Nodes
end for
else if V > 0 then
last_leaf_hash < LeafNodes[N — 1] > Get hash of the last actual leaf
for k <— 1to Npow2 — N do
Add last_leaf_hash to Leaf Nodes > Pad by duplicating the last leaf’s hash
end for
end if
end if
// Phase 3: Building the Tree Recursively
CurrentLevel Nodes < LeafNodes
while length(Current Level Nodes) > 1 do
NextLevel Nodes <)
for k& < 0 to (length(CurrentLevel Nodes)/2) — 1 do
leftChild < CurrentLevel Nodes|2k]
rightChild + CurrentLevel Nodes[2k + 1]
parentHash < H(le ftChild || rightChild)
Add parentHash to NextLevel Nodes
end for
CurrentLevel Nodes < NextLevel Nodes
end while
if length(Current Level Nodes) = 1 then
MR < CurrentLevel N odes|0] > The single remaining node is the Merkle Root
else > Handles N = 0 and N2 = 0, resulting in an empty C'urrent Level N odes
MR <+ H("") > Define Merkle Root for an empty set of tokens, e.g., hash of empty string
end if
return M R

D.3 Workflow of CoIn

Algorithm []illustrates the complete verification procedure of CoIn.

15

Algorithm 4 Multi-Round Verification in CoIn

Require: COLA Response (containing reasoning blocks Biota and final answer A)
Require: Fraction «y of blocks for initial verification (e.g., 0.1)
Require: Pre-trained matching heads MHg (-,), MHpa(+, -)
Require: Embedding function Embd(-)
Require: Verification threshold 7
Ensure: Audit decision: "Successful" or "COLA Flagged for Inflation"
// Initialization
¢ Bunverified <= Biotal
: Bveriﬁed — Q)
. audit_successful < false
. all_blocks_audited <— false
// Initial round of verification
5: Select an initial set of blocks Beurrent_round S Bunverified Of size [+ | Biotai|]
6: if Beurrent_round is empty and | B | > 0 then
7: Beurrent_round <— one randomly selected block from Bunyerified
8: end if
9
10

GRS I Ny

: while not audit_successful and not all_blocks_audited do
if Bcurremfround is empty then

11: all_blocks_audited <+ true > No more blocks to check
12: goto FinalDecision
13: end if
14: round_scores < || > Initialize as an empty list/array
15: for each block B; € Beurrent_round 0
16: Randomly select a subset of reasoning tokens {r;}¥_, from B; (e.g., 10
17: Fokens < AVG({Embd(r;)}5_,) > Average embedding of selected tokens
18: Eblock < Embd(Bj)
19: Einswer < Embd(A)
20: Stv < MHip (Eiokens, Eblock) > Token-to-Block score
21: Sba < MHpa (Ebiock;s Fanswer) > Block-to-Answer score
22: Add pair (Stb, Spa) to round_scores
23: CoIn performs Merkle Proofs on selected tokens in B; (verification of token integrity)
24: end for
25: Bveriﬁed — Bveriﬁed uJ Bcurrent_round
26: Bunveriﬁed — Bunveriﬁed \ Bcurrenlimund
27: verifier_decision <— VERIFIER (round_scores, T) > Verifier can be rule-based or learning-based
28: if verifier_decision = Accept then
29: audit_successful < true
30: else
31: if Bunverifiea 1S empty then
32: all_blocks_audited < true
33: else
34. Select one new random block Biex: from Bunverified
35: Beurrent_round 4— { Brext } > Next round verifies this single block
36: end if
37: end if
38: end while
FinalDecision:
39: if audit_successful then
40: return "Audit Successful"
41: else
42: return "COLA Flagged for Token Inflation" > User may request COLA to justify charges
43: end if
44: function VERIFIER(scores_list, T) > Example: Rule-based verifier
45: if scores_list is empty then return "Reject”
46: end if
47: avg_S_tb < average of all Sy, in scores_list
48: avg_S_ba <+ average of all Sy, in scores_list
49: ifavg S tb > 7 and avg_S_ba > 7 then
50: return "Accept"
51: else
52: return "Reject”
53: end if > Alternatively, a learning-based verifier (e.g., DeepSets) could be used here.

54: end function

16

10{

0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4

Average DSR Across 5 Datasets

0.2

—e— Rule-based (Inflated Samples)
—e— Learning-based (Inflated Samples)

Rule-based (Benign Samples)
—=- Learning-based (Benign Samples)

Naive Inflation

Ada. Inflation 1

Ada. Inflation 2

0.925

0.10.30.5 1.0 2.0 3.0
Ada. Inflation 3

0.10.30.5

1.0 2.0
Ada. Inflation 4

3.0

0.10.30.5 1.0 2.0 3.0
Overall Average

Jog2s

0.10.30.5 1.0 2.0 3.0
Inflation Rate

0.10.30.5

1.0 2.0
Inflation Rate

3.0

0.10.30.5 1.0 2.0 3.0
Inflation Rate

0.925

0.925

Figure 7: Performance of CoIn across different inflation methods and verifiers (Block Size = 512).
The red lines and the blue lines represent the DSR of rule-based verifier and learning-based verifier,
respectively. ~

1.04

0.8

0.6 1

0.4

0.2

—8— Rule-based (Inflated Samples)
—8— Learning-based (Inflated Samples)

Rule-based (Benign Samples)
== Learning-based (Benign Samples)

Threshold T = 0.5

Threshold T = 0.6

Threshold T = 0.7

Average DSR Across 5 Datasets

0 ——— T T T
0.10.30.5 10 2.0 3.0

Inflation Rate

T
0.10.30.5

10 20
Inflation Rate

T
3.0

T T T
0.10.30.5 1.0 2.0 3.0

Inflation Rate

Figure 8: Impact of threshold 7 on DSR (Block Size = 512).

E Detection Performance of ColIn

We show the comparison of the two verifiers and the impact of 7 under different block sizes, as shown

in Figure [7[ROIT0]

F Prompts Used in Discussion Section

Prompt [TT]is used to explore the question “Can the original text be recovered from the tokens and
embeddings exposed by COLA?”, while Prompt[T2]is used to explore “How difficult is the dataset
we constructed?”.

17

Average DSR Across 5 Datasets

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2

0
0.10.30.5

—e— Rule-based (Inflated Samples)
—e— Learning-based (Inflated Samples)

Rule-based (Benign Samples)
—=- Learning-based (Benign Samples)

Naive Inflation

Ada. Inflation 1

Ada. Inflation 2

0.943

0.943

0.10.30.5 1.0 2.0

Ada. Inflation 3

3.0

0.10.30.5 1.0 2.0

Ada. Inflation 4

3.0

1.0 2.0
Overall Average

0.10.30.5

0.943

0.943

1.0 2.0
Inflation Rate

3.0

0.10.30.5 1.0 2.0

Inflation Rate

3.0

1.0 2.0
Inflation Rate

0.10.30.5

0.943

0.943

Figure 9: Performance of CoIn acorss different inflation methods and verifiers (Block Size = 1024).
The red lines and the blue lines represent the DSR of rule-based verifier and learning-based verifier,
respectively. ~

Average DSR Across 5 Datasets

1.04

0.8

0.6 1

0.44

0.2

—8— Rule-based (Inflated Samples)
—8— Leaming-based (Inflated Samples)

Rule-based (Benign Samples)
—— Learning-based (Benign Samples)

Threshold T = 0.5

Threshold T = 0.6

Threshold T = 0.7

________________________ i

943 |

0 ———
0.10.30.5

10 20
Inflation Rate

10 20
Inflation Rate

T
0.10.30.5

10 20
Inflation Rate

T
0.10.30.5

Figure 10: Impact of threshold 7 on DSR (Block Size = 1024).

18

3.0

Prompt for Reconstructing Hidden Reasoning Passage

Reconstructing Hidden Reasoning Prompt

You are an expert in natural language reasoning and semantic retrieval.

Your task is to help recover a semantically meaningful and logically connected hidden
passage that bridges a <Question> and an <Answer>.

This passage has been lost, but we know it is semantically related to both the <Question> and
the <Answer>, and lies between them.

Given a — xx<Question>**:
{question}

And the — xx<Answer>*x:
{answer}

We also know that some tokens from the original passage are still visible:
{sampled_token_text}

And we retrieved related documents from Wikipedia using the embedding of the original
passage:
{retrieved_rag_docs}

Now, please help recover the most likely content of the hidden passage.
Return your answer strictly in the following JSON format:

\\recovered_json {
"recovered_text"”: "<your reconstructed passage here>"

b

\ J

Figure 11: Prompt for Recovering a Hidden Reasoning Passage Using Question, Answer, Token
Clues and Retrieved Wikipedia Documents.

19

Prompt for Evaluating Reasoning Passage Relevance

Evaluating Reasoning Process Prompt
You are a logical reasoning analyst.

Given a final answer and a randomly selected text passage, your task is to assess whether the
text passage represents a reasoning process that leads to or supports the final answer.

The passage may or may not be relevant to the answer.

Your task is not to verify factual correctness, but to determine whether the passage
semantically or logically connects to the answer and explains or justifies it in any meaningful
way.

**Random Text Passage*+*:
{reason}

*%xFinal Answerxx:
{answer}

Please answer the following questions:
1. Is the text passage a plausible reasoning process that leads to the final answer?
2. Does it provide logical or semantic justification for the answer?

Respond in the following JSON format:

\\reasoning_assessment

{
"is_reasoning_process"”: true/false,
"justification”: "<your brief explanation of why the passage is or isn’t
a reasoning process for the answer>"
3
S J

Figure 12: Prompt for Judging Whether a Block Supports or Explains a Final Answer.

20

	Introduction
	Related Work
	Preliminary
	CoIn: Counting the Invisible Reasoning Tokens
	Token Quantity Verification
	Semantic Validity Verification
	Workflow of CoIn

	Experiments
	Experiment Setup
	Detection Performance of CoIn
	Performance of the Semantic Validity Verification

	Discussion
	Limitations
	Conclusion
	Dataset Construction and Experimental Details
	Dataset Construction Details
	Experimental Details
	Source of Dataset

	Training and Model Details
	Computational Resources
	Details of CoIn
	Merkle Tree Construction
	Merkle Proof Verification
	Workflow of CoIn

	Detection Performance of CoIn
	Prompts Used in Discussion Section

