
Under review as a conference paper at ICLR 2023

ONE CANNOT STAND FOR EVERYONE!
LEVERAGING MULTIPLE USER SIMULATORS TO TRAIN
TASK-ORIENTED DIALOGUE SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

User simulators are agents designed to imitate human users; recent advances have
found that Task-oriented Dialogue (ToD) systems optimized toward a user simu-
lator could better satisfy the need of human users. However, this might result in a
sub-optimal ToD system if it is tailored to only one ad hoc user simulator, since
human users can behave differently. In this paper, we propose a framework called
MUST to optimize ToD systems via leveraging Multiple User SimulaTors.
The main challenges of implementing the MUST fall in 1) how to adaptively spec-
ify which user simulator to interact with the ToD system at each optimization step,
since the ToD system might be over-fitted to some specific user simulators, and si-
multaneously under-fitted to some others; 2) how to avoid catastrophic forgetting
of the adaption for a simulator that is not selected for several consecutive opti-
mization steps. To tackle these challenges, we formulate MUST as a Multi-armed
bandits (MAB) problem and provide a method called MUSTadaptive that balances
i) the boosting adaption for adaptive interactions between different user simula-
tors and the ToD system and ii) the uniform adaption to avoid the catastrophic
forgetting issue. With both automatic evaluations and human evaluations, our ex-
perimental results on the restaurant search task from MultiWOZ show that the
dialogue system trained by our proposed MUST achieves a better performance
than those trained by any single user simulator. It also has a better generaliza-
tion ability when testing with unseen user simulators. Moreover, our method
MUSTadaptive can efficiently leverage multiple user simulators to train the
ToD system by our visualization analysis on convergence speeds.

1 INTRODUCTION

Task-oriented dialogue systems aim to help users accomplish their various tasks (e.g., restaurant
reservations) through natural language conversations. Training task-oriented dialogue systems in
supervised learning (SL) approaches often requires a large amount of expert-labeled dialogues, how-
ever collecting these dialogues is usually expensive and time-consuming. Moreover, even with a
large amount of dialogue data, some dialogue states may not be explored sufficiently for dialogue
systems 1 (Li et al., 2016b). To this end, many researchers try to build user simulators to mimic
human users for generating reasonable and natural conversations. By using a user simulator and
sampled user goals, we can train the dialogue system from scratch with reinforcement learning (RL)
algorithms. Previous works tend to design better user simulator models (Schatzmann et al., 2007;
Asri et al., 2016; Gur et al., 2018; Kreyssig et al., 2018; Lin et al., 2021). Especially, Shi et al.
(2019) builds various user simulators and analyzes the behavior of each user simulator in the popu-
lar restaurant search task from MultiWOZ (Budzianowski et al., 2018).

In real application scenarios, the deployed dialogue system needs to face various types of human
users. A single ad hoc user simulator can only represent one or a group of users, while other
users might be under-represented. Instead of choosing the best-performing one from many dialogue
systems trained by different single user simulators, we believe that it is worth trying to train a
dialogue system by leveraging all user simulators simultaneously.

1We use the dialogue systems to refer to the task-oriented dialogue systems for simplicity in this paper.

1



Under review as a conference paper at ICLR 2023

In this paper, we propose a framework called MUST to utilize Multiple User SimulaTors simulta-
neously to obtain a better system agent. There exist several simple ways to implement the MUST
framework, including a merging strategy, a continual reinforcement learning (CRL) strategy, and
a uniform adaption strategy, denoted as MUSTmerging, MUSTCRL, and MUSTuniform respectively
(See Sec. 3.2). However, none of them could effectively tackle the challenges: 1) how to efficiently
leverage multiple user simulators when training the dialogue system since the system might be eas-
ily over-fitted to some specific user simulators and simultaneously under-fitted to some others, and
2) it should avoid a catastrophic forgetting issue. To tackle them effectively, we first formulate the
problem as a Multi-armed bandits (MAB) problem (Auer et al., 2002); similar to the exploitation vs
exploration trade-off, specifying multiple user simulators should trade off a boosting adaption (tack-
ling the challenge 1) and a uniform adaption (tackling the challenge 2), see Sec. 4.1 for more details.
Then we implement a new method called MUSTadaptive which utilizes an adaptively-updated dis-
tribution among all user simulators to sample them to train the dialogue system in the RL training.

Our experimental results on the restaurant search task from MultiWOZ with both automatic evalua-
tions and human evaluations show that the dialogue system trained by our proposed MUST achieves
a better performance than those trained by any single user simulator. It also has a better general-
ization ability when testing with unseen user simulators and is more robust to the diversity of user
simulators. Moreover, the visualization analysis on convergence speeds demonstrates that our
MUSTadaptive is more efficient than MUSTuniform to leverage multiple user simulators to train
dialogue systems.

Our contributions are three-fold: (1) To the best of our knowledge, our proposed MUST is the first
developed work to improve the dialogue system by using multiple user simulators simultaneously;
(2) We design several ways to implement the MUST. Especially, we formulate MUST as a Multi-
armed bandits (MAB) problem, based on which we provide a novel method MUSTadaptive; and (3)
The results show that dialogue systems trained with MUST consistently outperform those trained
with a single user simulator through automatic and human evaluations. Especially, it largely im-
proves the performance of the dialogue system tested on out-of-domain evaluation. Furthermore,
training the system with the proposed MUSTadaptive can converge faster than with MUSTuniform.

2 BACKGROUND

Dialogue System. Task-oriented dialogue systems aim to help users accomplish various tasks such
as restaurant reservations through natural language conversations. Researchers usually divide the
task-oriented dialogue systems into four modules (Wen et al., 2017; Ham et al., 2020; Peng et al.,
2021): Natural Language Understanding (NLU) (Liu & Lane, 2016) that first comprehends user’s
intents and extracts the slots-values pairs, Dialog State Tracker (DST) (Williams et al., 2013) that
tracks the values of slots, Dialog Policy Learning (POL) (Peng et al., 2017; 2018) that decides the
dialog actions, and Natural Language Generation (NLG) (Wen et al., 2015; Peng et al., 2020) that
translates the dialog actions into a natural-language form. The DST module and the POL module
usually are collectively referred to as the dialogue manager (DM) (Chen et al., 2017). These different
modules can be trained independently or jointly in an end-to-end manner (Wen et al., 2017; Liu &
Lane, 2018; Ham et al., 2020; Peng et al., 2021; Hosseini-Asl et al., 2020).

User Simulator. The user simulator is also an agent but plays a user role. Different from dia-
logue systems, the user agent has a goal describing a target entity (e.g., a restaurant at a specific
location) and should express its goal completely in an organized way by interacting with the system
agent (Takanobu et al., 2020). Therefore, besides the modules of NLU, DM, and NLG like dia-
logue systems, the user agent should have another module called Goal Generator (Kreyssig et al.,
2018), which is responsible for generating the user’s goal. Building a user simulator usually could
use an agenda-based approach (Schatzmann et al., 2007; Schatzmann & Young, 2009) designing
handcrafted rules to mimic user behaviors or a model-based approach such as neural networks (Asri
et al., 2016; Kreyssig et al., 2018; Gur et al., 2018) learned on a corpus of dialogues.

Training Dialogue Systems with a User Simulator. At the beginning of a dialogue, the user agent
obtains its initial goal from the Goal Generator and then expresses its goal in natural languages. For
the system agent, it does not know the user’s goal and it should gradually understand the user’s utter-
ances, query the database to find entities, and provide useful information to see if it is accomplishing

2



Under review as a conference paper at ICLR 2023

(a) Success rates of different systems. (b) Dialog act distributions of different user simulators.

Figure 1: (a) is the heat map on the success rates of system agents tested by different user simulators
on 200 dialogues. (b) shows the dialog act distributions of Agenda-based User Simulators (ABUS)
and Neural networks-based User Simulators (NUS) provided by Shi et al. (2019). There exist seven
user dialog acts annotated in the restaurant search task from MultiWOZ, as shown on the Y-axis.

the user’s task. Since only the system can access the database, the user does not know if its goal can
be satisfied. When the database result returned by the system agent is empty, the user agent should
learn to compromise and change its goal with the help of Goal Generator (Kreyssig et al., 2018).
When the dialogue ends, the user simulator will reward the system agent according to if the system
agent accomplishes the task. Then we could use the reward to update the system agent with RL
algorithms (Tseng et al., 2021).

3 MUST: LEVERAGE MULTIPLE USER SIMULATORS

3.1 MOTIVATIONS TO LEVERAGE MULTIPLE USER SIMULATORS

User simulators behave differently. Shi et al. (2019) implement six user simulators (AgenT,
AgenR, AgenG, RNNT, RNNR, RNN 2) with both agenda-based methods and neural networks-
based methods on the popular restaurant search task from MultiWOZ (Budzianowski et al., 2018).
From their experiments, we observed that the dialogue systems trained by different user simulators
vary in their performances (i.e., the success rates tested by the same user simulators). For example,
when interacting with the user simulator of AgenT, the success rates of the system agents trained by
Agenda-based user simulators (i.e., AgenT, AgenR, AgenG) are much higher than the system agents
trained by RNN-based user simulators (i.e., RNNT, RNNR, RNN), see Fig. 1(a). The reason might
be that these user simulators (i.e., with either handcrafted rules or data-driven learning in their DM
modules) have different user dialog act distributions 3 (see Fig. 1(b)) which determines the dialogue
state space explored by the dialogue system.

One cannot stand for everyone. Users might behave differently, one could design different user
simulators with specific user dialog act distributions, see Shi et al. (2019). A single user simulator
learned on a task-oriented dialogue corpus can just represent one or a group of users, while the
dialogue system needs to accomplish tasks from various human users in real scenarios. We argue
that it is beneficial to utilize all different user simulators to train the dialogue system. By leveraging
multiple user simulators that have different user dialog act distributions, the dialogue systems can
explore a larger dialogue state space, which might improve the ability of the learned dialogue system.

3.2 SOME PRELIMINARY PROPOSALS FOR MUST

We propose a framework called MUST, the core idea of which is to train a better dialogue system
by leveraging Multiple User SimulaTors simultaneously. There are several simple ways to imple-

2Here we rename the user simulators of SLT, SLR, and SLE in Shi et al. (2019) as RNNT, RNNR, RNN for
emphasizing the model structure of their DM modules.

3The dialogue policy learning module is essential in both dialogue systems and user simulators. A policy
module corresponds to a dialog act distribution since it decides to take which dialog act to respond to the current
dialogue state. The user dialog act distribution behind a user simulator determines the diversity of the dialogue
state space explored by dialogue systems; therefore it might affect the performance of system agents.

3



Under review as a conference paper at ICLR 2023

Table 1: The comparison of different strategies for leveraging multiple user simulators.

dynamic adaption avoid catastrophic forgetting efficiency

MUSTmerging × × ×
MUSTCRL × × ×
MUSTuniform × ✓ ×
MUSTadaptive ✓ ✓ ✓

ment our MUST, including a merging strategy denoted as MUSTmerging, a Continual Reinforcement
Learning strategy denoted as MUSTCRL, and a uniform adaption strategy denoted as MUSTuniform.

(I) MUSTmerging first samples some dialogues from each user simulator and the corresponding
dialogue system trained by this simulator. Then it combines the collected dialogues to train a new
user simulator for ensembling different user dialog act distributions. Finally, it uses this new user
simulator to train the dialogue system with RL.

(II) MUSTCRL
4 treats each user simulator as an independent RL environment. It moves the trained

system agent to another environment (i.e., let the system agent interact with another user simulator)
if the system converges in the current RL environment.

(III) MUSTuniform allows the system agent have chances to interact with all user simulators si-
multaneously. Different from MUSTCRL, MUSTuniform puts all user simulators in a single RL
environment and adopts the simplest way to specify different user simulators to train the dialogue
system, which is to pick a user simulator among all user simulators with a uniform distribution for
each iteration in the RL training.

Challenges to leverage multiple user simulators. The problem with MUSTmerging is that it be-
comes difficult to adjust the weights of each user simulator adaptively in the training process. Since
the proportions of dialogues from each user simulator are fixed in MUSTmerging, some user simu-
lators might be well-adapted and some might not. The MUSTCRL strategy has a problem of catas-
trophic forgetting (Khetarpal et al., 2020) and would be sensitive to the order of different user agents
interacting with the dialogue system, which might result in obtaining a sub-optimal dialogue sys-
tem. As Shi et al. (2019) shows, the system agents trained by different user simulators have different
convergence speeds and converged performances. Namely, the system agent might be easily fit-
ted to some user simulators but might be hardly fitted to others. The uniform distribution for
user simulator selection under MUSTuniform will result in inefficient training since it would
be redundant to assign the same training costs to let the dialogue system interact with easily-
adapted user simulators. Overall, the challenging problems under the MUST framework are 1)
how to efficiently leverage multiple user simulators to train the system agent, and 2) avoiding the
catastrophic forgetting issue.

4 MUST AS A MULTI-ARMED BANDIT PROBLEM

To tackle the challenges under the MUST, we first formulate MUST as a Multi-armed bandit (MAB)
problem, see Sec. 4.1. In Sec. 4.2, we propose a method called MUSTadaptive to use an adaptively-
updated distribution to replace the uniform distribution under the MUSTuniform for accelerating the
MUST training. We briefly compare these different implementations of MUST in Tab. 1.

4.1 FORMULATE MUST AS A MULTI-ARMED BANDIT PROBLEM

Adaptively specifying different user simulators to train the dialogue system reminds us of a similar
concept in machine learning, which is the boosting strategy (Zhou, 2012). From a boosting point of
view, one should increase the weights of weakly-performing data examples and decrease the weights
for well-performing ones. In MUST, we accordingly assume that it should reduce the interactions
between the dialogue system and those user simulators that the system has performed well
and increase the interactions between the system and other user simulators that the system
performs poorly. We refer to this strategy as boosting adaption.

4Continual Reinforcement Learning (CRL) Khetarpal et al. (2020) is a sequential learning paradigm for
training an agent with RL algorithms.

4



Under review as a conference paper at ICLR 2023

Meanwhile, we should also give some chances to all user simulators to relieve the catastrophic
forgetting issue. We refer to this as uniform adaption. Such a trade-off between boosting adaption
and uniform adaption is similar to the the exploitation vs exploration trade-off existing in the Multi-
armed bandit (MAB) problem (Auer et al., 2002).

Here, we interpret MUST as a MAB problem. We treat each user simulator as an arm. Suppose there
are K arms (simulators), and each arm i has a fixed but unknown reward distribution Ri with an
expectation µi. At each time step t = 1, 2, ..., T , one must choose one of these K arms. We denote
the arm pulled at time step t as it ∈ {1, ...,K}. After pulling an arm, it will receive a reward xit
drawn from the arm’s underlying reward distribution. The decision maker’s objective is to maximize
the cumulative expected reward over the time horizon

T∑
t=1

E[xit ] =

T∑
t=1

µit . (1)

In MUST, the reward received in each arm-pulling step refers to the possible performance gain of
the dialogue system after it interacts with a selected user simulator. A significant difference between
the standard MAB problem and MUST is that the reward expectation of a user simulator (arm) in
MUST is not static; it changes over time. For example, by consecutively interacting with the same
user simulator, the performance gain (reward) of the system will decay since the system might be
in saturation or overfitting to this simulator. Moreover, the performance gain of the system after
interacting with a simulator might increases if the simulator has not been selected for a period. To
deal with this difference, we should tailor the solution of MAB to the MUST framework.

4.2 TRAINING THE DIALOGUE SYSTEM WITH MUSTadaptive

To solve this MAB problem in MUST, we implement a method called MUSTadaptive with a two-
phase procedure, as presented in Algorithm 1. Similar to the UCB1 5 algorithm, MUSTadaptive

specifies user simulators in a uniform distribution to train the dialogue system S in the first Twarmup
steps (i.e., in the warm-up phase). After that, the adaptive phase will balance the boosting adaption
and the uniform adaption by introducing an adaptively-updated distribution p, which is used to
specify different user simulators to train the system S in later RL training. To accelerate the RL
training, intuitively, p is expected to assign lower weights to user simulators with which S already
performs well and higher weights to those user simulators with which S performs poorly.

(1) Warm-up phase: in the first Twarmup dialogues, we use a uniform distribution to sample all user
simulators to train the system agent S (lines 4-7). This phase is mainly used to warm up the dialogue
system S and make it have little ability to converse with all user simulators.

(2) Adaptive phase: in this phase, the distribution p used to sample all user simulators will be
adaptively updated, which is why we call this phase adaptive phase. When this phase begins (i.e.,
t = 0), we will first evaluate the performance (i.e., the success rate x̄j , j ∈ {1, · · · ,K}) of the
dialogue system S trained after the warm-up phase. The success rate x̄j is obtained by letting S
interact d times with the simulator Uj (e.g., j ∈ {1, ...,K}) and calculating the success rates.

Inspired by UCB1 Auer et al. (2002), we design a calibrated performance expectation x̂j of the
system agent S interacting with each user simulator Uj taking exploration into consideration
beyond pure exploitation:

x̂j = x̄j︸︷︷︸
exploitation

+

√
2 ln t

Tj,t︸ ︷︷ ︸
exploration

, j ∈ {1, ...,K}; (2)

where x̄j is the success rate of the system agent S tested with user simulator Uj , Tj,t is the number
of times user simulator Uj has been selected with so far. Then we normalize x̂j into

zj = 1/ (x̂j − τ min({x̄1, · · · , x̄K})) , (3)

5There exists an algorithm called the Upper Confidence Bound 1 (UCB1) (Auer et al., 2002) that could
solve the MAB problem. This policy first pulls each arm once in the first K steps, then will play the arm
that could maximize the sum of two terms: it = argmaxi

(
x̄i +

√
2 ln t
Ti,t

)
from t = K + 1 to T .

5



Under review as a conference paper at ICLR 2023

Algorithm 1: Implement MUSTadaptive with the modified UCB1 algorithm

Input: K fixed User simulators U = {U1, U2, · · ·UK} and the values of hyperparameters
Twarmup, T, e, d, τ ;

1 Initialization: randomly initialize System agent S;
2 Initialization: initialize the simulator sampling distribution p as a uniform distribution.
3 (1) Warm-up phase:
4 for t = 0, ..., Twarmup − 1 do
5 sample a simulator Uj in U w.r.t. the distribution p;
6 synthesize a new dialogue using the system agent S and the sampled Uj ;
7 use the reward obtained for the dialogue to update S with a RL algorithm;
8 (2) Adaptive phase:
9 for t = 0, ..., T − 1 do

10 if t%e == 0 then
11 for j = 1, ...,K do
12 evaluate the performance i.e. the success rate x̄j of the agent S by letting it interact

d times with the simulator Uj ;
13 update p based on these success rates {x̄1, ..., x̄K} (see Eq. 2, Eq. 3, and Eq. 4);
14 else
15 sample a simulator Uj in U w.r.t. the distribution p;
16 synthesizing a new dialogue using the system agent S and the sampled Uj ;
17 use the reward obtained for the dialogue to update S with a RL algorithm;

Output: The learned dialogue system S.

Eq. 3 penalizes the user simulators with which the dialogue system already performs well in the ex-
pectation term. Where the hyperparameter τ is the smooth factor for distribution p = {p1, · · · ,pK}
– the larger τ is, the sharper p is. Each probability pj in p is calculated as

pj =
zj∑K
i=1 zi

. (4)

In the following T −1 dialogues, we will specify all user simulators to train the system agent S with
this distribution p (lines 15-18). We will also evaluate the RL model S for every e episodes (line
10-12) and update the distribution p with the new K success rates (line 13).

Difference with the original UCB1. The main differences between our modified UCB1 algorithm
and the original UCB1 algorithm are twofold. First, we tailor the original UCB1 into our scenario
by using Eq. 3 to penalize the user simulators with which the dialogue system has performed well.
Secondly, we adopt a sampling schema based on a well-designed distribution (see Eq. 4) instead of
taking the arm with the highest expectation. This is to increase the diversity and flexibility of arm
selection. We also discuss the differences between our MUSTadaptive and some other related
works in App. H.

5 EXPERIMENTS

To verify the effectiveness of our proposed MUST, we benchmark the system agents trained either
with a single user simulator or multiple user simulators (including MUSTmerging, MUSTuniform,
MUSTadaptive). For the MUSTCRL strategy, we will discuss it in the App. C.

5.1 EXPERIMENTAL SETUP

Available user simulators. There are six user simulators provided by Shi et al. (2019), which
are Agenda-Template (AgenT), Agenda-Retrieval (AgenR), Agenda-Generation (AgenG), RNN-
Template (RNNT), RNN-Retrieval (RNNR), RNN-End2End (RNN) trained with different dialog
planning and generation methods. The NLU modules of all six user simulators are using the RNN
model. The DM modules of AgenT, AgenR, and AgenG are rule-based methods. For the NLG
module, these three simulators are using the template, retrieval, and generation methods respectively.

6



Under review as a conference paper at ICLR 2023

The DM modules of RNNT, RNNR are using Sequicity (Lei et al., 2018) as their backbones which
is an RNN-based seq2seq model with copy mechanism. The NLG modules of these two simulators
are using the template and retrieval methods respectively. The user simulator of RNN uses Sequicity
as its backbone in an end-to-end manner.

Baselines. The baselines are the dialogue systems trained by each user simulator, including Sys-
AgenT, Sys-AgenR, Sys-AgenG, Sys-RNNT, Sys-RNNR, and Sys-RNN. For a fair comparison,
all system agents (including the systems trained by our MUST) have the same architecture described
in Shi et al. (2019). See basic modules of user simulators and dialogue systems in App. B.1.

MultiWOZ Restaurant Domain Dataset. The original task in MultiWOZ (Budzianowski et al.,
2018) is to model the system response. Shi et al. (2019) annotate the user intents and the user-side
dialog acts in the restaurant domain of MultiWOZ to build user simulators, which has a total of
1,310 dialogues. Moreover, we randomly simulated 2,000 dialogues from each rule-based simulator
(i.e., AgenT, AgenR, AgenG) and their corresponding system agents respectively, and processed
these dialogues to have the same annotation format as the MultiWOZ restaurant domain dataset. We
denoted this dataset as Simulated Agenda Dataset, which has a total of 6,000 dialogues.

Evaluation Measures. The direct automatic metric to evaluate the dialogue system is the success
rate tested by each user simulator. We calculate the success rate between a user simulator and a sys-
tem agent by sampling 200 dialogues. We exclude some user simulators in MUST training and test
the systems with them as out-of-domain evaluation. According to the previous study Gunasekara
et al. (2020), there usually is a gap between automatic evaluations and human evaluations of dia-
logue systems. Therefore, we ask human users to converse with dialogue systems. Each dialogue
system has conversed with 5 different users; each user has 10 dialogues. In total, we collect 50
dialogues for each dialogue system to calculate its success rate. See more details in App. B.5.

5.2 IMPLEMENTATIONS

5.2.1 TWO NEW USER SIMULATORS

We believe Pre-trained Language Models (PLMs) might improve the capacity of user simulators
since they have recently shown remarkable success in building task-oriented dialogue systems (Ham
et al., 2020; Peng et al., 2021; Hosseini-Asl et al., 2020). Here we implement another two user
simulators using GPT (Radford et al., 2018; 2019). Building a user simulator using GPT is similar
to building a ToD system with GPT. See more details in App. G.

GPT Simulator. It is first fine-tuned on the simulated agenda dataset and then fine-tuned on the
MultiWOZ restaurant domain dataset by leveraging GPT. This user simulator will be used to help
implementing MUST.

GPTIL Simulator. For implementing the MUSTmerging strategy, similar to Imitation Learning
(IL), we first train a new user simulator with dialogue sessions collected from different user simula-
tors and their corresponding dialogue systems. We also learn this new user simulator based on GPT
model and denote it as GPTIL. GPTIL is first fine-tuned on the simulated agenda dataset. Then we
sample 1,400 dialogues from the simulated agenda dataset and merge them with 1,310 MultiWOZ
restaurant domain dialogues to continue fine-tuning GPTIL.

5.2.2 DIALOGUE SYSTEMS

Sys-GPT is trained with the single user simulator GPT. Sys-MUSTmerging is trained with GPTIL.
Sys-MUSTuniform is trained by the user simulators of AgenT, AgenR, RNNT, and GPT with a
uniform sampling distribution. For training Sys-MUSTadaptive

6, the distribution p will be adap-
tively updated using our modified UCB1 algorithm. We also train the Sys-MUSTuniform and
Sys-MUSTadaptive by using different subsets of the user simulators for ablation studies. See
more details in App. D.

6See implementations of dialogue systems in App. B.2 and policy gradient algorithm in App. B.3.

7



Under review as a conference paper at ICLR 2023

Table 2: The success rates of the system agents were tested against various user simulators. Each
column represents a user simulator, each row represents a dialogue system trained with a specific
simulator, e.g., Sys-AgenT means the system trained with AgenT. Each entry shows the success rate
on 200 dialogues collected from a user simulator and a system agent. We use four user simulators:
AgenT, AgenR, RNNT, and GPT simulator to implement MUSTuniform and MUSTadaptive.

Dialogue Systems In-domain evaluation Out-of-domain evaluation All
AgenT AgenR RNNT GPT AgenG RNNR RNN Avg.↑ Std.↓ Avg.↑ Std.↓

single

Sys-AgenT 97.5 54.0 ↓40.0% 98.5 ↓0.5% 78.0↓4.9% 72.5 92.5 77.0 80.7 8.6 81.4 14.8
Sys-AgenR 96.0 ↓1.5% 90.0 98.5↓0.5% 80.5↓1.8% 97.5 97.5 82.0 92.3 7.3 91.7 7.1
Sys-RNNT 30.5 ↓68.7% 23.0 ↓74.4% 99.0 75.5↓7.9% 35.5 97.5 84.0 72.3 26.6 63.6 30.5
Sys-GPT 60.5 ↓37.9% 51.5 ↓42.8% 97.0 ↓2.0% 82.0 59.5 94.0 92.0 81.8 15.8 76.6 17.6

MUST
Sys-MUSTmerging 97.5 ↑0.0% 83.5 ↓7.2% 94.5 ↓4.6% 80.5↓1.8% 97.5 94.0 82.5 91.3 6.4 90.0 6.9
Sys-MUSTuniform 97.5 ↑0.0% 89.0 ↓1.0% 97.5↓1.5% 82.5↑0.5% 96.5 96.0 87.5 93.4 4.2 92.4 5.6
Sys-MUSTadaptive 97.5 ↑0.0% 89.5 ↓0.5% 97.0↓2.0% 82.5↑0.5% 96.5 97.5 90.0 94.7 3.3 92.9 5.3

[1] The underlined number represents the success rate between a user simulator and its corresponding
dialogue system trained by this user simulator. The increasing and decreasing percentages (in red and green
colors) use the underlined numbers as the base success rates.
[2] ↓ (↑) indicates by what percentages the success rate has decreased (increased) compared with the base
success rate by interacting with the same user simulator.

5.3 EXPERIMENTAL RESULTS

Automatic Evaluation. As seen in Tab. 2, Sys-MUSTuniform and Sys-MUSTadaptive outperform
the dialogue systems (Sys-AgenT, Sys-AgenR, Sys-RNNT, and Sys-GPT) trained by a single user
simulator in the overall performance, demonstrating the superiority of leveraging multiple user sim-
ulators. Especially, Sys-MUSTadaptive has a 1.2 absolute value improvement (92.9 vs. 91.7) av-
eragely over the previous SOTA system Sys-AgenR. Observing that Sys-MUSTmerging is not as
competitive as Sys-MUSTuniform and Sys-MUSTadaptive, this comparison shows that the merging
strategy cannot effectively leverage multiple user simulators.

In in-domain evaluation, the performances of systems (Sys-AgenT, Sys-AgenR, Sys-RNNT, and
Sys-GPT) trained by a single user simulator drop a lot when testing with a different user simulator.
It requires us to delicately select a suitable user simulator for obtaining a good dialogue system.
However, human users might be multi-facet or even unknown, which makes the selection become
difficult. Therefore, it is essential to leverage multiple user simulators when training dialogue sys-
tems. At least, the performance gap of dialogue systems trained with our MUST becomes smaller
than without MUST, see the percentages labeled in green and red colors.

In out-of-domain evaluation where the user simulators used for testing the systems are unseen
by our MUST, Sys-MUSTuniform and Sys-MUSTadaptive achieve at most 2.4 absolute value im-
provement over Sys-AgenR. This evidences that MUST has a better generalization ability for in-
teracting with unseen user simulators. Moreover, the dialogue systems (Sys-MUSTmerging, Sys-
MUSTuniform, and Sys-MUSTadaptive) trained with the proposed MUST approaches have lower
standard deviations, which indicates that they are more robust to the diversity of user simulators.

Table 3: Human evaluation.

Dialogue Systems human
evaluation

single

Sys-AgenT 76.0
Sys-AgenR 84.0
Sys-RNNT 34.0
Sys-GPT 58.0

MUST
Sys-MUSTmerging 90.0
Sys-MUSTuniform 92.0
Sys-MUSTadaptive 92.0

Human Evaluation. The human evaluation results in Tab. 3
show that our Sys-MUSTuniform and Sys-MUSTadaptive largely
outperform the other dialogue systems when interacting with real
users. The consistency between automatic evaluations and human
evaluations evidences the effectiveness of our proposed MUST.

5.4 ANALYSIS AND DISCUSSIONS

Convergences between MUSTuniform and MUSTadaptive. In
Fig. 2, we show the learning curves of Sys-MUSTuniform and
Sys-MUSTadaptive in 100,000 steps; the first 40,000 steps are
in the warm-up phase for Sys-MUSTadaptive. From Fig. 2(a), we can see that training the dia-
logue system with AgenT, AgenR, RNNT, and GPT by MUSTadaptive can converge faster than by
MUSTuniform . We do ablation studies on our modified UCB1 algorithm to help understand-
ing the designed distribution p, see details in App. E. We further plot the performances of the
dialogue system tested by each user simulator in the RL training, which is shown in Fig. 2(b)-2(e).

8



Under review as a conference paper at ICLR 2023

(a) The learning curves (b) AgenR (c) AgenT (d) GPT (e) RNNT

Figure 2: The learning curves of Sys-MUSTuniform and Sys-MUSTadaptive. (a) shows their average
success rates tested with all user simulators (AgenT, AgenR, RNNT, and GPT). The success rates of
them tested with each user simulator are shown in (b)-(e).

(a) The sampling proportion of simulators. (b) Variations of the sampling proportions (in
every 2000 steps) of simulators.

Figure 3: The sampling proportions of user simulators in average (a) and in time horizon (b).

Visualization of the patterns learned by MUSTadaptive. Let us define the adaptation difficulty
of a user simulator using how many steps it must take to train the dialogue system with this user
simulator until it converges. The adaptation difficulty of all user simulators could be ranked like
AgenR > AgenT > GPT > RNNT according to Fig. 2(b)-2(e). To check whether MUSTadaptive

tends to sample harder-to-adapt user simulators more times in the adaptive phase, as assumed in
Sec. 4.2, we visualize the sampling proportions of all user simulators in Fig. 3(a). We could ob-
serve that AgenR was sampled with 45.1% (the biggest proportion) and it is indeed the hardest user
simulator that can be adapted by the system; RNNT has the smallest sampling proportion and it is
the easiest user simulator that can be adapted by the system. The consistency between the adapta-
tion difficulty and sampling proportions for these four user simulators evidences our assumption in
Sec. 4.2. Fig. 3(b) visualizes the variations of the sampling distributions of user simulators. Inter-
estingly, it shows that AgenR and AgenT are competitive with the GPT simulator; while RNNT and
GPT are cooperative with each other. This might be because RNNT and GPT simulator are learned
from the dialogue corpus and will share similar behaviors.

6 CONCLUSION

In this paper, we propose a framework named MUST to improve the system agent by using multiple
user simulators simultaneously. We discuss several simple methods to implement MUST, which
is either inflexible or inefficient. Therefore, we formulate MUST as a Multi-armed bandits (MAB)
problem, based on which we propose a novel implementation called MUSTadaptive. The experimen-
tal results on the restaurant search task from MultiWOZ demonstrate that our proposed MUST can
largely improve the system agent upon the baseline methods, especially when tested with unseen
user simulators. Moreover, MUSTadaptive is robust to the diversity of user simulators and its train-
ing is more efficient than MUSTuniform. The main limitation of this work is that we only conduct
our experiments on the restaurant domain of the MultiWOZ since we can only find multiple user
simulators from Shi et al. (2019) and they build these simulators only on the restaurant search task.
In future work, we plan to apply our proposed methods to multi-domain scenarios.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Layla El Asri, Jing He, and Kaheer Suleman. A sequence-to-sequence model for user simulation in
spoken dialogue systems, 2016.

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2–3):235–256, 2002. URL http://homes.dsi.unimi.
it/˜cesabian/Pubblicazioni/ml-02.pdf.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, Iñigo Casanueva, Stefan Ultes, Osman
Ramadan, and Milica Gašić. MultiWOZ - a large-scale multi-domain Wizard-of-Oz dataset for
task-oriented dialogue modelling. In Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 5016–5026, Brussels, Belgium, October-November
2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1547. URL https:
//aclanthology.org/D18-1547.

Yun-Nung Chen, Asli Celikyilmaz, and Dilek Hakkani-Tür. Deep learning for dialogue systems.
In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics:
Tutorial Abstracts, pp. 8–14, Vancouver, Canada, July 2017. Association for Computational Lin-
guistics. URL https://aclanthology.org/P17-5004.

R. Chulaka Gunasekara, Seokhwan Kim, Luis Fernando D’Haro, Abhinav Rastogi, Yun-Nung Chen,
Mihail Eric, Behnam Hedayatnia, Karthik Gopalakrishnan, Yang Liu, Chao-Wei Huang, Dilek
Hakkani-Tür, Jinchao Li, Qi Zhu, Lingxiao Luo, Lars Liden, Kaili Huang, Shahin Shayan-
deh, Runze Liang, Baolin Peng, Zheng Zhang, Swadheen Shukla, Minlie Huang, Jianfeng
Gao, Shikib Mehri, Yulan Feng, Carla Gordon, Seyed Hossein Alavi, David R. Traum, Max-
ine Eskénazi, Ahmad Beirami, Eunjoon Cho, Paul A. Crook, Ankita De, Alborz Geramifard,
Satwik Kottur, Seungwhan Moon, Shivani Poddar, and Rajen Subba. Overview of the ninth
dialog system technology challenge: DSTC9. CoRR, abs/2011.06486, 2020. URL https:
//arxiv.org/abs/2011.06486.

Izzeddin Gur, Dilek Hakkani-Tur, Gokhan Tur, and Pararth Shah. User modeling for task oriented
dialogues, 2018.

Donghoon Ham, Jeong-Gwan Lee, Youngsoo Jang, and Kee-Eung Kim. End-to-end neural pipeline
for goal-oriented dialogue systems using GPT-2. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pp. 583–592, Online, July 2020. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.54. URL https:
//aclanthology.org/2020.acl-main.54.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu, Semih Yavuz, and Richard Socher. A simple
language model for task-oriented dialogue. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
20179–20191. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual rein-
forcement learning: A review and perspectives. CoRR, abs/2012.13490, 2020. URL https:
//arxiv.org/abs/2012.13490.

Florian Kreyssig, Iñigo Casanueva, Paweł Budzianowski, and Milica Gašić. Neural user simula-
tion for corpus-based policy optimisation of spoken dialogue systems. In Proceedings of the
19th Annual SIGdial Meeting on Discourse and Dialogue, pp. 60–69, Melbourne, Australia,
July 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-5007. URL
https://aclanthology.org/W18-5007.

Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun Ren, Xiangnan He, and Dawei Yin. Sequicity:
Simplifying task-oriented dialogue systems with single sequence-to-sequence architectures. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 1437–1447, Melbourne, Australia, July 2018. Association for Com-
putational Linguistics. doi: 10.18653/v1/P18-1133. URL https://aclanthology.org/
P18-1133.

10

http://homes.dsi.unimi.it/~cesabian/Pubblicazioni/ml-02.pdf
http://homes.dsi.unimi.it/~cesabian/Pubblicazioni/ml-02.pdf
https://aclanthology.org/D18-1547
https://aclanthology.org/D18-1547
https://aclanthology.org/P17-5004
https://arxiv.org/abs/2011.06486
https://arxiv.org/abs/2011.06486
https://aclanthology.org/2020.acl-main.54
https://aclanthology.org/2020.acl-main.54
https://proceedings.neurips.cc/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf
https://arxiv.org/abs/2012.13490
https://arxiv.org/abs/2012.13490
https://aclanthology.org/W18-5007
https://aclanthology.org/P18-1133
https://aclanthology.org/P18-1133


Under review as a conference paper at ICLR 2023

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky, Michel Galley, and Jianfeng Gao. Deep
reinforcement learning for dialogue generation. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pp. 1192–1202, Austin, Texas, Novem-
ber 2016a. Association for Computational Linguistics. doi: 10.18653/v1/D16-1127. URL
https://aclanthology.org/D16-1127.

Xiujun Li, Zachary C Lipton, Bhuwan Dhingra, Lihong Li, Jianfeng Gao, and Yun-Nung Chen. A
user simulator for task-completion dialogues. arXiv preprint arXiv:1612.05688, 2016b.

Hsien-chin Lin, Nurul Lubis, Songbo Hu, Carel van Niekerk, Christian Geishauser, Michael Heck,
Shutong Feng, and Milica Gasic. Domain-independent user simulation with transformers for task-
oriented dialogue systems. In Proceedings of the 22nd Annual Meeting of the Special Interest
Group on Discourse and Dialogue, pp. 445–456, Singapore and Online, July 2021. Association
for Computational Linguistics. URL https://aclanthology.org/2021.sigdial-1.
47.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for dense object
detection. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Oct
2017.

Bing Liu and Ian Lane. End-to-end learning of task-oriented dialogs. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics: Stu-
dent Research Workshop, pp. 67–73, New Orleans, Louisiana, USA, June 2018. Association for
Computational Linguistics. doi: 10.18653/v1/N18-4010. URL https://aclanthology.
org/N18-4010.

Bing Liu and Ian R. Lane. Attention-based recurrent neural network models for joint intent detec-
tion and slot filling. CoRR, abs/1609.01454, 2016. URL http://arxiv.org/abs/1609.
01454.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, and Peter Stone.
Curriculum learning for reinforcement learning domains: A framework and survey. CoRR,
abs/2003.04960, 2020. URL https://arxiv.org/abs/2003.04960.

Baolin Peng, Xiujun Li, Lihong Li, Jianfeng Gao, Asli Celikyilmaz, Sungjin Lee, and Kam-Fai
Wong. Composite task-completion dialogue policy learning via hierarchical deep reinforcement
learning. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, pp. 2231–2240, Copenhagen, Denmark, September 2017. Association for Compu-
tational Linguistics. doi: 10.18653/v1/D17-1237. URL https://aclanthology.org/
D17-1237.

Baolin Peng, Xiujun Li, Jianfeng Gao, Jingjing Liu, and Kam-Fai Wong. Deep Dyna-Q: Inte-
grating planning for task-completion dialogue policy learning. In Proceedings of the 56th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
2182–2192, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi:
10.18653/v1/P18-1203. URL https://aclanthology.org/P18-1203.

Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun Li, Jinchao Li, Michael Zeng, and Jianfeng
Gao. Few-shot natural language generation for task-oriented dialog. CoRR, abs/2002.12328,
2020. URL https://arxiv.org/abs/2002.12328.

Baolin Peng, Chunyuan Li, Jinchao Li, Shahin Shayandeh, Lars Liden, and Jianfeng Gao. Soloist:
Building task bots at scale with transfer learning and machine teaching, 2021.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter, 2020.

11

https://aclanthology.org/D16-1127
https://aclanthology.org/2021.sigdial-1.47
https://aclanthology.org/2021.sigdial-1.47
https://aclanthology.org/N18-4010
https://aclanthology.org/N18-4010
http://arxiv.org/abs/1609.01454
http://arxiv.org/abs/1609.01454
https://arxiv.org/abs/2003.04960
https://aclanthology.org/D17-1237
https://aclanthology.org/D17-1237
https://aclanthology.org/P18-1203
https://arxiv.org/abs/2002.12328


Under review as a conference paper at ICLR 2023

Jost Schatzmann and Steve Young. The hidden agenda user simulation model. IEEE Transactions
on Audio, Speech, and Language Processing, 17(4):733–747, 2009. doi: 10.1109/TASL.2008.
2012071.

Jost Schatzmann, Blaise Thomson, Karl Weilhammer, Hui Ye, and Steve Young. Agenda-based user
simulation for bootstrapping a POMDP dialogue system. In Human Language Technologies 2007:
The Conference of the North American Chapter of the Association for Computational Linguistics;
Companion Volume, Short Papers, pp. 149–152, Rochester, New York, April 2007. Association
for Computational Linguistics. URL https://aclanthology.org/N07-2038.

Weiyan Shi, Kun Qian, Xuewei Wang, and Zhou Yu. How to build user simulators to train RL-based
dialog systems. In Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 1990–2000, Hong Kong, China, November 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/D19-1206. URL https://aclanthology.org/
D19-1206.

Ryuichi Takanobu, Runze Liang, and Minlie Huang. Multi-agent task-oriented dialog policy learn-
ing with role-aware reward decomposition. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 625–638, Online, July 2020. Association for Com-
putational Linguistics. doi: 10.18653/v1/2020.acl-main.59. URL https://aclanthology.
org/2020.acl-main.59.

Bo-Hsiang Tseng, Yinpei Dai, Florian Kreyssig, and Bill Byrne. Transferable dialogue systems
and user simulators. In Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 152–166, Online, August 2021. Association for Computational Lin-
guistics. doi: 10.18653/v1/2021.acl-long.13. URL https://aclanthology.org/2021.
acl-long.13.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-Hao Su, David Vandyke, and Steve Young.
Semantically conditioned LSTM-based natural language generation for spoken dialogue systems.
In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,
pp. 1711–1721, Lisbon, Portugal, September 2015. Association for Computational Linguistics.
doi: 10.18653/v1/D15-1199. URL https://aclanthology.org/D15-1199.

Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić, Milica Gašić, Lina M. Rojas-Barahona, Pei-
Hao Su, Stefan Ultes, and Steve Young. A network-based end-to-end trainable task-oriented
dialogue system. In Proceedings of the 15th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Volume 1, Long Papers, pp. 438–449, Valencia, Spain,
April 2017. Association for Computational Linguistics. URL https://aclanthology.
org/E17-1042.

Jason Williams, Antoine Raux, Deepak Ramachandran, and Alan Black. The dialog state track-
ing challenge. In Proceedings of the SIGDIAL 2013 Conference, pp. 404–413, Metz, France,
August 2013. Association for Computational Linguistics. URL https://aclanthology.
org/W13-4065.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6. URL https:
//aclanthology.org/2020.emnlp-demos.6.

Yizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan, Xiujun Li, Chris Brockett, and Bill Dolan.
Generating informative and diverse conversational responses via adversarial information maxi-
mization. In NeurIPS, 2018.

Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC press, 2012.

12

https://aclanthology.org/N07-2038
https://aclanthology.org/D19-1206
https://aclanthology.org/D19-1206
https://aclanthology.org/2020.acl-main.59
https://aclanthology.org/2020.acl-main.59
https://aclanthology.org/2021.acl-long.13
https://aclanthology.org/2021.acl-long.13
https://aclanthology.org/D15-1199
https://aclanthology.org/E17-1042
https://aclanthology.org/E17-1042
https://aclanthology.org/W13-4065
https://aclanthology.org/W13-4065
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6


Under review as a conference paper at ICLR 2023

A MULTI-ARMED BANDIT PROBLEM

Reinforcement learning policies face the exploitation versus exploration trade-off, which can be de-
scribed as the search for a balance between exploring the environment to find profitable actions while
taking the empirically best action as often as possible. This exploitation vs exploration dilemma has
been widely studied as a Multi-armed bandit (MAB) problem.

In the MAB problem, there are K arms, and each arm j has a fixed but unknown reward distribution
Rj with an expectation µj . At each time step t = 1, 2, ..., T , the decision maker must choose one
of these K arms. We denote the arm pulled at time step t as jt ∈ {1, ...,K}. After pulling an
arm, it will receive a reward Xjt which is a realization drawn from the arm’s underlying reward
distribution. The decision masker’s objective is to maximize the cumulative expected reward over
the time horizon

∑T
t=1 E[Xjt ] =

∑T
t=1 µjt .

B MORE DETAILS ABOUT TRAINING DIALOGUE SYSTEMS

B.1 THE ARCHITECTURES OF USER SIMULATORS AND DIALOGUE SYSTEMS

The basic modules of user simulators and dialogue systems are detailed in Tab. 4

Table 4: The architectures of user simulators and dialogue systems. Modules with † are trainable.

Agent Types Agents NLU DM NLG

User Simulators

AgenT (Shi et al., 2019) RNN† Agenda Template
AgenR (Shi et al., 2019) RNN† Agenda Retrieval
AgenG (Shi et al., 2019) RNN† Agenda RNN† (Generation)
RNNT (Shi et al., 2019) RNN† Template
RNNR (Shi et al., 2019) RNN† Retrieval
RNN (Shi et al., 2019) RNN† (NLU + NLG)
GPT (ours) Transformer† (NLU + DM + NLG)
GPTIL (ours) Transformer† (NLU + DM + NLG)

Dialogue Systems All RNN† RNN† Template

B.2 THE IMPLEMENTATIONS OF THE DIALOGUE SYSTEMS

The NLU modules of all system agents are a 2-layer bidirectional-GRU with 200 hidden units. The
NLG modules of them are using the template-based method. The DM modules of them are a simple
MLP. The input of the DM module is a state representation, which consists of the traditional dialog
state and word count vector of the current utterance same as Shi et al. (2019). We mainly use the
policy gradient method to train the DM modules of dialogue systems from scratch.

B.3 THE DETAILS OF RUNNING POLICY GRADIENT ALGORITHM

For training the DM modules of dialogue systems with the policy gradient method, we also apply
the ϵ-greedy exploration strategy. We let ϵ be 0.5 in the beginning, and it will decrease to 0 linearly
within the RL training. The dialogue ends either when the user simulators say ”goodbye” or when
the number of turns of the dialogue exceeds 10. The reward will be given +1 for task success, -1 for
task failure, and -0.1 for each additional turn to encourage the RL-based policy module to finish the
task fast. Also, a discounted factor of 0.9 is applied to all the experiences.

B.4 THE PARAMETERS OF TRAINING SYS-MUSTadaptive

The hyperparameters used to train the Sys-MUSTadaptive are listed in the Tab. 5.

13



Under review as a conference paper at ICLR 2023

Table 5: The hyperparameters used for training the Sys-MUSTadaptive.

Hyperparameter Value
T 100,000
T0 40,000
e 2,000
d 200
τ 0.75

Table 6: The relationships between user acts and system acts.

User act System act

inform type ask type, present result, nomatch result
inform type change ask type, present result, nomatch result
anything else present result, no other
make reservation ask reservation info, booking success, booking fail
make reservation change time ask reservation info, booking success, booking fail
ask info provide info
goodbye goodbye

B.5 HUMAN EVALUATION ON DIALOGUE SYSTEMS

We find 5 volunteers to conduct the human evaluations on dialogue systems. They all have good
English skills and are unpaid. Before the experiments, we introduced task-oriented dialogue systems
and user simulators to them and tell them how to judge if the generated dialogue is successful. Then
we prepare 50 user goals from MultiWOZ Restaurant Domain Dataset: 20 of them are simple, and
30 of them are a little bit complex. We specify 10 user goals for each volunteer and let the volunteer
converse with all dialogue systems for each same user goal. In total, we collect 50 dialogues for
each dialogue system to calculate its success rate.

The criteria to judge whether a task-oriented dialogue is successful are based on two aspects:
1) the system agent correctly understands the user’s goal (i.e., the predicted dialogue state
tracking result is correct); and 2) the system agent provides all information (i.e., all slot values
or a booking reference number) that the user requests. For human evaluations, we follow
these standard criteria. Besides, we also see if the system act generated by the system agent is
matched to the user act for each turn in the dialogue.

There have seven user acts, which are ‘inform type”, “inform type change”, “ask info”, “any-
thing else”, “make reservation”, “make reservation change time”, and “goodbye”. There have
nine system acts, which are “ask type”, “present result”, “nomatch result”, “no other”, “ask
reservation info”, “provide info”, “booking success”, “booking fail” and “goodbye”. The rela-
tionships between user acts and system acts are shown in Tab. 6.

C IMPLEMENT MUST WITH THE MUSTCRL STRATEGY

Without losing any generality, we consider two representative sequential orders: 1) AgenT, AgenR,
RNNT, GPT; and 2) AgenR, GPT, AgenT, RNNT. For case 1, the first two user simulators are
Agenda-based user simulators; the last two user simulators are Neural networks-based user simula-
tors. For case 2, we interleave these two types of user simulators. When the system trained by a user
simulator converges, we let it continue to interact with another user simulator following the order.

As seen in Tab. 7, in case 1, the system agent achieves the best performance (i.e., 92.4 in terms of
the average success rate) after training with AgenT and AgenR sequentially. However, its overall
performance degrades to 83.0 after training with RNNT; especially, its performance decreases by
36.0% when testing with AgenR (93.0 → 59.5). Moreover, after continuing to learn from GPT,
the performance of the system agent becomes worse for AgenT (95.0 → 75.5) and AgenR (59.5 →
47.5). This indicates the catastrophic forgetting issue heavily happened when the system agent starts
learning from AgenR. We also could observe a similar phenomenon from case 2. These results can

14



Under review as a conference paper at ICLR 2023

Table 7: The experimental results of implementing MUST with the MUSTCRL strategy.

Dialogue Systems User simulators
AgenT AgenR RNNT GPT Avg.

Case 1

trained by AgenT 97.5 54.0 98.5 78.0 82.0
trained by AgenT, AgenR sequentially 97.0 ↓ 0.5% 93.0 97.0 82.5 92.4
trained by AgenT, AgenR, RNNT sequentially 95.0↓ 2.6% 59.5↓ 36.0% 97.0 80.5 83.0
trained by AgenT, AgenR, RNNT, GPT sequentially 75.5 ↓22.6% 47.5↓ 48.9% 96.0↓ 1.0% 82.0 75.3

Case 2

trained by AgenR 96.0 90.0 98.5 82.5 91.8
trained by AgenR, GPT sequentially 97.5 88.0↓2.2% 97.0 81.5 91.0
trained by AgenR, GPT, AgenT sequentially 96.5 78.5↓12.8% 97.0 80.0↓1.8% 88.0
trained by AgenR, GPT, AgenT, RNNT sequentially 97.5↑1.0% 65.5↓27.2% 95.0 78.5↓3.7% 84.1

Table 8: Ablation study on MUST. It uses five user simulators (AgenT, AgenR, RNNT, RNNR
and GPT simulator) to implement MUSTuniform and MUSTadaptive.

Dialogue Systems In-domain evaluation Out-of-domain evaluation All
AgenT AgenR RNNT RNNR GPT AgenG RNN Avg.↑ Std.↓ Avg.↑ Std.↓

single

Sys-AgenT 97.5 54.0 ↓40.0% 98.5 ↓0.5% 92.5↓1.0% 78.0↓4.9% 72.5 77.0 74.8 2.3 81.4 14.8
Sys-AgenR 96.0 ↓1.5% 90.0 98.5↓0.5% 97.5↑4.3% 80.5↓1.8% 97.5 82.0 89.8 7.8 91.7 7.1
Sys-RNNT 30.5 ↓68.7% 23.0 ↓74.4% 99.0 97.5↑4.3% 75.5↓7.9% 35.5 84.0 59.8 24.3 63.6 30.5
Sys-RNNR 30.0 ↓68.7% 23.0 ↓74.4% 96.5↓2.5% 93.5 68.5↓16.5% 30.0 70.5 50.3 20.3 58.9 28.8
Sys-GPT 60.5 ↓37.9% 51.5 ↓42.8% 97.0 ↓2.0% 94.0↑0.5% 82.0 59.5 92.0 75.8 16.3 76.6 17.6
Sys-MUSTuniform 97.5 ↑0.0% 87.0 ↓3.3% 97.0↓2.0% 97.5↑4.3% 82.0↑0.0% 96.5 87.0 91.8 4.8 92.1 6.0
Sys-MUSTadaptive 97.0 ↓0.5% 89.0 ↓1.1% 97.0↓2.0% 97.5↑4.3% 82.5↑0.6% 97.5 87.5 92.5 5.0 92.6 5.7

confirm that implementing our proposed MUST with MUSTCRL strategy indeed has the catastrophic
forgetting issue.

D SENSITIVITY ON DIFFERENT SUBSETS OF USER SIMULATORS

We also train the Sys-MUSTuniform and Sys-MUSTadaptive by using different groups of user sim-
ulators for ablation studies: 1) five user simulators of AgenT, AgenR, RNNT, RNNR, and GPT; and
2) three user simulators including AgenT, RNNT, and GPT.

Superiority of MUST. From Tab. 8 and Tab. 9, we can observe that Sys-MUSTuniform and Sys-
MUSTadaptive largely outperform the dialogue systems trained by single user simulators. Espe-
cially, they gain an improvement of 4 absolute points (85.4 vs. 81.4) when trained with three user
simulators of AgenT, RNNT, and GPT. In summary, MUST could consistently improve the perfor-
mance of the systems when using different numbers of user simulators. The ablation studies on
different subsets of user simulators can demonstrate the robustness of MUST.

Out-of-domain evaluation. When testing our MUST with unseen user simulators, Sys-
MUSTuniform and Sys-MUSTadaptive can also largely outperform the dialogue systems trained by a
single user simulator. As seen in Tab. 8, Sys-MUSTadaptive achieves a 2.7 absolute value improve-
ment (92.5 vs 89.8) over Sys-AgenR. Sys-MUSTuniform and Sys-MUSTadaptive even improve at
least 5.7 points (80.0 vs 74.3) over Sys-GPT (as shown in Tab. 9). These experimental results on
different subsets of user simulators demonstrate that our MUST has a better generalization ability
for interacting with unseen user simulators and is insensitive to the user simulator selection.

Comparison between MUSTuniform and MUSTadaptive. Fig. 4 shows the learning curves of Sys-
MUSTuniform and Sys-MUSTadaptive on different subsets of user simulators. The first 40,000 steps
are in the warm-up phase for Sys-MUSTadaptive. We could conclude that training the dialogue
system by MUSTadaptive consistently converges faster than by MUSTuniform, at least in the scenar-
ios when using three, four, or five user simulators to implement MUST (see Fig. 4(a), Fig. 2(a), and
Fig. 4(b), respectively).

From Tab. 8 where MUST is trained with five user simulators, we could observe that Sys-
MUSTadaptive outperforms Sys-MUSTuniform with 0.5 absolute point. The performance gain
becomes smaller when MUST is trained with three user simulators (see Tab. 9). This probably
shows that Sys-MUSTadaptive would be more beneficial when there exist more user simulators.

15



Under review as a conference paper at ICLR 2023

Table 9: Ablation study on MUST. It uses three user simulators (AgenT, RNNT, and GPT simu-
lator) to implement MUSTuniform and MUSTadaptive.

Dialogue Systems In-domain evaluation Out-of-domain evaluation All
AgenT RNNT GPT AgenR AgenG RNNR RNN Avg.↑ Std.↓ Avg.↑ Std.↓

single
Sys-AgenT 97.5 98.5↓0.5% 78.0 ↓0.5% 54.0 72.5 92.5 77.0 74.0 13.7 81.4 14.8
Sys-RNNT 30.5 ↓68.7% 99.0 75.5↓7.9% 23.0 35.5 97.5 84.0 60.0 31.4 63.6 30.5
Sys-GPT 60.5 ↓37.9% 97.0 ↓2.0% 82.0 51.5 59.5 94.0 92.0 74.3 19.0 76.6 17.6

MUST Sys-MUSTuniform 97.5↑0.0% 96.0↓3.0% 82.5↑0.6% 55.0 82.0 97.5 87.0 80.3 15.7 85.4 13.9
Sys-MUSTadaptive 97.5↑0.0% 97.5↓1.5% 82.5↑0.6% 55.5 80.5 97.0 87.0 80.0 15.3 85.4 13.9

(a) MUST with five use simulators (b) MUST with three use simulators

Figure 4: The learning curves of Sys-MUSTuniform and Sys-MUSTadaptive.

E ABLATION STUDY FOR THE MODIFIED UCB1 ALGORITHM

E.1 NECESSITY OF THE EXPLORATION TERM

Our modified UCB1 algorithm provides a distribution for guiding how to sample different user
simulators to accelerate the entire MUST training. The exploration term in the proposed
MUSTadaptive exists mainly for uniform adaption (see the detailed explanation in Sec. 4.1). The
original UCB1 algorithm (Auer et al., 2002) can tell us how to pull arms in bandits to maximize
the cumulative expected reward. It is well-known that it cannot explore effectively without the
exploration (UCB) term; consequently, it might not find the optimal action and lead to relatively
poor performance. It is difficult to theoretically prove the usefulness of the exploration term in
our scenario (like in the original UCB1 algorithm), which we leave as future work. However, we
alternatively conduct some ablation studies to evidence the necessity of the exploration term.

MUSTadaptivew/t exploration If we omit the exploration term in our modified UCB1 algorithm,
the simplest way to calculate the distribution p is to make the sample probability w.r.t a user simula-
tor solely depend on the inversion of the system’s performance. See the row called ‘w/t exploration’
in Tab. 10 for comparisons.

In this situation, the obtained distribution p might be sharp due to the lack of the exploration
term, which would be harmful for uniform adaption to some extent. As Fig. 5(a) shows,
MUSTadaptive performs worse and converges slower when omitting the exploration term, compared
with when our modified UCB1 algorithm has the exploration term. This could demonstrate both the
importance of uniform adaption and the usefulness of the exploration term.

E.2 ABLATION STUDY ON THE DESIGNED DISTRIBUTION

Rationale of exploitation vs exploration trade-off. Similar to the exploitation vs exploration
trade-off, the distribution p under the MUSTadaptive should trade off the boosting adaption and the
uniform adaption when specifying multiple user simulators. Considering the boosting adaption,
we make a exploitation assumption stated as follows: p is expected to assign lower weights to

16



Under review as a conference paper at ICLR 2023

(a) Ablation study on the exploration term (b) Ablation study on the distribution p

Figure 5: The learning curves of Sys-MUSTuniform and Sys-MUSTadaptive.

user simulators with which the system agent S already performs well and higher weights to those
user simulators with which S performs poorly. Therefore, the sampling ratios for different user
simulators should be inversely proportional to the system’s performance on each user simulator.

Rationale of the modified UCB1 algorithm The modified UCB1 algorithm for implementing
MUSTadaptive is defined as

x̂j = x̄j︸︷︷︸
exploitation

+

√
2 ln t

Tj,t︸ ︷︷ ︸
exploration

, j ∈ {1, ...,K};

zj = 1/ (x̂j − τ min({x̄1, · · · , x̄K})) ,

pi =
zj∑K
j=1 zj

.

(5)

MUSTadaptive in Eq. 5 (which is the same as Eq. 2, Eq. 3, and Eq. 4) consists of three steps:
exploitation-exploration term construction, post-processing (re-scaling operation and the inversion
operation), and the probability normalization, corresponding to each line in Eq. 5. Besides this way,
we could have the following three variants that shuffle the order of these three key operations (i.e.,
the exploitation-exploration term construction, re-scaling operation, and the inversion operation).
We name these variants as as MUSTadaptive-I, MUSTadaptive-II, and MUSTadaptive-III.

MUSTadaptive-I. For the exploitation assumption, we make the exploitation term inversely propor-
tional to the system’s performance x̄j on each user simulator Uj , which is denoted as MUSTadaptive-
I. From Tab. 10, we can obverse that the difference between MUSTadaptive-I and MUSTadaptive is
that MUSTadaptive-I take the inversion of x̄ before the exploitation-exploration term construction
while MUSTadaptive take the inversion operation after the exploitation-exploration term construc-
tion. Since each x̄j , j ∈ {1, · · · ,K} is smaller than 1, 1

x̄j
will be larger than 1. Therefore, the

term of 1
x̄j

and the exploration term of
√

2 ln t
Tj,t

(smaller than 1) are not with the same magnitude,
which will lead to a consequence that the exploitation term becomes dominant while the exploration
term is negligible. We have discussed a similar issue of ignoring the exploration term in Sec. E.1.
Therefore, we adopt MUSTadaptive in default if not specified rather than MUSTadaptive-I since the
latter might suffer from the different magnitudes of the exploitation term and the exploration term.

MUSTadaptive-II and MUSTadaptive-III. Compared to MUSTadaptive, MUSTadaptive-II moves
the inversion operation to the front of the constructed exploitation-exploration term. Likewise,
MUSTadaptive-III moves the re-scaling and the inversion operations to the front of the constructed
exploitation-exploration term. MUSTadaptive-II and MUSTadaptive-III are used to check the order
sensitivity about the exploitation-exploration term construction, re-scaling operation, and the inver-
sion of x̄j , j ∈ {1, · · · ,K}.

17



Under review as a conference paper at ICLR 2023

Table 10: The variants of MUSTadaptive. The MUSTadaptive implementation is an exploitation-
exploration term followed by a post-processing for the re-scaling purpose and a sum-one normal-
ization. Since we omit the exploration term for the second row, therefore, it does not need the
post-processing. MUSTadaptive-III moves the re-scaling and the inversion operations to the front of
the constructed exploitation-exploration term.

variants exploitation-exploration term post-processing distribution

MUSTadaptive x̂j = x̄j +
√

2 ln t
Tj,t

zj = 1

(x̂j−τ min({x̄1,··· ,x̄K}))

pj =
zj∑K

i=1 zi

w/t exploration zj = 1
x̄j

MUSTadaptive-I x̂j = 1
x̄j

+
√

2 ln t
Tj,t

zj = x̂j − τ min({1/x̄1, · · · , 1/x̄K})

MUSTadaptive-II x̂j =
1/x̄j∑K

i=1 1/x̄i zj = ẑj − τ min({x̂1, · · · , x̂K})
ẑj = x̂j +

√
2 ln t
Tj,t

MUSTadaptive-III x̂j = 1
(x̄j−τ min({x̄1,··· ,x̄K}))

zj =
x̂j∑K

i=1 x̂i
+

√
2 ln t
Tj,t

(a) The learning curves of the system trained
with eight user simulators.

(b) Comparison between different numbers of
user simulators.

Figure 6: The learning curves of Sys-MUSTuniform and Sys-MUSTadaptive.

Results for ablation study on the variants. Experimental results of these different variants are
shown in Fig. 5(b). The convergence speed of MUSTadaptive-I is much slower compared to oth-
ers, which demonstrates that the exploration term is useful once more. The convergence speeds of
MUSTadaptive-II and MUSTadaptive-III is comparative to MUSTadaptive. This probably shows that
our design with three operations (i.e., exploitation-exploration term construction, re-scaling strategy,
and the inversion of x̄j) is not only reasonable but also robust to the order permutation of these three
operations.

F IMPLEMENTING MUST WITH MORE USER SIMULATORS

To implement our MUST with more user simulators, we use Simulated Agenda Dataset to train four
extra user simulators 7. Fig. 6(a) shows the learning curve of the system agent trained by MUST with
eight simulators (AgenT, AgenR, RNNT, GPT, GPTAT, GPTAR, GPTAG, and GPTrand). We could
observe that the training of our proposed MUST can still succeed when we increase the number
of user simulators to eight. Sys-MUSTadaptive still converges faster than Sys-MUSTuniform even

7Simulated Agenda Dataset (See Sec. 5.1) is simulated from each rule-based user simulator (i.e., AgenT,
AgenR, AgenG) and its corresponding system agent respectively. We use them to build three new user simula-
tors denoted as GPTAT, GPTAR, and GPTAG based on the GPT model respectively. For example, we use the
simulated dialogues from AgenT and Sys-AgenT to build the GPTAT. we also collect 3000 dialogues randomly
from Simulated Agenda Dataset to train another new GPT user simulator denoted as GPTrand.

18



Under review as a conference paper at ICLR 2023

hello! what can i help you? <eos_resp> [eos_constraint] [eos_book] [eos_recommend] [eos_select] [eos_request] <eos_nlu> [info] food venetian pricerange 

expensive area centre [request] [book] time 12:00 day wednesday people 4 <eos_goal> [inform_type] food area <eos_pol> i am looking at a place to eat that 

serves venetian food in the centre. <eos_utt> unfortunately, i do not see any restaurants that serve venetian in the centre of town. would you like to try a 

different area or type of cuisine? <eos_resp> nooffer [eos_constraint] [eos_book] [eos_recommend] [eos_select] [eos_request] <eos_nlu> [info] food 

chinese pricerange expensive area centre [request] [book] time 12:00 day wednesday people 4 <eos_goal> [inform_type_change] food <eos_pol> Do you 

have any [value_food] restaurants ? <eos_utt>

Hello! What can I help you?
constraint: [], book: [], 

recommend: [], select: [], request: []

inform_type: [food, area]

I am looking at a place to eat that serves 

[value_food] food in the [value_area] .

I am looking at a place to eat that serves 

Venetian food in the centre.

Unfortunately, I don't see any 

restaurants that serve Venetian in the 

centre of town. Would you like to try 

a different area or type of cuisine?

Yes there are 10 in the centre of town. 

Any price preference?

constraint: [nooffer], book: [], 

recommend: [], select: [], request: []

inform_type_change: [food]

Do you have any [value_food] restaurants ?

Do you have any Chinese restaurants?

{"info":{"food": "Venetian",

"pricerange": "expensive", 

"area": "centre"},

"book": {"time": "12:00", 

"day": “Wednesday", 

"people": "4"}}

{"info":{"food": “Chinese",

"pricerange": "expensive", 

"area": "centre"},

"book": {"time": "12:00", 

"day": “Wednesday", 

"people": "4"}}

System Agent User Simulator

(2) Goal Generator(1) NLU

(2) Goal Generator

(3) POL

(4) NLG

(4) NLG

(3) POL

Lexicalization

Lexicalization

(a) The details of the first two-turn interactions between a system agent and our U-GPT.

(b) An example of the model input for training U-GPT.

(1) NLU

𝑆0:

𝑆1:

𝑆2:

𝑁1:

𝐴1:

𝑈0:

𝐴0:

𝑁0:

𝑈1:

𝐺0:

𝐺1:

Figure 7: The overview of our U-GPT which consists of Natural Language Understanding (NLU),
Goal Generator, Dialog Policy Learning (POL), and Natural Language Generation (NLG). It uses
the auto-regressive language model GPT to understand the system inputs, generate the user actions
and the user utterances given the dialogue context and the user goals sequentially in an end-to-end
manner. (a) gives a detailed description of the first two-turn interactions between a system agent
and our U-GPT. For training U-GPT, we need to convert the dialogue context and all annotations to
sequences of tokens. (b) presents the training example of the first two-turn dialogues in (a).

though the difference between their convergence speeds is not too large in this case. It might be
because some user simulators are similar (e.g., GPTAT is similar to AgenT, GPTAR is similar to
AgenR), which might lead that the distribution p approaches a uniform distribution.

Fig. 6(b) compares the learning curves of Sys-MUSTadaptive and Sys-MUSTuniform trained with
different numbers of user simulators (i.e., four, five, and eight user simulators). It is a fair comparison
because these combinations include the hardest user simulator AgenR that can be adapted by the
system and the easiest user simulator RNNT that can be adapted by the system (See Sec. 5.4). We
can observe that, with more user simulators, Sys-MUSTadaptive not only performs better but also
converges faster than with fewer user simulators. This probably shows that Sys-MUSTadaptive has
the potential to be generalized to a larger set of user simulators. Plus, we also could observe that
Sys-MUSTadaptive consistently converges faster than Sys-MUSTuniform in different numbers of user
simulators.

G MODELING USER SIMULATOR WITH GPT

We name the model of building a user simulator based on GPT as U-GPT. In this section, we will
illustrate its details and conduct experiments to prove that it is a better model for building a user
simulator.

G.1 THE ARCHITECTURE OF U-GPT

As Fig. 7(a) shown, our U-GPT consists of four modules, which are Natural Language Under-
standing (NLU), Goal Generator, Dialog Policy Learning (POL), and Natural Language Generation
(NLG). Dialogues consist of multiple turns. In the first turn t = 0, U-GPT (1) first outputs its NLU
results N0 by understanding the system input S0, and (3) decide its actions A0 which is a list of
pairs: (action type, slot name) based on (2) its initial goal G0 and {S0, N0}. U-GPT then (4) con-
ditions on {S0, N0, G0, A0} to generate the delexicalized utterance U0. The generated placeholders

19



Under review as a conference paper at ICLR 2023

in U0 will be filled using the corresponding slot values in the goal G0. When the conversation pro-
ceeds to turn t, U-GPT (1) generates the NLU results Nt based on all of previous dialogue history
and generated outputs {C0, . . . , Ct−1, St}, here Ci = [Si, Ni, Gi, Ai, Ui]. If there has ”no-offer”
intent in Nt representing that no entities could satisfy current constraints, then (2) Goal Generator
should generate a new goal Gt. Then U-GPT will continue to (3) generate the user acts At and
(4) generate delexicalized utterance Ut conditioned on {C0, . . . , Ct−1, St, Nt, Gt} sequentially. We
should notice that the user utterances occurred in the history context should be lexicalized because
they contain important information.

Fig. 7(b) shows an example of training sequence which consists of the concatenation x = [C0, C1].
In order to leverage GPT, we need to convert the generated outputs {Ni, Gi, Ai, Ui} to sequences
of tokens resembling a text. And we introduce delimiter tokens [eos resp], [eos nlu], [eos goal],
[eos pol], [eos utt] to signal the ending of sequence representations of different modules. For the
NLU results Nt, we use five categories: “inform”, “request”, “book inform”, “select”, “recommend”
same as Shi et al. (2019) to represent them. And we also introduce five tokens [eos constraint],
[eos book], [eos recommend], [eos select], [eos request] to record different information. All of
these tokens and the intents of user actions will be added to the vocabulary of GPT as additional
special tokens. For training U-GPT, we use the same training objective as GPT which is to maximize
the following likelihood:

L(U) =
∑
i

logP (ui|ui−k, ..., ui−1; Θ),

∀ ui ∈ {S0, N0, G0, A0, U0, ..., At, Ut},

where k is the size of the context window, and the conditional probability P is parameterized with
Θ.

G.2 EVALUATIONS ON U-GPT

To evaluate our proposed U-GPT, we adopt both indirect evaluations and direct evaluations as in
Shi et al. (2019). We evaluate a user simulator indirectly using the average success rate of the
system agent trained by this simulator. It is called cross-model evaluation (Schatzmann & Young,
2009) which assumes a strategy learned with a good user model still performs well when tested on
poor user models. It can indirectly evaluate the goodness of a user simulator. For direct evaluations,
we adopt six evaluation measures to evaluate the diversity of user simulators automatically: average
utterance length, vocabulary size, Dist-1, Dist-2 (Li et al., 2016a) and Entropy (Zhang et al., 2018).
We also ask human users to rate the simulated dialogues 8 to assess the user simulators directly. We
use five same metrics as Shi et al. (2019) which are Fluency, Coherence, Goal Adherence, Diversity,
and Overall quality to assess user simulators from multiple aspects.

G.3 TRAINING DETAILS OF USER SIMULATORS

We implement our GPT-based user simulators with DistilGPT2 (Sanh et al., 2020), a distilled version
of GPT-2 by HuggingFace’s Transformers (Wolf et al., 2020). We select the best performing models
on the validation set through hyperparameters search of learning rate and batch size. The best models
were fine-tuned with a batch size of 64 and a learning rate of 1e-3 over the corresponding dataset.
We use the greedy decoding strategy for generating word-tokens in the inference phrase.

G.4 EXPERIMENTS

GPT-RNN. Because the implementation of user simulator RNN mainly consists of NLU and
NLG, we remove the POL module from U-GPT and use the same annotated data as RNN to fine-tune
it to compare our U-GPT with the RNN-based methods fairly and name it as GPT-RNN.

As Tab. 11, Tab. 12, Tab. 13 show, GPT-RNN outperforms the user simulator RNN. It proves the
power of leveraging GPT.

8The system agent for simulating dialogues is a third-party system provided by Shi et al. (2019) which was
built based on hand-crafted rules.

20



Under review as a conference paper at ICLR 2023

Our GPT-RNN performs better than the user simulator RNNT, which can be seen from the cross-
model evaluation results in Tab. 11, the automatic evaluation results in Tab. 12, and the Hu.Div
score in the human evaluation results in Tab. 13. However, as Tab. 13 shows, RNNT performs better
than our GPT-RNN in the overall performance from the human evaluation. We think this might be
because (1) the third-party system also has an impact on the generated dialogues and (2) the NLG
module of RNNT is the template-based method which leads to the generated dialogues from RNNT
being easy for the third-party system to understand and interact with.

The automatic evaluation results in Tab. 12 and the Hu.Div score in the human evaluation results
in Tab. 13 show that RNNR can generate more diverse language than our GPT-RNN. We think
it is because the user utterances generated by RNNR are retrieved from a corpus that is written
by real humans and the sentences written by humans are usually more diverse than the sentences
generated by generative models. Even though the dialogues generated by RNNR are more diverse,
the dialogues generated by our GPT-RNN are more fluent and coherent. Also, the cross-model
evaluation results in Tab. 11 show that GPT-RNN can help to learn a more robust system agent than
RNNR, but the Hu.All score in the human evaluation in Tab. 13 gives the opposite result.

Table 11: Cross study results. Each entry shows the success rate obtained by having the user simu-
lator interacting with the RL system for 200 times.

System \User AgenT AgenR AgenG RNNT RNNR RNN GPT GPTIL Avg.↑ Std.↓
Sys-RNNT 30.5 23.0 35.5 99.0 97.5 84.0 75.5 66.0 63.9 28.5
Sys-RNNR 30.0 23.0 30.0 96.5 93.5 70.5 68.5 56.0 58.5 26.7
Sys-RNN 20.0 23.5 20.0 73.0 63.0 77.0 56.5 45.0 47.3 22.2
Sys-GPT-RNN 36.5 38.0 42.0 95.5 94.0 89.0 80.5 61.0 67.1 24.1

Table 12: Automatic evaluation results of RNNT, RNNR and GPT-RNN. The metrics include aver-
age utterance length (Utt), vocabulary size (Vocab), distinct-n (DIST-n) and entropy (ENT-n).

User Simulators Utt ↑ Vocab ↑DIST-1 ↑DIST-2 ↑ENT-4 ↑
RNNT 9.83 192 0.77% 1.51% 4.24
RNNR 11.06 346 2.45% 9.59% 6.59
RNN 10.95 205 1.17% 3.14% 4.98
GPT-RNN 14.00 262 1.13% 3.53% 5.62

Table 13: Human evaluation results of RNNT, RNNR and GPT-RNN. The metrics include sentence
fluency (Hu.Fl), coherence (Hu.Co), goal adherence (Hu.Go), language diversity (Hu.Div) and an
overall score (Hu.All).

User Simulators Hu.Fl ↑Hu.Co ↑Hu.Go ↑Hu.Div ↑Hu.All ↑
RNNT 4.60 4.68 4.96 3.34 4.70
RNNR 3.92 3.88 4.72 3.94 4.16
RNN 2.80 2.30 2.86 2.74 2.30
GPT-RNN 4.10 4.04 4.30 3.70 4.00

H RELATIONS TO OTHER WORKS

The inspiration behind our proposed MUSTadaptive is similar to Focal Loss (Lin et al., 2017)
and some curriculum learning approaches for reinforcement learning (Narvekar et al., 2020).
Focal Loss addresses the extreme class imbalance by down-weighting the loss assigned to well-
classified examples. Similarly, we assign lower weights to user simulators with which the dia-
logue system already performs well in the MUSTadaptive training. However, we use a different
way to obtain these weights. Curriculum learning approaches will define difficulty levels for
different tasks. However, in our scenario, we cannot know how difficult each user simula-
tor can be adapted beforehand. Moreover, curriculum learning approaches for reinforcement
learning also move an agent from one task to another like the MUSTCRL strategy.

21


	Introduction
	Background
	MUST: leverage Multiple User SimulaTors
	Motivations to leverage multiple User simulators
	Some preliminary proposals for MUST

	MUST as a Multi-armed bandit problem
	Formulate MUST as a Multi-armed bandit problem
	Training the dialogue system with MUSTadaptive

	Experiments
	Experimental Setup
	Implementations
	Two new User Simulators
	Dialogue Systems

	Experimental Results
	Analysis and discussions

	Conclusion
	Multi-armed bandit problem
	More details about training dialogue systems
	The architectures of user simulators and dialogue systems
	The implementations of the dialogue systems
	The details of running policy gradient algorithm
	The parameters of training Sys-MUSTadaptive
	Human Evaluation on dialogue systems

	Implement MUST with the MUSTCRL strategy
	Sensitivity on different subsets of user simulators
	Ablation study for the modified UCB1 algorithm
	Necessity of the exploration term
	Ablation study on the designed distribution

	Implementing MUST with more user simulators
	Modeling User Simulator with GPT
	The architecture of U-GPT
	Evaluations on U-GPT
	Training details of user simulators
	Experiments

	Relations to other works

