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Abstract
Despite recent advances in subquadratic atten-
tion mechanisms or state-space models, process-
ing long token sequences still imposes significant
computational requirements. Token merging has
emerged as a solution to increase computational
efficiency in computer vision architectures. In this
work, we perform the first investigations of token
merging in time series analysis on both transform-
ers and state-space models. We further introduce
local merging, a domain-specific token merging
algorithm that selectively combines tokens within
a local neighborhood, achieving two major bene-
fits: a) Local merging can adjust its computational
complexity from quadratic to linear based on the
neighborhood size to effectively scale to long se-
quences; b) Local merging is the first causal merg-
ing scheme enabling token merging in transformer
decoders. Further, we identify spectral properties
of the input data that reliably predict the poten-
tial benefits of local merging without requiring
evaluation on downstream tasks. Our compre-
hensive empirical evaluation demonstrates that
local merging offers substantial efficiency gains
with minimal impact on accuracy, achieving up
to 5400% acceleration on the recently proposed
Chronos foundation model.

1. Introduction

Since their inception in NLP (Vaswani et al., 2017), trans-
formers have extended their influence into various do-
mains, including computer vision with Vision Transformers
(ViTs) (Dosovitskiy et al., 2021), graphs (Yun et al., 2019),
and time series processing (Li et al., 2019). However, the
computational complexity of the standard attention mecha-

1Volkswagen AG 2Technical University of Munich 3Munich
Data Science Institute 4Munich Center for Machine Learning. Cor-
respondence to: Leon Götz <leon.goetz@volkswagen.de>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

2 4 6 8

1

3

5

7

𝑘

1 2 3 4 5 6

𝑺𝑙𝑜𝑐
𝑘=1 = { } 𝑺𝑙𝑜𝑐

𝑘=2 = { }

Figure 1: Local token merging: Computing token similarity on
a subset Sloc under locality constraint k reduces token merging’s
quadratic complexity to linear.

nism scales quadratically with the number of input tokens,
resulting in high memory requirements. This scalability
issue becomes especially pronounced in time series pro-
cessing, where sequences frequently comprise thousands
of tokens (Godahewa et al., 2021). Consequently, recent
foundational models in time series, such as Chronos, exhibit
impressive zero-shot generalization capabilities but demand
substantial computational resources (Ansari et al., 2024).

Recently, state-space models have emerged as a solu-
tion to mitigate the computational burden of transformers.
Their complexity scales subquadratically with the sequence
length (Poli et al., 2023), which allows them to process
millions of tokens (Nguyen et al., 2023). However, even
in state-space models, very long sequences will impose
considerable memory and computational demands.

Bolya et al. (2023), have shown that the efficiency of ViTs
can be substantially improved by merging tokens throughout
the transformer architecture. Specifically, they compute
similarity scores between tokens and combine them into
single tokens through a convex combination. However, they
only explore token merging for ViT architectures.

In this work, we for the first time explore token merging
within the time series domain. We introduce a novel local
token merging algorithm whose computational complexity
varies from quadratic to linear, based on the neighborhood
considered for each token merge. This allows token merging
to scale to long sequences and be applicable to state-space
models. Further, our local merging preserves causality and
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is the first viable token merging scheme for transformer
decoders. The algorithm is illustrated in figure 1. Through
comprehensive empirical evaluations, we analyze the impact
of token merging on various time series transformer models
and state-space models. Our key contributions are:

Token merging in time series We extend token merging
from computer vision to time series analysis and propose
local merging as a domain-specific token merging algorithm.

Model acceleration Across five time series transformer
architectures (5.1), foundation models (5.3), two state-space
models (5.4), and six datasets, token merging reveals sub-
stantial computational savings with only slight reductions
in accuracy. In some settings, it even improves forecasting
performance while accelerating models simultaneously. To-
ken merging enhances model throughput by up to 5400%
and improves forecasting performance by up to 9%.

Token merging outcomes We identify three distinct out-
comes when using token merging: 1) a consistent decline in
performance when merging more tokens, 2) initial improve-
ments in accuracy with few merged tokens followed by a
drop as merging increases, and 3) scenarios where accuracy
remains unchanged regardless of the token merging rate.

Understand token merging Our detailed analysis reveals
that token merging acts as an adaptive low-pass filter, se-
lectively reducing noise. We further identify model- and
dataset-specific properties explaining the effectiveness of
our token merging algorithms.

2. Related work

Time series transformers Recently, many transformer
architectures with inductive biases for time series have been
proposed. Most of them reduce complexity by modifying
the attention mechanism. Informer uses ProbSparse atten-
tion (Zhou et al., 2021), while Autoformer leverages autocor-
relation as a sequence-based similarity measure (Wu et al.,
2021). FEDformer uses the frequency domain to model
time series effectively (Zhou et al., 2022). Non-stationary
Transformers mitigate the effect of the time series distribu-
tion changing over time (Liu et al., 2022b).
Due to their success in the vision and NLP domain,
transformer-based foundation models have lately emerged
for time series, often used in zero-shot settings. Many works
focus on training transformers directly on large and diverse
time series datasets, usually with billions of tokens (Garza &
Mergenthaler-Canseco, 2023; Das et al., 2023; Rasul et al.,
2023; Woo et al., 2024). Inspired by the success of founda-
tion models in NLP, the recently proposed Chronos model
converts continuous time series data into a fixed vocabu-
lary (Ansari et al., 2024).

State-space models Due to the quadratic scaling of the
attention mechanism, transformer architectures suffer from
significant computational cost when processing long se-
quences. Recently, state-space models have shown promis-
ing results in overcoming this challenge. Linear state-
space layers solve the sequential processing requirement
of RNNs (Gu et al., 2021). The S4 model reduces memory
requirements by conditioning the state-space matrix with a
low-rank correction (Gu et al., 2022). By using implicit con-
volutions and a data-aware gating mechanism, Hyena (Poli
et al., 2023) became one of the first state-space model archi-
tectures to match transformers on NLP tasks. Later work
uses hardware-aware algorithms to improve the performance
on modern accelerators (Gu & Dao, 2023).

Reducing tokens Many works reduce the number of pro-
cessed tokens to increase the efficiency of transformers in
computer vision and NLP, often by pruning (Meng et al.,
2022; Goyal et al., 2020). Marin et al. (2021) merge to-
kens in ViT architectures to reduce the loss of information
associated with pruning. Bolya et al. (2023) enhance the
token merging algorithm, which they successfully apply to
already trained encoder-only models. Besides initial work
on classification tasks (Bolya et al., 2023), subsequent work
applies token merging to diffusion models (Bolya & Hoff-
man, 2023). Kim et al. (2024) combine merging and pruning,
while other works investigate optimal merging and pruning
rates (Bonnaerens & Dambre, 2023; Chen et al., 2023). Con-
current work adapts token merging to preserve the spectral
properties of the token space (Tran et al., 2024). However,
their merging algorithm still has quadratic complexity, mak-
ing it unsuitable for long sequence processing.

Sparse attention and token skipping Besides reducing
the number of tokens, sparse attention (Child et al., 2019)
and token skipping (Raposo et al., 2024) also decrease the
computational requirements of transformer models. In con-
trast to token merging, sparse attention can only accelerate
the attention mechanism itself and not the subsequent MLP,
which can take over 60% of the total computation (Marin
et al., 2021). Concurrent work, such as token skipping (Ra-
poso et al., 2024), involves the selection of a subset of tokens
to be processed in a transformer layer. However, it has only
been shown in NLP when training from scratch. Token
merging, however, can accelerate already trained models
and does not require any training data or fine-tuning. This
is especially important for recent foundation models. In our
experiments in sections 5.1 and 5.2, token merging success-
fully accelerates Informer and Autoformer, which already
employ sparse attention. We therefore consider token merg-
ing as an orthogonal approach.

Here, we propose the first token merging algorithm for
the time series domain, which extends beyond previous
investigations in ViTs (Bolya et al., 2023; Bolya & Hoffman,
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2023). We systematically evaluate the potential to reduce
computational effort in time-series-specific architectures.
See appendix A for more details on related work.

3. Token merging

Despite recent advances in efficient transformers, processing
long input sequences still induces considerable memory
requirements and computational effort. To address this,
we first extend token merging, which successfully boosts
throughput in computer vision, to time series models. Next,
we propose local merging, a domain-specific and efficient
token merging algorithm for state-space models and long
sequence processing. Finally, we introduce causal merging
as a special case of local merging to allow for token merging
in decoder architectures and propose dynamic merging to
further improve token merging in real-world settings.

Global token merging for time series Let a neural net-
work f(x) = ΦL ◦ΦL−1 ◦ · · · ◦Φ1(x) consist of L layers
denoted as Φl, where each layer takes the output of the pre-
vious layer as input. We assume that the input xl ∈ Rtl×d

consists of tl tokens with dimension d. Thereby, the input
tokens are generated by a tokenizer g : Rz → Rt×d out of z-
dimensional input data u. We assume the input u ∈ Rm×n

consists of m time stamps with n variates, and m · n = z.
To improve the computational efficiency of token-based
time series models, we extend global token merging from
computer vision to the time series domain. Following Bolya
et al. (2023), we combine the r most similar tokens in each
layer, reducing the tokens to be processed in layer l+1 to
tl+1 = tl− r. For this, we split the set of all tokens into two
disjoint subsets A,B in alternation to avoid merging con-
flicts and allow for a parallelized computation of merging
correspondences. Here A and B contain tl/2 elements each,
denoted as ai and bj respectively. We compute the cosine
similarity between all tokens in both subsets S = (sij) and
merge the top r most similar correspondences by averaging
the tokens accordingly. This results in a global token merg-
ing algorithm with quadratic complexity. Lastly, Bolya
et al. (2023) use a fixed r to enable batch processing without
needing to pad individual batch elements to the same shape
after token reduction. Later, we introduce more adaptive
merging schemes through dynamic merging.

Local token merging for time series In this work, we
design new token merging mechanisms for time series ar-
chitectures and demonstrate run-time and even performance
improvements over various datasets and models.

Previous work on token merging in image processing ex-
plored global merging schemes, where every token of each
subset A and B could be merged with each other (Bolya
et al., 2023; Bolya & Hoffman, 2023). However, computing
the similarity S ∈ Rtl/2× tl/2 between both sets of tokens

has a complexity of O(t2l /4), which is suboptimal for se-
quential data often consisting of long token sequences (Go-
dahewa et al., 2021; Grešová et al., 2023), and state-space
models featuring subquadratic complexity (Poli et al., 2023;
Nguyen et al., 2023).
Therefore, we propose local merging - a superset of token
merging - by introducing k ∈ N, 1 ⩽ k ⩽ tl/2 as a local-
ity constraint where we compute the similarity only on a
local subset of tokens:

Sloc = {sij | 1 ⩽ i, j ⩽ tl/2, |i− j| < k}. (1)

Figure 1 illustrates the proposed merging algorithm. The
locality constraint reduces the complexity to:

O(tl/2 + (k − 1)(tl − k)). (2)

Varying the locality, we achieve linear complexity by
considering only neighboring tokens for merging up to
quadratic complexity by considering a global merging pool,
possibly exploiting more redundancy. For efficient com-
putation, we refactor Sloc into a rectangular tensor. An
upper bound for the resulting speed-up can be given by
speed up ⩽ 3L 4L−1 · (4L − 1)−1. The acceleration of
deeper models is expected to increase as more subsequent
layers can profit from already merged tokens. Local merg-
ing additionally preserves order and locality as an inductive
bias for sequence processing.
Some time series transformers use processing mechanisms
that require a minimum number of tokens in the forward
pass. To universally enable token merging in these archi-
tectures, we further introduce q as the minimum number
of remaining tokens. When encountering odd numbers of
tokens tl, we exclude the most recent token from merging,
as we expect it to contain the most relevant information fol-
lowing the Markov assumption. We derive the complexity
of the token merging procedures in appendix B.1 and further
discuss the interplay of time-series-specific inductive biases
and token merging in appendix B.2.

Causal token merging for decoders Existing merging
schemes are not suitable for causal operations, as global
token merging transfers information over arbitrary ranges.
To remedy this limitation and enable token merging in trans-
former decoders, such as for recent decoder-only foundation
models (Das et al., 2023) and encoder-decoder architec-
tures (Ansari et al., 2024), we propose a special case of
local merging: By restricting the merging neighborhood to
only adjacent tokens with k = 1, local merging preserves
temporal causality.
Token merging reduces the number of tokens to be pro-
cessed throughout the model. However, many architectures
require a fixed number of decoder output tokens or fixed
dimensions for linear projection output layers. To main-
tain a constant output dimensionality while merging tokens
to speed-up the decoder, we unmerge all tokens in a final
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step. Coherent with our causal merging operation, we clone
a previously merged token into two neighboring identical
ones, to unmerge it. Bolya & Hoffman (2023) propose an
unmerging algorithm for computer vision. However, they
only leverage non-causal global token merging. Moreover,
they immediately unmerge after every merge, making it
unsuitable for long sequence processing, as it is unable to
utilize the cumulative effect of reducing tokens.

Dynamic token merging A fixed merging scheme allows
for batch processing without needing to pad individual time
series to the same length. However, it enforces a constant
r among layers and batches, which might not always be
optimal, as dissimilar tokens might be merged. We intro-
duce dynamic merging to further improve token merging in
real-world settings, where batch sizes are often small. To
this end, we determine the number of tokens to be merged
dynamically for every batch element using a token cosine
similarity threshold. To avoid padding, we average them
throughout the batch. As a result, dynamic merging enables
optimal merging rates that are adaptive to the input data and
current network layer.

4. Experiments

We systematically explore local merging in diverse settings
on 5 time series datasets and 5 model architectures in 5 dif-
ferent sizes each. Additionally, we investigate local merging
in large foundation models using Chronos in a zero-shot
setting (Ansari et al., 2024). Finally, we demonstrate that
local merging can be applied to state-space models for long
sequence processing. See appendix C for more details on
our experimental settings.

Datasets We use time series forecasting datasets including
ETTh1, ETTm1, Weather, Electricity and Traffic for our
transformer experiments. For state-space models, we use
the long-range Dummy Mouse Enhancers Ensembl dataset.

Model architectures For our main experiments, we use
5 architectures, including Autoformer, FEDformer, In-
former, Non-stationary Transformer, and the vanilla Trans-
former (Vaswani et al., 2017) as reference. For each model,
we evaluate local merging for different model sizes with
L ∈ {2, 4, 6, 8, 10} encoder layers, which we train doing
hyperparameter optimization. We use an input length of
m = 192, following the results of Nie et al. (2023), and
a prediction horizon p = 96 samples. Longer sequences
would generally benefit token merging.
For experiments on the foundation model Chronos, we use
the default input length of m = 512 and prediction horizon
p = 64 (Ansari et al., 2024). We compute the median from
Chronos probabilistic forecasts and report the MSE.
For our experiments on state-space models, we use Hye-
naDNA medium, a genomic foundation model (Nguyen

et al., 2023) based on the Hyena architecture (Poli et al.,
2023) and Mamba (Gu & Dao, 2023) models with the same
hyperparameters as Hyena. We use a large input length
of m = 16 000 nucleotides, utilizing state-space models’
subquadratic complexity.

Applying local merging Allowing self-attention to transfer
information between tokens before merging them is benefi-
cial in our experiments. Therefore, we apply local merging
after the self-attention in transformer architectures as Bolya
et al. (2023). In state-space models, we merge tokens after
the Hyena or Mamba operator.

Reproducibility of measurements We report all results on
the same Nvidia A6000 GPU and do multiple measurements
to achieve inference time standard deviations < 2%.

5. Results

We first present our main results for local merging on pre-
trained models and models trained with local merging. Next,
we scale local merging to large foundation models and ex-
plore token merging for state-space models and long se-
quence processing. Finally, we investigate if we can gain
even higher speed-ups in real-world settings, leveraging
dynamic merging schemes.

5.1. Local merging in pretrained models

We investigate local merging in both the encoder and de-
coder on diverse time series transformer models with dif-
ferent inductive biases. All models are trained on the target
dataset and local merging is applied only during inference
time, as accelerating already trained models is of high practi-
cal relevance. We choose local merging hyperparameters as
described in appendix C, selecting the fastest token merging
trial on the validation set that is within a 0.01 increase in
MSE compared to the reference without token merging. If
we do not find a trial with token merging satisfying these
tight criteria, we report results without token merging, mim-
icking how local merging might be applied in practice. We
perform all selections on the validation set and report all
results on the test set.
The vanilla and Non-stationary Transformers have quadratic
attention mechanisms, while the remaining architectures
feature subquadratic attention complexities of O(tl · log(tl))
for Autoformer and Informer and O(tl) for FEDformer. Re-
gardless, our local merging in the encoder together with
our casual merging in the decoder substantially increase
the throughput of most models, up to 3.80×, often with no
change in forecasting quality, as table 1 shows. In some
experiments, local merging even improves the MSE. In line
with our formal analysis of potential speed-up from token
merging in section 3, we generally observe higher accel-
erations for larger models, as more subsequent layers can
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profit from already merged tokens. Independent of model
size, local merging finds Pareto optimal points in 17 of 25
settings and has no negative effect in the remaining cases.
In some cases, we do not find a model with decent fore-
casting quality satisfying our criteria. Here, token merging
during test only has a larger impact on model accuracy, such
as for Autoformer on the Traffic dataset. We address this
issue when training with token merging in section 5.2.

5.2. Local merging during training

Here, we apply local merging during training to reduce the
models’ sensitivities to the algorithm at inference time. As
shown in figure 2, models trained with token merging often
outperform those trained without it, even if token merging
is not applied during testing. This approach enables us to
accelerate models such as Autoformer on the Traffic dataset
without sacrificing accuracy, which was previously not fea-
sible when applying token merging only during inference.
Additionally, local merging accelerates the training process
itself by up to 2.27× for Autoformer on the Traffic dataset.

5.3. Scaling to large models

Foundation models are getting more relevant across do-
mains, including NLP (Touvron et al., 2023), computer vi-
sion (Kirillov et al., 2023), and time series processing (Das
et al., 2023). However, these models have high compu-
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(b) Autoformer on Traffic

Figure 2: (a) Training with different token merging rtrain fractions
compared to applying token merging only during inference. (b)
Models that showed high MSE degradation with token merging
without training show high accelerations while maintaining MSE
when enabling token merging during training.

tational requirements. Therefore, accelerating foundation
models without the need for additional fine-tuning is espe-
cially important. Thus, we investigate local merging for
foundation models on Chronos, a univariate probabilistic
model, in a zero-shot forecasting setting (Ansari et al., 2024)
and apply local merging only during inference.
In all our experiments, we find Pareto optimal points with
token merging. For four out of five datasets, local merging
improves both accuracy and throughput simultaneously (see
appendix D.1). Our results demonstrate that it is often bene-
ficial to choose a larger Chronos model with token merging
over a smaller one without, as in figure 3. We report our
results in table 2, choosing the best model without token

Table 1: Local merging accelerates various pretrained transformers of different sizes on several multivariate time series datasets. Merging
induces minimal change in quality (MSE∆) compared to the reference without token merging (MSE).

Dataset Layers L Transformer Autoformer FEDformer Informer Non-stationary

MSE Accel. MSE∆ MSE Accel. MSE∆ MSE Accel. MSE∆ MSE Accel. MSE∆ MSE Accel. MSE∆

ETTh1

2 0.75 1.38× 0% 0.42 1.00× 0% 0.38 1.29× 0% 0.87 1.40× 0% 0.55 1.36× 0%
4 0.71 1.81× 0% 0.40 1.39× 1% 0.39 1.74× 0% 0.92 1.30× 1% 0.47 1.82× 2%
6 0.66 2.33× 0% 0.44 2.12× 0% 0.38 2.27× 0% 0.93 2.39× 0% 0.46 2.39× 0%
8 0.84 2.90× 0% 0.41 2.68× −5% 0.39 2.81× 0% 1.23 2.20× 9% 0.48 2.93× 0%

10 0.69 3.51× 0% 0.39 3.14× 0% 0.38 3.36× 0% 1.16 2.45× 4% 0.57 3.56× 0%

ETTm1

2 0.52 1.35× 0% 0.44 1.00× 0% 0.36 1.00× 0% 0.65 1.40× 0% 0.42 1.36× 0%
4 0.58 1.85× 2% 0.43 1.00× 0% 0.37 1.76× 2% 0.60 1.78× −1% 0.48 1.72× 0%
6 0.62 2.11× 4% 0.45 1.00× 0% 0.38 1.00× 0% 0.59 2.16× −1% 0.38 2.52× 0%
8 0.60 3.09× 1% 0.58 2.60× 0% 0.33 1.00× 0% 0.61 1.61× 0% 0.46 2.10× −2%

10 0.62 3.72× 0% 0.54 1.69× 0% 0.36 1.00× 0% 0.57 1.00× 0% 0.41 3.80× 0%

Weather

2 0.25 1.44× −1% 0.28 1.10× 0% 0.27 1.37× −2% 0.35 1.43× −1% 0.19 1.46× 1%
4 0.28 1.95× 0% 0.24 1.00× 0% 0.26 1.74× 0% 0.24 1.89× 2% 0.19 1.95× 0%
6 0.28 2.19× 9% 0.26 2.03× 2% 0.27 2.42× 0% 0.21 2.19× 2% 0.20 2.54× 0%
8 0.32 2.20× 5% 0.26 1.56× 4% 0.27 2.88× 0% 0.30 1.56× 1% 0.20 3.14× 0%

10 0.35 2.49× 8% 0.26 1.72× 3% 0.24 1.00× 0% 0.31 1.69× 1% 0.19 3.76× 0%

Electricity

2 0.25 1.30× 0% 0.18 1.00× 0% 0.20 1.24× 0% 0.30 1.23× 8% 0.17 1.31× 0%
4 0.26 1.75× 0% 0.19 1.00× 0% 0.19 1.64× 0% 0.30 1.60× 7% 0.17 1.73× 1%
6 0.25 2.29× 0% 0.19 1.00× 0% 0.20 2.22× 0% 0.29 1.00× 0% 0.17 2.26× 0%
8 0.25 2.84× 0% 0.19 1.00× 0% 0.20 2.72× 0% 0.31 1.00× 0% 0.17 2.76× 0%

10 0.25 3.31× 0% 0.18 1.00× 0% 0.20 3.33× 0% 0.30 1.00× 0% 0.18 2.53× 7%

Traffic

2 0.66 1.28× 1% 0.63 1.00× 0% 0.59 1.21× 0% 0.68 1.19× 6% 0.60 1.27× 2%
4 0.66 1.56× 3% 0.60 1.00× 0% 0.58 1.65× 0% 0.68 1.00× 0% 0.59 1.68× 1%
6 0.64 2.13× 1% 0.61 1.00× 0% 0.57 2.10× 0% 0.69 1.00× 0% 0.62 1.58× 2%
8 0.68 2.67× 0% 0.60 1.00× 0% 0.59 2.61× 0% 0.71 1.00× 0% 0.59 2.69× 1%

10 0.67 3.25× −1% 0.59 1.00× 0% 0.58 3.12× 0% 0.69 1.00× 0% 0.59 3.16× 0%
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(b) Electricity

Figure 3: MSE for different token merging in Chronos models during zero-shot testing on two datasets. Choosing larger models with
token merging is beneficial compared to smaller ones without.

merging as reference. We illustrate two cases: 1) Selecting
the token merging setting that provides the best MSE, and 2)
selecting the setting with the fastest throughput. For 2), we
constrain the MSE of token merging trials to be lower than
the second-best model without token merging. In addition,
we allow a maximum increase in MSE of 3% compared to
the reference. In our experiments, we can improve Chronos
MSE by up to 9% and speed-up inference by 54.76×.

Table 2: Local merging accelerates all Chronos foundation models
from tiny to large during zero-shot forecasting. Applying local
merging, we aim for two objectives: best MSE and fastest acceler-
ation. Among Chronos models, we choose the best without token
merging as reference (MSE). As local merging improves MSE
(negative MSE∆) while speeding up models, we are able to choose
small models while surpassing forecasting quality of larger ones.

Dataset MSE Best Fastest

Accel. MSE∆ Accel. MSE∆

ETTh1 0.45 14.17× −6% 32.76× 2%
ETTm1 0.41 1.23× −4% 6.47× 3%
Weather 0.17 1.16× −1% 54.76× 3%
Electricity 0.14 1.02× 0% 2.91× 3%
Traffic 0.61 1.16× −9% 2.91× 1%

5.4. Token merging in state-space models

State-space models can process very long sequences with
millions of tokens due to their subquadratic complexity. Our
proposed local merging algorithm is specifically designed to
match this subquadratic complexity, enabling effective token
merging in state-space models. Additionally, it preserves
locality and order as inductive bias for sequence processing.
We compare local and global token merging in Hye-
naDNA (Grešová et al., 2023) and Mamba (Gu & Dao,
2023), for two objectives: the largest speed-up and the
best prediction quality. We use a classification task, where
the data consists of long genomic sequences with 16 000
nucleotides each. Our local merging with k = 1 featur-
ing linear complexity and locality bias outperforms global
merging with k = tl/2 and quadratic complexity. Table 3

illustrates that local merging achieves substantially larger
speed-up and better accuracy than global merging. This
experiment indicates that architecture and domain-specific
biases are important when applying token merging. Local
merging accelerates HyenaDNA up to 3.62× with a 4.9%
decrease in accuracy, whereas global merging substantially
reduces the accuracy by 9.5%. Utilizing less aggressive
merging schemes, local merging even boosts accuracy by
1.7% while still accelerating HyenaDNA 1.68×. In Mamba
models, local merging achieves even higher accelerations
up to 4.09×. In our experiments, the similarity computation
of local merging adds 14% of additional execution time to
every Hyena block. For global merging, however, this is
substantially higher with 68%, highlighting the importance
of local merging’s linear complexity. To our knowledge, this
is the first study of merging individual states in state-space
models to improve their sequence modeling performance.

Table 3: Comparison of global and local token merging for Hyena
and Mamba on the long sequence Dummy Mouse Enhancers En-
sembl dataset. Best, second.

Token merging Hyena Mamba

Accel. Accuracy Accel. Accuracy

No merging 1.00× 78.9 % 1.00× 76.0 %
Local mergingfastest 3.62× 74.0 % 4.09× 74.4 %
Local mergingbest 1.68× 80.6 % 1.65× 76.0 %
Global mergingfastest 2.93× 69.4 % 2.81× 74.0 %
Global mergingbest 1.15× 80.2 % 1.27× 76.4 %

5.5. Dynamic token merging

Dynamic token merging mitigates the issue of dissimilar
tokens being merged, potentially improving quality. Here,
we leverage the single-sample case with batch size 1 to
explore dynamic merging in optimal conditions. From a
practical perspective, this case might be relevant for on-
device applications like smartphones or automated driving.
We further utilize small batch sizes of 10 elements as they
might appear in real-world applications.
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In figure 4, we compare token merging utilizing a fixed r to
dynamic merging, varying the cosine similarity threshold.
Dynamic merging improves quality slightly in most settings.
With batch size 10, it is marginally worse compared to the
optimal single-sample case. Therefore, we suggest using a
fixed merging schedule for applications with large batches
and dynamic merging for cases with few batch elements.
There is no equivalent r to dynamic merging schedules as
they are similarity-based and strongly layer-dependent. We
report FLOPs as we observe substantial execution overhead
in time measurements.

4 5 6 7
Inference FLOPs 1e10

0.45

0.50

0.55

M
SE

Fixed merging
Dynamic merging, bs = 1
Dynamic merging, bs = 10

Figure 4: Comparison of dynamic merging based on a similarity
threshold with fixed r merging for Chronos small on ETTh1.

6. Further investigations

We first explore different local merging outcomes regarding
acceleration and forecasting performance. Next, we find
dataset- and model-specific properties explaining why, in
some cases, local merging can improve forecasting qual-
ity. Lastly, we investigate if we can achieve same effects
on model acceleration and forecasting performance with
simpler methods than local merging. We further explore dif-
ferent token similarity measures in appendix E.1, compare
merging with pruning in appendix E.2, and investigate the
influence of tokenization on local merging in appendix E.3.

6.1. Merging outcomes

We observe three distinct merging outcomes when combin-
ing tokens in transformer architectures.

Increasing MSE As the number of merged tokens in-
creases, the MSE increases almost monotonically (see fig-
ure 3b). This behavior can be explained due to a loss of
information when combining multiple tokens and also oc-
curs in the vision domain (Bolya et al., 2023).

Constant MSE For the vanilla Transformer on ETTh1
and for FEDformer on ETTh1, Weather, Electricity, and
Traffic, we observe a constant MSE when applying token
merging as shown in figure 5. For the Transformer model,
we find all tokens to be similar after the first attention block.
Thus, token merging does not affect the model performance.
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Figure 5: Transformer models on ETTh1 show constant MSE,
independent of the amount of token merging r.

Nevertheless, we find that in most cases, these models still
provide reasonable forecasts. In our experiments, trans-
former models trained on larger or more complex datasets
containing more variates do not show this behavior. We ar-
gue that this might be a limitation of transformers on small
time series datasets (Zeng et al., 2023; Li et al., 2023). Still,
token merging successfully improves the throughput while
maintaining accuracy for these models.

Decreasing MSE Token merging increases forecasting
quality, most prominently in Chronos models, as in figure 3a.
We explain this behavior in section 6.2.

6.2. Improvement of forecasting quality

We explore if the potential benefits of token merging can
be predicted through dataset- and model-specific properties
without requiring downstream task evaluation.

Selective low-pass filter We hypothesize that local merg-
ing improves forecasting quality by selectively reducing
noise. Averaging similar tokens smoothes the time series,
acting as an adaptive low-pass filter. To validate our hypoth-
esis, we low-pass filter the input time series using Gaussian
kernels without token merging in figure 6. On ETTh1, both
local merging and Gaussian filtering improve the MSE. On
the Electricity dataset, token merging and Gaussian filtering
do not positively impact the MSE. All of these observations
are in line with our hypothesis. Applying token merging
together with the Gaussian kernel leads to the best results.
Other averaging kernels were significantly worse. We show
additional results in appendix E.4.

Dataset properties We find properties of the target dataset
that are particularly amenable to token merging. Using met-
rics from signal processing, we can predict how well local
merging will perform on a new dataset prior to evaluation.
Improvement in forecasting quality due to local merging in
table 2 correlates with the spectral entropy of the dataset.
Specifically, local merging achieves higher quality gains on
high entropy datasets, such as ETTm1, ETTh1, and Traffic
(see table 4). We argue that local merging removes unnec-
essary information from complex signals with high entropy
using its selective smoothing ability. This allows the model
to focus on only the relevant patterns of a signal and to
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Figure 6: Comparison of low-pass filtering the input time series
with a Gaussian filter and token merging for Chronos small. The
Gaussian filter has a similar effect on MSE as local merging, sup-
porting our hypothesis that local merging selectively low-pass
filters data. Besides improving MSE, local merging accelerates
models unlike Gaussian filtering.

achieve better prediction quality. Besides the spectral en-
tropy, the same correlation is evident in the total harmonic
distortion (THD). Local merging adaptively low-pass-filters
noisy distorted signals to condense the most relevant pat-
terns and effectively improves the signal-to-noise ratio. The
greater noise in ETTm1, ETTh1, and Traffic compared to
Electricity and Weather can also be visually inspected in the
respective frequency spectrum in appendix E.5. Therefore,
we expect a larger improvement of prediction quality when
applying local merging on high entropy signals with a low
signal-to-noise ratio. While less significant, local merging
still improves efficiency on low noise datasets, as we discuss
in appendix E.6 in detail.

Table 4: Quality improvement due to local merging on datasets
with different signal properties.

Dataset MSE∆ Spectral entropy THD

ETTm1 −4% 4.64 70.23
ETTh1 −6% 4.55 54.93
Traffic −9% 2.96 19.78

Electricity 0% 2.24 15.77
Weather −1% 1.64 13.15

Model properties Across all datasets, we identify model-
specific properties that benefit local merging. For this, we
analyze the average cosine similarity of tokens in the models
from table 1 after the first transformer layer. Local merging
accelerates models, such as the Non-stationary Transformer,
that learn more similar token representations without quality
degradation. For models with dissimilar token representa-
tions, like the Informer, we observe quality degradations
when applying local merging, as table 5 shows.

6.3. Dependencies on input length

Token merging effectively reduces the number of tokens
in a transformer layer. Here, we explore if we can achieve
similar accelerations while maintaining the same prediction
quality by varying the number of input samples m. For

Table 5: Quality degradation due to local merging of models with
different token representations.

Model and dataset MSE∆ Token similarity

Informer 2 Layers Traffic 6% 0.10
Informer 4 Layers Electricity 7% 0.22
Informer 8 Layers ETTh1 9% 0.28
Informer 6 Layers Weather 2% 0.35
Informer 6 Layers ETTm1 −1% 0.40

Non-stationary 10 Layers ETTh1 0% 0.77
Non-stationary 8 Layers ETTh1 0% 0.82
Non-stationary 6 Layers Weather 0% 0.87

Transformer 10 Layers ETTm1 0% 0.99

better comparison, we keep the predicted time series snippet
fixed and only adjust the input sequence.
Our results demonstrate that varying the input length cannot
replace local merging (see also appendix E.7). In figure 7,
we investigate input length dependence for two objectives in
more detail: First, we explore the token merging setup that
leads to the best MSE and compare the results to the model
without merging. Here, local merging yields considerable
throughput increases while improving predictive quality
at the same time. Second, we compare the fastest model
with token merging, which shows no quality decreases, to a
standard model. We find models with local merging to scale
favorable to long sequences.
We further explore the redundancy of input tokens including
the influence of the positional embedding in appendix E.6.
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Figure 7: Effect of input length on (a) forecasting quality and (b)
inference time for token merging in Chronos small on ETTh1.

7. Conclusion

In this work, we explore token merging in the time series
domain for the first time. We conduct an extensive empirical
study on transformer architectures and state-space models
in diverse settings using various models and datasets. We
demonstrate that token merging can successfully accelerate
pretrained models and sometimes even improve their predic-
tion quality. We further introduce a domain-specific local
merging algorithm with variable complexity and illustrate
its effectiveness on Hyena and Mamba models. Addition-
ally, local merging is the first causal token merging scheme,
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which we successfully apply in transformer decoders. Fi-
nally, we conduct several ablation studies to investigate
when token merging is most effective, including spectral
properties of the analyzed dataset and model- and algorithm-
specific properties. We hope that token merging will have
a positive effect on reducing the resource consumption and
environmental impact of time series models.

Limitations In our work, we divide all tokens into two sets
and restrict merging to occur only between tokens from dif-
ferent sets. Future work can explore more flexible merging
schemes for time-series-specific architectures. Moreover,
we do not conduct ablations on all possible hyperparame-
ters due to the large number of architectures and datasets
evaluated in this work.

Impact Statement

We demonstrate large accelerations and considerable quality
gains throughout a broad range of time series architectures.
Our local merging can improve training efficiency and accel-
erate already trained models without any fine-tuning. This
is especially important for emerging foundation models,
which require considerable computational resources. We
hope that local merging will contribute to more sustainable
time series models and reduce their environmental impact.
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A. Related work
Here, we discuss related work in greater detail.

Time series transformers In recent years, many transformer architectures with inductive biases for time series have been
proposed, successfully outperforming classical and other deep-learning-based methods in time series forecasting quality
like recurrent neural networks (Li et al., 2019). Most of them focus on reducing complexity by modifying the attention
mechanism. LogTrans uses LogSparse attention (Li et al., 2019), while Informer focuses only on the most relevant queries
using ProbSparse attention (Zhou et al., 2021). Additionally, many architectures adopt decomposition techniques to model
trend and seasonal patterns (Woo et al., 2022; Wu et al., 2021; Zhou et al., 2022; Liu et al., 2022b). Autoformer leverages
autocorrelation as a sequence-based similarity measure in the attention mechanism (Wu et al., 2021). FEDformer uses the
frequency domain to model time series effectively (Zhou et al., 2022). Non-stationary Transformers further mitigate the
effect of the time series distribution changing over time (Liu et al., 2022b). Other works apply hierarchical attention (Liu
et al., 2022a; Cirstea et al., 2022), embed subsequences as tokens to capture local semantic information (Nie et al., 2023),
or leverage attention between time series variates to better model multivariate patterns (Zhang & Yan, 2023; Liu et al.,
2023). Due to their success in the vision and NLP domain, transformer-based foundation models have lately emerged for
time series, often used in zero-shot settings. Many works focus on training transformers directly on large and diverse time
series datasets, usually with billions of tokens (Garza & Mergenthaler-Canseco, 2023; Das et al., 2023; Rasul et al., 2023;
Woo et al., 2024). Inspired by the success of foundation models in NLP, the recently proposed Chronos model converts
continuous time series data into a fixed vocabulary and is trained on both real-world and synthetic data (Ansari et al., 2024).
Besides, other research branches focus on fine-tuning vision or NLP models for time series (Zhou et al., 2023) and on
applying large language models directly on time series data (Gruver et al., 2023).

State-space models Due to the quadratic scaling of the attention mechanism, transformer architectures suffer from
significant computational cost when processing very long sequences. Recently, state-space models have shown promising
results in overcoming the quadratic complexity of transformers with respect to input length. Linear state-space layers solve
the sequential processing requirement of RNNs through linear state-space representations (Gu et al., 2021). The S4 model
reduces memory requirements by conditioning the state-space matrix with a low-rank correction (Gu et al., 2022). By using
implicit convolutions and a data-aware gating mechanism, Hyena (Poli et al., 2023) became one of the first state-space model
architectures to match transformers on NLP tasks. Later work uses hardware-aware algorithms to improve the performance
of state-space models on modern accelerators (Gu & Dao, 2023).

Reducing tokens Many works reduce the number of processed tokens to increase the efficiency of transformers in
computer vision and NLP, often by pruning (Meng et al., 2022; Goyal et al., 2020). Marin et al. (2021) merge tokens in
ViT architectures to reduce the loss of information associated with pruning. Bolya et al. (2023) enhance the token merging
algorithm, which they successfully apply to already trained encoder-only models. Besides initial work on classification
tasks (Bolya et al., 2023), subsequent work applies token merging to diffusion models (Bolya & Hoffman, 2023). Kim et al.
(2024) combine merging and pruning, while other works investigate optimal merging and pruning rates (Bonnaerens &
Dambre, 2023; Chen et al., 2023). Concurrent work adapts token merging to preserve the spectral properties of the token
space (Tran et al., 2024). However, their merging algorithm still has quadratic complexity, making it unsuitable for long
sequence processing.

Sparse attention and token skipping Besides reducing the number of tokens, sparse attention (Child et al., 2019; Li
et al., 2019; Zhou et al., 2021; Wu et al., 2021) and token skipping (Raposo et al., 2024) also decrease the computational
requirements of transformer models. Sparse attention computes a subset of the attention matrix. Therefore, it can only
accelerate the attention mechanism itself and not the subsequent MLP, in contrast to reducing the number of tokens during
token merging. According to Marin et al. (2021), this MLP can take over 60% of the total computation in a ViT layer.
Further, altering the network architecture from full attention to sparse attention might require a retraining of the model.
Concurrent work, such as token skipping (Raposo et al., 2024), involves the selection of a subset of tokens to be processed in
a transformer layer. However, it has only been shown in NLP when training from scratch. In contrast to sparse attention and
token skipping, token merging can accelerate already trained models and does not require any training data or fine-tuning.
This is especially important for recent foundation models, which are expensive to train. In our experiments in sections 5.1
and 5.2, token merging successfully accelerates Informer and Autoformer, which already employ sparse attention. We
therefore consider token merging as an orthogonal approach.

Here, we propose the first token merging algorithm for the time series domain, which extends beyond previous investigations
of token merging in ViTs (Bolya et al., 2023; Bolya & Hoffman, 2023). We systematically evaluate the potential to reduce
computational effort in time-series-specific transformer architectures and state-space models.
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B. Local token merging for time series
In the following, we provide derivations and more details on our local merging algorithm. We further discuss the interplay
of time-series-specific inductive biases and our token merging method.

B.1. Derivations

Here, we derive our theoretical results in section 3.

Complexity of local merging To compute Sloc for local merging we need to compute the main diagonal of S ∈ Rtl/2× tl/2

and depending on k also secondary diagonals which are symmetrical but shorter than the main diagonal for k > 1. We
derive the complexity of local merging depending on k in the following:

complexity Sloc =
tl
2
+ 2

k∑
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2
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p=1

tl
2
− p

=
tl
2
+ 2

(
(k − 1) tl

2
−

k−1∑
p=1

p
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2
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2
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Merging speed-up bound We roughly estimate the upper bound of the speed-up we can achieve by merging tokens
in a L-layer transformer model. Therefore, we only consider attention due to its quadratic scaling with tl. We disregard
additional effects reducing speed-up, such as merging overhead, to estimate the upper bound. Further, we assume merging
half of the tokens in each layer. The attention in the first layer is unaffected by merging, as we apply token merging between
the attention and MLP.
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B.2. Inductive biases

Time series feature domain-specific characteristics, including temporal causality, long sequences, periodicity, trends, and
sparsity in the frequency domain. Here, we discuss the interplay of these properties with our token merging algorithm.

Our local merging algorithm is specifically designed to exploit two core properties of time series: First, it preserves temporal
causality, as real-world time series are generated by causal processes. Second, it maintains linear complexity as time series
often consist of very long token sequences (Godahewa et al., 2021; Grešová et al., 2023). This way, we design a very
universal token merging scheme, applicable to many model architectures and datasets, as we show in our experiments.

We conduct new investigations where we trace the tokens being merged throughout the transformer model and show that
token merging can exploit periodicity and trends without explicitly modeling these inductive biases. As illustrated in
figure 8b, our global merging for time series combines local and global information. However, we did not implement these
properties as hard inductive biases to maintain the universality of our algorithm: This way, token merging also performs
well on sequential data that does not exhibit trend or periodicity, such as DNA sequences (Grešová et al., 2023), as we show
in section 5.4. Stock prices typically also do not have regular periodic patterns. Further, introducing a periodic bias to the
neighborhood of our local merging algorithm would break causality, making it inapplicable to decoders.

Autoformer and FEDformer transform the tokens to the frequency space. Autoformer specifically focuses on the autocorre-
lation. Here, our token merging natively exploits sparsity in the frequency domain and autocorrelation space.

Our token merging algorithm can exploit inductive biases for time series, including periodicity, trends, and sparsity in the
frequency or autocorrelation space, but it is not limited to those. This way, it is universally applicable to many architectures
and datasets. Further, it features causality and low complexity as inductive biases for 1d-sequence processing.
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(a) Global merging, linear trend
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(d) Local merging, periodic curve

Figure 8: Global and local merging in Chronos base on data with linear trends and periodic patterns. Time series samples merged into the
same tokens throughout the transformer are visualized in the same color (top 3 tokens displayed). Local merging preserves locality and
causality. Global merging combines local and global information, capitalizing on periodic patterns.
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C. Experiments
Here, we list additional information concerning our experimental settings and resources.

Datasets We base our experiments on 5 commonly used multivariate time series datasets covering different forecasting
applications: ETTh1 and ETTm1 consist of 7 variates measuring the power load and temperature of electric transformers
in hourly and quarter-hourly granularity (Zhou et al., 2021). Weather consists of 21 meteorological quantities, such as
air temperature, and is recorded every 10 minutes in 2020.1 Electricity measures the energy demand of 321 consumers
every hour (Godahewa et al., 2021). Traffic consists of 862 sensors in the San Francisco Bay Area measuring the road
occupancy hourly (Godahewa et al., 2021). We use the same data splits for training, validation, and test as Wu et al. (2021)
for consistency.
Since the Chronos foundation model operates univariately and requires considerable computational resources, we randomly
sample the same 7000 time series from the test set for all Chronos evaluations. For the ETTh1 dataset, we do not observe
relevant differences when comparing the results to the full test set in figure 9.
To explore token merging in an additional sequence-based domain and on a second task, we use the Dummy Mouse Enhancers
Ensembl dataset (Grešová et al., 2023) for classifying genomic data. It contains very long sequences of nucleotides from a
mouse.

Applying token merging In our experiments, we generally find it beneficial to allow self-attention to transfer information
between tokens before merging them. Therefore, we apply token merging between self-attention and the MLP in all
transformer encoders as Bolya et al. (2023). Many transformers exhibit quadratic attention, imposing considerable
computational cost. As a result, we do not find the token merging algorithm to introduce a substantial additional overhead.
Thus, we choose k = tl/2 to profit from a global merging pool for transformer encoders. For our main experiments, we
also apply our causal local merging with k = 1 in the transformer decoders between self-attention and cross-attention
and finally unmerge all decoder tokens. Therefore, we utilize different merging strategies in transformer encoders and
decoders. In architectures utilizing additional tensors like attention masks or positional biases, we merge them using the
same correspondences.
In state-space models, we merge tokens after the Hyena or Mamba operator and choose k = 1 to not introduce an operation
with quadratic complexity into the architecture.

Hyperparameter optimization For each transformer architecture, model size, and dataset, we train 32 models without
token merging doing hyperparameter tuning of learning rate and dropout using HEBO (Cowen-Rivers et al., 2022). Here,
we apply token merging during inference-time only. We choose the best model based on its validation MSE. We train
17 models with the found hyperparameters, the minimum possible qtrain, and different uniformly spaced rtrain until all
tokens are merged. We again choose the best model based on the MSE for further evaluation. We do 185 hyperparameter
optimization trials of both chosen models, trained with and without token merging, using HEBO to find token merging
inference hyperparameters rtest and qtest on the validation set. Please note that r and q might be different for local merging
in the encoder and causal local merging in the decoder. Finally, we evaluate once on the test set to report our results.

Hyperparameters In table 6 we list the most relevant hyperparameters we used for training the transformer models,
including the vanilla Transformer, Autoformer, FEDformer, Informer, and Non-stationary Transformer. For training and
testing HyenaDNA (Nguyen et al., 2023) and for testing Chronos (Ansari et al., 2024), we used their default hyperparameters.

Reproducibility of measurements We report all results on the same Nvidia A6000 GPU. For training, we utilize Nvidia
V100 and A100 GPUs. We measure the end-to-end inference time of the models using 2 warm-ups and 2 measurement runs
per batch. The standard deviation of the inference time is generally < 2% in our experiments. Besides the inference time as
practically most relevant quantity, we report FLOPs as a more hardware-independent measure using the thop library (Zhu,
2022). We choose the maximum possible batch size and standardize the results.

Computational effort We estimate the computational effort for reproducing our experiments in table 7. Please note that
we base some of our experiments on model checkpoints acquired in previous experiments.

1https://www.bgc-jena.mpg.de/wetter/
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Figure 9: Comparison of Chronos models on the subsampled ETTh1 dataset to the full dataset.

Table 6: Hyperparameters for training the transformer models.

Hyperparameter Value

Training
Seed 2024
Optimizer Adam (Kingma & Ba, 2015)
Learning rate Search space loguniform[10−6, 10−2]
Learning rate decay Exponential, γ = 0.97
Dropout Search space uniform[0.0, 0.25]
Batch size 32
Epochs 100
Early stopping patience 7
Loss MSE

Model
Input length m = 192
Prediction horizon p = 96
Token dimension d = 512
Encoder layers L ∈ {2, 4, 6, 8, 10}
Decoder layers 1
Attention heads 8
MLP hidden dimension 2048
Activation GELU

Table 7: Computational effort to reproduce our experiments.

Experiment Accelerator GPU hours

Local merging in pretrained models A6000 100
V100 6720

Local merging during training A6000 50
V100 3840

Scaling to large models A6000 500

Token merging in state-space models A6000 40
A100 12

Dynamic token merging A6000 140
Improvement of forecasting quality A6000 30
Dependencies on input length A6000 80
Redundancy of input tokens A6000 5
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D. Results
Here, we show additional results for our main experiments.

D.1. Scaling to large models

In this section, we show complete results on applying token merging to Chronos, a time series foundation model.
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Figure 10: Token merging in different Chronos models on ETTh1.
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Figure 11: Token merging in different Chronos models on ETTm1.
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Figure 12: Token merging in different Chronos models on Weather.
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Figure 13: Token merging in different Chronos models on Electricity.
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Figure 14: Token merging in different Chronos models on Traffic.
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E. Further investigations
Here, we show additional experiments and results.

E.1. Token similarity measures

Different distance measures can be utilized to determine similar tokens for merging. Here, we explore the L1 and L2 norms
as magnitude-aware metrics and the cosine similarity measuring the angular distance. Our results show that the cosine
similarity outperforms both the L1 and L2 norms marginally. Bolya et al. (2023) further ablate the similarity metric for the
vision domain.

0.02 0.04 0.06 0.08
Inference time [s]

0.425

0.450

0.475

0.500

0.525

0.550

0.575
M

SE
Cosine similarity
L1 norm
L2 norm

Figure 15: Different token similarity metrics in Chronos small on ETTh1.

E.2. Token pruning

Here, we compare merging tokens to pruning tokens. Generally, pruning is associated with a higher loss of information.
This is also evident in our results in figure 16, where local merging outperforms local pruning.
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Figure 16: Local merging retains more information compared to local pruning, resulting in better MSE of Chronos small on ETTh1.
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E.3. Tokenization methods

Tokenization involves splitting the input time series into smaller units and embedding them in high-dimensional space. In our
experiments, we utilize varying token representations: Transformer architectures in section 5.1 leverage multivariate tokens
and a continuous embedding space, while Chronos utilizes univariate tokens embedded into discrete space. Autoformer
and FEDformer transform tokens to the frequency domain. In table 8, we further include PatchTST (Nie et al., 2023),
which embeds fixed-length subsequences as tokens. While most architectures generate tokens from time series, Hyena and
Mamba tokenize nucleotide sequences. We argue that the tokenization method is of minor importance for token merging.
Throughout all of our experiments, local merging consistently performs well on top of all token types.

Table 8: Local merging accelerates PatchTST models. Speed-ups are in line with table 1 even though there are only 24 tokens available
for merging due to patching.

Dataset Layers L PatchTST

MSE Accel. MSE∆

ETTh1 2 0.37 1.17× 2%
ETTm1 2 0.30 1.17× 2%
Weather 2 0.16 1.98× 5%

E.4. Improvement of forecasting quality — selective low-pass filter

We find token merging to have a smoothing effect, improving MSE, and show our results on all datasets here.
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Figure 17: Comparing token merging to smoothing the input time series of Chronos small on different datasets.
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E.5. Improvement of forecasting quality — dataset properties

In the following, we show the frequency spectrum of ETTh1, ETTm1, Weather, Electricity, and Traffic datasets.
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Figure 18: Frequency spectra of different datasets.
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E.6. Redundancy of input tokens

Token merging exploits similarities in data. Intuitively, the number of tokens that can be merged without affecting predictive
performance should depend on the redundancy of the tokens. We explore factors influencing the redundancy of input tokens,
including their number and positional embeddings. In the following, we use Autoformer’s time stamp positional embedding
for our ablation.
First, we investigate whether scaling the number of input tokens increases average redundancy on the ETTh1 dataset. As
demonstrated in figure 19, the same relative number of tokens is merged for a given merging threshold, independent of input
length. Therefore, we suggest scaling the number of merged tokens in each layer r linearly with the input length. Positional
embeddings add information about the location of a token within a sequence. As a result, two identical tokens without
positional embeddings may show considerable differences when positional embeddings are included, potentially preventing
merging. However, figure 19 shows that this effect on token merging is only marginal.
It is worth noting that the attention of the transformer acts as a high-dimensional low-pass filter, effectively generating more
redundancy throughout the transformer layers, as Marin et al. (2021) show. Therefore, token merging not only relies on
redundancy in the input data but also exploits redundancy that is introduced by the transformer itself.
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Figure 19: Relative number of redundant tokens for different similarity thresholds on ETTh1 with and without added positional embedding.

E.7. Dependencies on input length

Here we show an additional evaluation on applying token merging in Chronos models with different input lengths. It is
beneficial to choose a larger input length with token merging over a smaller one without.
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Figure 20: Varying the input length of Chronos small on ETTh1.
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