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Abstract

Reinforcement learning from human feedback001
has emerged as a promising paradigm that sig-002
nificantly enhances the performance of large003
language models. Typically, reward models are004
trained to align with human preferences and005
are then utilized to optimize the pretrained lan-006
guage models. However, given the multifaceted007
nature of human preferences, it is challenging008
to appropriately combine rewards from differ-009
ent aspects. Recent studies have developed010
algorithms to address this issue by employ-011
ing techniques such as weighting, and rank-012
ing. Nonetheless, these methods can perform013
poorly in certain scenarios despite their elegant014
design. In this paper, we explore the reward015
composition problem from a novel perspective.016
We posit that different reward models focus on017
distinct optimization directions, which the lan-018
guage model cannot discern, perceiving only019
the reward value. To formulate an appropriate020
reward signal, we introduce a global reward021
model that composes rewards from various as-022
pects in a self-supervised manner, a simple yet023
effective approach. This global reward model024
can be trained without the need for additional025
supervised data and is compatible with any type026
of reward model. Experimental results demon-027
strate the superiority of our method across a028
range of scenarios with different types of re-029
wards.030

1 Introduction031

In recent years, Large Language Models (LLMs)032

have made significant strides in the field of natural033

language processing, leading to their widespread034

use in downstream applications such as conversa-035

tional agents (Brown et al., 2020; OpenAI, 2023;036

Touvron et al., 2023), code generation (Ahmad037

et al., 2021; Wang et al., 2021; Roziere et al.,038

2023), and machine translation (Wang et al., 2023;039

Moslem et al., 2023). Reinforcement learning040

from human feedback (RLHF) (Christiano et al.,041

2017; Ziegler et al., 2019; Ouyang et al., 2022;042
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Figure 1: An example of the expected reward with two
kinds of rewards with different preference direction.

Rafailov et al., 2023) plays a critical role in this 043

evolution, enhancing the models’ ability to gener- 044

ate outputs that better align with human preferences 045

and greatly increasing their versatility. 046

Typically, RLHF involves three main steps. The 047

first is supervised fine-tuning, where a foundational 048

language model is refined using a targeted dataset. 049

The second step involves training reward models 050

that act as proxies for human preferences. Fi- 051

nally, the language model is optimized through a 052

reinforcement learning algorithm (Schulman et al., 053

2017), wherein the language model functions as a 054

policy model. It is evident that the reward model 055

is crucial in ensuring the language model’s outputs 056

continually improves and adapts to human evalua- 057

tive standards, which in turn, directly impacts the 058

efficacy of the reinforcement learning phase. 059

One of the primary challenges identified in re- 060

cent studies (Gao et al., 2023; Zhai et al., 2023; 061

Yuan et al., 2023; Moskovitz et al., 2023) is overop- 062

timization. This refers to the phenomenon where 063

maximizing returns on the reward model beyond 064

a certain threshold actually diminishes the perfor- 065

mance of the policy model. Two main factors con- 066

tribute to this problem. Firstly, the reward model 067

is merely an approximation of human preferences, 068

based on a limited dataset. Consequently, it is 069

1



prone to overconfidence when encountering out-070

of-distribution (OOD) data. Secondly, the reward071

model is tailored to optimize a specific aspect of072

success, which may not be in line with the ideal073

optimization path. Overly aggressive optimization074

steps with high rewards can cause the policy to075

deviate from this desired direction. Recent liter-076

ature (Ouyang et al., 2022; Touvron et al., 2023;077

Zhai et al., 2023) often mitigating this problem via078

adding Kullback–Leibler (KL) penalties to prevent079

the model from diverging significantly from the080

reference model.081

Another challenge arises in more complex sce-082

narios involving multiple reward models (Rama-083

murthy et al., 2022; Glaese et al., 2022; Yuan et al.,084

2023; Bakker et al., 2022; Moskovitz et al., 2023).085

Here, employing a variety of reward models is086

advantageous as it allows the policy model to be087

assessed from diverse perspectives, enriching the088

evaluation process. Nonetheless, a consequent is-089

sue is that the policy model may become overly090

reliant on one or a select few reward models, achiev-091

ing high returns during training while overlooking092

other relevant reward models. Therefore, devis-093

ing an effective algorithm that integrates diverse094

reward models is essential. Recent studies have095

explored various methods for combining rewards,096

such as ranking (Yuan et al., 2023), weighting (Wu097

et al., 2023), employing welfare functions (Bakker098

et al., 2022), and implementing safe reinforcement099

learning (Moskovitz et al., 2023). Despite the in-100

tricate design of these approaches and the need101

for fine-tuning hyperparameters, they often lead to102

only incremental enhancements in performance.103

To tackle the challenges outlined above, our re-104

search seeks a straightforward yet effective strategy105

to incorporate diverse rewards and combat overop-106

timization. Our research builds upon two key ob-107

servations: firstly, different reward models provide108

insights into text quality from numerous angles, yet109

they are not entirely independent of each other. Sec-110

ondly, language models struggle to discern the opti-111

mization direction of each individual reward model112

as they only receive a singular, aggregated reward113

score. We hypothesize the existence of an “gold di-114

rection" for optimization. The core concept of our115

approach is to calculate an expected reward that116

encapsulates overall progress towards this “gold117

direction." Figure 1 depicts an illustration with two118

reward models: we posit that the “gold direction"119

for optimizing the policy model is represented by120

the red line. When presented with two types of 121

rewards, the expected reward should correspond to 122

the projection of the composite rewards onto this 123

“gold direction." Nevertheless, the “gold direction" 124

and the optimization path for each reward model 125

are not explicitly known; we only have access to 126

their values. This constraint renders the direct cal- 127

culation of the expected reward impracticable. To 128

overcome this obstacle, we propose a straightfor- 129

ward and effective self-supervised method to train 130

a model for composing rewards. Additionally, by 131

penalizing the combined reward, we can approx- 132

imate the expected reward while simultaneously 133

mitigating the risk of overoptimization. 134

Our contributions are fourfold: (1) We propose 135

an self-supervised method for training a model 136

which can compose the rewards from different as- 137

pects. (2) By penalizing the composite reward with 138

KL divergence, our method can not only approxi- 139

mate the expected reward but also simultaneously 140

mitigating the issue of overoptimization (3) Our 141

method is both simple and potent, easily adaptable 142

to various reward models without incurring signifi- 143

cant computational costs. (4) We validate our ap- 144

proach through experimental results across several 145

scenarios involving diverse rewards, demonstrating 146

its effectiveness. 147

2 Preliminaries 148

2.1 Environments: generation as MDP 149

For each NLP task, we are given a dataset D = 150

{(xi, yi)}Ni=1 where N denotes the number of ex- 151

amples, x ∈ X denotes the prompt inputs and 152

y ∈ Y denotes the target outputs. Generation 153

task can be viewed as a Markov Decision Process 154

(MDP) (Puterman, 2014) which can be depicted 155

as a tuple M △
= (S,A,R, P, γ, T ) with a finite 156

vocabulary V . At the beginning of each episode, 157

a datapoint (x, y) is sampled from the data buffer, 158

and the episode ends when the time step exceeds 159

the maximum length horizon length T or an end of 160

sentence (EOS) token is generated. The prompt in- 161

put x = (x0, x1, ..., xm) is used as the initial state 162

s0 = (x0, x1, ..., xm), where s0 ∈ S, xm ∈ V 163

and S represents the state space. At time step 164

t < T , the policy model π(at|st) selects an ac- 165

tion at ∈ A conditioned on its current state st, 166

and then a new sate is reached via the transition 167

function P : S × A → S. Each episode can be 168

summarized as a trajectory τ = (si, a0, ..., sT , aT ), 169

and the goal of the policy model is to maximize the 170
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expected return R(τ) =
∑T

t=0 γ
tR(st, at), where171

theR ∈ S ×A → R denotes the reward function172

and γ ∈ [0, 1) denotes the discount factor.173

2.2 Reward model for optimizing the policy174

The reward models can be broadly classified into175

two categories. The first category (Bakker et al.,176

2022; Yuan et al., 2023; Wu et al., 2023; Rafailov177

et al., 2023) includes pretrained models that serve178

as proxies for human preferences within specific179

contexts. This is because having humans evaluate180

utterances and interact with the environment during181

the optimization process can be costly and incon-182

venient. The second category (Ramamurthy et al.,183

2022; Moskovitz et al., 2023) encompasses com-184

monly used metrics in natural language process-185

ing (NLP) such as BLEU (Papineni et al., 2002),186

ROUGE (Lin, 2004), and METEOR (Banerjee and187

Lavie, 2005). These metrics allow for automatic188

measurement and quick implementation. In ad-189

dition to these categories, rewards can be either190

coarse-grained or fine-grained. Coarse-grained re-191

wards offer a single, sparse reward at the termina-192

tion of each episode, while fine-grained rewards193

are accessible at any given time step. In scenarios194

where different types of rewards coexist, we define195

the composite reward function as follows:196

rcom = f(r1, ..., rn), (1)197

where ri denotes the output reward from various198

reward models, n is the number of reward models199

involved, and f(·) represents any composite func-200

tion. For simplicity, the time-step subscript t is201

omitted here and will continue to be excluded in202

the remainder of the text.203

3 Method204

This section is dedicated to addressing two pivotal205

questions: (1) What constitutes the expected re-206

ward? (2) How can we effectively approximate this207

reward using a neural network?208

3.1 Expected Singular for Multi-preference209

This paper relies on two main assumptions:210

• Each reward model predominantly assesses211

text quality from a singular perspective, and212

these perspectives are interrelated rather than213

isolated.214

• There exists an “gold direction” for optimiz-215

ing the language model.216

Referencing the example depicted in Figure 1, it is 217

evident that rewards derived from disparate reward 218

models can be conceptualized as vectors within 219

a Euclidean plane. It logically follows that the 220

aggregate reward vector, which encapsulates im- 221

provements in both aspects, should correspond to 222

the diagonal within the parallelogram defined by 223

these two vectors. If we assign the x-axis as the 224

“gold direction” for policy optimization, our task 225

then is to determine the magnitude of the diagonal’s 226

projection onto this “gold direction”. Nonetheless, 227

the inherent challenge lies in the fact that the ex- 228

act orientations of the reward models, as well as 229

the “gold direction”, remain unknown, rendering 230

the calculation of the expected reward intrinsically 231

unfeasible. 232

3.2 Estimating the expected reward 233

Theory of the composite reward. Let U be a 234

vector space of dimension n over the field R. Un- 235

der our first assumption, the rewards r1, . . . , rn 236

can be projected into U such that u1, . . . , un con- 237

stitute a basis of U , with the composite reward 238

vector ucom also lying within this space. This im- 239

plies that each vector ui is not contained within 240

the span of the remaining basis vectors, i.e., ui /∈ 241

span{u1, . . . , ui−1, ui+1, . . . , un} for all i. The as- 242

sumption is considered to be mild because each 243

reward metric evaluates lexical quality in a distinct 244

and significant manner. For instance, it is highly 245

unlikely for BLEU (Papineni et al., 2002) to be rep- 246

resented as a linear combination of ROUGE (Lin, 247

2004) and METEOR (Banerjee and Lavie, 2005). 248

Our aim is to determine the composite reward 249

rcom, which is subsequently used to calculate the 250

expected reward rexp. We posit that a set of scalars 251

k0, . . . , kn exists, corresponding to each individ- 252

ual reward, which collectively fulfill the following 253

relationship: 254

ucom =

n∑
i=1

kiui. (2) 255

Considering the inner product ⟨ucom, ui⟩, which 256

reflects the relationship between rcom and each 257

ri, and applying the Gram–Schmidt process (Leon 258

et al., 2013), we can derive an orthogonal basis r′ 259

with ri ∈ r′. This orthogonal basis allows us to 260

state that: 261

⟨ucom, ui⟩ = ki||ui||2 = ||ucom|| · ||ui|| cosα,
(3) 262
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Figure 2: The composition model for integrating different kinds of rewards. The blue box represents the composition
network which takes the state and the rewards as inputs and output the composite reward. The green box represent
the module for self supervised learning and will not be used when optimizing the policy model.

where α is the angle between ri and rcom.263

Although the exact “angle” information in Equa-264

tions (2) and (3) remains unknown, these equations265

guide us to construct meaningful relationships be-266

tween the composite and individual rewards. Equa-267

tion (2) indicates that the composite reward can268

be expressed as a weighted sum of individual re-269

wards, while Equation (3) inspires us to define spe-270

cific relationships between the composite reward271

and individual rewards through a neural network.272

Hence, we have designed neural network models,273

as depicted in Figure 2, to derive the composite274

reward.275

Composing the rewards. First, we construct a276

neural network to calculate the weights for each of277

the rewards, which can be expressed as follows:278

w = σ(fw(reprs)), (4)279

where fw(·) represents a trainable neural network,280

and w = w1, . . . , wn denotes the set of weights281

for the n reward models, reprs denotes the repre-282

sentation of the s. Subsequently, we compute the283

composite reward rcom using the formula:284

rcom = f(r1, ..., rn) =

n∑
i=1

wi · ri. (5)285

Establishing specific relationships via self-286

supervised learning. Next, we design another287

neural network that predicts each individual288

reward based on the other rewards and the289

composite reward. This method is analogous to290

the “mask and predict” technique used in the291

pretraining of language models. Specifically,292

we first generate n tuples of inputs inputr =293

([mask], . . . , rn, rcom), . . . , (r1, . . . , [mask], rcom), 294

and then predict the masked reward using the 295

equation: 296

r̃ = fr(inputr), (6) 297

where fr(·) denotes another trainable neural net- 298

work, r̃ = r̃1, . . . , r̃n represents the set of predicted 299

rewards, and r̃i is the predicted value for the i-th 300

reward. 301

The composition network is trained using the 302

following loss function: 303

Lr =
1

n

n∑
i=1

(r̃i − ri)
2. (7) 304

It is important to note that the reward compo- 305

sition network is trained in advance of the policy 306

model’s fine-tuning process. Once the fine-tuning 307

phase for the policy model begins, the parameters 308

of the reward composition network remain fixed. 309

Additionally, during this phase, the self-prediction 310

network is not employed. 311

Approximating expected reward and mitigat- 312

ing overoptimization. We postulate that the ex- 313

pected reward rexp, in alignment with the “goal 314

direction”, can be estimated by incorporating the 315

composite reward with a KL penalty, as expressed 316

in the following equation: 317

rexp ≈ rcom − β · KL(πθ(a|s) ∥ πref (a|s)), (8) 318

where πθ represents the policy model, πref signi- 319

fies the reference model, and β is the coefficient de- 320

termining the magnitude of the KL penalty. Mean- 321

while, this penalization also help to curb the overop- 322

timization tendencies of the policy model (Rama- 323

murthy et al., 2022; Moskovitz et al., 2023; Wu 324
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et al., 2023). The expected reward can be employed325

to fine-tune the language model using any reinforce-326

ment learning algorithm. In this paper, we opt for327

Proximal Policy Optimization (PPO) (Schulman328

et al., 2017), the specifics of which will be elabo-329

rated upon in section 4.330

Analysis. Equation (5) can be interpreted as an331

alternative form of Equation (2), wherin the com-332

putation reflects the composition relationship in333

the mapped vector space. Empirically, it is evi-334

dent that each weight wi lies within the open inter-335

val (0,1), and so we add the sigmoid function σ(·)336

to constrain the weights to lie within this range.337

Furthermore, by minimizing the loss described338

in Equation (7), we explicitly define a certain re-339

lationship among the rewards (r1, . . . , rn, rcom).340

This is achieved by employing a shared neural net-341

work that effectively captures the interrelationships342

among the composite and individual rewards, func-343

tioning as a practical realization of the conceptual344

relationship depicted in Equation (3).345

4 Experiment346

We evaluate the effectiveness of our method on347

different scenarios with different language models.348

In alignment with Moskovitz et al. (2023) and Wu349

et al. (2023), we carry out experiments on dialogue350

generation and question answering tasks. Details351

concerning hyperparameters and training details352

are provided in the Appendix.353

4.1 Dialogue Generation354

4.1.1 Experimental Settings355

Dataset. We conducted an experiment using a356

widely recognized dataset called DailyDialog (Li357

et al., 2017), which consists of transcripts of con-358

versations between humans.359

Reward models. For the rewards, we selected360

METEOR (Banerjee and Lavie, 2005), Intent361

score (Ramamurthy et al., 2022), BLEU (Papineni362

et al., 2002), and Bert score (Zhang et al., 2019), as363

they capture the desired behavior of the text from364

different perspectives. Among these, Intent score365

and Bert score are estimated via from a pretrained366

human preference model, RoBERTa (Liu et al.,367

2019) and BERT (Devlin et al., 2018), the other two368

are n-gram metrics. The reward is coarse-grained,369

with each response receiving a single reward that370

reflects the quality of the entire utterance.371

Baselines. GPT2 (Radford et al., 2019) is used 372

as the initial policy model. We selected Proxi- 373

mal Policy Optimization (PPO) (Schulman et al., 374

2017) as our baseline algorithm, wherein the re- 375

wards are computed as a linear combination of 376

individual metrics, each with a predetermined fixed 377

weight. Additionally, we employed Constrained 378

Reinforcement Learning from Human Feedback 379

(Constrained RLHF) (Moskovitz et al., 2023) as a 380

comparative baseline. 381

Evaluation metrics. To automatically evaluate 382

each method, we adopted a similar way with 383

Moskovitz et al. (2023), which involves calculating 384

an evaluation score based on six distinct metrics. 385

The chosen metrics, published by Moskovitz et al. 386

(2023), are external to the reward model. Specif- 387

ically, we utilized SacreBLEU (ma) (Post, 2018), 388

ROUGE-2 (mb) (Lin, 2004; Ganesan, 2018), and 389

ROUGE-L (mc) as metrics related to lexicon, and 390

Conditional Entropy-3 (mu), vocab-size-3-nopunct 391

(mv), and mean-prediction-length-nopunct (mw) 392

as metrics related to diversity. In a manner akin to 393

that of Moskovitz et al. (2023), we normalized the 394

score of each metric to fall within a range of 0 to 1, 395

using the minimum and maximum values observed 396

in Constrained RLHF experiments across three dis- 397

tinct reward model settings. The evaluation score 398

(meval) is subsequently computed as outlined in 399

Equation (9) 400

meval =
ma +mb +mc +mu +mv +mw

6
(9) 401

To complement our automated assessment, we also 402

carried out a human evaluation to gain further in- 403

sights into the performance of the models. This 404

additional step allowed us to capture subjective 405

quality aspects and nuances that automated metrics 406

might not fully reflect, providing a more compre- 407

hensive understanding of the models’ capabilities 408

in generating realistic and coherent dialogue. 409

4.1.2 Experimental Results 410

Stablility across varying numbers of reward. 411

We carried out experiments utilizing configurations 412

with 2, 3, and 4 reward models. Figure 3(a-c) de- 413

picts the improvement of model performance over 414

training epochs, where the results are the mean 415

of three random seeds, and the shaded area indi- 416

cates the standard deviation. We observed that 417

all methods remained stable when only two re- 418

ward models, METEOR and Intent Score, were 419
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Figure 3: The evaluation score of different methods on three scenarios with different number of rewards.

utilized. However, for the ConstrainedRLHF, per-420

formance significantly deteriorated and training421

became unstable upon the incorporation of a third422

metric, BLEU. In contrast, the baseline PPO and423

our method demonstrated stability. As illustrated424

in the figure, our method outperforms the others425

in these settings, thereby demonstrating the effec-426

tiveness of the reward composition model. The427

strong baseline, ConstrainedRLHF, delivered un-428

satisfactory performance except in the two-reward429

setting, which can be primarily attributed to its ex-430

plicit requirement for rewards from each aspect to431

surpass certain thresholds, without considering po-432

tential conflicts among them. Consequently, the433

type and number of reward models employed will434

significantly influence its performance.435

Overoptimization and reward conflict phenom-436

ena. Nonetheless, two phenomena require atten-437

tion. Firstly, the performance of the language438

model tends to decline after approximately 75439

epochs, which may be due to the fact that KL reg-440

ularization, despite mitigating optimization, can-441

not completely eliminate it. Consequently, there442

is a tendency for the policy to overfit on the re-443

ward models. Secondly, the peak performance ob-444

tained with three reward models is lower than that445

achieved with two, a result that may stem from446

Table 1: Human evaluation results on DailyDialog.

Method Selection Rate
PPO 40%
Com. RLHF+PPO(Ours) 64%
ConstrainedRLHF+PPO 12%
No preference 13%

the potential conflict between differing objectives, 447

impairing further improvement. 448

Improving the policy model comprehensively. 449

Figure 3(d-f) illustrates how the evaluation score 450

varies with different metrics in the 3-reward-model 451

setting. It shows that each metric score of our 452

method experiences less fluctuation over the course 453

of training, ultimately achieving the highest eval- 454

uation score. This highlights that the composite 455

reward is both useful and appropriate for facilitat- 456

ing the optimization of the policy. 457

Human evaluation results. We randomly sam- 458

pled 50 dialogue contexts from the dataset along 459

with their generated responses for human evalua- 460

tion. To assess these, we recruited 20 human evalu- 461

ators and tasked them with choosing the most ap- 462

propriate response for each context through anony- 463

mous questionnaires. We allowed for multiple se- 464
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lections, providing evaluators the option to indicate465

“no preference” when they encountered difficulty466

in discerning a clear favorite or if none of the re-467

sponses seemed fitting. As depicted in Table 1, the468

outcomes of our human evaluation are in agreement469

with those from the automated assessment, confirm-470

ing that our method significantly outperforms the471

competing approaches in terms of performance.472

4.2 Question answering473

4.2.1 Experimental Settings474

Dataset. We conduct experiment on QA-475

Feedback dataset provided by Wu et al. (2023),476

consisting of 3,853 training examples, 500477

development examples, and 948 test examples.478

Reward models. In this dataset the rewards are479

fine-grained which means they are granted af-480

ter several timesteps, pertinent to each subsen-481

tence. Three reward models were trained on human-482

labeled data, focusing on three distinct categories:483

relevance, correctness, and completeness.484

Baseline. Following Wu et al. (2023), we se-485

lected the T5-large (Raffel et al., 2020) model486

that had been fine-tuned on 1,000 training exam-487

ples (referred to as SFT) as baseline, which also488

served as the initial policy model. Concurrently, we489

compared our method to Fine-grained RLHF (F.G.490

RLHF) (Wu et al., 2023), an approach that amalga-491

mates different rewards using fixed weights prede-492

fined by experts.493

4.2.2 Experimental Results494

Resolving conflicts among competing rewards495

The evaluation results for the test dataset are pre-496

sented in Table 2, where R1, R2, and R3 denote497

relevance reward, factuality reward, and complete-498

ness reward, respectively. Compared with base-499

line methods, our approach achieves the maximum500

reward in almost all aspects, with the exception501

of factuality. This can be attributed to the inher-502

ent conflicts among these reward models, which503

makes it challenging to optimize them simultane-504

ously (please refer to Appendix for more details).505

Specifically, the model RLHF achieves the highest506

R1 score, owing to the higher predefined weight507

assigned to it.508

Human evaluation results. Similar with Wu509

et al. (2023), we randomly selected 50 test exam-510

ples and enlisted 20 individuals to conduct a human511

evaluation to compare our method with F.G RLHF.512

Table 2: Results on QA-Feedback test set.

Method Rouge R1 R2 R3

SFT 49.16 0.469 0.793 0.225
F.G. RLHF 50.16 0.518 0.823 0.226
Com. RLHF 50.18 0.526 0.798 0.245
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Figure 4: Human evaluation results on relevance and
factuality.

Each evaluator was charged with assessing the re- 513

sponses from each model for (1) irrelevance and 514

(2) incorrectness, Furthermore, workers were asked 515

to compare the (3) completeness of the informa- 516

tion provided in the responses from the different 517

models. Evaluators also had the option to indicate 518

their preferred response, with “hard to decide” as a 519

permissible selection. 520

The evaluation results for irrelevance and incor- 521

rectness are illustrated in Figure 4. Responses from 522

our method were found to be consistently more 523

relevant to the questions asked. Moreover, our ap- 524

proach resulted in a relative lower rate of factual 525

errors. The assessment of completeness and prefer- 526

ence is presented in Table 3. Our method surpassed 527

F.G RLHF in terms of completeness and matched 528

it in terms of preference. 529

Table 3: Human pairwise comparison win rate on infor-
mation completeness and their preference response on
QA-Feedback test set.

Ours vs. F.G RLHF Win Tie Lose
Completeness 44% 16% 40%
Preference 44% 12% 44%

5 Related Work 530

5.1 Reinforcement learning from human 531

feedback 532

Reinforcement Learning from Human Feedback 533

(RLHF) (Christiano et al., 2017; Ziegler et al., 534
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2019; Ouyang et al., 2022; Rafailov et al., 2023)535

has emerged as a pivotal technology in fine-tuning536

language models to better align with human in-537

tentions. It demonstrates its effectiveness in down-538

stream tasks such as summarization (Stiennon et al.,539

2020), story-telling (Ziegler et al., 2019) instruction540

following, and harmlessness reducing (Bai et al.,541

2022; Lu et al., 2022; Ganguli et al.). Initially, re-542

ward models are trained to act as proxies for human543

preferences. Subsequently, the policy model is re-544

fined by maximizing cumulative returns through re-545

inforcement learning algorithms like REINFORCE546

and Proximal Policy Optimization (PPO). Nonethe-547

less, a primary challenge of RLHF is overoptimiza-548

tion (Gao et al., 2023), where inaccurate reward549

models may be overconfident in sample evalua-550

tions, leading to misguided policy updates and de-551

graded performance. To counteract this issue, some552

researchers (Ouyang et al., 2022; Touvron et al.,553

2023) have introduced penalty terms to constrain554

the policy model from deviating excessively from555

a reference model, enhancing stability and reduc-556

ing uncertainty. Other studies (Yuan et al., 2023;557

Rafailov et al., 2023; Song et al., 2023) have sought558

to circumvent the reward modeling process alto-559

gether, optimizing the policy directly. Despite these560

advancements, Li et al. (2023) show that reward-561

model-based approaches offer advantages when562

dealing with out-of-preference samples.563

5.2 Combining different rewards564

To enhance the language model’s alignment with565

diverse preferences, various forms of feedback are566

typically utilized to reflect the policy’s behavior567

across multiple dimensions (Bakker et al., 2022;568

Glaese et al., 2022; Yuan et al., 2023; Wu et al.,569

2023; Moskovitz et al., 2023). Nonetheless, in-570

tegrating these rewards poses a challenge, as the571

policy might disproportionately emphasize one or572

a few specific reward models. Some studies (Wu573

et al., 2023; Ramamurthy et al., 2022) address this574

by summing the different rewards, assigning pre-575

defined weights based on prior knowledge. Alter-576

natively, another body (Yuan et al., 2023; Glaese577

et al., 2022) of research suggests optimizing the578

agent’s policy by ranking multiple sampled re-579

sponses. More specifically, Yuan et al. (2023) intro-580

duced a ranking loss designed to elevate the prob-581

abilities of superior responses, while Glaese et al.582

(2022) suggested a reranking score to serve as the583

overall reward, providing a bonus to comparatively584

high-quality responses within the samples. Bakker 585

et al. (2022) proposed a welfare function that quan- 586

tifies and ranks consensus statements according to 587

their attractiveness to the aggregate reward mod- 588

els. Moskovitz et al. (2023) adopted constraint 589

reinforcement learning to deter the agent from ex- 590

cessively optimizing each reward model beyond 591

set proxy points. However, the policy struggles to 592

discern the intentions underlying the design of re- 593

wards and receives only a scalar value. Therefore, 594

we investigate methods to yield an anticipated re- 595

ward that holistically improves the language model. 596

We propose a straightforward yet potent approach 597

for training a reward composition model in a self- 598

supervised way. 599

6 Conclusion 600

In this study, we concentrate on scenarios involving 601

multi-faceted reward models to fine-tune large lan- 602

guage models. We posit that various reward models 603

assess text from distinct perspectives, converging 604

towards an optimal “gold direction” for policy opti- 605

mization. To amalgamate the rewards from diverse 606

models, we introduce a straightforward yet potent 607

reward composition model, which can be trained 608

through a self-supervised manner. By imposing 609

penalties on the composite reward, our approach 610

not only aligns closely with the expected reward 611

in the “gold direction" but also mitigates the is- 612

sue of overoptimization. We validate our approach 613

through a series of experiments utilizing assorted 614

reward types, and the empirical evidence attests to 615

the effectiveness of our method. 616

Limitations and Future Work. Our study, while 617

demonstrating promising results, is subject to sev- 618

eral limitations. Firstly, the effectiveness of our 619

method hinges on an assumption that lacks formal 620

mathematical guarantees. Secondly, the process of 621

training a reward composition model incurs addi- 622

tional computational overhead. Lastly, given that 623

the outputs from different reward models might 624

conflict, our approach does not currently possess 625

a mechanism to discriminate between more and 626

less useful models, instead aggregating them to 627

compute a composite reward. For future works, 628

we aim to refine our methodology by establishing 629

theoretical foundations to bolster its reliability. Ad- 630

ditionally, exploring ways to obtain feedback from 631

more powerful large language model such as GPT- 632

4 could offer interesting avenues to enhance model 633

performance. 634
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A Experimental Details824

A.1 Experimental Settings825

Dialogue generation. We adopted a similar ex-826

perimental setup as Ramamurthy et al. (2022);827

Moskovitz et al. (2023) for our dialogue genera-828

tion, utilizing a context window with a span of five829

utterances. This segmentation approach produced830

a dataset comprising 35,000 utterances for training,831

3,000 for validation, and 3,000 for testing. Echo-832

ing Moskovitz et al. (2023), our decoding process833

employed a top-k sampling strategy with k set to834

20. Inputs to the model were presented as concate-835

nated segments of human dialogue, with speaker836

transitions denoted by a distinct end-of-utterance837

(<EOU>) token. Additionally, the intent classifica-838

tion reward mechanism are established based on a839

fine-tuned RoBERTa (Liu et al., 2019) model. This840

system assigned a score of 1 when the model’s841

inferred intent for a generated utterance matched842

that of the corresponding reference or ground-truth843

utterance, otherwise attributing a score of 0. Prior844

to their introduction into the composition model,845

we normalized each reward model by subtracting846

the mean value computed from the training set. In847

addition, we harnessed the fine-tuned RoBERTa848

model to extract representations of the input text,849

subsequently utilizing these representations as the850

state variable s in Equation (4). Given the coarse-851

grained nature of the rewards, these representations852

were calculated as the temporal mean across the853

entire text. Consistent with (Moskovitz et al., 2023)854

study, we adopted the GPT2 (Radford et al., 2019)855

architecture for both the policy and value models.856

We select four distinct rewards to conduct experi-857

ments, the specifics of which are detailed in Table 4.858

Table 4: Chosen rewards in dialogue generation task

Setting Chosen metric or model
2 rewards METEOR; INTENT
3 rewards METEOR; INTENT; BLEU
4 rewards METEOR; INTENT; BLEU; BERT

859

Question Answering. In the question answering860

scenario, we similarly employ a top-k sampling861

approach, setting k to 20. Diverging from our862

previous task, we have opted for T5-large (Raf-863

fel et al., 2020) as the policy model and T5-base864

for the value model. Owing to the fine-grained865

nature of the reward, we obtain text representa-866

tions using the T5-large reference model at each 867

time step, which then act as the state variable s in 868

Equation (4). The training process for each reward 869

model, aimed at aligning with human preferences, 870

follows the methodology outlined by (Wu et al., 871

2023). For an in-depth understanding, readers are 872

directed to their original publication. 873

Details for training reward composition model. 874

Each individual reward is normalized before be- 875

ing fed into the reward composition network. For 876

the preference-based reward model, we apply z- 877

normalization. For the other reward models, we 878

initially scale them to a range between 0 and 1, and 879

then subtract their mean value. Regarding the self- 880

prediction network, it comprises two dense layers, 881

both shared across all masked tuples. The first layer 882

features 32 units with ReLU activation, functioning 883

as the common encoder, while the second layer has 884

a single unit, establishing the specific relationship 885

between the tuple and the masked value. 886

Training algorithm. The comprehensive train- 887

ing protocol we adopted is encapsulated in Al- 888

gorithm 1. This framework adheres to the stan- 889

dard Proximal Policy Optimization (PPO) algo- 890

rithm (Schulman et al., 2017), augmented with an 891

additional step dedicated to the calculation of the 892

expected reward. 893

Table 5: Hyperparameters for finetuning policy model

Settings DailyDialog QA-Feedback
Total epochs 80 10
Batch size 64 12
Learning rate 1e-6 1e-5
Clip ratio ϵ 0.2 0.2
Rollouts top-k 20 20
Temperature 0.7 0.7
Discount factor γ 0.99 0.99
GAE λ 0.95 0.95
KL coefficient β 0.2 0.3
Policy model GPT2 T5-large
Value model GPT2 T5-base
Model for reprs RoBERTa T5-large

Hyperparameters. One of the strengths of our 894

method is that it does not introduce additional hy- 895

perparameters beyond those required by the base- 896

line PPO algorithm. Furthermore, all weights 897

within the composite reward model are learned 898

through a neural network architecture. For trans- 899

parency and reproducibility, we have detailed all 900
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Algorithm 1 Optimizing a Language Model with Multiple Reward Models
Initialize: reference language model πref ; initial value model Vφ; n reward models R1, ...,Rn; task
dataset D; hyperparameters

1: Finetune the reference language model on dataset D and get the initial policy model πθ
2: Training the reward modelsR1, ...,Rn on dataset D
3: Training the composition reward model f on dataset D
4: for epoch ep = 1, ..., k do
5: Sample a batch Db from D
6: Sample output sequence yi ∼ πθ(·|xi) for each xi ∈ Db

7: Compute rewards r1, ..., rn viaR1, ...,Rn.
8: Compute composite rewards rcom via Equation (4) and Equation (5)
9: Compute expected rewards rexp via Equation (8)

10: Compute advantages {A}|y
i|

t=1 and target values {V ′}|y
i|

t=1 for each yi with Vφ

11: Update the policy model by:
θ ← argmaxθ

1
|Db|

∑Db
i=1

1
|yi|

∑yi
t=1 min( πθ(at|st)

πref (at|st)At, clip( πθ(at|st)
πref (at|st) , 1− ϵ, 1 + ϵ)At)

12: Update the policy model by:
φ← argminφ

1
|Db|

∑Db
i=1

1
|yi|

∑yi
t=1(Vφ(at|st)− V ′(at|st))2

13: end for
Output: πθ

Table 6: Hyperparameters for training composition re-
ward model

Settings DailyDialog QA-Feedback
Total epochs 2 2
Batch size 256 128
Initial learning rate 5e-5 1e-4
Optimizer Adam Adam

the hyperparameters associated with fine-tuning the901

policy and training the composite reward model in902

Table 5 and Table 6, respectively.903

Computational resources. All of our experi-904

ments were conducted on a single NVIDIA A100905

GPU. For the dialogue generation task, the opti-906

mization of the language model typically required907

between 8 and 10 hours. Additionally, the train-908

ing of the composition network incurred an extra909

2 to 4 hours of computational time. For the ques-910

tion answering task, the optimization of the lan-911

guage model required between 25 and 30 hours,912

and the training of the reward composition network913

incurred an extra 1 to 3 hours of computational914

time.915

A.2 More Experimental Results916

Visualizing the conflicting rewards. To more917

effectively analyze the correlations among the var-918

ious rewards in the question answering task, we919
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Figure 5: Correlations among rewards. Upper F.G.
RLHF, lower Com. RLHF.

plotted the reward values at each time step and 920

fitted a polynomial surface to the data, as shown 921

in Figure 5. It is evident that the reward for rele- 922

vance conflicts with the other two types of rewards, 923

complicating the optimization of the policy. 924

Showcases We present examples of the question- 925

naires and showcase the generated responses for 926

two tasks in Table 7, Table 9, Table 8 and Table 10. 927
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Table 7: Example of the questionnaire for DailyDialog

Context (<EOU> denotes the end of an utterance
and signals a switch in speaker roles.)

Hello . This is Mrs . Wilson . I’d like to buy a
new car . Could you offer me a new type of the
car , please ? <EOU> Oh , Madam , buy what ?
<EOU> A new car . And I’ve got a small family
, two children , and I haven’t got a lot of money
and ... <EOU> Oh , oh , Madam , Madam , I’m
afraid you have the wrong number . <EOU> Isn’t
this the car store ? <EOU>

Response A I have no idea. You have just given me your num-
ber <EOU>

Response B It’s raining. It’s raining a lot that is just
that.<EOU>

Response C No, it’s the car wash. <EOU>
Please chose your preference (Multiple selections
are allowed and D for “no suitable response or
hard to decide")

Table 8: Generation sample of DailyDialog

Sample 1

Prompt A dessert sounds nice . <EOU>
What kind are you thinking of get-
ting ? <EOU> I want to get some
pie . <EOU> What kind of pie do
you want ? <EOU> I have no idea .
<EOU>

Reference Do you want to know what kind of
pie I like ? <EOU>

PPO Pie?? You mean like you had a
whole bunch on your plate. <EOU>

ConstrainedRLHF+PPO I have no idea. <EOU>
ComposedRLHF+PPO Do you have a favorite? <EOU>

Sample 2

Prompt You’re made a good choice . This
china tea set is unusual . <EOU>
Where was it from ? <EOU> It
was made in Jingdezhen . <EOU>
Jingdezhen ? Isn’t it called ’ the cap-
ital of porcelain ’ ? <EOU> You are
right . <EOU>

Reference This is the very thing I’ve been
dreaming of . <EOU>

PPO It was made in Shaoi, China.
<EOU>

ConstrainedRLHF+PPO I’m not sure why you think that’s so.
<EOU>

ComposedRLHF+PPO So why is it called Jingdezhen?
<EOU>
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Table 9: Example of the questionnaire for QA-Feedback

Question When does spring break start in the us?
Context wikipage: Spring break text: In Jamaica, the spring break starts in the first week of

Good Friday. The break may range from one week to two weeks, often times two.
This break starts depending on which month the Easter holiday begins, March
or April. In Mexico, spring break takes place during the Holy Week and the one
after it. In the United States, spring break at the college and university level can
occur from March to April, depending on term dates and when Easter holiday
falls. Usually, spring break is about one week long, but many K–12 institutions
in the United States schedule a two-week-long break known as "Easter Break,"
"Easter Holidays", or "Easter Vacation", as they generally take place in the weeks
before or after Easter. However, in the states of Massachusetts and Maine, schools
typically schedule spring break for the week of the third Monday in April to
coincide with Patriots’ Day. In Guatemala and Honduras, it takes place during
Easter; schools give students a whole week to rest while the staff workforce rests
approximately three days. In Colombia, spring break takes place the first week of
April, during the Holy Week until the second week.

Answer A In the United States, spring break at the college and university level can occur
from March to April, depending on term dates and when Easter holiday falls.
However, in the states of Massachusetts and Maine, schools typically schedule
spring break for the week of the third Monday in April to coincide with Patriots’
Day. In Jamaica, the spring break starts in the first week of Good Friday.

Answer B In the United States, spring break at the college and university level can occur
from March to April, depending on term dates and when Easter holiday falls.
Usually, spring break is about one week long, but many K–12 institutions in the
United States schedule a two-week-long break known as "Easter Break," "Easter
Holidays", or "Easter Vacation", as they generally take place in the weeks before
or after Easter. However, in the states of Massachusetts and Maine, schools
typically schedule spring break for the week of the third Monday in April to
coincide with Patriots’ Day.

Please Select Is answer A relevant to the question?
Is answer B relevant to the question?
Is there any factual error in answer A?
Is there any factual error in answer B?
Which information is more complete, answer A or B? (C for “hard to decide”)
Which answer do you prefer, answer A or B? (C for “hard to decide”)
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Table 10: Generation sample of QA-Feedback

Question Who did meg’s voice first on family guy?
Context wikipage: Meg Griffin text: Meg was voiced by an uncredited Lacey Chabert for

the first season, and by Mila Kunis in subsequent seasons after Chabert became
busy with school and appearing on "Party of Five" at the time, although some of
her work became second season episodes due to production order. Mila Kunis
won the role after auditions and a slight rewrite of the character, in part due to her
performance on "That ’70s Show". MacFarlane called Kunis back after her first
audition, instructing her to speak more slowly, and then told her to come back
another time and enunciate more. Once she claimed that she had it under control,
MacFarlane hired her. MacFarlane stated that Kunis "had a very natural quality to
Meg" and she’s "in a lot of ways [...] almost more right for the character". Kunis’s
voice is first heard as Meg in Episode 3 of season two "Da Boom", and the voices
switch back and forth in the broadcast order until settling on Kunis. Tara Strong
provides Meg’s singing voice in "Don’t Make Me Over". Meg is very unpopular
in high school due to both her plain appearance and personality. She desperately
tries to be part of the cool crowd, but is usually coldly rebuffed. | wikipage:
Meg Griffin text: Meg Griffin Megan "Meg" Griffin is a fictional character in the
animated television series "Family Guy". Meg is the eldest child of Peter and Lois
Griffin and older sister of Stewie and Chris, but is also the family’s scapegoat who
receives the least of their attention and bears the brunt of their abuse. She is often
bullied, ridiculed, and ignored. Meg first appeared on television, along with the
rest of the Griffin family, in a 15-minute short on December 20, 1998. She was
created and designed by "Family Guy" creator Seth MacFarlane, who was asked
to pitch a pilot to the Fox Broadcasting Company, based on "The Life of Larry"
and "Larry & Steve", two shorts made by MacFarlane featuring a middle-aged
man named Larry and an intellectual dog, Steve. After the pilot was given the
greenlight, the Griffin family appeared in the episode "Death Has a Shadow".
Originally voiced by Lacey Chabert during the first season, Meg has been voiced
by Mila Kunis since season 2. Meg is a self-conscious and insecure adolescent
girl.

F.G. RLHF Meg Griffin is a fictional character in the animated television series Family Guy.
She is the eldest child of Peter and Lois Griffin and older sister of Stewie and
Chris, but is also the family’s scapegoat who receives the least of their attention
and bears the brunt of their abuse. Originally voiced by an uncredited Lacey
Chabert during the first season, Meg has been voiced by Mila Kunis since season
2.

Com. RLHF Meg Griffin is a fictional character in the animated television series Family Guy.
She was voiced by an uncredited Lacey Chabert for the first season, and by Mila
Kunis in subsequent seasons after Chabert became busy with school and appearing
on “Party of Five” at the time. Kunis’s voice is first heard as Meg in Episode 3
of season two "Da Boom", and the voices switch back and forth in the broadcast
order until settling on Kunis. Tara Strong provides Meg’s singing voice in “Don’t
Make Me Over”.
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