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Abstract

Reinforcement learning from human feedback
has emerged as a promising paradigm that sig-
nificantly enhances the performance of large
language models. Typically, reward models are
trained to align with human preferences and
are then utilized to optimize the pretrained lan-
guage models. However, given the multifaceted
nature of human preferences, it is challenging
to appropriately combine rewards from differ-
ent aspects. Recent studies have developed
algorithms to address this issue by employ-
ing techniques such as weighting, and rank-
ing. Nonetheless, these methods can perform
poorly in certain scenarios despite their elegant
design. In this paper, we explore the reward
composition problem from a novel perspective.
We posit that different reward models focus on
distinct optimization directions, which the lan-
guage model cannot discern, perceiving only
the reward value. To formulate an appropriate
reward signal, we introduce a global reward
model that composes rewards from various as-
pects in a self-supervised manner, a simple yet
effective approach. This global reward model
can be trained without the need for additional
supervised data and is compatible with any type
of reward model. Experimental results demon-
strate the superiority of our method across a
range of scenarios with different types of re-
wards.

1 Introduction

In recent years, Large Language Models (LLMs)
have made significant strides in the field of natural
language processing, leading to their widespread
use in downstream applications such as conversa-
tional agents (Brown et al., 2020; OpenAl, 2023;
Touvron et al., 2023), code generation (Ahmad
et al., 2021; Wang et al., 2021; Roziere et al.,
2023), and machine translation (Wang et al., 2023;
Moslem et al., 2023). Reinforcement learning
from human feedback (RLHF) (Christiano et al.,
2017; Ziegler et al., 2019; Ouyang et al., 2022;

Expected Reward II' Gold Direction

Reward 2

Figure 1: An example of the expected reward with two
kinds of rewards with different preference direction.

Rafailov et al., 2023) plays a critical role in this
evolution, enhancing the models’ ability to gener-
ate outputs that better align with human preferences
and greatly increasing their versatility.

Typically, RLHF involves three main steps. The
first is supervised fine-tuning, where a foundational
language model is refined using a targeted dataset.
The second step involves training reward models
that act as proxies for human preferences. Fi-
nally, the language model is optimized through a
reinforcement learning algorithm (Schulman et al.,
2017), wherein the language model functions as a
policy model. It is evident that the reward model
is crucial in ensuring the language model’s outputs
continually improves and adapts to human evalua-
tive standards, which in turn, directly impacts the
efficacy of the reinforcement learning phase.

One of the primary challenges identified in re-
cent studies (Gao et al., 2023; Zhai et al., 2023;
Yuan et al., 2023; Moskovitz et al., 2023) is overop-
timization. This refers to the phenomenon where
maximizing returns on the reward model beyond
a certain threshold actually diminishes the perfor-
mance of the policy model. Two main factors con-
tribute to this problem. Firstly, the reward model
is merely an approximation of human preferences,
based on a limited dataset. Consequently, it is



prone to overconfidence when encountering out-
of-distribution (OOD) data. Secondly, the reward
model is tailored to optimize a specific aspect of
success, which may not be in line with the ideal
optimization path. Overly aggressive optimization
steps with high rewards can cause the policy to
deviate from this desired direction. Recent liter-
ature (Ouyang et al., 2022; Touvron et al., 2023;
Zhai et al., 2023) often mitigating this problem via
adding Kullback-Leibler (KL) penalties to prevent
the model from diverging significantly from the
reference model.

Another challenge arises in more complex sce-
narios involving multiple reward models (Rama-
murthy et al., 2022; Glaese et al., 2022; Yuan et al.,
2023; Bakker et al., 2022; Moskovitz et al., 2023).
Here, employing a variety of reward models is
advantageous as it allows the policy model to be
assessed from diverse perspectives, enriching the
evaluation process. Nonetheless, a consequent is-
sue is that the policy model may become overly
reliant on one or a select few reward models, achiev-
ing high returns during training while overlooking
other relevant reward models. Therefore, devis-
ing an effective algorithm that integrates diverse
reward models is essential. Recent studies have
explored various methods for combining rewards,
such as ranking (Yuan et al., 2023), weighting (Wu
et al., 2023), employing welfare functions (Bakker
et al., 2022), and implementing safe reinforcement
learning (Moskovitz et al., 2023). Despite the in-
tricate design of these approaches and the need
for fine-tuning hyperparameters, they often lead to
only incremental enhancements in performance.

To tackle the challenges outlined above, our re-
search seeks a straightforward yet effective strategy
to incorporate diverse rewards and combat overop-
timization. Our research builds upon two key ob-
servations: firstly, different reward models provide
insights into text quality from numerous angles, yet
they are not entirely independent of each other. Sec-
ondly, language models struggle to discern the opti-
mization direction of each individual reward model
as they only receive a singular, aggregated reward
score. We hypothesize the existence of an “gold di-
rection” for optimization. The core concept of our
approach is to calculate an expected reward that
encapsulates overall progress towards this “gold
direction." Figure 1 depicts an illustration with two
reward models: we posit that the “gold direction"
for optimizing the policy model is represented by

the red line. When presented with two types of
rewards, the expected reward should correspond to
the projection of the composite rewards onto this
“gold direction." Nevertheless, the “gold direction"
and the optimization path for each reward model
are not explicitly known; we only have access to
their values. This constraint renders the direct cal-
culation of the expected reward impracticable. To
overcome this obstacle, we propose a straightfor-
ward and effective self-supervised method to train
a model for composing rewards. Additionally, by
penalizing the combined reward, we can approx-
imate the expected reward while simultaneously
mitigating the risk of overoptimization.

Our contributions are fourfold: (1) We propose
an self-supervised method for training a model
which can compose the rewards from different as-
pects. (2) By penalizing the composite reward with
KL divergence, our method can not only approxi-
mate the expected reward but also simultaneously
mitigating the issue of overoptimization (3) Our
method is both simple and potent, easily adaptable
to various reward models without incurring signifi-
cant computational costs. (4) We validate our ap-
proach through experimental results across several
scenarios involving diverse rewards, demonstrating
its effectiveness.

2 Preliminaries

2.1 Environments: generation as MDP

For each NLP task, we are given a dataset D =
{(z%,y")}}¥, where N denotes the number of ex-
amples, x € X denotes the prompt inputs and
y € Y denotes the target outputs. Generation
task can be viewed as a Markov Decision Process
(MDP) (Puterman, 2014) which can be depicted

as a tuple M 2 (S, A, R, P,v,T) with a finite
vocabulary V. At the beginning of each episode,
a datapoint (z, y) is sampled from the data buffer,
and the episode ends when the time step exceeds
the maximum length horizon length 7" or an end of
sentence (EOS) token is generated. The prompt in-
put x = (zg, z1, ..., T, ) is used as the initial state
so = (zo,Z1,...,Tm), Where so € S, x,, € V
and S represents the state space. At time step
t < T, the policy model 7(a;|s;) selects an ac-
tion a; € A conditioned on its current state s,
and then a new sate is reached via the transition
function P : § x A — S. Each episode can be
summarized as a trajectory 7 = (s, ag, ..., ST, ar),
and the goal of the policy model is to maximize the



expected return R(7) = Z?:o YR (st, ar), where
the R € S x A — R denotes the reward function
and 7y € [0, 1) denotes the discount factor.

2.2 Reward model for optimizing the policy

The reward models can be broadly classified into
two categories. The first category (Bakker et al.,
2022; Yuan et al., 2023; Wu et al., 2023; Rafailov
et al., 2023) includes pretrained models that serve
as proxies for human preferences within specific
contexts. This is because having humans evaluate
utterances and interact with the environment during
the optimization process can be costly and incon-
venient. The second category (Ramamurthy et al.,
2022; Moskovitz et al., 2023) encompasses com-
monly used metrics in natural language process-
ing (NLP) such as BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and METEOR (Banerjee and
Lavie, 2005). These metrics allow for automatic
measurement and quick implementation. In ad-
dition to these categories, rewards can be either
coarse-grained or fine-grained. Coarse-grained re-
wards offer a single, sparse reward at the termina-
tion of each episode, while fine-grained rewards
are accessible at any given time step. In scenarios
where different types of rewards coexist, we define
the composite reward function as follows:

,Tn)s ey

Tcom = f(?"l,

where r; denotes the output reward from various
reward models, n is the number of reward models
involved, and f(-) represents any composite func-
tion. For simplicity, the time-step subscript ¢ is
omitted here and will continue to be excluded in
the remainder of the text.

3 Method

This section is dedicated to addressing two pivotal
questions: (1) What constitutes the expected re-
ward? (2) How can we effectively approximate this
reward using a neural network?

3.1 Expected Singular for Multi-preference
This paper relies on two main assumptions:
* Each reward model predominantly assesses
text quality from a singular perspective, and

these perspectives are interrelated rather than
isolated.

* There exists an “gold direction” for optimiz-
ing the language model.

Referencing the example depicted in Figure 1, it is
evident that rewards derived from disparate reward
models can be conceptualized as vectors within
a Euclidean plane. It logically follows that the
aggregate reward vector, which encapsulates im-
provements in both aspects, should correspond to
the diagonal within the parallelogram defined by
these two vectors. If we assign the x-axis as the
“gold direction” for policy optimization, our task
then is to determine the magnitude of the diagonal’s
projection onto this “gold direction”. Nonetheless,
the inherent challenge lies in the fact that the ex-
act orientations of the reward models, as well as
the “gold direction”, remain unknown, rendering
the calculation of the expected reward intrinsically
unfeasible.

3.2 Estimating the expected reward

Theory of the composite reward. Let I{ be a
vector space of dimension n over the field R. Un-
der our first assumption, the rewards ry,...,r,
can be projected into U/ such that uy, ..., u, con-
stitute a basis of U/, with the composite reward
Vector Ucop, also lying within this space. This im-
plies that each vector u; is not contained within
the span of the remaining basis vectors, i.e., u; ¢
span{u1, ..., Uj—1,Uit1, ..., Uy} forall i. The as-
sumption is considered to be mild because each
reward metric evaluates lexical quality in a distinct
and significant manner. For instance, it is highly
unlikely for BLEU (Papineni et al., 2002) to be rep-
resented as a linear combination of ROUGE (Lin,
2004) and METEOR (Banerjee and Lavie, 2005).

Our aim is to determine the composite reward
Tcom» Which is subsequently used to calculate the
expected reward rc;,. We posit that a set of scalars
ko, ..., ky exists, corresponding to each individ-
ual reward, which collectively fulfill the following
relationship:

Ucom = Zn: kiu;. 2
=1

Considering the inner product (ucom, u;), which
reflects the relationship between r,,,, and each
3, and applying the Gram—Schmidt process (Leon
et al., 2013), we can derive an orthogonal basis 7’
with r; € r’. This orthogonal basis allows us to
state that:

(Ucom, ui) = k1||uz||2 = ||ucoml|| - |[ui| cos a,

3)
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Figure 2: The composition model for integrating different kinds of rewards. The blue box represents the composition
network which takes the state and the rewards as inputs and output the composite reward. The green box represent
the module for self supervised learning and will not be used when optimizing the policy model.

where « is the angle between r; and rcop,.

Although the exact “angle” information in Equa-
tions (2) and (3) remains unknown, these equations
guide us to construct meaningful relationships be-
tween the composite and individual rewards. Equa-
tion (2) indicates that the composite reward can
be expressed as a weighted sum of individual re-
wards, while Equation (3) inspires us to define spe-
cific relationships between the composite reward
and individual rewards through a neural network.
Hence, we have designed neural network models,
as depicted in Figure 2, to derive the composite
reward.

Composing the rewards. First, we construct a
neural network to calculate the weights for each of
the rewards, which can be expressed as follows:

w = o(fu(repry)), 4)

where f,,(-) represents a trainable neural network,
and w = wi,...,w, denotes the set of weights
for the n reward models, repr, denotes the repre-
sentation of the s. Subsequently, we compute the
composite reward 7.4, using the formula:

Tcom = f(Tlv ...,T’n) = sz c T 5)
=1

Establishing specific relationships via self-
supervised learning. Next, we design another
neural network that predicts each individual
reward based on the other rewards and the
composite reward. This method is analogous to
the “mask and predict” technique used in the
pretraining of language models. Specifically,
we first generate n tuples of inputs input, =

([maskl, ..., TnyTeom)s -y (T, .., [mask], rcom)s
and then predict the masked reward using the
equation:

7 = f,(input,), (©6)

where f,(-) denotes another trainable neural net-
work, 7 = 71, ..., 7y, represents the set of predicted
rewards, and 7; is the predicted value for the i-th
reward.

The composition network is trained using the
following loss function:

1 n
Lr==Y (fi—1)% (7
- ;( )

It is important to note that the reward compo-
sition network is trained in advance of the policy
model’s fine-tuning process. Once the fine-tuning
phase for the policy model begins, the parameters
of the reward composition network remain fixed.
Additionally, during this phase, the self-prediction
network is not employed.

Approximating expected reward and mitigat-
ing overoptimization. We postulate that the ex-
pected reward 7., in alignment with the “goal
direction”, can be estimated by incorporating the
composite reward with a KL penalty, as expressed
in the following equation:

Texp = Tcom — B : KL(WG(G‘S) H 71—1“ef(a|$))> (8)

where 7y represents the policy model, 7,y signi-
fies the reference model, and S is the coefficient de-
termining the magnitude of the KL penalty. Mean-
while, this penalization also help to curb the overop-
timization tendencies of the policy model (Rama-
murthy et al., 2022; Moskovitz et al., 2023; Wu



etal., 2023). The expected reward can be employed
to fine-tune the language model using any reinforce-
ment learning algorithm. In this paper, we opt for
Proximal Policy Optimization (PPO) (Schulman
et al., 2017), the specifics of which will be elabo-
rated upon in section 4.

Analysis. Equation (5) can be interpreted as an
alternative form of Equation (2), wherin the com-
putation reflects the composition relationship in
the mapped vector space. Empirically, it is evi-
dent that each weight w; lies within the open inter-
val (0,1), and so we add the sigmoid function o (-)
to constrain the weights to lie within this range.
Furthermore, by minimizing the loss described
in Equation (7), we explicitly define a certain re-
lationship among the rewards (r1,...,7n, Tcom)-
This is achieved by employing a shared neural net-
work that effectively captures the interrelationships
among the composite and individual rewards, func-
tioning as a practical realization of the conceptual
relationship depicted in Equation (3).

4 Experiment

We evaluate the effectiveness of our method on
different scenarios with different language models.
In alignment with Moskovitz et al. (2023) and Wu
et al. (2023), we carry out experiments on dialogue
generation and question answering tasks. Details
concerning hyperparameters and training details
are provided in the Appendix.

4.1 Dialogue Generation

4.1.1 Experimental Settings

Dataset. We conducted an experiment using a
widely recognized dataset called DailyDialog (Li
et al., 2017), which consists of transcripts of con-
versations between humans.

Reward models. For the rewards, we selected
METEOR (Banerjee and Lavie, 2005), Intent
score (Ramamurthy et al., 2022), BLEU (Papineni
et al., 2002), and Bert score (Zhang et al., 2019), as
they capture the desired behavior of the text from
different perspectives. Among these, Intent score
and Bert score are estimated via from a pretrained
human preference model, RoBERTa (Liu et al.,
2019) and BERT (Devlin et al., 2018), the other two
are n-gram metrics. The reward is coarse-grained,
with each response receiving a single reward that
reflects the quality of the entire utterance.

Baselines. GPT2 (Radford et al., 2019) is used
as the initial policy model. We selected Proxi-
mal Policy Optimization (PPO) (Schulman et al.,
2017) as our baseline algorithm, wherein the re-
wards are computed as a linear combination of
individual metrics, each with a predetermined fixed
weight. Additionally, we employed Constrained
Reinforcement Learning from Human Feedback
(Constrained RLHF) (Moskovitz et al., 2023) as a
comparative baseline.

Evaluation metrics. To automatically evaluate
each method, we adopted a similar way with
Moskovitz et al. (2023), which involves calculating
an evaluation score based on six distinct metrics.
The chosen metrics, published by Moskovitz et al.
(2023), are external to the reward model. Specif-
ically, we utilized SacreBLEU (m,) (Post, 2018),
ROUGE-2 (my) (Lin, 2004; Ganesan, 2018), and
ROUGE-L (m.) as metrics related to lexicon, and
Conditional Entropy-3 (m,,), vocab-size-3-nopunct
(m,), and mean-prediction-length-nopunct (1)
as metrics related to diversity. In a manner akin to
that of Moskovitz et al. (2023), we normalized the
score of each metric to fall within a range of O to 1,
using the minimum and maximum values observed
in Constrained RLHF experiments across three dis-
tinct reward model settings. The evaluation score
(Meyqr) 1s subsequently computed as outlined in
Equation (9)

Mg + Mp + Me + My + My + My

6

©)
To complement our automated assessment, we also
carried out a human evaluation to gain further in-
sights into the performance of the models. This
additional step allowed us to capture subjective
quality aspects and nuances that automated metrics
might not fully reflect, providing a more compre-
hensive understanding of the models’ capabilities
in generating realistic and coherent dialogue.

Meyal =

4.1.2 Experimental Results

Stablility across varying numbers of reward.
We carried out experiments utilizing configurations
with 2, 3, and 4 reward models. Figure 3(a-c) de-
picts the improvement of model performance over
training epochs, where the results are the mean
of three random seeds, and the shaded area indi-
cates the standard deviation. We observed that
all methods remained stable when only two re-
ward models, METEOR and Intent Score, were
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Figure 3: The evaluation score of different methods on three scenarios with different number of rewards.

utilized. However, for the ConstrainedRLHF, per-
formance significantly deteriorated and training
became unstable upon the incorporation of a third
metric, BLEU. In contrast, the baseline PPO and
our method demonstrated stability. As illustrated
in the figure, our method outperforms the others
in these settings, thereby demonstrating the effec-
tiveness of the reward composition model. The
strong baseline, ConstrainedRLHF, delivered un-
satisfactory performance except in the two-reward
setting, which can be primarily attributed to its ex-
plicit requirement for rewards from each aspect to
surpass certain thresholds, without considering po-
tential conflicts among them. Consequently, the
type and number of reward models employed will
significantly influence its performance.

Overoptimization and reward conflict phenom-
ena. Nonetheless, two phenomena require atten-
tion. Firstly, the performance of the language
model tends to decline after approximately 75
epochs, which may be due to the fact that KL reg-
ularization, despite mitigating optimization, can-
not completely eliminate it. Consequently, there
is a tendency for the policy to overfit on the re-
ward models. Secondly, the peak performance ob-
tained with three reward models is lower than that
achieved with two, a result that may stem from

Table 1: Human evaluation results on DailyDialog.

Method Selection Rate
PPO 40%
Com. RLHF+PPO(Ours) 64 %
ConstrainedRLHF+PPO 12%
No preference 13%

the potential conflict between differing objectives,
impairing further improvement.

Improving the policy model comprehensively.
Figure 3(d-f) illustrates how the evaluation score
varies with different metrics in the 3-reward-model
setting. It shows that each metric score of our
method experiences less fluctuation over the course
of training, ultimately achieving the highest eval-
uation score. This highlights that the composite
reward is both useful and appropriate for facilitat-
ing the optimization of the policy.

Human evaluation results. We randomly sam-
pled 50 dialogue contexts from the dataset along
with their generated responses for human evalua-
tion. To assess these, we recruited 20 human evalu-
ators and tasked them with choosing the most ap-
propriate response for each context through anony-
mous questionnaires. We allowed for multiple se-



lections, providing evaluators the option to indicate
“no preference” when they encountered difficulty
in discerning a clear favorite or if none of the re-
sponses seemed fitting. As depicted in Table 1, the
outcomes of our human evaluation are in agreement
with those from the automated assessment, confirm-
ing that our method significantly outperforms the
competing approaches in terms of performance.

4.2 Question answering
4.2.1 Experimental Settings

Dataset. We conduct experiment on QA-
Feedback dataset provided by Wu et al. (2023),
consisting of 3,853 training examples, 500
development examples, and 948 test examples.

Reward models. In this dataset the rewards are
fine-grained which means they are granted af-
ter several timesteps, pertinent to each subsen-
tence. Three reward models were trained on human-
labeled data, focusing on three distinct categories:
relevance, correctness, and completeness.

Baseline. Following Wu et al. (2023), we se-
lected the T5-large (Raffel et al., 2020) model
that had been fine-tuned on 1,000 training exam-
ples (referred to as SFT) as baseline, which also
served as the initial policy model. Concurrently, we
compared our method to Fine-grained RLHF (F.G.
RLHF) (Wu et al., 2023), an approach that amalga-
mates different rewards using fixed weights prede-
fined by experts.

4.2.2 Experimental Results

Resolving conflicts among competing rewards
The evaluation results for the test dataset are pre-
sented in Table 2, where Ry, R9, and R3 denote
relevance reward, factuality reward, and complete-
ness reward, respectively. Compared with base-
line methods, our approach achieves the maximum
reward in almost all aspects, with the exception
of factuality. This can be attributed to the inher-
ent conflicts among these reward models, which
makes it challenging to optimize them simultane-
ously (please refer to Appendix for more details).
Specifically, the model RLHF achieves the highest
Ry score, owing to the higher predefined weight
assigned to it.

Human evaluation results. Similar with Wu
et al. (2023), we randomly selected 50 test exam-
ples and enlisted 20 individuals to conduct a human
evaluation to compare our method with F.G RLHFE.

Table 2: Results on QA-Feedback test set.

Method Rouge Ry Ry R3

SFT 49.16 0.469 0.793 0.225

F.G. RLHF 50.16 0.518 0.823 0.226

Com. RLHF 50.18 0.526 0.798 0.245
251

Il F.G.RLHF
I Com. RLHF

Error rate
—_ )
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—
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W

Relevance

Factuality

Figure 4: Human evaluation results on relevance and
factuality.

Each evaluator was charged with assessing the re-
sponses from each model for (1) irrelevance and
(2) incorrectness, Furthermore, workers were asked
to compare the (3) completeness of the informa-
tion provided in the responses from the different
models. Evaluators also had the option to indicate
their preferred response, with “hard to decide” as a
permissible selection.

The evaluation results for irrelevance and incor-
rectness are illustrated in Figure 4. Responses from
our method were found to be consistently more
relevant to the questions asked. Moreover, our ap-
proach resulted in a relative lower rate of factual
errors. The assessment of completeness and prefer-
ence is presented in Table 3. Our method surpassed
F.G RLHF in terms of completeness and matched
it in terms of preference.

Table 3: Human pairwise comparison win rate on infor-
mation completeness and their preference response on
QA-Feedback test set.

Oursvs. FEGRLHF Win Tie Lose
Completeness 44% 16% 40%
Preference 4% 12% 44%

5 Related Work

5.1 Reinforcement learning from human
feedback

Reinforcement Learning from Human Feedback
(RLHF) (Christiano et al., 2017; Ziegler et al.,



2019; Ouyang et al., 2022; Rafailov et al., 2023)
has emerged as a pivotal technology in fine-tuning
language models to better align with human in-
tentions. It demonstrates its effectiveness in down-
stream tasks such as summarization (Stiennon et al.,
2020), story-telling (Ziegler et al., 2019) instruction
following, and harmlessness reducing (Bai et al.,
2022; Lu et al., 2022; Ganguli et al.). Initially, re-
ward models are trained to act as proxies for human
preferences. Subsequently, the policy model is re-
fined by maximizing cumulative returns through re-
inforcement learning algorithms like REINFORCE
and Proximal Policy Optimization (PPO). Nonethe-
less, a primary challenge of RLHF is overoptimiza-
tion (Gao et al., 2023), where inaccurate reward
models may be overconfident in sample evalua-
tions, leading to misguided policy updates and de-
graded performance. To counteract this issue, some
researchers (Ouyang et al., 2022; Touvron et al.,
2023) have introduced penalty terms to constrain
the policy model from deviating excessively from
a reference model, enhancing stability and reduc-
ing uncertainty. Other studies (Yuan et al., 2023;
Rafailov et al., 2023; Song et al., 2023) have sought
to circumvent the reward modeling process alto-
gether, optimizing the policy directly. Despite these
advancements, Li et al. (2023) show that reward-
model-based approaches offer advantages when
dealing with out-of-preference samples.

5.2 Combining different rewards

To enhance the language model’s alignment with
diverse preferences, various forms of feedback are
typically utilized to reflect the policy’s behavior
across multiple dimensions (Bakker et al., 2022;
Glaese et al., 2022; Yuan et al., 2023; Wu et al.,
2023; Moskovitz et al., 2023). Nonetheless, in-
tegrating these rewards poses a challenge, as the
policy might disproportionately emphasize one or
a few specific reward models. Some studies (Wu
et al., 2023; Ramamurthy et al., 2022) address this
by summing the different rewards, assigning pre-
defined weights based on prior knowledge. Alter-
natively, another body (Yuan et al., 2023; Glaese
et al., 2022) of research suggests optimizing the
agent’s policy by ranking multiple sampled re-
sponses. More specifically, Yuan et al. (2023) intro-
duced a ranking loss designed to elevate the prob-
abilities of superior responses, while Glaese et al.
(2022) suggested a reranking score to serve as the
overall reward, providing a bonus to comparatively

high-quality responses within the samples. Bakker
et al. (2022) proposed a welfare function that quan-
tifies and ranks consensus statements according to
their attractiveness to the aggregate reward mod-
els. Moskovitz et al. (2023) adopted constraint
reinforcement learning to deter the agent from ex-
cessively optimizing each reward model beyond
set proxy points. However, the policy struggles to
discern the intentions underlying the design of re-
wards and receives only a scalar value. Therefore,
we investigate methods to yield an anticipated re-
ward that holistically improves the language model.
We propose a straightforward yet potent approach
for training a reward composition model in a self-
supervised way.

6 Conclusion

In this study, we concentrate on scenarios involving
multi-faceted reward models to fine-tune large lan-
guage models. We posit that various reward models
assess text from distinct perspectives, converging
towards an optimal “gold direction” for policy opti-
mization. To amalgamate the rewards from diverse
models, we introduce a straightforward yet potent
reward composition model, which can be trained
through a self-supervised manner. By imposing
penalties on the composite reward, our approach
not only aligns closely with the expected reward
in the “gold direction" but also mitigates the is-
sue of overoptimization. We validate our approach
through a series of experiments utilizing assorted
reward types, and the empirical evidence attests to
the effectiveness of our method.

Limitations and Future Work. Our study, while
demonstrating promising results, is subject to sev-
eral limitations. Firstly, the effectiveness of our
method hinges on an assumption that lacks formal
mathematical guarantees. Secondly, the process of
training a reward composition model incurs addi-
tional computational overhead. Lastly, given that
the outputs from different reward models might
conflict, our approach does not currently possess
a mechanism to discriminate between more and
less useful models, instead aggregating them to
compute a composite reward. For future works,
we aim to refine our methodology by establishing
theoretical foundations to bolster its reliability. Ad-
ditionally, exploring ways to obtain feedback from
more powerful large language model such as GPT-
4 could offer interesting avenues to enhance model
performance.
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A Experimental Details

A.1 Experimental Settings

Dialogue generation. We adopted a similar ex-
perimental setup as Ramamurthy et al. (2022);
Moskovitz et al. (2023) for our dialogue genera-
tion, utilizing a context window with a span of five
utterances. This segmentation approach produced
a dataset comprising 35,000 utterances for training,
3,000 for validation, and 3,000 for testing. Echo-
ing Moskovitz et al. (2023), our decoding process
employed a top-k sampling strategy with k set to
20. Inputs to the model were presented as concate-
nated segments of human dialogue, with speaker
transitions denoted by a distinct end-of-utterance
(<EOU>) token. Additionally, the intent classifica-
tion reward mechanism are established based on a
fine-tuned RoBERTa (Liu et al., 2019) model. This
system assigned a score of 1 when the model’s
inferred intent for a generated utterance matched
that of the corresponding reference or ground-truth
utterance, otherwise attributing a score of 0. Prior
to their introduction into the composition model,
we normalized each reward model by subtracting
the mean value computed from the training set. In
addition, we harnessed the fine-tuned RoOBERTa
model to extract representations of the input text,
subsequently utilizing these representations as the
state variable s in Equation (4). Given the coarse-
grained nature of the rewards, these representations
were calculated as the temporal mean across the
entire text. Consistent with (Moskovitz et al., 2023)
study, we adopted the GPT2 (Radford et al., 2019)
architecture for both the policy and value models.
We select four distinct rewards to conduct experi-
ments, the specifics of which are detailed in Table 4.

Table 4: Chosen rewards in dialogue generation task

Setting Chosen metric or model

2 rewards METEOR; INTENT

3rewards METEOR; INTENT; BLEU

4 rewards METEOR; INTENT; BLEU; BERT

Question Answering. In the question answering
scenario, we similarly employ a top-k sampling
approach, setting k to 20. Diverging from our
previous task, we have opted for T5-large (Raf-
fel et al., 2020) as the policy model and T5-base
for the value model. Owing to the fine-grained
nature of the reward, we obtain text representa-
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tions using the T5-large reference model at each
time step, which then act as the state variable s in
Equation (4). The training process for each reward
model, aimed at aligning with human preferences,
follows the methodology outlined by (Wu et al.,
2023). For an in-depth understanding, readers are
directed to their original publication.

Details for training reward composition model.
Each individual reward is normalized before be-
ing fed into the reward composition network. For
the preference-based reward model, we apply z-
normalization. For the other reward models, we
initially scale them to a range between 0 and 1, and
then subtract their mean value. Regarding the self-
prediction network, it comprises two dense layers,
both shared across all masked tuples. The first layer
features 32 units with ReLU activation, functioning
as the common encoder, while the second layer has
a single unit, establishing the specific relationship
between the tuple and the masked value.

Training algorithm. The comprehensive train-
ing protocol we adopted is encapsulated in Al-
gorithm 1. This framework adheres to the stan-
dard Proximal Policy Optimization (PPO) algo-
rithm (Schulman et al., 2017), augmented with an
additional step dedicated to the calculation of the
expected reward.

Table 5: Hyperparameters for finetuning policy model

Settings DailyDialog QA-Feedback
Total epochs 80 10
Batch size 64 12
Learning rate le-6 le-5
Clip ratio € 0.2 0.2
Rollouts top-k 20 20
Temperature 0.7 0.7
Discount factor ~y 0.99 0.99
GAE A 0.95 0.95
KL coefficient 8 0.2 0.3
Policy model GPT2 T5-large
Value model GPT2 T5-base
Model for repr,  RoBERTa T5-large

Hyperparameters. One of the strengths of our
method is that it does not introduce additional hy-
perparameters beyond those required by the base-
line PPO algorithm. Furthermore, all weights
within the composite reward model are learned
through a neural network architecture. For trans-
parency and reproducibility, we have detailed all



Algorithm 1 Optimizing a Language Model with Multiple Reward Models

Initialize: reference language model 7. ; initial value model Vi,; n reward models R, ...

dataset D; hyperparameters

, Ry task

1: Finetune the reference language model on dataset D and get the initial policy model 7y

2: Training the reward models R, ...,

‘R, on dataset D

3: Training the composition reward model f on dataset D

4: for epochep =1, ...,k do
Sample a batch Dy, from D

Compute rewards r1, ..., 7, via Ry, ...

R R A

10:

11: Update the pohcy model by

0 < arg maxy IDb\ D ui

min
i= l‘yl t=1

Update the pohcy model by
¢ < argmin,, |D il ZZ 1 ‘y |
13: end for

Output: 7y

12:
71 (V,
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(Wref(

plat]st) —

Sample output sequence ' ~ 7y (-|x?) for each 2 € D,

, R

Compute composite rewards .., via Equation (4) and Equation (5)
Compute expected rewards rep, via Equation (8)

Compute advantages {A}‘y | and target values {V’ }'y | for each y' with V,

7o (atlst)

At, Clip(wref(at|st) ’
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Table 6: Hyperparameters for training composition re-
ward model

Settings

DailyDialog QA-Feedback

2
256
5e-5

Adam

2
128
le-4

Adam

Total epochs
Batch size

Initial learning rate
Optimizer

the hyperparameters associated with fine-tuning the
policy and training the composite reward model in
Table 5 and Table 6, respectively.

Computational resources. All of our experi-
ments were conducted on a single NVIDIA A100
GPU. For the dialogue generation task, the opti-
mization of the language model typically required
between 8 and 10 hours. Additionally, the train-
ing of the composition network incurred an extra
2 to 4 hours of computational time. For the ques-
tion answering task, the optimization of the lan-
guage model required between 25 and 30 hours,
and the training of the reward composition network
incurred an extra 1 to 3 hours of computational
time.

A.2 More Experimental Results

Visualizing the conflicting rewards. To more
effectively analyze the correlations among the var-
ious rewards in the question answering task, we
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Figure 5: Correlations among rewards.
RLHEF, lower Com. RLHF.

Upper E.G.

plotted the reward values at each time step and
fitted a polynomial surface to the data, as shown
in Figure 5. It is evident that the reward for rele-
vance conflicts with the other two types of rewards,
complicating the optimization of the policy.

Showcases We present examples of the question-
naires and showcase the generated responses for
two tasks in Table 7, Table 9, Table 8 and Table 10.



Table 7: Example of the questionnaire for DailyDialog

Context (<KEOU> denotes the end of an utterance
and signals a switch in speaker roles.)

Hello . This is Mrs . Wilson . I'd like to buy a
new car . Could you offer me a new type of the
car , please ? <EOU> Oh , Madam , buy what ?
<EOU> A new car . And I've got a small family
, two children , and I haven’t got a lot of money
and ... <EOU> Oh, oh , Madam , Madam , I'm
afraid you have the wrong number . <EOU> Isn’t
this the car store ? <EOU>

Response A
Response B

Response C

I have no idea. You have just given me your num-
ber <EOU>
It’s raining.
that.<EOU>
No, it’s the car wash. <EOU>

It’s raining a lot that is just

Please chose your preference (Multiple selections
are allowed and D for “no suitable response or
hard to decide")

Table 8: Generation sample of DailyDialog

Prompt

Sample 1

A dessert sounds nice . <EOU>
What kind are you thinking of get-
ting ? <EOU> I want to get some
pie . <EOU> What kind of pie do
you want ? <EOU> I have no idea .
<EOU>

Reference
PPO

ConstrainedRLHF+PPO
ComposedRLHF+PPO

Do you want to know what kind of
pie I like ? <EOU>

Pie?? You mean like you had a
whole bunch on your plate. <EOU>
I have no idea. <EOU>

Do you have a favorite? <EOU>

Prompt

Sample 2

You’re made a good choice . This
china tea set is unusual . <EOU>
Where was it from ? <EOU> It
was made in Jingdezhen . <EOU>
Jingdezhen ? Isn’t it called ’ the cap-
ital of porcelain > 7 <EOU> You are
right . <EOU>

Reference
PPO
ConstrainedRLHF+PPO

ComposedRLHF+PPO

This is the very thing I’ve been
dreaming of . <EOU>

It was made in Shaoi,
<EOU>

I’m not sure why you think that’s so.
<EOU>

So why is it called Jingdezhen?
<EOU>

China.
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Table 9: Example of the questionnaire for QA-Feedback

Question

When does spring break start in the us?

Context

wikipage: Spring break text: In Jamaica, the spring break starts in the first week of
Good Friday. The break may range from one week to two weeks, often times two.
This break starts depending on which month the Easter holiday begins, March
or April. In Mexico, spring break takes place during the Holy Week and the one
after it. In the United States, spring break at the college and university level can
occur from March to April, depending on term dates and when Easter holiday
falls. Usually, spring break is about one week long, but many K—12 institutions
in the United States schedule a two-week-long break known as "Easter Break,"
"Easter Holidays", or "Easter Vacation", as they generally take place in the weeks
before or after Easter. However, in the states of Massachusetts and Maine, schools
typically schedule spring break for the week of the third Monday in April to
coincide with Patriots’ Day. In Guatemala and Honduras, it takes place during
Easter; schools give students a whole week to rest while the staff workforce rests
approximately three days. In Colombia, spring break takes place the first week of
April, during the Holy Week until the second week.

Answer A

Answer B

In the United States, spring break at the college and university level can occur
from March to April, depending on term dates and when Easter holiday falls.
However, in the states of Massachusetts and Maine, schools typically schedule
spring break for the week of the third Monday in April to coincide with Patriots’
Day. In Jamaica, the spring break starts in the first week of Good Friday.

In the United States, spring break at the college and university level can occur
from March to April, depending on term dates and when Easter holiday falls.
Usually, spring break is about one week long, but many K—12 institutions in the
United States schedule a two-week-long break known as "Easter Break," "Easter
Holidays", or "Easter Vacation", as they generally take place in the weeks before
or after Easter. However, in the states of Massachusetts and Maine, schools
typically schedule spring break for the week of the third Monday in April to
coincide with Patriots’ Day.

Please Select

Is answer A relevant to the question?

Is answer B relevant to the question?

Is there any factual error in answer A?

Is there any factual error in answer B?

Which information is more complete, answer A or B? (C for “hard to decide”)
Which answer do you prefer, answer A or B? (C for “hard to decide”)
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Table 10: Generation sample of QA-Feedback

Question

Who did meg’s voice first on family guy?

Context

wikipage: Meg Griffin text: Meg was voiced by an uncredited Lacey Chabert for
the first season, and by Mila Kunis in subsequent seasons after Chabert became
busy with school and appearing on "Party of Five" at the time, although some of
her work became second season episodes due to production order. Mila Kunis
won the role after auditions and a slight rewrite of the character, in part due to her
performance on "That *70s Show". MacFarlane called Kunis back after her first
audition, instructing her to speak more slowly, and then told her to come back
another time and enunciate more. Once she claimed that she had it under control,
MacFarlane hired her. MacFarlane stated that Kunis "had a very natural quality to
Meg" and she’s "in a lot of ways [...] almost more right for the character". Kunis’s
voice is first heard as Meg in Episode 3 of season two "Da Boom", and the voices
switch back and forth in the broadcast order until settling on Kunis. Tara Strong
provides Meg’s singing voice in "Don’t Make Me Over". Meg is very unpopular
in high school due to both her plain appearance and personality. She desperately
tries to be part of the cool crowd, but is usually coldly rebuffed. | wikipage:
Meg Griffin text: Meg Griffin Megan "Meg" Griffin is a fictional character in the
animated television series "Family Guy". Meg is the eldest child of Peter and Lois
Griffin and older sister of Stewie and Chris, but is also the family’s scapegoat who
receives the least of their attention and bears the brunt of their abuse. She is often
bullied, ridiculed, and ignored. Meg first appeared on television, along with the
rest of the Griffin family, in a 15-minute short on December 20, 1998. She was
created and designed by "Family Guy" creator Seth MacFarlane, who was asked
to pitch a pilot to the Fox Broadcasting Company, based on "The Life of Larry"
and "Larry & Steve", two shorts made by MacFarlane featuring a middle-aged
man named Larry and an intellectual dog, Steve. After the pilot was given the
greenlight, the Griffin family appeared in the episode "Death Has a Shadow".
Originally voiced by Lacey Chabert during the first season, Meg has been voiced
by Mila Kunis since season 2. Meg is a self-conscious and insecure adolescent
girl.

F.G. RLHF

Com. RLHF

Meg Griffin is a fictional character in the animated television series Family Guy.
She is the eldest child of Peter and Lois Griffin and older sister of Stewie and
Chris, but is also the family’s scapegoat who receives the least of their attention
and bears the brunt of their abuse. Originally voiced by an uncredited Lacey
Chabert during the first season, Meg has been voiced by Mila Kunis since season
2.

Meg Griffin is a fictional character in the animated television series Family Guy.
She was voiced by an uncredited Lacey Chabert for the first season, and by Mila
Kunis in subsequent seasons after Chabert became busy with school and appearing
on “Party of Five” at the time. Kunis’s voice is first heard as Meg in Episode 3
of season two "Da Boom", and the voices switch back and forth in the broadcast
order until settling on Kunis. Tara Strong provides Meg’s singing voice in “Don’t
Make Me Over”.
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