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ABSTRACT

Graph Neural Networks (GNNs) have proven to be quite versatile for a variety
of applications, including recommendation systems, fake news detection, drug
discovery, and even computer vision. Due to the expanding size of graph-structured
data, GNN models have also increased in complexity, leading to substantial latency
issues. This is primarily attributed to the irregular structure of graph data and its
access pattern into memory. The natural solution to reduce latency is to compress
large GNNs into small GNNs. One way to do this is via knowledge distillation
(KD). However, most KD approaches for GNNs only consider the outputs of
the last layers and do not consider the outputs of the intermediate layers of the
GNNs; these layers may contain important inductive biases indicated by the graph
structure. To address this shortcoming, we propose a novel KD approach to GNN
compression that we call Attention-Based Knowledge Distillation (ABKD). ABKD is
a KD approach that uses attention to identify important intermediate teacher-student
layer pairs and focuses on aligning their outputs. ABKD enables higher compression
of GNNs with a smaller accuracy dropoff compared to existing KD approaches. On
average, we achieve a 1.79% increase in accuracy with a 32.3× compression ratio
on OGBN-Mag, a large graph dataset, compared to state-of-the-art approaches.

1 INTRODUCTION

Graph Neural Networks (GNNs) generalize Convolutional Neural Networks (CNNs) to non-Euclidean
data. GNNs are widely used in a variety of fields, such as web-search recommendation systems (1),
fake news detection for social networks (2), modeling proteins for drug discovery (3), and computer
vision tasks (4). Due to the expanding size of social networks and other graph-structured data, graph
datasets have been steadily increasing in size (5). As datasets have expanded in size, GNN models
have also increased in complexity, leading to substantial latency issues (6; 7; 8), as shown in figure 1.
This is primarily attributed to the irregular structure of graph data and their access pattern in memory
(9).

Figure 1: Inference latency of GNNs
with varying model sizes on the Flickr (10)
dataset on a standard GCN model architec-
ture with increasing embedding dimension.
All tests were run on a Tesla V100 GPU.

Due to this limitation, large GNNs need to be compressed
into smaller GNNs for latency-sensitive applications such
as real-time recommendation (11), visual question answer-
ing (12), image search (13), and real-time spam detection
(14).

1.1 KNOWLEDGE DISTILLATION

Knowledge Distillation (KD) is a common compression
technique that uses a teacher model to supervise the train-
ing of a smaller student model (15). While the original KD
method can be applied to GNNs, it does not take into ac-
count any information about node connectivity. GraphAKD
(16), LSP (17), and G-CRD (18) are GNN-specific knowl-
edge distillation methods that focus on aligning final layer
node embeddings by considering node connectivity. How-
ever, these methods all consider only the node embeddings
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at the final layer and do not consider intermediate representations. By just aligning the final node
embeddings, the model cannot learn the logic behind leveraging the connectivity of the graph or the
inductive biases (19) contained in the adjacency matrix. Therefore, the student model is effectively
just learning a mapping from node attributes to more refined node embeddings. This can lead to
suboptimal test generalization when the model encounters previously unseen data.

Objective: Our goal is to achieve better generalization on out-of-distribution data, measured by
accuracy @ various compression rates, by considering intermediate node embeddings and taking into
account more of the inductive biases that GNNs contain.

1.2 ATTENTION-BASED KNOWLEDGE DISTILLATION

To improve accuracy over SOTA, we must consider some of the inductive biases that other methods
overlook - the connectivity of the input graph. We observe that for the vast majority of GNN
architectures, the kth layer of a GNN computes node embeddings by aggregating information from
each node’s k-hop neighborhood. Therefore, each layer contains its own inductive bias. As other KD
methods consider only the node embeddings at the last layer of the teacher and student networks,
they do not leverage all the inductive biases present in the network. However, one obvious challenge
that is present in aligning intermediate node embeddings is that teacher and student networks will
likely have a different number of hidden layers. As a result, there is no 1-1 correspondence between
teacher and student layers and no way to easily figure out which teacher node embeddings should be
aligned with which student node embeddings.

To tackle these challenges, we propose Attention-Based Knowledge Distillation (ABKD). We use a
trainable attention mechanism to learn which teacher-student pairs are the most important to align.
We also utilize trainable projections into a common ABKD embedding space for teacher and student
hidden layers. By aligning across intermediate layers, the student learns how to use the adjacency
matrix to construct node embeddings instead of just learning a mapping from the node attributes to
the final layer node embeddings (Figure 2).

1.3 OUR CONTRIBUTIONS

Our contributions are summarized as the following:

1. We design Attention-Based Knowledge Distillation (ABKD), a novel knowledge distillation
approach for GNNs that incorporates the intermediate feature maps from every layer in both
the teacher and student networks. This approach can be utilized to train teacher and student
networks of any architectural configuration.

2. We create an automatic feature linking mechanism using attention to identify which teacher-
student layer pairs are the most important, which we then use to closely align their feature
maps.

3. Our approach broadly improves the test accuracy of student networks over a large range of
compression ratios.

4. We comprehensively test our approach on several datasets using different model architectures
including GCNs (20), RGCNs (21) and GraphSAGE (22). We also test on several large
datasets that are carefully curated to evaluate out-of-distribution generalization such as
OGBN-Mag (5) and OGBN-Arxiv (5).

2 RELATED WORK

Knowledge Distillation KD for GNNs is a relatively niche field that has expanded over the last three
years with the work of LSP (17). In this work, the authors attempt to align node embeddings between
the student and teacher networks by maximizing the similarity between embeddings that share edges.
As only node embeddings between edges are aligned, this KD method only preserves local topology.
Joshi et. al (18) extend LSP and propose two different KD algorithms: Global Structure Preserving
Distillation (GSP) and Global Contrastive Representation Distillation (G-CRD). GSP extends LSP
by considering all pairwise similarities among node features, not just pairwise similarities between
nodes connected by edges. The authors also propose G-CRD which aims to implicitly preserve
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global topology by aligning the student and teacher node feature vectors via contrastive learning
(23). Another work introduces graph adversarial knowledge distillation (GraphAKD), which trains
the student model as a generator network and a discriminator network to distinguish between the
predictions of the student and teacher models (16). Another work, GeometricKD forces the number
of teacher and student hidden layers to be the same to study the impact of a student network operating
on a smaller graph than the teacher (24).

With the exception of GeometricKD, these works all consider the node embeddings at the final
layer of the teacher and student network and aim to align those embeddings with one another in
various ways. GeometricKD constrains the student and teacher networks to have the same number of
layers, and it aligns the node embedding of teacher layer i with student layer i, thus forming a 1-1
correspondence between the layers, which makes it inflexible to all student and teacher configurations.
There have been several KD approaches that have been applied to CNNs that the GNN community
has tried to adapt to GNNs with poor results, namely Fitnets (25) and attention transfer (26). These
methods both compute a distance metric such as mean-squared error between the last layer node
embeddings of the student and teacher network and do not take into account the adjacency matrix.

Using attention to find similarities across student and teacher layers is a concept explored in CNNs
(27). However, this work’s ideas cannot be applied to GNNs because the operations it uses to compare
student and teacher features do not apply to GNNs. GNNs need special consideration in this regard
over CNNs due to the non-spatial and unstructured form of graph data.

Compression: Other common techniques for GNN compression include quantization and pruning.
Quantization techniques differ for GNNs when compared to other deep neural networks because of
unique sources of error, such as inaccurate gradient estimates, that arise due to the unstructured nature
of GNNs (28). To account for inaccurate gradient estimates, DegreeQuant, protects some number
of nodes in every training iteration from lower precision training and utilizes full precision training
for those nodes (28). Other approaches consider the structure of the graph in their calculations to
implicitly avoid GNN-specific sources of error (29; 30).

Pruning techniques, which involve compressing networks by selectively deleting learned parameters,
have also been applied to GNNs. These techniques involve applying strategies that have worked for
other deep networks and using them to identify the most important channels for output activation (31)
(32). One approach also works to dynamically prune during execution (33).

Method Number of Layers Considered
GraphAKD 1

G-CRD 1
Fitnets 1

LSP 1
ABKD All

Table 1: Comparison of Attention-Based Knowledge Distillation with other Knowledge Distillation approaches.

3 PROPOSED APPROACH

3.1 INTUITION AND MATHEMATICAL FOUNDATIONS

In this section, we first discuss the intuition behind ABKD and introduce some of the mathematical
definitions needed to explain it thoroughly.

3.1.1 SOFTKD INTUITION

In SoftKD (15), we compute two different losses. The first, H(sp, y), is a cross-entropy loss between
the output student probability distribution and the ground truth labels. The other, H(sp, tp), is
a cross-entropy loss between the output student probability distribution and the output teacher
probability distribution. The total loss is defined as:

LKD = H(sp, y) + αH(sp, tp) (1)
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Here, α is a hyper-parameter controlling how much the KD loss affects the total loss. The goal is to
align the output student probability distribution with the output teacher probability distribution. The
higher H(sp, tp) is, the less aligned the student and teacher output probability distributions are.

3.1.2 ABKD INTUITION

Similarly, with ABKD, we want to incorporate this intuition of alignment. However, we want to go
further than just aligning the final output - we want to align the outputs at the intermediate layers,
as the intermediate layers contain inductive biases that are not present in just the final layers. As
one of our goals with ABKD is to work with any combination of teacher and student architectural
configurations, this presents one significant challenge: Teacher and student networks will likely have
a different number of hidden layers, which means there is no 1-1 correspondence between teacher
and student layers.

ABKD solves this problem by identifying which teacher-student layer pairs are the most important to
align via an attention mechanism. This mechanism works with any arbitrary number of teacher layers
and student layers, which makes this approach amenable to any arbitrary teacher-student configuration.
ABKD also uses a reprojection technique to account for the student and teacher networks having
different hidden dimensions. The output of each hidden layer for both the teacher and student
networks is projected into a standardized embedding dimension, which ensures that we can work
with student and teacher networks of any embedding dimension. As each layer represents its own
semantic information, an important challenge that we faced was to ensure that each layer’s feature
map was not smoothed out by a single projection matrix. To this end, we use separate trainable linear
layers for each hidden layer in both the teacher and student networks, in order to ensure that we don’t
lose out on any valuable semantic information in the hidden layers.

These trainable linear layers help us construct the two key components of ABKD, which are the
attention map and the dissimilarity map. At a high level, the attention map tells us how important
each teacher-student layer pair is, while the dissimilarity map tells us how distant the feature maps of
each teacher-student layer pair are. The teacher-student layer pairs with higher attention scores are
deemed as more important, and ABKD focuses on reducing their dissimilarity scores during training.

Figure 2: ABKD generates an attention map using a trainable attention mechanism and a dissimilarity map using
a trainable subspace projection. The loss matrix is an element-wise multiplication of the attention matrix and the
dissimilarity matrix.

3.1.3 MATHEMATICAL FOUNDATION

Without loss of generality, we will consider distilling a general Graph Convolution Network (GCN)
(20), in which the output of the lth layer is

H l = σ(ÂHl−1Wl) (2)
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Here, σ is an activation function and Â is the normalized adjacency matrix, Â = D− 1
2AD− 1

2 , where
D is the diagonal degree matrix. H l−1 ∈ Rn×d represents the output of the last hidden layer and
W l ∈ Rd×d represents the trainable weights of the current layer.

Consider two different tensors T ∈ RTl×n×dt and S ∈ RSl×n×ds . Tl and Sl represent the number
of layers in the teacher and student networks respectively. n represents the number of nodes in the
graph that is being trained on and dt and ds represents the dimensionality of the teacher and student
networks, respectively. T and S represent the calculated layer maps before activation is applied at
every layer for the teacher and student networks, respectively.

3.2 ABKD

3.2.1 ATTENTION SCORES

The first step of ABKD is to generate A ∈ RTl×Sl . Aij will represent an "importance" score for the
layer pair consisting of teacher layer i and student layer j. We take the average of the feature maps
along the node dimension to compute a mean node feature for every layer in both the teacher and
student networks. Call these tensors Ta ∈ RTl×dt and Sa ∈ RSl×ds . Then, we pass each layer in Ta

through its own linear layer to create Tp ∈ RTl×da , where da is the embedding dimension of ABKD.
Similarly, we create Sp ∈ RSl×da . We can finally generate A in the following manner:

A = softmax(
TpS

T
p√

da
) (3)

3.2.2 DISSIMILARITY SCORES

The next step is to compute a pairwise dissimilarity score for each teacher-student layer pair. Again,
we project the features into da. For calculating the attention scores, we averaged over the node
dimension before projecting, as our goal was to identify important layers. When calculating the
pairwise dissimilarity, we want to incorporate the per-node embeddings. So, we use a separate set of
projection matrices. We use Pt ∈ Rdt×da and Ps ∈ Rds×da to represent the projections.

However, distance metrics are less semantically valuable if da is high. To alleviate this problem, we
define a trainable matrix P ∈ Rda×da to project all vectors into the subspace defined by the column
space of P . Since the cardinality of the subspace defined by the column space of P will be smaller
than or equal to the cardinality of Rda , distance metrics within the subspace will be more valuable on
average compared to distance metrics in Rda .

The final step is to average over the embedding dimension and then produce D ∈ RTl×Sl , which
gives dissimilarity scores for each teacher-student layer pair. For calculating the dissimilarity, we
experiment with Euclidean and cosine distance, but Euclidean distance generally tends to perform
better. The dissimilarity score for a layer pair (i, j) can be represented as:

Dij = ||(TiPt − SjPs)P
1da

da
||22 (4)

where 1da is a vector of 1s in Rda .

3.2.3 FINAL LOSS CALCULATION

To produce the final loss matrix, we element-wise multiply A and D and then take the row-wise mean
to produce a single number that represents the ABKD loss.

Labkd = (1Tl
)T (A⊙D)(

1Sl

Sl
) (5)

The final loss is calculated as
L = H(sp, y) + βLabkd (6)

There is one important theorem to consider that proves Labkd distills valuable knowledge from the
teacher network to the student network.

5



Under review as a conference paper at ICLR 2024

Theorem 1: Consider a teacher layer i and a student layer j such that j < i. Consider the weight
W s

j which is the associated weight for the jth layer of the student network. The weight update for
W s

j will be affected by W t
i , which are the weights for the ith layer of the teacher network.

Proof: To calculate the weight update, we have to first formulate a loss for the layer pair (i, j). By
adapting equation 5 to a specific element in the loss matrix, we get:

Lij ∼ (
1n

n
)T (T p

i (W
ps
j )T )(W s

j )
T ((Hs

j−1)
T ÂT ))

1n

n
∗Dij

T p
i = ÂHt

i−1W
t
iW

pt
i

where W pt
i and W ps

j represent the projection matrices used to calculate the attention score.
Assuming that our weight updates are performed by gradient descent, to calculate the weight update
for W s

j due to Lij , we have to first calculate ∂Lij

∂W s
j
∈ Rds×ds :

∂Lij

∂W s
j

=
∂Aij

W s
j

Dij +
∂Dij

W s
j

Aij (7)

We focus on the first term and obtain the result:

∂Aij

∂W s
j

∼ ((Hs
j−1)

T ÂT (
1n

n
))((

1n

n
)TT p

i (W
ps
j )T ) (8)

It is apparent that as ∂Aij

∂W s
j

contains the term T p
i = ÂHt

i−1W
t
iW

pt
i , the weight update will reflect

terms from the ith teacher layer. This theorem goes to show that even though student layer j is
responsible for aggregating information for every node from its j-hop neighborhood, its weights
collect knowledge from teacher layer i - knowledge that would be unavailable to student layer j using
any of the other GNN KD approaches.

An important follow-up observation is that the loss for a teacher-student layer pair will be higher if
the pair is deemed as more important and if their projected feature maps have a high dissimilarity
score (Dij > 0.5), which indicates that they aren’t closely aligned.

To verify this observation, consider an arbitrary teacher layer i and an arbitrary student layer j.
Consider Aij . If the pair (i, j) is deemed important, Aij will be high. Now consider Dij . If the pair
(i, j) is not closely aligned, then Dij will be high. As Lij = Aij ∗Dij , if both Aij and Dij are high,
then Lij will also be high, hence proving that the loss is high for important but misaligned layer pairs.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

For our main experiments, we test ABKD on two difficult datasets OGBN-Mag and OGBN-Arxiv (5).
These datasets employ temporal splitting to create validation and test sets that can assess a model’s
ability to generalize on out-of-distribution data (34). For OGBN-Mag, we run experiments using
RGCN (21) as the teacher and student models, and for OGBN-Arxiv, we run experiments using GAT
(35) as the teacher model and GraphSAGE (22) as the student model. This allows us to evaluate
the effectiveness of ABKD for different GNN architectures. It also allows us to assess if ABKD can
distill information between different types of GNN architectures. In our experiments, we keep the
teacher model architecture and weights fixed and only modify the size of the student network. Each
distillation method starts from the same set of weights and trains for the same number of epochs
across 5 runs. For our baselines, we consider LSP (17), GSP (18), G-CRD (18), Fitnet (25), and
Attention Transfer (26). We ran all experiments on a Tesla V100 GPU.
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Figure 3: Accuracy vs. Compression Ratio:
A comparison of KD methods applied to stu-
dent models of different sizes trained on the
OGBN-Mag dataset. The teacher model was
the same model as the one described in table
3. The student model was a two-layer RGCN
and we varied the embedding dimension from
16 - 512 to induce this Pareto frontier. The
y-axis represents the test accuracy of the final
trained models.

Dataset OGBN-Mag OGBN-Arxiv
Teacher RGCN (3L-512H-5.5M) GAT (3L-750H-1.4M)
Student RGCN (2L-32H-170K) GS (2L-256H-87K)

Teacher 49.80 74.20

Student 44.23± 0.47 70.87± 0.58
Fitnet 44.87± 0.84 71.32± 0.32

AT 43.87± 0.67 71.04± 0.48
LSP 45.21± 0.54 71.47± 0.45
GSP 44.97± 0.58 71.97± 0.64

G-CRD 45.42± 0.43 71.87± 0.56
ABKD 47.21± 0.32 73.25± 0.56

Ratio 32.3× 16.1×

Table 2: Average accuracies over five trials for
the OGBN-Mag and OGBN-Arxiv Datasets. The
teacher network was kept constant while the dif-
ferent distillation methods were applied to student
networks that were initialized from the same set of
weights. GS means GraphSAGE.

4.2 EXPERIMENTAL RESULTS

Out-Of-Distribution Evaluation As evidenced by our results in Table 2, we are able to outperform
SOTA in several different compression settings on OGBN-Mag and OGBN-Arxiv. We show improve-
ments of over 1.79% and 1.38% with compression ratios of 32.3× and 16.1× on OGBN-Mag and
OGBN-Arxiv respectively. As these datasets are intended to evaluate out-of-distribution generaliza-
tion, our results empirically prove that ABKD can train student models that generalize better than
other KD approaches.

Figure 4: Attention and Dissimilarity maps before and after training with ABKD. Cooler colors refer
to lower scores and warmer colors correspond to higher scores.
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ABKD aligns intermediate embeddings: To empirically prove that ABKD actually aligns intermediate
embeddings based on the attention matrix, we visualize the before and after training attention and
dissimilarity maps in figure 4. We train on OGBN-Mag and use a deeper teacher network of 5 layers
and a hidden dimension of 512. The student network has 3 layers and a hidden dimension of 32. Our
results show that dissimilarity scores are low where the attention scores are high and vice versa. This
is in line with the intuition that we constructed in 3.2.3.

Dataset Cora Citeseer Pubmed NELL
Teacher GCNII (64L-64H) GCNII (64L-64H) GCNII (64L-64H) GCNII (64L-64H)
Student GCNII (4L-4H) GCNII (4L-4H) GCNII (4L-4H) GCNII (4L-4H)

Teacher 88.40 77.33 89.78 95.55
Student 74.22± 1.32 68.14± 1.45 88.66± 0.87 85.20± 0.75

LSP 75.18± 1.45 70.43± 1.32 89.01± 1.73 85.20± 1.32
GSP 78.32± 1.21 69.43± 0.87 89.13± 1.05 86.13± 1.47

G-CRD 83.35± 1.32 71.42± 1.21 89.73± 1.05 88.61± 1.01
ABKD 84.27± 1.48 71.96± 0.87 89.87± 0.45 91.83± 0.74

# Parameters 5835 14910 2083 22686
Ratio 60.7× 33.5× 141.3× 27.7×

Table 3: Average accuracies over several trials for a variety of datasets, using GCNII. The results are based on
the average of five trials, with each distillation method applied to the same set of student weights.

Deep GNNs: We also test ABKD on deep GNN architectures. While most GNN architectures are
shallow due to the problem of over-smoothing, there are some approaches that alleviate this issue,
allowing for deep GNN architectures. One of these approaches is GCNII (36). We test on Cora (37),
Citeseer (38), Pubmed (39) and NELL (40). Table 3 shows that ABKD is able to distill these deep
GCNIIs into shallower GCNIIs with higher accuracy compared to other distillation methods in high
compression settings. While currently, most GNN use cases require shallow GNNs, this could be
useful for future applications that require deeper GNNs.

Improved Weight Initialization for Highly Compressed Networks: We find that for smaller
datasets, information from the teacher network is mainly distilled into one layer of the student
network, as shown in Figure 5. Our hypothesis for this occurrence is that smaller datasets are not
very complex and one layer is sufficient for learning most of the patterns. Through experimentation,
we prove that when we initialize a one-layer network from the weights of this particular layer, we get
improved accuracy compared to random initialization, as shown in Table 4.

Figure 5: Attention maps for Cora, Citeseer, and Pubmed. Each color in the heatmap represents the importance
score associated with that teacher-student layer pair. Warmer colors mean higher important scores. It seems
apparent that most of the knowledge from the teacher layers is distilled into one student layer.
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Dataset Initialized Random Init No Training

Cora 80.29 73.58 65.36
Citeseer 70.12 68.12 54.20
Pubmed 88.76 86.03 72.90

Table 4: Results for weight initialization experiment.
Experimental details can be found in the appendix.

Dataset OGBN-Mag OGBN-Arxiv

Student 44.46± 0.54 71.27± 0.48
ABKD 47.46± 0.45 73.18± 0.56

Modified ABKD 46.56± 0.60 71.89± 0.87

Table 5: Ablation study comparing modified ABKD
that only considers aligning the last layer node em-
beddings with ABKD that considers intermediate
layer node embeddings. The teacher and student
models are the same as the ones in Table 2.

4.3 ABLATION STUDIES

Aligning Intermediate Layers is Important: To prove that the aligning of intermediate layers is
necessary for superior performance, we experiment with a variant of ABKD, which we call modified
ABKD, where we set A ∈ RTl×Sl to all zeros, but we set the bottom right value to 1. This indicates
that we are only interested in the dissimilarity between the last layer node embeddings of the teacher
and student models. The results in table 5, prove that we gain accuracy by considering the outputs of
intermediate layers for both teacher and student models. In this experiment, we start from the same
set of initialized weights for both the ABKD and modified ABKD approaches.

Improvements due to Subspace Projection: In our approach, we introduced the concept of subspace
projection as an alleviation to high dimensional embedding spaces. While it is not needed for ABKD to
work, it does improve our results as the learned subspace projection matrix tends to be of lower rank
than the embedding dimension. This indicates that we can project our feature maps into subspaces
smaller than Rda , which increases the semantic value of the dissimilarity scores.

One Linear Layer Per Hidden Layer Is Necessary: In our approach, we mention that each hidden
teacher and student layer is assigned its own linear layer for projection into da. This is because each
layer represents its own k-hop neighborhood, and using just one linear layer would prove inadequate
in capturing the full spectrum of essential semantic information contained within each layer. We
run an experiment in which we use only one linear layer for the teacher and student projections and
demonstrate that there is a significant accuracy dropoff compared to using individual linear layers for
the projection.

Dataset Subspace Projection No Projection

Cora 84.27± 1.32 83.78± 1.25
Citeseer 71.96± 0.83 71.46± 1.21
Pubmed 89.87± 0.87 89.03± 1.04

NELL 91.83± 0.85 90.98± 0.75
OGBN-Mag 47.21± 0.32 46.83± 0.45

OGBN-Arxiv 73.25± 0.56 72.87± 0.34

Table 6: Subspace Projection Ablation Results.
The teacher and student networks are the same as
the ones described in tables 2 and 3.

Dataset Multiple Linear Layers One Linear Layer

Cora 84.27± 1.48 75.52± 1.32
Citeseer 71.96± 0.87 68.86± 1.27
Pubmed 89.87± 0.45 88.75± 0.64

NELL 91.83± 0.74 85.38± 0.68
OGBN-Mag 47.21± 0.32 44.67± 0.54

OGBN-Arxiv 73.25± 0.56 71.23± 0.47

Table 7: Linear Layer Ablation Results. The teacher
and student networks are the same as the ones described
in tables 2 and 3.

5 CONCLUSION

Graph Neural Networks (GNNs) have increased in complexity in recent years, owing to the rapidly
increasing size of graph datasets. This increase in complexity poses a problem for latency-sensitive
applications such as real-time recommendation and real-time spam detection, as GNN model sizes do
not scale well with latency. To address this predicament, we propose an innovative solution known as
Attention-Based Knowledge Distillation (ABKD). ABKD employs an attention-based feature linking
mechanism to identify important intermediate teacher-student layer pairs and focuses on aligning the
node embeddings of those pairs. This knowledge distillation approach broadly outperforms SOTA
GNN-specific KD approaches over a wide variety of compression settings. It also works with both
deep and shallow networks as proven by our experiments and performs well with several different
types of GNN architectures. On average, we achieve a 1.79% increase in accuracy with a 32.3×
compression ratio on OGBN-Mag, a large graph dataset, compared to state-of-the-art approaches.
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