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ABSTRACT

Natural language serves as a common and straightforward control signal for hu-
mans to interact seamlessly with machines. Recognizing the importance of this
interface, the machine learning community is investing considerable effort in gen-
erating data that is semantically coherent with textual instructions. While strides
have been made in text-to-data generation spanning image editing, audio synthe-
sis, video creation, and beyond, low-resource areas characterized by expensive
annotations or complex data structures, like molecules, motion dynamics, and
time series, often lack textual labels. This deficiency impedes supervised learn-
ing, thereby constraining the application of advanced generative models for text-
to-data tasks. In response to these challenges in the low-resource scenario, we
propose Text2Data, a novel approach that utilizes unlabeled data to understand
the underlying data distribution through an unsupervised diffusion model. Subse-
quently, it undergoes controllable finetuning via a novel constraint optimization-
based learning objective that ensures controllability and effectively counteracts
catastrophic forgetting. Comprehensive experiments demonstrate that Text2Data
is able to achieve enhanced performance regarding both generation quality and
controllability across various modalities, including molecules, motions and time
series, when compared to existing baselines.

1 INTRODUCTION

Autonomy and controllability stand as twin primary pillars of generative AI (Gozalo-Brizuela &
Garrido-Merchan, 2023; Wang et al., 2022). While the challenge of autonomy has been substantially
addressed through the rapid advancements of generative models, controllability is now ascending as
a fervently explored arena within the machine learning community. As natural languages are one of
the most common and simplest control signal for human beings to interact with machines, the ma-
chine learning community has increasingly focused on generating data that aligns semantically with
textual descriptions, given its wide-ranging applications in fields such as image editing (Zhang et al.,
2023; Kawar et al., 2023), audio synthesis (Liu et al., 2023; Huang et al., 2023), video generation (Li
et al., 2018; Hu et al., 2022), and many more (Tevet et al., 2023; Sanghi et al., 2022).

Recent breakthroughs in text-to-data generative models, particularly those using diffusion tech-
niques (Li et al., 2023; Yang et al., 2023; Kumari et al., 2023), have demonstrated remarkable
proficiency by harnessing the rich semantic insights from vast datasets of data-text pairs. Despite
the broad applicability of text-to-data generative models, not all modalities can meet the substantial
data-text pair requirements for achieving optimal controllability during model training. This is often
due to costly annotations or intricate data structures, a scenario we refer to as the low-resource situ-
ation. The lack of text labels in certain areas, such as molecules (Ramakrishnan et al., 2014; Irwin
et al., 2012), motions (Guo et al., 2020; Mahmood et al., 2019), and time series (Du et al., 2020),
primarily restricts supervised learning and hinders the use of advanced generative models for text-
to-data generation tasks. The low-resource situation when training generative models unsurprisingly
results in issues like undesirable generation quality, model overfitting, bias, and lack of diversity. As
a result, the optimization for scarce text representations to improve the alignment between generated
data and input texts in generative models is still under-explored.

To mitigate the issues in the low-resource scenario, the strategies such as data augmentation (Hed-
derich et al., 2020; Meng et al., 2021), semi-supervised learning (Thomas et al., 2013; Cheuk et al.,
2021), and transfer learning (Tits et al., 2020; Yi et al., 2018) are utilized. Yet, each comes across
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challenges. Data augmentation, for example, cannot always replicate genuine data fidelity to align
accurately with initial text descriptions, and potentially leads to overfitting due to over-reliance on
augmented samples. This method also exacerbates the training complexity, intensifying the already
high computational demands of diffusion models. For semi-supervised learning, text inherently car-
ries nuances, ambiguities, and multiple meanings. Ensuring that the model maintains the correct
interpretation when leveraging unlabeled data is not straightforward. Lastly, while transfer learning
offers a solution for limited datasets, it is prone to catastrophic forgetting (Iman et al., 2023), where
previous knowledge diminishes as new information (i.e., text descriptions) is introduced.

Alternative to existing solutions, we propose Text2Data, a diffusion-based framework achieving en-
hanced text-to-data controllability even under low-resource situation. Specially, Text2Data operates
in two pivotal stages: (1) Distribution mastery by leveraging unlabeled data. This step uses un-
labeled data to discern the overarching data distribution via an unsupervised diffusion model, elimi-
nating the semantic ambiguity often associated with semi-supervised approaches. (2) Controllable
finetuning on text-labeled data. The learned diffusion model is then finetuned by text-labeled data.
Distinct from methods reliant on data augmentation, Text2Data abstains from inflating the training
dataset and employs cross-attention to further refine data-text alignment. To further enhance this
framework, we introduce a novel constraint optimization-based learning objective, aiming to mit-
igate catastrophic forgetting by regularizing the model parameter space closely to its preliminary
space before finetuning. Our contributions are summarized as follows:

• We introduce Text2Data, a novel framework designed for text-to-data generation in the low-
resource scenario. This approach is able to maintain the fine-grained data distribution by fully
harnessing both labeled and unlabeled data.

• We design a novel learning objective based on constraint optimization to achieve controllabil-
ity and overcome catastrophic forgetting during finetuning, ensuring the model parameter space
remains aligned with its initial training phase.

• We theoretically validate our optimization constraint selection and established generalization
bounds for our learning objective.

• We compile real-world datasets across three modalities and conduct comprehensive experiments
to show the effectiveness of Text2Data. The results demonstrate that Text2Data achieves superior
performance than baselines regarding both generation quality and controllability.

2 RELATED WORKS

2.1 TEXT-TO-DATA GENERATIVE DIFFUSION

Diffusion models, notably divided into classifier-guided (Dhariwal & Nichol, 2021) and classifier-
free (Ho & Salimans, 2022) categories, have significantly impacted data generation across various
domains. (Hoogeboom et al., 2022; Yang et al., 2023; Ho et al., 2022; Voleti et al., 2022). The
classifier-guided diffusion guides the model during inference phase to generate data with desired
properties by independently training a classifier and supervising the model with its gradient, which
is not efficient when computing gradient at each time step and sometimes the generation quality is
deficient as the guidance is not involved in the training. By contrast, classifier-free diffusion guid-
ance blends score estimates from both a conditional diffusion model and an unconditional one with
time step as a parameter, exemplified by E(3) Equivariant Diffusion Model (EDM) (Hoogeboom
et al., 2022) and Motion Diffusion Model (MDM) (Tevet et al., 2023) for controllable molecule
and motion generation, respectively. Furthermore, since natural languages are a prevalent medium
for human to communicate with the world, the text-to-data generation paradigm has gained trac-
tion, with diffusion models being instrumental in generating high-quality data aligned with textual
inputs. The extensive applications encompass text-to-image generation (Ruiz et al., 2023; Zhang
& Agrawala, 2023), text-to-speech generation (Huang et al., 2022; Kim et al., 2022), text-to-shape
generation (Li et al., 2023; Lin et al., 2023), and more, leveraging the abundant text descriptions for
training potent generative models. Various modalities may not satisfy the stringent requirements for
data-text pairs essential for attaining optimal controllability during the training of models.

2.2 MACHINE LEARNING MODEL UNDER LOW-RESOURCE SITUATION

In response to the challenges of low-resource training for controllable generative models, several
strategies have been formulated. For instance, Yin et al. (2023) proposes Text-to-Text-to-Image Data
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Augmentation that employed both large-scale pretrained Text-to-Text and Text-to-Image generative
models for data augmentation to generate photo-realistic labeled images in a controllable manner.
Zang & Wan (2019) utilizes a semi-supervised approach to augment the training of both the encoder
and decoder with both labeled and unlabeled data. Tu et al. (2019) proposes to learn a mapping
between source and target linguistic symbols and employs transfer learning to transfer knowledge
from a high-resource language to low-resource language. Nevertheless, all those strategies have
their own limitations, such as high computational complexity for data augmentation, difficulty in
maintaining the correct interpretation of text when leveraging unlabeled data during semi-supervised
learning, and the potential catastrophic forgetting issues in transfer learning. Additionally, most of
works on low-resource text-to-data generation lie in the modality of image, speeches, and texts,
which have plenty of datasets (Ito & Johnson, 2017; Pratap et al., 2020; Lin et al., 2014; Jiang
et al., 2021; Wang et al., 2020) to train the models nowadays. Yet it is far under-explored for the
other low-source modalities such as molecules, motions and time series. Therefore, we propose
Text2Data, a diffusion-based framework adept at harnessing limited text-labeled data to enhance the
controllability of the model in text-to-data generation.

3 PROBLEM FORMULATION

Suppose the dataset D = {x, c} contains N independent samples in total, where x = {xi}Ni=1 is the
data samples such as molecules, motions, time series, etc. We assume that there is only a proportion
of data in x that has corresponding text description c = {ci}

Np

i=1 where Np ≤ N . We denote that
data with text description is contained in Dp and Dp ∈ D. Using both text-labeled and unlabeled
data in D, we aim to learn a generative model, pθ(x|c) parameterized by θ that is able to generate
data x ∼ pθ(x|c) corresponding to specific text description c = c∗.

𝑝𝜃(x)

𝑝𝜃(x|c)

Finetune

መ𝜃
መ𝜃′

Θ

Θ′

: Unlabeled data : Labeled data

Figure 1: Overview of Text2Data. The model first leverages unlabeled data (i.e., blue module) to
discern the general data distribution and the optimal set of model parameters Θ is obtained. Then
the model is finetuned on labeled data (i.e., red module) by constraint optimization that introduces
the optimal set of model parameters as Θ∩Θ′, where Θ′ is the optimal set of parameters if finetune
the model without constraint.

4 METHODS

Controllable data generation seeks to learn the conditional data distribution pθ(x|c) during train-
ing and subsequently draw samples from this assimilated distribution during the inference stage.
Consequently, our primary objective during the training phase is to optimize the following:

min
θ

Ex,c∼pDp (x,c)
[− log pθ(x|c)] . (1)

While the training of such generative models is contingent upon the supervision of text descriptions
present in the dataset (denoted as Dp), it is not always feasible to obtain an adequate number of
data-text pairs to ensure optimal controllability (i.e., |Dp| < |D|), especially in specific modalities
like molecular structures, motion patterns and time series. Such constraints can precipitate compli-
cations, including model overfitting when optimizing according to Eq. 1. Given these challenges,
devising strategies to capitalize on the unlabeled data within D—which is often more accessible and
cost-effective—is pivotal to effectively learn pθ(x|c).
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Notably, the marginal distributions learned from unlabeled and labeled data are close:

pθ(x) ≈
∫

pθ(x|c)pDp
(c)dc = Ec∼pDp (c)

[pθ(x|c)] , (2)

where pDp
(c) is the true underlying text generating distribution corresponding to x ∈ Dp. Hence, as

per Figure 1, we can initially utilize the unlabeled data in D to learn pθ(x) and obtain the optimal set
of model parameters θ̂ ∈ Θ, which serves as a robust approximation of pθ(x|c). Then, we finetune
it using the data-text pairs in Dp to achieve desired model controllability (Section 4.1). Crucially,
we ensure that the parameters remain in close proximity to those established when learning pθ(x)
via constraint optimization to make Eq. 2 hold to mitigate catastrophic forgetting. Figure 1 shows
our constraint to keep the finetuned parameters θ̂′ within Θ ∩ Θ′, where Θ′ represents the optimal
parameters from unconstrained finetuning. Then we plug the generative diffusion implementation to
our framework in Section C. Finally, we use Section A to offer theoretical insights into the selection
of the optimization constraint, underpinned by generalization bounds for our learning objective.

4.1 LEARNING TEXT-TO-DATA GENERATION UNDER LOW-RESOURCE SITUATION

To capture a general distribution of data, we leverage all data in D incorporating NULL tokens as
conditions to facilitate subsequent finetuning. Specifically, we train the generative model pθ(x|∅),
where θ parameterizes the model and ∅ represents the NULL token in practice. As the NULL token
is independent to x, we also have pθ(x|∅) = pθ(x). Hence, we optimize the following:

min
θ

Ex∼pD(x)[− log pθ(x)], (3)

where pD(x) is the true underlying data generating distribution.

Having discerned the general data distribution through Eq. 3, we proceed to finetune pθ(x|c) using
text labels c in Dp to achieve the controllability of model. In alignment with Eq. 2, the antici-
pated finetuned parameter should approximate the parameter optimized in Eq. 3. This leads to the
subsequent learning objective for the finetuning phase:

min
θ

Ex,c∼pDp (x,c)
[− log pθ(x|c)]

s.t. Ex∼pDp (x)
[− log pθ(x)] ≤ ξ, ξ = inf

θ∈Θ
Ex∼pD(x)[− log pθ(x)] (4)

where pDp
(x, c) is the true underlying data-text joint distribution. Θ denotes a localized parameter

space where a minimum can be located. Specifically, we minimize Ex,c∼pDp (x,c)
[− log pθ(x|c)]

using the labeled data in Dp within the optimal set {θ : Ex∼pDp (x)
[− log pθ(x)] ≤ ξ} to make the

parameter not far from learned via Eq. 3, so that catastrophic forgetting is mitigated. This aligns
with the nature of a lexicographic optimization problem (Gong & Liu, 2021) and therefore can be
solved in that context.

4.2 LOW-RESOURCE GENERATIVE OBJECTIVE ON EMPIRICAL SAMPLES

Eq. 4 is the population-level learning objective while empirically we follow the standard loss func-
tion (i.e., transformed evidence lower bound of Eq. 4) of the classifier-free diffusion guidance (Ho
& Salimans, 2022), so that instead of optimizing Eq. 4, we optimize the following:

min
θ

L2(θ) s.t. L′
1(θ) ≤ ξ, ξ = inf

θ∈Θ
L1(θ), (5)

where L1(θ) = Ex∼pD(x),t[||ϵθ(x(t), t) − ϵ||2], L′
1(θ) = Ex∼pDp (x),t

[||ϵθ(x(t), t) − ϵ||2] and
L2(θ) = Ex,c∼pDp (x,c),t

[||ϵθ(x(t), c, t)− ϵ||2]. Also, t is sampled from uniform between 1 and T ,

T is the total number of diffusion steps, ϵ is the standard Gaussian random variable, and ϵθ(x
(t)
i , t)

and ϵθ(x
(t)
i , c, t) are functions we aim to fit at the t-th diffusion step. Note here that ϵθ(x

(t)
i , t) and

ϵθ(x
(t)
i , c, t) share the same parameter but are just trained at different stages: distribution mastery

on unlabeled data and controllable finetuning on labeled data, respectively.

As the true generating distributions pD(x), pDp(x) and pDp(x, c), are unknown, we instead optimize
the empirical loss:

min
θ

L̂2(θ) s.t. L̂′
1(θ) ≤ ξ̂, ξ̂ = inf

θ∈Θ̂
L̂1(θ), (6)
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where L̂1(θ) = Ex∼p̂D(x),t[||ϵθ(x(t), t) − ϵ||2], L̂′
1(θ) = Ex∼p̂Dp (x),t

[||ϵθ(x(t), t) − ϵ||2] and

L̂2(θ) = Ex,c∼p̂Dp (x,c),t
[||ϵθ(x(t), c, t) − ϵ||2]. Θ̂ is the localized parameter space where a mini-

mum can be located for L̂1(θ). The lexicographic optimization-based constraint ξ̂ = infθ∈Θ̂ L̂1(θ)
in Eq. 6 may be overly strict and could require relaxation to ease the training process. While we
anticipate that the parameters derived from Eq. 6 should be close to those from Eq. 5, they do not
necessarily have to be an exact subset of the parameters from Eq. 5.

4.3 GENERALIZATION BOUND OF LEARNING CONSTRAINT

In this section, we deduce a confidence bound for the constraint to demonstrate that the optimal set
of minimizing the empirical loss within the derived confidence bound encapsulates the true one, and
guide the further relaxation on the constraint if needed. First, we define sub-exponential random
variable and then and elucidate its relationship with sub-Gaussian random variable.

Definition 1 (Sub-Gaussian random variable). The random variable X with mean 0 is sub-Gaussian
with variance σ2 if ∀s ∈ R, EX [exp(sX)] ≤ exp(σ

2s2

2 ).

Based on the fact that x(t) is diffused from the random variable x(0) and the standard Gaussian noise
ϵ, therefore, ϵθ(x(t), t) and ϵθ(x

(t), c(t), t) are also random variables. Meanwhile, minimizing the
loss in Eq. 5 pushes ϵθ(x

(t), t) and ϵθ(x
(t), c(t), t) towards ϵ, which has the mean zero. Then we

introduce the following theorem 1 while assuming ϵθ(x
(t), t) and ϵθ(x

(t), c(t), t) are sub-Gaussian
random variables.

Theorem 1. For every θ and t, assume ϵθ(x
(t), t) and ϵθ(x

(t), ci, t) are sub-Gaussian random
variables with mean 0 and variance σ2, and Θ is finite. Let Θ∗ = {θ : L′

1(θ) ≤ ξ}, Θ̂∗ = {θ :

L̂′
1(θ) ≤ ξ̂ + ϵ} where ϵ is the confidence bound with the probability of 1 − δ. Let θ∗ denote the

solution to Eq. 5 and θ̂∗ denote the solution to empirical Eq. 6, then we have the following:

1. Θ∗ ⊆ Θ̂∗: the set of θ by optimizing Eq. 6 within the confidence bound covers the true one.

2. L2(θ̂
∗) ≤ L2(θ

∗) + 2ϵNp
: θ∗ and θ̂∗ compete well on L2(θ).

3. L′
1(θ̂

∗) ≤ ξ + 2ϵNp + 2ϵN : θ̂∗ does not violate constraint of Eq. 5 too much on L′
1(θ).

where ϵ = ϵN + ϵNp , ϵN =
√
Cσ̃2 ·

√
log |Θ|+log 2

δ

N ∨ Cσ̃2 · log |Θ|+log 2
δ

N , ϵNp
=

√
Cσ̃2 ·√

log |Θ|+log 2
δ

Np
∨ Cσ̃2 · log |Θ|+log 2

δ

Np
, σ̃2 = σ2 + 1 and C = 8

√
2.

Theorem 4.3 can be proved starting from the Bernstein’s inequality and the union bound inequality
on squared zero-mean sub-Gaussian random variable. More detailed proof is in Appendix A. As
the large amount of unlabeled data (i.e., N ) is usually easy to obtain by either manual collection or
simulation, ϵN is not large after taking logarithm on the number of model parameters (i.e., |Θ|), even
though it is usually much larger than N . Additionally, log |Θ| is not significantly larger than Np so
that ϵNp should not be large as well. For instance, in our experiments, around 45,000 samples and
14 million model parameters for motion generation result in rather small ϵN and ϵNp . In practice,
we use ξ = ρ · infθ∈Θ L1(θ) in Eq. 5 (i.e., ξ̂ = ρ · infθ∈Θ̂ L̂1(θ) in Eq. 6) to relax the constraint,
where ρ is an hyperparameter to keep the constraint within the confidence interval. Detail learning
algorithm has been displayed in Alg. 1.

5 EXPERIMENTS

5.1 DATASETS

We employ datasets from three modalities that may suffer from low-resource scenario.

Molecules. We extract 130,831 molecules from QM9 dataset (Ramakrishnan et al., 2014) with six
molecular properties: polarizability (α), highest occupied molecular orbital energy (ϵHOMO), lowest
unoccupied molecular orbital energy (ϵLUMO), the energy difference between HOMO and LUMO
(∆ϵ), dipole moment (µ) and heat capacity at 298.15K (Cv).
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Motions. We employ HumanML3D that contains textually re-annotating motions captured from
the AMASS (Mahmood et al., 2019) and the HumanAct12 (Guo et al., 2020). It contains 14,616
motions annotated by 44,970 textual descriptions.

Time Series. We assemble 24 stocks from Yahoo Finance1 (Appendix B) during their IPO date
to July 8, 2023. We further tailor data with the length of 120 by slicing on the opening price for
every 120 days, and scale the data by min-max normalization following Yoon et al. (2019). In total,
210,964 time series are produced. We then extract their features including frequency, skewness,
mean, variance, linearity (measured by R2), and number of peaks via “tsfresh” in Python.

Each dataset is divided into training and testing sets at a ratio of 80% to 20%. We curate each dataset
to have varying proportions (i.e., 2%, 4%, 6%, 8%, 10%, 20%, 30%, 40%) of text labels in order to
assess Text2Data and its baseline comparisons. Details regarding constructing text descriptions for
Molecules and Time Series are introduced in Appendix B.

5.2 BASELINE MODELS

We compare Text2Data with a classifier-free diffusion model in each modality as the baselines.

E(3) Equivariant Diffusion Model (EDM) (Hoogeboom et al., 2022).To handle Molecule dataset,
we employ EDM as the baseline. EDM utilizes an equivariant network to denoise diffusion pro-
cesses by concurrently processing both continuous (atom coordinates) and categorical data (atom
types). The controllability of molecular properties are realized by the classifier-free diffusion guid-
ance conditioned on the embedding of text descriptions and the number of atoms.

Motion Diffusion Model (MDM) (Tevet et al., 2023). We use MDM, a classifier-free diffusion
model, for text-to-human motion generation. The text descriptions are embedded to guide the mo-
tions, providing a mechanism for controllability.

Generation diffusion for time series (DiffTS). To generate time series, we design the classifier-free
diffusion model from scratch conditioned on text embeddings. We employ the backbone of Ho &
Salimans (2022) by substituting image data to one-dimensional time series, and replacing the U-Net
with one-dimensional convolutional neural network.

During implementation, we train the baselines on a specific proportion of labeled data. Text2Data
is modified from the baseline model with a pretraining+finetuning strategy following Eq. 6. Addi-
tionally, we conduct ablation study where each baseline is still finetuned but without the constraint
in Eq. 6. More details are in Appendix C.

5.3 EVALUATION METRICS

We evaluate Text2Data and the baselines according to (1) generation quality and (2) controllability.

Generation quality. The evaluation of generation quality varies based on the modality. For molec-
ular generation, we compute − log likelihood (− log p) (Hoogeboom et al., 2022) and validity of
generated molecules (Jin et al., 2018), molecular stability and atom stability (Garcia Satorras et al.,
2021) to evaluate their overall generation quality. For motion generation, we use FID score and
Diversity following (Tevet et al., 2023). For time series generation, we follow Yoon et al. (2019)
and Lim et al. (2023) by drawing t-SNE plots to visualize the overlap between generated data and
the ground-truth. Better model tends to have a larger overlap, indicating more similar distribution.

Controllability. We compare the controllability between Text2Data and the baselines by the sim-
ilarity between generated data and the ground truth. To assess the generated molecules, we follow
Hoogeboom et al. (2022) and train a classifier for each property to extract specific properties from
generated data. Then, we calculate the Mean Absolute Error (MAE) between the extracted property
and the ground truth. To assess the controllability of motion generation, we compute R precision and
Multimodal distance that measure the relevancy of the generated motions to the input prompts (Guo
et al., 2022b). To evaluate the controllability of time series generation, we extract properties via
”tsfresh” and compute the MAE between properties of generated data and that of ground truth.
Additionally, we also visualize generated data according to the specified properties.

1https://finance.yahoo.com/
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5.4 COMPARISONS ON GENERATION QUALITY

When generating molecules from Text2Data and its baseline comparisons, as shown in Table 1, we
compute − log p and validity to evaluate generation quality. The performance of Text2Data is con-
sistently better. It surpasses EDM-finetune and EDM by average margins of 19.07% and 58.03%,
respectively. It is 1.98% and 10.59% better than EDM-finetune and EDM on average, respectively,
regarding validity on average. Besides, we evaluate Text2Data compared with EDM-finetune and
EDM on molecular stability and atom stability (Appendix Table 5). Text2Data exceeds EDM-
finetune and EDM by average margin of 2.34% and 17.31%, respectively, in terms of molecular
stability. It is also 0.29% and 1.21% better than EDM-finetune and EDM on average, respectively,
regarding atom stability. The consistent improvements on all the three models result from our supe-
rior performance of Text2Data on properties (e.g., molecular stability) that are hard to control.

Table 1: Evaluate generation quality on Molecule dataset by − log p and validity according to dif-
ferent proportions of paired data. Lower − log p and higher validity indicate better performance.

Proportion (%)
-log p ↓ Validity ↑

Text2Data EDM-finetune EDM Text2Data EDM-finetune EDM
2 -111.39±0.92 -74.88±1.82 -49.15±0.96 0.97±0.07 0.93±0.11 0.86±0.09
4 -119.09±0.30 -87.56±4.18 -78.72±2.95 0.95±0.07 0.96±0.07 0.83±0.15
6 -119.55±0.59 -97.32±2.09 -69.58±1.97 0.97±0.07 0.96±0.05 0.81±0.14
8 -119.40±0.68 -101.31±1.11 -85.19±1.58 0.97±0.07 0.93±0.07 0.90±0.11

10 -121.37±1.24 -104.17±1.94 -85.73±1.00 0.96±0.06 0.95±0.13 0.88±0.10
20 -119.58±1.61 -104.08±2.03 -76.39±2.11 0.97±0.07 0.95±0.07 0.90±0.09
30 -121.00±1.07 -115.58±0.95 -76.22±1.26 0.97±0.07 0.95±0.07 0.91±0.09
40 -119.90±0.97 -114.00±0.59 -80.97±0.09 0.97±0.07 0.95±0.08 0.90±0.10

Table 2: Evaluate generation quality on HumanML3D dataset by FID and Diversity according to
different proportions of paired data. Low FID and higher diversity indicate better performance.

Proportion (%)
FID ↓ Diversity ↑

Text2Data MDM-finetune MDM Text2Data MDM-finetune MDM
2 1.22±0.12 1.23±0.03 3.09±0.12 9.26±0.07 9.08±0.17 8.84±0.14
4 1.12±0.11 1.16±0.17 3.06±0.21 9.31±0.21 9.13±0.20 8.80±0.18
6 1.00±0.13 0.64±0.11 1.13±0.12 9.40±0.13 9.39±0.22 8.91±0.22
8 1.40±0.14 1.32±0.15 1.34±0.18 9.43±0.20 9.21±0.18 8.95±0.19
10 1.49±0.19 1.52±0.13 1.50±0.15 9.59±0.09 9.74±0.13 9.37±0.15
20 0.92±0.06 1.02±0.12 1.07±0.06 9.77±0.20 9.72±0.17 9.66±0.15
30 0.81±0.10 0.99±0.13 1.11±0.10 9.79±0.11 9.70±0.12 9.63±0.14
40 0.63±0.12 0.95±0.11 1.13±0.15 9.74±0.13 9.70±0.20 9.38±0.15

As indicated in Table 2, quantitative assessment of motion generation from text shows that Text2Data
surpasses the baseline methods in both quality and diversity. Particularly, Text2Data outperforms
MDM-finetune and MDM by 2.73% and 36.05% on average, respectively, regarding FID score. Re-
garding diversity, Text2Data surpasses MDM-finetune and MDM by average margins of 0.81% and
3.71%, respectively. Enhanced performance is derived from the ability of Text2Data to fully lever-
age all samples in the dataset, while effectively mitigating catastrophic forgetting during finetuning.

We evaluate the overall quality of generating time series by making t-SNE plots of generated time
series against ground truth. Substantial overlap between the generated time series and the ground
truth suggests a closer distribution alignment, implying a better performance. As demonstrated in
Figure 2, the red pattern represents the t-SNE of ground-truth time series, whereas the blue pat-
tern is the t-SNE of generated time series according to the same text description. Compared with
DiffTS-finetune and DiffTS, Text2Data corresponds to the largest overlap between distributions of
the generated and the ground-truth time series, suggesting its superior ability to precisely generate
data according to the text description. The non-overlapping part may result from the diversity of
generated time series or properties that are not controlled by text description. The inferior perfor-
mance of DiffTS stems from its training solely on labeled data, potentially leading to an incomplete
understanding of the overall data distribution and a risk of overfitting. DiffTS may only partially
capture the data distribution based on textual descriptions due to its susceptibility to catastrophic
forgetting, which also heightens the risk of overfitting.
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(a) Text2Data (b) DiffTS-finetune (c) DiffTS

Figure 2: t-SNE visualization on time series data generated by Text2Data, DiffTS-finetune model
and DiffTS. Red denotes ground truth, and blue denotes generated data.

(a) α of generated molecules (b) ϵHOMO of generated molecules (c) ϵLUMO of generated molecules

(d) ∆ϵ of generated molecules (e) µ of generated molecules (f) Cv of generated molecules

Figure 3: Evaluate controllability on Molecule dataset according to different proportions of paired
data. Green solid line corresponds to Text2Data and two dashed lines are baseline comparisons,
in which blue line is EDM and orange line is EDM-finetune. Properties of generated molecules
are predicted by classifier ϕc. MAE is computed between properties of generated molecules and
intended properties. Lower MAE indicates better performance.

5.5 COMPARISONS ON CONTROLLABILITY

Figure 3 illustrates the MAE trend between the specific property of generated molecules and the in-
tended one as the proportion of labeled training data rises. Text2Data achieves superior performance
than EDM-finetune and EDM on all six properties. The results also indicate that certain properties,
such as ϵLUMO and Cv, are more readily controllable. For these properties, the performance of the
three models converges as the amount of labeled training data becomes sufficiently large.

We depict the molecules generated as the text descriptor for polarizability shifts from “very low” to
“very high” in Figure 4. Polarizability indicates a molecule’s inclination to form an electric dipole
moment under an external electric field. As α values rise, we expect to see molecules with less
symmetrical forms, as evidenced in Figure 4.

As suggested in Table 3, Text2Data also outperforms MDM-finetune and MDM in the controllable
generation of motions from texts. While MDM-finetune is slightly better than Text2Data when the
proportion of labeled training data is small-owing to milder catastrophic forgetting during finetuning
with a smaller sample size-Text2Data consistently surpasses both MDM-finetune and MDM as the
volume of labeled training data increases. Specifically, in this situation, Text2Data surpasses MDM-
finetune and MDM in R Precision with average margins of 2.31% and 5.57%, respectively, and
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Figure 4: Visualization of generated molecules when the polarizability increases from “very low” to
“very high”.

in Multimodal Distance with average margins of 0.93% and 3.30%, respectively. The results also
indicate that an increase in labeled training data enhances the performance of controllability.

Table 3: Evaluate controllability on HumanML3D dataset by R Precision and Multimodal Distance
according to different proportions of paired data.

Proportion (%)
R Precision ↑ Multimodal Dist. ↓

Text2Data MDM-finetune MDM Text2Data MDM-finetune MDM
2 0.34±0.01 0.37±0.01 0.31±0.01 6.48±0.06 6.19±0.05 6.67±0.02
4 0.39±0.01 0.42±0.01 0.38±0.01 5.99±0.05 5.83±0.04 6.01±0.04
6 0.43±0.01 0.43±0.01 0.40±0.02 5.85±0.06 5.78±0.05 6.01±0.06
8 0.44±0.01 0.43±0.01 0.42±0.01 5.65±0.04 5.75±0.05 5.90±0.04
10 0.45±0.01 0.45±0.01 0.44±0.01 5.74±0.07 5.76±0.07 5.84±0.06
20 0.47±0.01 0.47±0.01 0.45±0.01 5.61±0.04 5.68±0.11 5.73±0.14
30 0.48±0.01 0.47±0.01 0.45±0.11 5.61±0.05 5.66±0.06 5.80±0.09
40 0.49±0.01 0.46±0.01 0.45±0.01 5.61±0.05 5.63±0.09 5.90±0.04

Table 4: Evaluate controllability on time series by MAE on testing set, according to different pro-
portions of paired data. Lower MAE indicates better performance.

Proportion (%)
Frequency (×10−1) Skewness Mean (×10−2)

Text2Data DiffTS-finetune DiffTS Text2Data DiffTS-finetune DiffTS Text2Data DiffTS-finetune DiffTS
2 2.59±0.20 2.62±0.20 2.60±0.17 1.68±0.20 2.34±0.30 1.84±0.22 0.63±0.39 0.63±0.39 0.79±0.41
4 2.55±0.18 2.59±0.19 2.59±0.19 1.63±0.14 1.77±0.29 2.80±0.28 0.60±0.40 0.61±0.39 0.73±0.40
6 2.52±0.18 2.57±0.19 2.57±0.19 1.00±0.16 1.85±0.22 1.81±0.21 0.56±0.38 0.58±0.38 0.71±0.36
8 2.54±0.18 2.56±0.19 2.57±0.18 1.10±0.18 1.56±0.18 1.78±0.09 0.57±0.38 0.63±0.40 0.62±0.36
10 2.54±0.19 2.57±0.18 2.55±0.20 0.87±0.13 1.20±0.17 1.12±0.11 0.55±0.37 0.57±0.36 0.62±0.39
20 2.54±0.18 2.55±0.18 2.58±0.21 1.05±0.15 1.06±0.12 1.26±0.14 0.55±0.40 0.57±0.37 0.65±0.38
30 2.53±0.18 2.56±0.17 2.56±0.18 1.03±0.12 1.16±0.25 1.71±0.23 0.51±0.33 0.53±0.33 0.59±0.34
40 2.53±0.18 2.55±0.18 2.55±0.19 1.03±0.11 1.15±0.24 1.19±0.18 0.51±0.33 0.57±0.32 0.57±0.36

We evaluate controllability of Text2Data, along with its baseline comparisons, by utilizing MAE
to measure the congruence between the property of generated data and the intended one within the
Time Series dataset. As indicated in Table 4, Text2Data consistently excels over DiffTS-finetune
and DiffTS across all three properties assessed during the study. Results of another three properties
are in Appendix Table 6, which leads to similar conclusion. Specifically, Text2Data and DiffTS-
finetune show a marked improvement over DiffTS in controlling frequency, variance, and skewness.
They also exhibit a slight edge in controlling mean, number of peaks, and linearity. The enhanced
performance of Text2Data correlates with its proficiency in alleviating the issue of catastrophic
forgetting while maintaining a pursuit of controllability.

6 CONCLUSION

In this paper, we propose a novel constraint optimization-based framework to improve the quality
and controllability of text-to-data generation for various modalities in low-resource scenarios using
diffusion models. We first identify three common practices to handle low-resource training along
with their challenges. Subsequently, we introduce Text2Data, which employs unlabeled data to
capture the prevailing data distribution using an unsupervised diffusion model. It is then finetunes
on text-labeled data, employing a novel constraint optimization-based learning objective to ensure
controllability while reducing catastrophic forgetting. Comprehensive experiments are conducted
on real-world datasets and our model shows consistently superior performance to recent baselines.
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While Text2Data is presented as a diffusion-based framework in this article, it can be seamlessly
adapted to other generative models such as generative adversarial networks. The code has been
attached to the supplemental materials to reproduce the results.
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7 ETHICAL STATEMENT

We develop our method from publicly available QM9 (Ramakrishnan et al., 2014) and Hu-
manML3D (Guo et al., 2022a) datasets, and stock data from public Yahoo Finance2. It is important
to note that, like other text-to-data models, our implementation will likely reflect the socio-economic
and entity biases inherent in datasets that we use. Additionally, although our method is designed for
controllable data generation from text, we are not able to control the prompt that user inputs, which
may contain improper contents.
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A PROOF OF THEOREM 1
First, we define sub-exponential random variable and then and elucidate its relationship with sub-
Gaussian random variable.

Definition 2 (Sub-exponential random variable). The random variable X with mean µ is sub-
exponential with parameters (v, b) if for ∀λ < 1

b , EX [exp{λ(X − µ)}] ≤ exp(v
2λ2

2 ).

Lemma 1. The square of a zero-mean sub-Gaussian random variable with parameter σ2 is a sub-
exponential random variable with parameter (4

√
2σ2, 4σ2) (Honorio & Jaakkola, 2014).

Proof. Given that ϵθ(x(t), t) and ϵθ(x
(t), c, t) are sub-Gaussian random variables parameterized by

σ2, and ϵ is the multivariate standard Gaussian random variable, then their subtraction, ϵθ(x(t), t)−ϵ
and ϵθ(x

(t), c, t) − ϵ, are still sub-Gaussian random variables parameterized by σ2 + 1. Then
L̂1(θ) = Ex∼p̂D(x),t[||ϵθ(x(t), t) − ϵ||2] and L̂2(θ) = Ex,c∼p̂Dp (x,c),t

||ϵθ(x(t), c, t) − ϵ||2, the
square of sub-Gaussian random variables, are sub-exponential random variables parameterized by
(4
√
2σ̃2, 4σ̃2), based on the Lemma above.

Then, based on Bernstein’s inequality, we have:

p(|L2(θ)− L̂2(θ)| > ϵ) ≤ 2 exp(− Npϵ
2

8
√
2σ̃2

∧ Npϵ

8σ̃2
) (7)

Based on the union bound inequility, we further have:

p(sup
θ∈Θ

|L2(θ)− L̂2(θ)| > ϵ) ≤
∑
θ∈Θ

p(|L2(θ)− L̂2(θ)| > ϵ)

≤2|Θ| exp(− Npϵ
2

8
√
2σ̃2

∧ Npϵ

8σ̃2
) (8)

Following the same way, we have:

p(sup
θ∈Θ

|L′
1(θ)− L̂′

1(θ)| > ϵ) ≤2|Θ| exp(− Npϵ
2

8
√
2σ̃2

∧ Npϵ

8σ̃2
) (9)

p(sup
θ∈Θ

|L1(θ)− L̂1(θ)| > ϵ) ≤2|Θ| exp(− Nϵ2

8
√
2σ̃2

∧ Nϵ

8σ̃2
) (10)

Let the probability on the RHS of Eq. 8, Eq. 9 and Eq. 10 be δ, then we compute ϵ and plug in into
LHS, then with the probability of 1− δ we have:

sup
θ∈Θ

|L2(θ)− L̂2(θ)| ≤ ϵNp
(11)

sup
θ∈Θ

|L′
1(θ)− L̂′

1(θ)| ≤ ϵNp (12)

sup
θ∈Θ

|L1(θ)− L̂1(θ)| ≤ ϵN (13)

where ϵN =
√

8
√
2σ̃2 ·

√
log |Θ|+log 2

δ

N ∨ 8σ̃2 · log |Θ|+log 2
δ

N and ϵNp
=

√
8
√
2σ̃2 ·

√
log |Θ|+log 2

δ

Np
∨

8σ̃2 · log |Θ|+log 2
δ

Np
are used to simplify the notation.

Let ϵ = ϵN + ϵNp . From Eq. 13, we have:

|ξ̂ − ξ| ≤ ϵN (14)

=⇒ξ ≤ ξ̂ + ϵN (15)

=⇒ξ + ϵNp ≤ ξ̂ + ϵNp + ϵN (16)
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Based on Eq. 12, similarly, we have L̂′
1(θ) ≤ L′

1(θ) + ϵNp
. Since ξ = infθ∈Θ L1(θ), then for ∀θ∗

s.t. L′
1(θ

∗) = ξ, according to Eq. 16, we can obtain:

L̂′
1(θ) ≤ L′

1(θ) + ϵNp ≤ ξ + ϵNp ≤ ξ̂ + ϵNp + ϵN . (17)

Let θ̂∗ be the solution of Eq. 6 and θ∗ be the solution of Eq. 5. Additionally, let Θ∗ = {θ : L′
1(θ) ≤

ξ}, and Θ̂∗ = {θ : L̂′
1(θ;x) ≤ ξ̂ + ϵ}. We state that Θ∗ ⊆ Θ̂∗ based on Eq. 17.

Next, we prove that θ̂∗ competes well with θ∗ on L̂2(θ;x, c) and L2(θ):

L2(θ̂
∗) ≤L̂2(θ̂

∗;x, c) + ϵNp
based on Eq. 11

= min
θ∈Θ̂∗

L̂2(θ;x, c) + ϵNp θ̂ is the solution of Eq. 6

≤ min
θ∈Θ∗

L̂2(θ;x, c) + ϵNp
Θ∗ ⊆ Θ̂∗

≤ min
θ∈Θ∗

L2(θ) + 2ϵNp based on Eq. 11

=L2(θ
∗) + 2ϵNp

(18)

Next, we prove that θ̂∗ does not violate constraint too much:

L′
1(θ̂

∗) ≤L̂′
1(θ̂

∗;x) based on Eq. 12

≤ξ̂ + ϵ+ ϵNp
based on definition of Θ̂∗

=ξ̂ + 2ϵNp + ϵN ϵ = ϵNP
+ ϵN

≤ξ + 2ϵNp
+ 2ϵN based on Eq. 16 (19)

B MORE DETAILS REGARDING DATASET

B.1 STOCKS EMPLOYED TO FORM TIME SERIES DATA

We construct the dataset by assembling 24 stocks from Yahoo Finance during their IPO date to July
8, 2023, including Ethereum USD, NVIDIA Corporation, AT&T, Accenture plc, The Boeing Com-
pany, The Coca-Cola Company, Simon Property Group Inc., NIKE Inc., Sony Group Corporation,
Chegg Inc., UnitedHealth Group Incorporated, General Motors Company, Russell 2000, JPMorgan
Chase & Co., Salesforce Inc., Lockheed Martin Corporation, Walmart Inc., NASDAQ Composite,
Shell plc, Pfizer Inc., Bitcoin USD, Apple Inc., Amazon.com Inc., Alphabet Inc.

B.2 CONSTRUCTING TEXT DESCRIPTIONS

We construct the text descriptions of molecules by two templates: (1) exact description, e.g., “A
molecule with the heat capacity of -0.11, the lomo of 0.87, the homo of -0.21, the polarizability of
0.95, the dipole moment of -1.61 and the energy gap between homo and lumo as 0.94.”, and (2)
general description, e.g., “A molecule with a high homo value, a very low heat capacity, a medium
polarizability, a high energy difference between homo and lomo, a very high lomo value and a high
dipole moment.”. These text descriptions are then refined by GPT 3.5 and the order of different
properties is shuffled. We form the text description for time series data using three templates: (a)
exact description, e.g., “A time series with the frequency of 0.017, the mean of 3.12e-05, 19 peaks,
the variance of 1.18e-11, the linear trend of 0.12 and the skewness of -6.15.”; (b) general description,
e.g., “A time series with large average, medium frequency, nearly equal large and small values,
medium negative linearity, a few peaks and large variance” and (c) description of trend, e.g., “A
time series that first stays stable, then increases with the slope of 1.25”. Then those descriptions are
further refined by GPT-3.5.

C IMPLEMENTATION DETAILS

C.1 DETAILS OF TRAINING PROCESS

We leverage a cross-attention layer to enhance the alignment between data and text embeddings (Ma
et al., 2023). Cross-attention is employed to enforce the alignment between data and text descrip-
tions. Specifically, we maximize the cosine-similarity between text embeddings obtained from the
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LLMs encoder and data embeddings diffused from original data. Baselines models are trained for
3,000 epoches. Their finetuned version and Text2Data are both pretrained for 1,000 epoches and
finetuned for another 2,000 epoches. All experiments are conduced on A100 hardware.

C.2 SCORE FUNCTIONS

For time series generation, we use the same score function as in Rasul et al. (2021) that consists
of conditional 1-dim dilated ConvNets with residual connections adapted from the WaveNet (Oord
et al., 2016) and Diffwave (Kong et al., 2020). For molecule generation, we employ the same
score function from EDM Hoogeboom et al. (2022) which is a Multilayer Perceptron. For motion
generation, we also leverage the same score function in Tevet et al. (2023) as a straightforward
transformer.

C.3 TRAINING ALGORITHM

The learning algorithm has been displayed in Alg. 1, where the model is firstly trained on unlabeled
data, and then finetuned on labeled data under the framework of lexicographic optimization (Gong
& Liu, 2021).

Algorithm 1: Learning phase
1 Alg. 1: General distribution learning with unlabeled data:

Input: x ∼ p̂D(x)
Input: Pre-defined step size ω

2 while Converge do
3 for a batch of B unlabeled data x1, ...,xB sampled from p̂D(x) do
4 Initialize ti ∼ Uniform(1, ..., T ) for each xi, i = 1, ..., B, ϵ ∼ N (0, I)

5 Diffuse xi to x
(ti)

i , i = 1, ..., B

6 Compute L̂1(θ) = 1
B

∑B
i=1 ∥ϵθ(x

(ti)

i , ti),−ϵ∥2

7 Update θ by θ − ω · ∇L̂1(θ)

8 Alg. 2: Learning text-to-data generation by labeled data:
Input: x, c ∼ p̂Dp (x, c)

Input: ξ̂ = infθ∈Θ̂ L̂1(θ) (i.e., minimum value obtained from Alg. 1)
Input: Pre-defined positive hyperparameters α, β, ρ and step size ω′

9 while Converge do
10 for a batch of B labeled data (x1, c1), ..., (xB , cB) sampled from p̂Dp (x, c) do
11 Initialize ti ∼ Uniform(1, ..., T ) for each xi, i = 1, ..., B, ϵ ∼ N (0, I)

12 Diffuse xi to x
(ti)

i , i = 1, ..., B

13 Compute L̂2(θ) = 1
B

∑B
i=1 ∥ϵθ(x

(ti)

i , ci, ti),−ϵ∥2

14 Compute L̂′
1(θ) = 1

B

∑B
i=1 ∥ϵθ(x

(ti)

i , ti),−ϵ∥2

15 Compute ϕ(θ) = min(α(L̂′
1(θ) − ρ · ξ̂), β∥∇L̂′

1(θ)∥
2)

16 Compute λ = max(
ϕ(θ)−∇L̂2(θ)T ∇L̂′

1(θ)

∥∇L̂′
1(θ)∥2

, 0)

17 Update θ by θ − ω′ · (∇L̂2(θ) + λ∇L̂′
1(θ))

D ADDITIONAL RESULTS

The results of evaluating the generation quality of Text2Data and baseline comparisons on Molecule
dataset based on molecular and atom stability are presented in Table 5.

Table 5: Evaluate generation quality on Molecule dataset by molecular and atom stability of gen-
erated molecules according to different proportions of paired data. Higher molecular stability and
atom stability indicate better performance.

Proportion (%)
Mol. Stability ↑ Atom Stability ↑

Text2Data EDM-finetune EDM Text2Data EDM-finetune EDM
2 0.86±0.14 0.85±0.04 0.65±0.04 0.99±0.01 0.99±0.01 0.96±0.01
4 0.87±0.09 0.83±0.08 0.66±0.09 0.99±0.01 0.98±0.01 0.97±0.01
6 0.88±0.16 0.86±0.06 0.73±0.04 0.99±0.02 0.99±0.01 0.97±0.01
8 0.88±0.11 0.87±0.04 0.79±0.05 0.99±0.01 0.99±0.01 0.98±0.01
10 0.88±0.10 0.83±0.06 0.77±0.11 0.99±0.01 0.98±0.01 0.98±0.01
20 0.88±0.10 0.87±0.08 0.79±0.09 0.99±0.01 0.98±0.01 0.98±0.01
30 0.89±0.10 0.87±0.07 0.79±0.09 0.99±0.01 0.98±0.01 0.98±0.01
40 0.89±0.10 0.86±0.06 0.79±0.09 0.99±0.01 0.98±0.01 0.98±0.01

The results of evaluating the controllability of Text2Data and its baseline comparisons regarding
variance, number of peaks and linearity of generated time series are in Table 6.
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Table 6: Evaluate controllability on time series by MAE on testing set, according to different pro-
portions of paired data. Lower MAE indicates better performance.

Proportion (%) Variance (×10−5) Number of peaks Linearity
Text2Data DiffTS-finetune DiffTS Text2Data DiffTS-finetune DiffTS Text2Data DiffTS-finetune DiffTS

2 5.28±11.40 5.35±11.20 5.70±11.40 12.94±0.88 12.95±0.87 13.01±0.83 0.61±0.04 0.61±0.04 0.62±0.04
4 5.37±11.28 5.48±11.24 6.08±11.31 12.91±0.84 12.90±0.86 12.93±0.84 0.61±0.04 0.61±0.04 0.62±0.04
6 5.04±10.90 5.19±10.42 5.60±10.20 12.89±0.90 12.90±0.83 12.90±0.83 0.61±0.04 0.61±0.04 0.62±0.04
8 5.30±10.95 5.59±11.19 5.60±10.40 12.88±0.86 12.89±0.85 12.95±0.87 0.61±0.04 0.61±0.04 0.61±0.04
10 5.08±20.48 5.41±16.23 5.80±11.00 12.75±0.93 12.87±0.90 12.90±0.83 0.61±0.04 0.61±0.04 0.61±0.04
20 5.09±10.98 5.37±11.09 6.40±11.20 12.87±0.85 12.88±0.85 12.90±0.84 0.61±0.04 0.61±0.04 0.61±0.04
30 4.85±10.58 5.19±9.90 5.70±10.20 12.84±0.83 12.87±0.87 12.91±0.88 0.61±0.04 0.61±0.04 0.61±0.04
40 4.77±10.42 5.11±14.10 5.34±13.10 12.84±0.87 12.88±0.90 12.89±0.86 0.60±0.04 0.61±0.04 0.61±0.04
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