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Figure 1. We enforced various constraints on common adversarial attacks to improve their implementation in the real world. Our pipeline
perturbs objects’ texture, shape, or both. The latter demonstrates superior efficacy in deceiving object detectors.

Abstract
Detecting vehicles in aerial images can be very challeng-

ing due to complex backgrounds, small resolution, shadows,
and occlusions. Despite the effectiveness of SOTA detectors
such as YOLO, they remain vulnerable to adversarial at-
tacks (AAs), compromising their reliability. Traditional AA
strategies often overlook the practical constraints of physi-
cal implementation, focusing solely on attack performance.
Our work addresses this issue by proposing practical imple-
mentation constraints for AA in texture and/or shape. These
constraints include pixelation, masking, limiting the color
palette of the textures, and constraining the shape modifica-
tions. We evaluated the proposed constraints through exten-
sive experiments using three widely used object detector ar-
chitectures, and compared them to previous works. The re-
sults demonstrate the effectiveness of our solutions and re-
veal a trade-off between practicality and performance. Ad-
ditionally, we introduce a labeled dataset of overhead im-

ages featuring vehicles of various categories. We will make
the code/dataset public upon paper acceptance.

1. Introduction
Robust object detection in aerial and satellite images

is vital for automating critical tasks like traffic manage-
ment, urban planning, and disaster response. State-of-the-
art (SOTA) detectors such as YOLO and RetinaNet, which
rely on deep neural networks (DNNs), have become foun-
dational in this domain. However, recent studies such as
Szegedy et al. [74] have revealed that DNNs can be sus-
ceptible to adversarial examples. Given the importance of
these applications, understanding this vulnerability is cru-
cial, especially in object detection in Remote Sensing Im-
agery (RSI). Furthermore, there are scenarios where utiliz-
ing AAs to impede vehicle detection by computer vision
systems in overhead images could offer strategic advan-
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Figure 2. Illustration of the three types of adversarial attacks.

tages, such as military camouflage.

Our primary objective is to investigate the resilience of
object detectors against adversarial vehicles in RSI scenar-
ios under realistic constraints. Traditional AA strategies of-
ten neglect the constraints of physical implementation, fo-
cusing solely on task performance. For example, adversar-
ial texture patterns typically resemble those depicted in Fig-
ure 1 (unconstrained texture-only attack). However, it is es-
sential to consider how these patterns could be realistically
applied, such as attaching a printed vinyl wrap to a vehicle.
In this study, we propose a set of constraints within AAs to
ensure the attack is feasible for implementation on vehicles,
effectively camouflaging them.

We define a practical adversarial mesh as a mesh that
is perturbed from its original state (by modifying texture
and/or shape) such that replicating the same set of modifica-
tions in real life would not require specialized equipment or
significant resources, or at least would facilitate the process
of implementing these modifications. We outline the fol-
lowing aspects that define practicality: installation cost, in-
stallation difficulty, and difficulty of operation. Our results
indicate that while constrained attacks are less successful
than traditional AAs [38,72,73,75], they provide much bet-
ter practicality of implementation. Shape-only attacks ex-
hibit lower effectiveness than unconstrained texture attacks.
Nevertheless, combining constrained texture with practical
shape modifications enhances performance, reaching levels
comparable to unconstrained texture attacks, see Figure 1.

Our work contributes to the field in several ways. (1)
We introduce constrained AAs for shape and/or texture, de-
signed to create practical camouflages capable of deceiving
object detectors in RSI. These constraints facilitate more
straightforward implementation compared to unconstrained
camouflages. (2) We thoroughly examine how practicality
and adversarial performance relate, finding that they have an
inverse relationship. (3) We provide a new object detection
dataset comprising labeled real overhead images featuring
eight distinct vehicle classes covering a broad spectrum of
commonly encountered categories. (4) We developed a tool
for generating synthetic overhead images, contributing to
creating synthetic datasets.

2. Related Work
Over the past ten years, adversarial attacks (AAs) have

become an increasingly important research topic in com-
puter vision. Szegedy et al. [74] addressed the problem of
neuron explainability but sparked a new branch of research
that targeted the stability and robustness of a range of com-
puter vision models [19, 20, 30–32, 36, 41, 43, 46, 48, 52, 61,
62, 65, 67]. Recent research has proposed various methods
for generating adversarial examples [13, 16, 33, 49, 55, 56].
This direction of research evolved into the class of dig-
ital AAs [23, 45, 50, 53, 58, 64, 76, 78], which according
to [3] are defined as attacks where the attacker is capa-
ble of directly modifying image pixels to fool the victim
model (see Figure 2). These attacks are usually impercep-
tible. A very different type of AAs is the class of physical
AAs [9, 11, 15, 24, 27–29, 68, 69], which according to [3]
are defined as attacks where the attacker has no direct ac-
cess to the images supplied to the model, but threatens the
model performance by physically manipulating the objects
expected to appear in the target images. Some works at-
tempt to perform imperceptible physical attacks, but the
majority of such attacks are perceptible. We also high-
light that there are works that lie at the intersection of
digital and physical attacks, which we call simulated AAs
[7, 8, 25, 35, 42, 51, 66, 75], because the majority of these
works perform perceptible attacks but test them in simu-
lated realistic environments, avoiding any real tests. Be-
cause we utilize synthetically generated data for testing, our
work belongs to this class of AAs. Additionally, we uti-
lize a realistic physics-based rendering to test our results,
which also separates us from prior works. Moreover, con-
siderable effort has been invested in crafting adversarial 3D
geometry, as demonstrated in [44, 79, 82, 83]. Most of the
works that generate adversarial shapes concentrate on point
clouds. This focus is a direct consequence of extensive re-
search in autonomous driving, where LIDARs play a crucial
role in localization and mapping. Some works also con-
duct AAs in a coupled LIDAR+RGB setting [12]. How-
ever, it differs from our task, as we assume only RGB data
in RSI. Unlike our work, most of the studies highlighted
above completely avoid constraining the adversarial search
space or use ”light” constraints expressed as regularization
terms in the loss functions.

Recent years have seen increased attention by the re-
search community to remote sensing imagery [2, 6, 26, 40,
70, 81, 87, 89]. These images represent a top-down view
and typically have resolutions ranging from several cen-
timeters to several meters or even tens of meters per pixel.
The exponential growth of this type of data necessitates ro-
bust automated solutions, which directly motivate adversar-
ial attacks — a tool for identifying vulnerabilities in deep
learning models. Although the research community has
mostly paid attention to ground-level AAs due to their rel-
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Figure 3. Comparison between LINZ and GMaps images reveals
differences in resolution, color distribution, time of day, year, cam-
era type, altitude (GMaps uses satellite, LINZ uses aerial), and
post-processing. Both datasets had vehicles’ silhouettes inpainted
to blend with their surroundings.

evance to the safety-critical field of autonomous driving,
there is a list of notable works in the field of RSI AAs
[1, 4, 14, 18, 22, 38, 54, 80, 84, 85, 88]. However, most of
these attacks are physically challenging to implement. To
our knowledge, the only study implementing an aerial view
adversarial attack is [22]. They employed diverse configu-
rations of adversarial patches, such as placing them on the
vehicle or its surroundings, to target vehicle detectors in im-
ages. Our approaches differ in the types of constraints ap-
plied to the adversarial patches (camouflages in our case)
and their stringency.

3. Overview

Our work focuses on merging RSI with practical AAs
on object detection models. We aim to develop realistic
adversarial camouflages and vehicle modifications feasible
for implementation, employing a novel set of constraints
that mimic real-world limitations. While our constraints are
not exhaustive, they are tailored to address critical limita-
tions. Ideally, one would target all available model archi-
tectures, such as CNNs and ViTs [21]. However, for the
sake of demonstration, we limit the scope of architectures.
We detail our approach in the following sections, covering
datasets (Section 4) and technical methodology (Section 5).

4. Datasets

This section describes the details of the datasets used for
training, attacking, and evaluation. Section 4.1 describes
the datasets of real images, and Section 4.2 describes the
types of synthetic data we use, and their generation pro-
cesses. Please see the supplementary material for examples.

4.1. Real Datasets

This paper introduces two novel real overhead image
datasets named LINZ and GMaps. While both datasets
cover the same geographical areas, they exhibit distinct vi-
sual differences, as seen in Figure 3. Further examples are
shown in the supplementary material.

4.1.1 LINZ Dataset

To build the labeled LINZ dataset, we retrieved LINZ Data
Service aerial orthoimages for the Selwyn District Council
area [47], a high-resolution dataset of New Zealand’s urban
and suburban regions. We then manually labeled vehicle
centers similar to [63]. Vehicle classes are: Van RV, Truck,
Bus, Small Trailer, Large Trailer, Specialized, Small Vehi-
cle, and Unknown. Most labels belong to the Small Vehicle
class, encompassing common cars. The Specialized class
includes harvesters and tractors, while Unknown encom-
passes unclassified vehicles, e.g. partially disassembled.

The original images downloaded from the LINZ Data
Service website are too large for use in computer vision
tasks. Thus, we sample them into smaller images of size
384 px × 384 px resulting in 172 595 real images and use
this image size throughout the paper. All datasets de-
scribed in our work have the same geospatial resolution
of 12.5 cm/px. Although we will make the entire labeled
dataset public, we utilize only a specific subset of labels
in our study. We choose the most common class, Small
Vehicles, for all experiments, removing labels associated
with other classes but preserving all images. This limita-
tion gives greater clarity to our results’ analysis. We denote
this dataset with ILINZ.

We produced a second version of the dataset without ve-
hicles (Figure 3) to serve as ground plane textures for the
Blender synthetic dataset described below (Section 4.2).
It is denoted as ILINZ

bg and is obtained by utilizing In-
paint Anything by Yu et al. [86] along with already la-
beled ground-truth locations to automatically remove vehi-
cles from ILINZ.

4.1.2 GMaps Dataset

The purpose of the GMaps dataset is to provide back-
ground images IGMaps

bg for the PyTorch3D [60] data gen-
eration pipeline (see Section 4.2.1). To achieve this, we
first extracted Google Maps (GMaps) [34] satellite images
IGMaps with matching geographical coordinates to the aerial
LINZ dataset using QGIS [59], establishing a direct LINZ-
GMaps correspondence. This process yielded the set of im-
ages IGMaps. We manually removed real vehicles from the
original images using Adobe Photoshop [5]. Thus, we pro-
duced the set of background GMaps images IGMaps

bg . Later,



we used this set of images as background images in the syn-
thetic data generation process described in Section 4.2.1.

4.2. Synthetic Data

We introduce two synthetic dataset generation pipelines
that make use of PyTorch3D (PT3D) [60] and Blender [17].
The PT3D-based pipeline produces clean (non-adversarial)
training data for the detectors and adversarial data on the fly
during the attacks utilizing the differentiability of the PT3D
renderer. On the other hand, the Blender-based pipeline
generates realistic testing adversarial data to simulate real
conditions, as the Cycles rendering engine [10] integrated
into Blender produces physically plausible images.

4.2.1 PT3D Data Generation

The PT3D data is synthetically generated using PyTorch3D
[60] as the renderer. We also need a set of 3D vehicle assets
to generate realistic synthetic overhead images with vehi-
cles. Instead of relying on manually created ones, we uti-
lize GAN-based 3D mesh generators. Considering the low
resolution typical of RSI, the meshes need not be overly
detailed. In addition, identical UV maps for all meshes fa-
cilitate the application of unified adversarial texture maps.
We use the Textured 3D GAN (T3GAN) model by Pavllo
et al. [57]. However, due to the needs of our pipeline,
we modify their code to enable semantic segmentation map
sampling. In addition, we further train their mesh genera-
tor model to produce better semantic maps for the meshes.
This procedure yields a set of meshes denoted as M.

Given the GMaps backgrounds dataset IGMaps
bg and the set

of vehicle meshes M, we use PyTorch3D’s differentiable
renderer (DR) to produce the images I = DR

(
IGMaps

bg ,M
)

,

where I is the rendered image, IGMaps
bg is a background im-

age sampled from IGMaps
bg and M is a set of meshes ran-

domly sampled from M, which utilizes two main compo-
nents: texture map T and shape information S (vertices,
edges, and polygons). After rendering I , we apply several
post-processing steps, such as blurring the vehicles and ap-
plying anti-aliasing, to improve the realism of the produced
images. Additionally, we restrict M to contain only origi-
nal or adversarial meshes. In the former case, the resulting
image I is an “original” image, while it is an “adversarial”
image in the latter case.

Following the above equation, we can generate syn-
thetic datasets and their ground-truth annotations. We use
a dataset of original PT3D images to train synthetic mod-
els. We also use the same pipeline for producing images
on the fly during the adversarial attacks by simply replacing
the set of shapes S and texture maps T with the optimized
adversarial shapes Sadv and/or texture map Tadv.

4.2.2 Blender Data Generation

We use the Blender data to test the adversarial meshes in a
more realistic scenario. We generate a test set for each ad-
versarial texture or geometry using realistic Blender Cycles
[10] physics-based renderer. Unlike PyTorch3D, Blender
renders much more realistic data. However, because it is
non-differentiable, we do not use it in the adversarial op-
timization process. To produce a synthetic overhead image
with Blender, we use an image sampled from ILINZ

bg and a set
of meshes M , which can consist of either original meshes
or meshes utilizing adversarial texture and/or shape.

5. Method

This section outlines the methodology for crafting ad-
versarial vehicles. We provide an overview of the gen-
eral pipeline employed for generating adversarial vehicles
in Section 5.1. We delve into the specific techniques used
to create adversarial textures and shapes in Sections 5.2
and 5.3, respectively. Section 5.4 elaborates on the proce-
dure for simultaneously optimizing the texture and shape
descriptors of a mesh.

5.1. General Pipeline

During each cycle of the attack, we use PT3D to gener-
ate a batch of adversarial images Ib = {I1, . . . , INb

} of size
Nb, such that Ik = DR

(
IGMaps

bg,k ,Mk

)
,∀ k ∈ [1, . . . , Nb],

where Ik is the k-th image in Ib, IGMaps
bg,k is the k-th image

from the batch of background images IGMaps
bg sampled from

the GMaps dataset IGMaps
bg , Mk is a randomly sampled mesh

from M with its corresponding shape and texture compo-
nents Sk and Tk respectively, and DR is a differentiable ren-
derer as described in Section 4.2.1. Depending on the opti-
mized entity, either the most recent Sadv or Tadv replaces the
corresponding counterpart in Mk at the beginning of each
iteration. See an overview of our pipeline in Figure 4.

During the attack, we ensure that each image contains
only one vehicle. We adopt this limitation intentionally to
prevent the production of meshes that may rely on multi-
ple camouflaged vehicles being in close proximity to each
other. Instead, we aim to produce adversarial meshes that
are independently effective.

Let Fi be the objective function used to train a detector
model Di. We supply the batch of images Ib to Di, produc-
ing a set of predictions ypred = Di (Ib). We then minimize a
weighted loss function for an ensemble of synthetic models:

L =
∑
i

λiE
[
Fi

(
Di

(
Ib

(
IGMaps

bg ,M
))

, ygt

)]
, (1)

M⋆
adv = argmin

M
L (M) , (2)
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where ygt is the set of ground-truth locations of objects in
the given image and is manually replaced with ygt = ∅.
Di represents the i-th model from an ensemble of detec-
tion models trained on synthetic data. Depending on the
optimized entity, either the S or the T component of M is
optimizable. For each experiment, model coefficients λi are
selected such that the initial loss values Fi for each model
fall within the same order of magnitude. We recognize that
there are numerous ways to select coefficients. However,
we focus only on this one in our study.

5.2. Texture-based Attacks

In texture-based attacks, only one universal texture map
is optimized, i.e. an adversarial texture map applied to all
the meshes. While unconstrained adversarial textures (ab-
breviated as “U”) achieve excellent performance in fool-
ing vehicle detectors, they are far from being practical for
implementation. We introduce constraints imposed on tex-
tures that allow the production of practical camouflages by
reflecting limitations associated with the real world imple-
mentation. These constraints include the following: Spatial
Resolution, Spatial Restriction, and Color Restriction.

Spatial Resolution. Applying iridescent patterns to ir-
regular shapes such as vehicle surfaces is often challeng-
ing [4, 22, 37, 72, 73, 75, 77]. Hence, we adopt the first
constraint expressed as texture pixelization (abbreviated as
“Pix”) with block sizes of 16 px × 16 px, corresponding to
approximately 15 cm × 15 cm on the rooftop of a vehicle.
Given that RSI typically does not offer resolutions beyond
15 cm/px, this constraint does not noticeably impact the
vehicle’s image appearance, significantly streamlining the
implementation process. We implement this constraint by
storing a latent representation of the adversarial texture as a
32×32×3 tensor. Upon texture generation request, we up-
scale this tensor to 512×512×3 using the nearest-neighbor
interpolation, resulting in a pixelated output.

Spatial Restriction. Another notable limitation is the
necessity for vehicle camouflage not to hinder road visi-
bility. Therefore, specific vehicle areas like glass must re-
main free of camouflage, which we address by segmenting

the meshes used for the attacks into semantic parts. We
then apply masks (abbreviated as “Ma”) to restrict the area
where the adversarial texture is applied. Hence, the second
constraint is spatial restriction. It balances reduced perfor-
mance from a smaller camouflage coverage area with an
enhanced operational experience. To implement this con-
straint, we use an adversarial texture map Tadv, an origi-
nal texture map Tor of a vehicle, and a corresponding bi-
nary segmentation mask Tmask. Using these three enti-
ties, we produce the segmented adversarial texture map as
Tsegmented = Tor · (1− Tmask) + Tadv · Tmask.

Color Restriction. While the previous two limitations
deal with placing textures on the vehicle surface, the final
and strictest constraint remains color limitations. We lever-
age this constraint in two ways: 1) fixing the color count and
enabling the attacker to learn optimal colors (abbreviated as
“Lc”) and their placement in the adversarial texture map,
or 2) fixing the colors (abbreviated as “Fc”) and letting the
attacker learn their placement in the texture map. This con-
straint stands apart from softer constraints used in previous
works, such as non-printability score, as it imposes a strict
limitation on the number of colors in the output. It is crucial
to recognize that while certain constraints mentioned ear-
lier have been investigated in prior studies [22, 72, 73, 75],
the concept of a “color restriction” remains largely unex-
plored in the literature. Furthermore, previous research ef-
forts have not adequately addressed the simultaneous inte-
gration of the abovementioned constraints.

Finding an adversarial texture map with constrained col-
ors involves determining the color of each pixel. At each at-
tack iteration, we predict a probability distribution p(c) for
each pixel over a set of colors c. We then amplify the most
probable color while damping the others using a softmax
function s(·) twice: pA(c) = s(s(p(c))). The pixel color
is set to E [pA(c)], which is close to the mode color due
to amplification. After optimization, each pixel is assigned
argmaxci p(ci), resulting in a camouflage that meets the
color constraint and is similar to the optimized camouflage
which uses E [·] instead of argmax. For more details on our
constraints, please refer to the supplementary material.
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Figure 5. Examples of adversarial images are shown, with the top
row displaying the original images and the bottom row showing
the corresponding adversarial (T-PixFcMa) images produced us-
ing Blender.

5.3. Shape-based Attacks

In shape-based attacks, only a universal shape perturba-
tion is optimized. We parameterize the geometry deforma-
tions using a single-channel 2D displacement map gener-
ated from the common UV map of all the meshes. In con-
trast to the general definition of displacement maps where
each pixel represents a deformation in normal, tangent, and
bi-tangent directions, we apply deformations to mesh ver-
tices in the direction defined by the vector joining the geo-
metrical center of the mesh to the corresponding vertex. For
each mesh, we compute the geometrical center as the mean
3D coordinate. When generating deformed meshes, the dis-
placement map is interpolated to generate deformations at
all vertices of a mesh. Moreover, the deformations are re-
stricted to be positive to prevent altering the original vehicle
mesh, and instead attaching shapes to it.

Similar to the texture-based attacks, we introduce con-
straints to enforce practicality. These constraints include
Symmetry and Perturbation Magnitude (PM). The first con-
straint ensures that the resulting shapes have sideways bal-
anced mass distribution which is important for manufactur-
ing and vehicle operation. We implement this constraint
by introducing two symmetry axes around which the dis-
placement map is mirrored. The second constraint reduces
the volume of the deformations. The allowed magnitude
of perturbation for each mesh is defined as a fraction of
the width of each car, where this fraction is defined by the
hyper-parameter PM ∈ [0, 1]. We optimize for it by run-
ning multiple shape-based attacks and then choosing the
most optimal one as described in Section 7, allowing us to
balance between practicality and performance. For more
details on the implementation of these constraints, see the
supplementary material.

Table 1. Comparing the practicality of the attacks explored in our
study to previous works. We do not distinguish between sequen-
tial and parallel combined attacks as they only impact the process,
not the final result’s form. The first symbol reflects the texture-
related practicality score, the second number reflects the shape-
related practicality score.

Camouflage PC DI DO Score Notes

O
th

er
w

or
ks

Du et al. (ON) [22] +0 +0 +0 +3 Small AA area
Du et al. (OFF) [22] 00 +0 −0 0 Limited mobility
EVD4UAV [71] +0 +0 +0 +3 Small AA area
FCA [75] −0 −0 +0 −1 Special equipment
ACTIVE [73] −0 −0 +0 −1 Special equipment
DTA [72] −0 −0 +0 −1 Special equipment

O
ur

T-U −0 −0 −0 −3 Special equipment
T-Ma −0 −0 +0 −1 Special equipment
T-PixMa −0 +0 +0 +1 Stickers/paint squares
T-PixFcMa +0 +0 +0 +3 Lim. color stickers
S-O 0− 0− 0− −3 Shape modification
C-Fc −− −− −− −6 Spec. eq./shape mod.
C-PixFc +− +− −− −2 Shape modification

5.4. Combined Attacks

We also conduct combined adversarial attacks, which re-
sult in vehicles with adversarial texture and shape. We split
them into two branches: sequential and parallel depending
on how the attacks are performed.

In sequential combined adversarial attacks, we borrow
an adversarial texture map obtained from a texture-based at-
tack, use it instead of vehicle texture, and perform a shape-
based attack to optimize the displacement map described
in Section 5.3. Thus, both mesh properties are attacked se-
quentially. The difference between this and the shape-based
attacks is the initial texture map: instead of the original tex-
tures, an adversarial texture is utilized. In addition, similar
to shape-based attacks, we run a series of experiments to
establish the optimal PM for each sequential attack.

In parallel combined adversarial attacks, both texture
and shape are optimized. We alternate between optimizing
the adversarial texture map and the displacement map: op-
timizing one entity for a fixed number of steps npll, then
switching to the other entity for another npll steps. We con-
tinue this process until the loss converges.

6. Practicality and Comparisons
Our primary focus is not to enhance the performance

of AAs but to explore the impact of realistic constraints
on them. Given the high EASR of unconstrained AAs,
there is limited room for improvement. We assess our work
against three qualitative criteria: production cost (PC), dif-
ficulty of installation (DI), and difficulty of operation (DO).
Each criterion is rated as good (+), insignificant (0), or bad
(−), with practical camouflages earning more good scores.
Please refer to the supplementary material for a detailed def-
inition of these criteria.

Based on the outlined criteria and as depicted in Ta-
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ble 1, the most practical camouflage is the texture-based
T-PixFcMa, despite having one of the lowest EASR (Sec-
tion 7). The only works that have comparable practicality
scores are Du et al. [22] (ON) and EVD4UAV [71]. How-
ever, the areas occupied by their patches are very small for
being effective in aerial images of the resolution considered
in our work. Please refer to the supplementary material for a
more in-depth description of the score assignment. Results
from Tables 1 to 2 illustrate the trade-off between practi-
cality and performance. While some previous studies excel
in AAs for vehicle detectors, they lack practicality. We con-
clude that performance and practicality are inversely related
when optimization for performance is the goal. For exam-
ple, for randomly generated camouflages (Table 2), the re-
duction in performance may not be justifiable because no
optimization is carried out.

We recognize that this analysis could be carried out more
rigorously and incorporate numerical comparisons from
real data. For example, DO could be evaluated through ex-
tensive user studies. However, due to limited resources, we
leave such analysis beyond the scope of the paper and rely
on the assumptions made above.

7. Experiments and Results

7.1. Evaluation metrics

To evaluate the effectiveness of the adversarial meshes,
we rendered two matched image datasets, Dor and Dadv,
from each experiment. For Dor, we composed and rendered
3D scenes with the original car meshes. For Dadv, we apply
adversarial modifications to the meshes of the same scenes.
Thus, each image from Dor has an identical version (the
same background, lighting, camera parameters, and car lo-
cations and orientations) with adversarial cars. We compute
the percentage of vehicles detected in Dor but missed in
Dadv. Vd,m represents such vehicles, and Vd,d denotes vehi-
cles detected in both Dor and Dadv. This computation yields
the Attack Success Rate ASR =

|Vd,m|
|Vd,d∪Vd,m| , where | · | is

the cardinality operator. In our task, avoiding introducing
new detections Vm,d after applying the adversarial entity is

also important. Thus, we modify ASR to account for this:

EASR =
|Vd,m| − |Vm,d|
|Vd,d ∪ Vd,m|

= ASR − ER, (3)

where EASR is the Effective Attack success Rate and ER is
the erroneous rate, i.e. fraction of true-positive detections
that emerged after introducing the adversarial entity.

7.2. Detection Models

We used three model architectures for vehicle center de-
tection in RSI, including RetinaNet [46], Faster R-CNN
[62], and YOLOv5 [39]. We chose these models to repre-
sent YOLO-family detectors (YOLOv5), one-stage detec-
tors (RetinaNet), and two-stage detectors (Faster R-CNN).
Each architecture was trained on both real and synthetic
datasets, resulting in models labeled as “real” and “syn-
thetic” (abbreviated as “synt”). On the real test set, syn-
thetic models achieve around 50%–63% average precision,
while real models score above 80%. Detailed performance
figures are available in the supplementary material. As
expected, models perform better within their training do-
mains. We attacked ensembles of synthetic models and used
only one synthetic model for inference.

7.3. Texture-based Attacks

We alter a vehicle’s texture in texture-based attacks, aim-
ing to hide it from detectors. We initialize the adversarial
textures randomly. Given the set of constraints described
in Section 5.2, we conclude that there are twelve possible
distinct adversarial texture settings (Table 2-upper half). In
each setting, we attack the same ensemble of three synthetic
models (RetinaNet, Faster R-CNN, YOLOv5) to obtain the
complete set of adversarial textures. We also generate four
random texture maps to compare the effectiveness of the
adversarial textures to those of a random guess. See each
texture setting, denoted as T-*, and the corresponding re-
sults on PT3D test data in Table 2. We also report the attack
results using randomly generated textures, denoted as R-*.
In Fc experiments, five colors were selected using K-means
clustering on background image pixels IGMaps

bg . In Lc exper-
iments, the model learned the placement of five colors.

Recognizing the distribution gap between the real and
the PT3D datasets, we repeat the evaluation experiments
using Blender as described in Section 4.2.2. Using a com-
puter graphics tool like Blender allows us to conduct tests
with the camouflages in a more realistic simulated environ-
ment. See the results of tests on Blender data in Table 2.
We conclude that constraints, as expected, reduce the per-
formance but gain practicality (see Section 6). See example
images in Figure 5. Please refer to the supplementary mate-
rial for more examples. Additionally, we emphasize that the
practicality-performance trade-off reveals itself even when
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Table 2. The figures show mean values from evaluations of indi-
vidual synthetic models on PT3D and Blender data. “T”, “R”, “S”
and “C” represent the texture, random texture, shape, and com-
bined attacks. Note that Lc and Fc are mutually exclusive by defi-
nition. PM⋆ and Pr⋆ represent the optimal perturbation magnitude
and practicality of the attacks involving shape modifications.

Attack
Constraints PM⋆ Pr⋆ PT3D Blender

Pix Lc Fc Ma EASR EASR
T-U — — 95.77% 70.02%
T-Ma ✓ — — 75.76% 44.43%
T-Pix ✓ — — 94.75% 63.83%
T-PixMa ✓ ✓ — — 73.39% 41.49%
T-Lc ✓ — — 92.63% 74.65%
T-Fc ✓ — — 37.22% 55.96%
T-LcMa ✓ ✓ — — 71.93% 52.51%
T-FcMa ✓ ✓ — — 12.58% 26.43%
T-PixLc ✓ ✓ — — 96.73% 68.85%
T-PixFc ✓ ✓ — — 35.68% 55.87%
T-PixLcMa ✓ ✓ ✓ — — 68.39% 42.15%
T-PixFcMa ✓ ✓ ✓ — — 12.70% 44.64%
R-U — — 0.88% 16.31%
R-Pix ✓ — — 3.86% 18.95%
R-Fc ✓ — — 3.30% 18.95%
R-PixFc ✓ ✓ — — 3.16% 20.24%
S-O — — — — 0.4 0.6 89.82% 78.86%
C-U 0.0 1.0 96.51% —
C-Pix ✓ 0.0 1.0 95.02% —
C-Lc ✓ 0.0 1.0 92.68% —
C-Fc (seq.) ✓ 0.2 0.8 86.80% 70.37%
C-Fc (par.) ✓ 0.2 0.8 87.11% 68.07%
C-PixLc ✓ ✓ 0.0 1.0 96.40% —
C-PixFc (seq.) ✓ ✓ 0.2 0.8 86.83% 75.76%
C-PixFc (par.) ✓ ✓ 0.2 0.8 89.34% 77.86%

testing on a domain different from the optimized one, such
as Blender data.

We examine color distribution in adversarial texture
maps and find that lacking color constraints leads to sat-
urated colors at RGB cube corners. This issue persists in
prior works too. See the supplementary material for details.

7.4. Shape-based Attacks

In shape-based attacks, we alter the geometry of the ve-
hicle sacrificing practicality for improved adversarial per-
formance. We link practicality, denoted as Pr, to the pertur-
bation magnitude PM as Pr = 1− PM, where PM ∈ [0, 1].
In this context, Pr ∈ [0, 1], with Pr = 0 indicating extreme
mesh perturbation and Pr = 1 indicating no perturbation for

a more realistic scenario.
Our goal is to minimize PM (maximize Pr) in shape-

based attacks while maximizing EASR performance. We
assess multiple attacks on synthetic models across a range
of Pr values. Refer to the curve in Figure 6 under “Origi-
nal” for details (utilizing original vehicle textures). Given
an EASR-vs-Pr curve, we compute a practicality metric P1
as the harmonic mean of the EASR and Pr values for each
point on the curve, i.e. P1 = 2 EASR·Pr

EASR+Pr . We then pick the at-
tack with the highest P1 as the optimal one. See the results,
denoted as S-O, in Table 2 and Figure 7. The results suggest
that when no adversarial texture is utilized along with a de-
formed vehicle geometry, the deformation must be large to
achieve good performance, which is expensive to produce
and difficult to install and operate, rendering it impractical.

7.5. Combined Attacks

In the combined attacks, we aim to boost the adversarial
performance by attacking both mesh entities. We discard
the adversarial textures that use masking because a modified
mesh is hard to segment into semantically meaningful parts.
Thus, this leaves us with six adversarial texture maps for
mesh-based attacks, each with its texture setting.

Sequential Attacks. We conduct six sequential attacks,
each using one of the six adversarial texture maps from
a non-masked setup. We follow the methodology in Sec-
tion 7.4 to determine the optimal PM. The results, la-
beled C-*, in Table 2 and Figure 7, reveal significant in-
sights. While the improvement over texture attacks with-
out the fixed colors constraint (T-U, T-Pix, T-Lc, T-PixLc)
is unjustified due to practicality loss, the fixed colors con-
straint (T-Fc and T-PixFc) justifies sacrificing some practi-
cality for better performance. Compared to the significant
practicality loss in shape-based attacks, the sequential blend
of adversarial texture and shape is more efficient than shape-
only attacks. We evaluate the resulting adversarial vehicles
on Blender-generated data where the optimal perturbation
magnitude is not 0.

Parallel Attacks. We conduct parallel attacks using only
two adversarial texture maps — Fc and PixFc — to reduce
the PM even further than the sequential attacks. The results
in Table 2 suggest no significant gain in switching to parallel
attacks.

8. Conclusion

In summary, our study introduces a methodology for
crafting efficient camouflage strategies for concealing ve-
hicles in RSI. While our findings could potentially be mis-
used, we believe the research community must be informed
and address the critical vulnerabilities in state-of-the-art
models highlighted in our work. We demonstrate an inverse
relationship between practicality and performance, which



generalizes across domains. Unconstrained adversarial tex-
tures are potent in attacking vehicle detectors, whereas prac-
tical constrained textures are less effective but easier to im-
plement. Practical shape-only attacks are slightly less ef-
fective than texture attacks. Combining texture and shape
modifications can enhance performance to levels compa-
rable to unconstrained textures. Notably, sequential and
parallel execution of shape and texture attacks yield sim-
ilar adversarial performance. Furthermore, we present an
innovative labeled dataset comprising real-world aerial im-
ages and introduce two tools designed to generate synthetic
aerial images: one using a differentiable renderer and one
using a physics-based renderer.
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