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ABSTRACT

Is it possible to detect arbitrary objects from a single example? A central prob-
lem of all existing attempts at one-shot object detection is the generalization gap:
Object categories used during training are detected much more reliably than novel
ones. We here show that this generalization gap can be nearly closed by increasing
the number of object categories used during training. Doing so allows us to im-
prove generalization from seen to unseen classes from 45% to 89% and improve
the state-of-the-art on COCO by 5.4 %AP50 (from 22.0 to 27.5). We verify that the
effect is caused by the number of categories and not the number of training sam-
ples, and that it holds for different models, backbones and datasets. This result
suggests that the key to strong few-shot detection models may not lie in sophis-
ticated metric learning approaches, but instead simply in scaling the number of
categories. We hope that our findings will help to better understand the challenges
of few-shot learning and encourage future data annotation efforts to focus on wider
datasets with a broader set of categories rather than gathering more samples per
category.

Example based object detection Successful Detection of Novel Objects!A broad training dataset
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Figure 1: Example based object detectors can in theory detect any object based on an example im-
age. However existing models trained on the datasets with few categories such as COCO perform
significantly worse for novel than known objects. We here show that this generalization gap progres-
sively shrinks when training the same models with more categories thus moving us closer to models
which can actually detect any object.

1 INTRODUCTION

It’s January 2021 and your long awaited household robot finally arrives. Equipped with
the latest “Deep Learning Technology”, it can recognize over 21,000 objects. Your initial
excitement quickly vanishes as you realize that your casserole is not one of them. When
you contact customer service they ask you to send some pictures of the casserole so they
can fix this. They tell you that the fix will be some time, though, as they need to collect
about a thousand images of casseroles to retrain the neural network. While you are
making the call your robot knocks over the olive oil because the steam coming from the
pot of boiling water confused it. You start filling out the return form ...

While not 100% realistic, the above story highlights an important obstacle towards truly autonomous
agents: such systems should be able to detect novel, previously unseen objects and learn to recog-
nize them based on (ideally) a single example. Solving this one-shot object detection problem can
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be decomposed into three subproblems: (1) designing a class-agnostic object proposal mechanism
that detects both known and previously unseen objects; (2) learning a suitably general visual rep-
resentation (metric) that supports recognition of the detected objects; (3) continuously updating the
classifier to accommodate new object classes or training examples of existing classes. In this paper,
we focus on the detection and representation learning part of the pipeline, and we ask: what does
it take to learn a visual representation that allows detection and recognition of previously unseen
object categories based on a single example?

We operationalize this question using an example-based visual search task (figure 1) that has been in-
vestigated before using handwritten characters (Omniglot; Michaelis et al. (2018a)) and real-world
image datasets (Pascal VOC, COCO; Michaelis et al. (2018b); Hsieh et al. (2019); Zhang et al.
(2019); Fan et al. (2020); Li et al. (2020)). Our central hypothesis is that scaling up the number
of object categories used for training should improve the generalization capabilities of the learned
representation. This hypothesis is motivated by the following observations. On (cluttered) Om-
niglot (Michaelis et al., 2018a), recognition of novel characters works almost as well as for char-
acters seen during training. In this case, sampling enough categories during training relative to the
visual complexity of the objects is sufficient to learn a metric that generalizes to novel categories.
In contrast, models trained on visually more complex datasets like Pascal VOC and COCO exhibit
a large generalization gap: novel categories are detected much less reliably than ones seen during
training. This result suggests that on the natural image datasets, the number of categories is too
small given the visual complexity of the objects and the models retreat to a shortcut (Geirhos et al.,
2020) – memorizing the training categories.

To test the hypothesis that wider datasets improve generalization, we increase the number of object
categories during training by using datasets (LVIS, Objects365) that have a larger number of cate-
gories annotated. Our experiments support this hypothesis and suggest the following conclusions:

• The generalization gap between training and novel categories is a key problem in one-shot
object detection.

• This generalization gap can be almost closed by increasing the number of categories used
for training: going from 80 classses in COCO to 1200 in LVIS improves relative perfor-
mance from 45% to 89%.

• A detailed analysis shows that number of categories, not the amount of data, is the driving
force behind this effect.

• Closing the generalization gap allows using established methods from the object detection
community (like e.g. stronger backbones) to improve performance on known and novel
categories alike.

• We use these insights to improve state-of-the-art performance on COCO by 5.4 %AP50

(from 22 %AP50 to 27.5 %AP50) using annotations from LVIS.

2 RELATED WORK

Object detection Object detection - the task of detecting objects in complex, cluttered scenes -
has seen huge progress since the widespread adoption of DNNs Girshick et al. (2014); Ren et al.
(2015); He et al. (2017); Lin et al. (2017a); Chen et al. (2019a); Wu et al. (2019); Carion et al.
(2020). Similarly the number of datasets has grown steadily, fueled by the importance this task has
for computer vision applications Everingham et al. (2010); Russakovsky et al. (2015); Lin et al.
(2014); Zhou et al. (2017); Neuhold et al. (2017); Krasin et al. (2017); Gupta et al. (2019); Shao
et al. (2019). However most models and datasets focus on scenarios where abundant examples per
category are available.

Few-shot learning Algorithms for few-shot learning - learning a model from only a few examples
- can broadly be separated into two categories: Metric learningKoch et al. (2015); Vinyals et al.
(2016); Snell et al. (2017) - learn a good representation and metric that generalizes to new data. And
meta learning Finn et al. (2017); Rusu et al. (2018) - learn a good way to learn a new task. However,
recent work has shown that complex algorithmic approaches can be rivaled by improving and scaling
simple approaches like transfer learning Chen et al. (2019b); Nakamura & Harada (2019); Dhillon
et al. (2019); Kolesnikov et al. (2019).
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Few-shot & one-shot object detection Recently, several groups have started to tackle few-shot
learning for object detection. Two training and evaluation paradigms have emerged. The first is
inspired by continual learning: incorporate a set of new categories with only a few labeled images
per category into an existing classifier Kang et al. (2018); Yan et al. (2019); Wang et al. (2019; 2020).
The second one phrases the problem as an example-based visual search: detect objects based on a
single example image (Michaelis et al., 2018b; Hsieh et al., 2019; Zhang et al., 2019; Fan et al., 2020;
Li et al., 2020, figure 1 left). We refer to the former (continual learning) as few-shot object detection,
since typically 10–30 images are used for experiments on COCO. In contrast, we refer to the latter
(visual search) as one-shot object detection, since the focus is on the setting with a single example.
In the present paper we work with this latter paradigm, since it focuses on the representation learning
part of the problem and avoids the additional complexity of continual learning.

Methods for one-shot object detection Existing methods for one-shot object detection usually
combine a standard object detection architecture with metric or meta-learning methods Biswas &
Milanfar (2015); Michaelis et al. (2018b); Hsieh et al. (2019); Zhang et al. (2019); Fan et al. (2020);
Osokin et al. (2020); Li et al. (2020). To better handle complex scenes and pose changes methods
such as spatial awareness Li et al. (2020) or pose transforms Biswas & Milanfar (2015); Osokin et al.
(2020) have been proposed. A recent method uses a transformer to solve the matching problem Chen
et al. (2021). We here use one of the most straightforward models, Siamese Faster R-CNN Michaelis
et al. (2018b), to demonstrate that a change of the training data rather than the model architecture is
sufficient to substantially reduce the generalization gap between known and novel categories.

Number of categories in few-shot learning Most of the few-shot learning literature focuses on
developing algorithmic solutions to a set of existing small-scale benchmarks. In contrast a lot less
attention has been payed to exploring new tasks or datasets. The influence of the training data was
mostly observed indirectly, e.g. through better performance on datasets with more categories such
as tieredImageNet vs. miniImageNet. We here flip the focus demonstrating that significant progress
can be made by keeping the algorithm the same and only changing the training data. Concurrent
studies confirm this finding that more categories help few-shot object detection Fan et al. (2020) and
few-shot image classification Sbai et al. (2020); Jiang et al. (2020). We add to this by not only look-
ing at few-shot performance but comparing it with performance on known categories (generalization
gap). This allows us to uncover the functional relationship behind the effect (closing a shortcut).

3 EXPERIMENTS

Models We mainly use Siamese Faster R-CNN, an example-based version of Faster R-CNN Ren
et al. (2015) similar to Siamese Mask R-CNN Michaelis et al. (2018b). Briefly, it consists of a
feature extractor, a matching step and a standard region proposal network and bounding box head
(figure 2). The feature extractor (called backbone in object detection) is a standard ResNet-50 with
feature pyramid networks He et al. (2016); Lin et al. (2017a) which is applied to the image and
reference with weight sharing. In the matching step the reference representation is compared to the
image representation in a sliding window approach by computing a feature-wise L1 difference. The
resulting similarity encoding representation is concatenated to the image representation and passed
on to the region proposal network (RPN). The RPN proposes a set of bounding boxes which po-
tentially contain objects. These boxes are then classified as containing an object from the reference

Siamese Backbone

IF = Image Features, L1 = Pointwise L1 Difference, 
RPN = Region Proposal Network, CLS = Classifier, BBOX = Bounding Box Regressor

Siamese Faster R-CNN

ResNet 50

ResNet 50

IF

RPN

CLS
BBOX

Heads

Matching

L1

Figure 2: Siamese Faster R-CNN
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class or something else (other object or background). Box coordinates are refined by bounding box
regression and overlapping boxes are removed using non-maximum suppression.

We additionally developed Siamese RetinaNet, a single-stage detector based on RetinaNet Lin et al.
(2017b). The feature extraction and matching steps are identical to Siamese Faster R-CNN, but it
uses the unified RetinaHead to jointly propose and classify bounding boxes. To counter the effect of
too many negative samples, the classifier is trained with focal loss Lin et al. (2017b).

Training & Evaluation The example-based training is slightly different from the traditional ob-
ject detection training paradigm. For each image a reference category is randomly chosen by picking
a category with at least one instance in the image. A reference is retrieved by randomly selecting one
instance from this category in another image and tightly cropping it. The labels for each bounding
box are changed to 0 or 1 depending on whether the object is from the reference category or not.
Annotations for objects from the held-out categories are removed from the dataset before training.
At test time a similar procedure is chosen but instead of picking one category for each image, all
categories with at least one object in the image are chosen Michaelis et al. (2018b) and one (1-shot)
or five (5-shot) reference images are provided. Predictions are assigned their corresponding category
label and evaluation is performed using standard tools and metrics.

Implementation We implemented Siamese Faster R-CNN and Siamese RetinaNet in mmdetec-
tion v1.0rc Chen et al. (2019a), which improved performance by more than 30% over the original
Siamese Mask R-CNN (Michaelis et al., 2018b, Table 4). We keep all hyperparameters the same
as in the standard Faster R-CNN implementation of mmdetection. Due to resource constraints we
reduce the number of samples per epoch to 120k for Objects365.

Hyperparameters Our model is derived from mmdetection v1.0rc Chen et al. (2019a) and uses
the same hyperparameters as used for Faster R-CNN and RetinaNet1. Please note that the default
settings for Pascal VOC differ slightly from those for COCO training. We use the COCO hyper-
parameters for experiments on COCO, LVIS and Objects365 and Pascal VOC settings for Pascal
VOC.

Datasets We use the four datasets shown in Table 1: COCO Lin et al. (2014), Objects365 Shao
et al. (2019), LVIS Gupta et al. (2019) and Pascal VOC Everingham et al. (2010). We use standard
splits and test on the validation sets except for Pascal VOC where we test on the 2007 test set. Due
to resource constraints, we evaluate Objects365 on a fixed subset of 10k images from the validation
set.

Category splits Following common protocol for example-based detection Michaelis et al.
(2018b); Shaban et al. (2017) we split the categories in each dataset into four splits using every
fourth category as hold-out set and the other 3/4 categories for training. So on Pascal VOC there
are 15 categories for training in each split, on COCO there are 60, on Objects365 274 and on LVIS
902. We train and test four models (one for each split) and report the mean over those four models,
so performance is always measured on all categories. Computing performance in this way across all
categories is preferable to using a fixed subset as some categories may be harder than others. During
evaluation, the reference images are chosen randomly. We therefore run the evaluation five times,
reporting the average AP50 over splits. The 95% confidence intervals for the average AP50 is below
±0.2%AP50 for all experiments.

Dataset Version Classes Images Instances Ins/Img Cls/Img Thr.
Pascal VOC 07+12 20 8k 23k 2.9 1.6 X
COCO 2017 80 118k 860k 7.3 2.9 X
LVIS v1 1,203 100k 1.27M ≥12.8∗ ≥3.6∗ 7
Objects365 v2 365 1.94M 28M 14.6 6.1 X

Table 1: Dataset comparison. Thr. = Throughoutly annotated: every instance of every class is
annotated in every image. ∗LVIS has potentially more objects and categories per image than are
annotated due to the non-exhaustive labeling.

1All details can be found in the respective configs: https://github.com/open-mmlab/
mmdetection/tree/5bf935e1b7621b234ddb34ef6c32b2b524243995/configs
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Figure 3: Example predictions on held-out categories (ResNet-50 backbone). The left three columns
show success cases. The rightmost column shows failure cases in which objects are overlooked
and/or wrongfully detected.

4 RESULTS

4.1 GENERALIZATION GAP ON COCO AND PASCAL VOC

We start by showing that objects of held-out categories are detected less reliably on COCO and
Pascal VOC. On both datasets, Siamese Faster R-CNN shows strong signs of overfitting to the
training categories (figure 4 & Table 2): despite setting a new stat-of-the-art performance is much
higher than for categories held-out during training (COCO: 49.7 → 22.8 %AP50; Pascal VOC:
82.7→ 37.6 %AP50). We refer to this drop in performance as the generalization gap. This result is
consistent with the literature: Hsieh et al. (2019) – the previous state-of-the-art – report performance
dropping 40.9→ 22.0 %AP50 on COCO (see Table 4 below). Some newer models reportedly close
the gap on Pascal VOC Zhang et al. (2019); Hsieh et al. (2019); Li et al. (2020); we will discuss
Pascal VOC further in the next section. Example predictions show good localization (bounding
boxes) even for unknown objects in cluttered scenes while classification errors make up the majority
of mistakes (figure 3).

4.2 PASCAL VOC IS TOO EASY TO EVALUATE ONE-SHOT OBJECT DETECTION MODELS

Having identified this large generalization gap, we ask whether the models have learned a useful
metric for one-shot detection at all or whether they rely on simple dataset statistics. Pascal VOC
contains, on average, only 1.6 categories and 2.9 instances per image. In this case, simply detecting
all foreground objects may be a viable strategy. To test how well such a trivial strategy would per-
form, we provide the model with uninformative references (we use all-black images). Interestingly,
this baseline performs very well, achieving 59.6 %AP50 on training and 33.2 %AP50 on held-out
categories (Table 2). For held-out categories, the difference to an example-based search is marginal
(33.2 → 37.6 %AP50). This result demonstrates that on Pascal VOC the model mostly follows a
shortcut and uses basic dataset statistics to solve the task.

In contrast, COCO represents a drastic increase in image complexity compared with Pascal VOC: it
contains, on average, 2.9 categories and 7.3 instances per image. As expected, in this case the trivial
baseline with uninformative references performs substantially worse than the example-based search
(training: 49.7 → 10.1 %AP50; held-out: 22.8 → 4.4 %AP50; Table 2). Thus, the added image
complexity in COCO forces the model to use the reference image for classification but the small set
of categories is not sufficient to prevent memorizing the training categories.
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COCO Pascal VOC
Categories→ Train Held-Out Train Held-Out
Siam. Faster R-CNN 49.7 22.8 82.7 37.6
— empty Refs. 10.1 4.4 59.6 33.2

Table 2: On COCO and Pascal VOC there is a clear performance gap (AP50) between categories
used during training (Train) and held-out categories (Held-Out). A baseline getting a black image
as reference which contains no information about the target category (– empty Refs.) performs
surprisingly well on Pascal VOC but fails on COCO.

4.3 TRAINING ON MORE CATEGORIES REDUCES THE GENERALIZATION GAP

Pascal VOC
(20)
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Objects365
(365)

LVIS
(1203)
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Figure 4: Performance on
known and novel categories
for different datasets.

We now turn to our main hypothesis that increasing the number of cat-
egories used during training could close the generalization gap iden-
tified above. To this end we use Objects365 and LVIS, two fairly
new datasets with 365 and 1203 categories, respectively (much more
than the 20/80 in Pascal VOC/COCO). Indeed, training on these wider
datasets improves the relative performance on the held-out categories
from 46% on COCO to 76% on Objects365 and up to 89% on LVIS
(figure 1). In absolute numbers this means going from a 26.9 %AP50

gap on COCO to a 4.6 %AP50 gap on Objects365 and a 3.5 %AP50

gap on LVIS (Table 3) in the one-shot setting. Increasing the number
of references to five (5-shot) improves performance on all datasets but
leaves relative performance unchanged (Table 3, right columns).

This effect is not caused simply by differences between the datasets, as the following experiment
shows: For both datasets (LVIS and Objects365), we train models on progressively more categories.
When training on less than 100 categories (resembling training on COCO), a clear generalization
gap is visible on both LVIS and Objects365 (figure 5A: leftmost data points). Increasing the number
of training categories leads to better performance on the held-out categories, while performance on
the training categories stays the same (LVIS) or decreases (Objects365). The effect is the same in
the 5-shot setting but with a better baseline performance (figure A.1 in Appendix).

4.4 THE NUMBER OF CATEGORIES IS THE CRUCIAL FACTOR

The results so far show that increasing the number of categories used during training reduces the
generalization gap and improves performance. However, this effect could also be caused by the fact
that with more categories there is also more data available. Consider the situation where we train
on 10% of the categories (90 in the case of LVIS). As we sample these categories uniformly from
the dataset, we use only approximately 10% of the total number of instances. To control for this
confound, we created training sets that match the number of instances: in this case we use only 10%
of the instances in the dataset but sample them uniformly from all 900 training categories.

Figure 5: A. Experiment subsampling LVIS and Objects365 categories during training. When more
categories are used during training performance on held-out categories (blue) improves while per-
formance on the training categories (light blue) stays flat or decreases. B. Comparison of the per-
formance on held-out categories if a fixed number of instances is chosen either from all categories
(green) or from a subset of categories (blue). Having more categories is more important than having
more samples per category. (1-shot results, for 5-shot see figure A.1)
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COCO
1-shot 5-shot

Model Backb. Sched. Train C. Held-Out C. Delta Train C. Held-Out C. Delta
Siam. RetinaNet R50 1x 50.6 18.9 31.7 55.5 22.1 33.4
Siam. FRCNN R50 1x 49.7 22.8 26.9 54.9 27.6 27.3
Siam. FRCNN R50 3x 51.7 21.9 29.8 57.6 26.7 30.9
Siam. FRCNN X101 1x 56.4 23.5 32.9 61.9 28.6 33.3

LVIS
1-shot 5-shot

Model Backb. Sched. Train C. Held-Out C. Delta Train C. Held-Out C. Delta
Siam. RetinaNet R50 1x 28.4 24.7 3.7 31.6 27.5 4.1
Siam. FRCNN R50 1x 31.5 28.0 3.5 37.0 33.0 4.0
Siam. FRCNN R50 3x 32.7 28.7 4.0 38.2 33.5 4.7
Siam. FRCNN X101 1x 35.4 31.3 4.1 41.4 36.3 5.1

Objects365
1-shot 5-shot

Model Backb. Sched. Train Cats. Held-Out C. Delta Train C. Held-Out C. Delta
Siam. RetinaNet R50 1x 19.7 14.5 5.2 23.4 17.2 6.2
Siam. FRCNN R50 1x 19.4 14.8 4.6 25.7 19.9 5.8
Siam. FRCNN R50 3x 22.0 16.5 5.5 27.7 20.9 6.8
Siam. FRCNN X101 1x 25.0 17.9 7.1 30.6 22.4 8.2

Table 3: Effect of a three times longer training schedule and a larger backbone (ResNeXt-101 32x4d)
on model performance across datasets. While larger models and longer training times lead to no or
only minor improvements on held-out categories on COCO, they do have a larger effect on LVIS
and Objects365.

The results can be seen in figure 5B. Our example from above with 10% of the data corresponds
to the leftmost datapoint in both plots. The model trained with more categories (green) clearly
outperforms the model with more instances per category (blue). The same performance gap can be
seen for any fraction of the data. Thus, for a given budget of instances (labels) it is better to cover
more categories than to collect as many samples per category as possible.

4.5 ONCE THE GENERALIZATION GAP IS CLOSED MORE POWERFUL MODELS BENEFIT
NOVEL CATEGORIES

If models indeed learn the distribution over categories, stronger models that can learn more powerful
representations should perform better on known and novel categories alike. We test this hypothesis
in two ways: first, by replacing the standard ResNet-50 He et al. (2016) backbone with a more
expressive ResNeXt-101 Xie et al. (2017); second, by using a three times longer training schedule.

The larger backbone does not improve performance on the held-out categories on COCO (Table 3).
Instead the additional capacity is used to memorize the training categories, which is evident from
the large improvement (6.7%AP50) in performance on the training categories, but only a small
improvement (0.7%AP50) on the held-out categories. In contrast, on LVIS and Objects365 the
gains of the bigger backbone are not confined to the training categories but apply to the one-shot
setting as well. Only a small difference remains on Objects365 (3.0%AP50 vs. 1.4%AP50).

Longer training schedules show the same pattern. For COCO, performance on the training categories
improves while performance on held-out categories even gets a bit worse on a 3x schedule (Table 3).
In contrast, performance on LVIS and Objects365 improves for both training and held-out categories
alike, suggesting that the models do not overfit only the training categories.

4.6 RESULTS HOLD FOR DIFFERENT MODEL CONFIGURATIONS

To test if our findings apply to single-stage detectors as well, we train and test Siamese RetinaNet on
COCO, LVIS and Objects365 (Table 3). Results are very similar to Siamese Faster R-CNN. Siamese
RetinaNet shows a slightly larger generalization gap on COCO (relative performance: Retina: 37%
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Figure 6: Predictions on COCO tend to be more accurate and cleaner when using a bigger backbone
and training on LVIS. Especially on categories with more ambiguous references like sports ball or
dining table the LVIS trained model is more precise. Additionally the ResNeXt backbone leads to
”cleaner” results with less false positives.

1-shot 5-shot
Model Backb. Train Data Train C. Held-Out C. Train C. Held-Out C.
Siam. Mask R-CNN∗ R50 COCO 37.6 16.3 41.3 18.5
CoAE∗∗ R50 COCO 40.9 22.0 - -
AIT∗∗∗ R50 COCO 47.5 24.3 - -
Siam. RetinaNet R50 COCO 50.6 18.9 55.5 22.1
Siam. Faster R-CNN R50 COCO 49.7 22.8 54.9 27.6
Siam. Mask R-CNN R50 COCO 51.9 22.9 57.9 27.8
Siam. Cascade R-CNN R50 COCO 50.3 22.0 56.2 27.2
Siam. Faster R-CNN X101 32x4d COCO 56.4 23.5 61.9 28.6
Siam. Faster R-CNN R50 LVIS 36.2 25.0 43.5 31.7
Siam. Faster R-CNN X101 32x4d LVIS 42.5 27.4 50.3 34.8

Table 4: Performance (AP50) on COCO can be improved by training on LVIS. Siamese Mask R-
CNN and Siamese Cascade R-CNN are identical to Siamese Faster R-CNN except for an additional
mask head or cascaded bbox heads. (*Michaelis et al. (2018b), ** Hsieh et al. (2019), *** Chen
et al. (2021))

vs. FRCNN: 46%) but results are very similar on LVIS (Retina: 87% vs. FRCNN: 89%) and
Objects365 (Retina: 74% vs. FRCNN: 76%).

Taken together we observe the same patterns for single- and two-stage detectors with different back-
bones and learning rate schedules on two datasets (Objects365 and LVIS) for 1-shot and 5-shot
evaluation. This suggests that our conclusions may extend to most object detection models and we
can expect to significantly boost performance using the large toolboxes which exist for traditional
object detection.

4.7 STATE-OF-THE-ART ON COCO USING LVIS

Using the insights from above, we now demonstrate state-of-the-art one-shot detection performance
on COCO by training on a large number of categories. We use LVIS and create four splits which
leave out all categories that have a correspondence in the respective COCO split. As LVIS is a
re-annotation of COCO, this means that we expand the categories in the training set while training
on the same set of images. Training with the more diverse LVIS annotations leads to a notice-
able performance improvement from 22.8 to 25.0%AP50, which can be improved even further to
27.4%AP50 by using the stronger ResNeXt-101 backbone, outperforming the previous best model
by 5.4%AP50 (Table 4). In relative terms that means going from 45% relative performance to 65%,
thus substantially outperforming the previous best method (55% relative performance Hsieh et al.
(2019)) both in absolute and relative terms. Visual inspection of the results (figure 6) shows cleaner
predictions with less false positives especially for difficult reference images.
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5 DISCUSSION

It has long been assumed and recently shown (Sbai et al., 2020; Jiang et al., 2020; Fan et al., 2020)
that training with more categories improves few-shot learning performance. However the question
whether this is due to better overall model performance or better generalization has not been an-
swered so far. Our results show that the underlying mechanism is an improvement in generalization
from 45% relative performance on COCO to 89% on LVIS. The effect is consistent for different
detectors, backbone architectures and training schedules which suggests that the effect will hold for
almost any model. If this trend continues with more categories object detection that generalizes to
any object is within reach. This, however, does not mean that one-shot object detection is “solved”.
There are at least three important steps to take:

First and foremost the performance of example-based object detectors has to improve significantly.
Our experiments outline a path forward, demonstrating that methods that profit general object de-
tection transfer to novel categories when the generalization gap is closed. Secondly, we have to
better understand the mechanisms that lead to the generalization gap. Our results indicate that one
of the main reasons is a shortcut Geirhos et al. (2020) - memorizing the training categories. That
stronger models also perform better on novel categories with progressive closing of the gap is an
indicator that the key issue was indeed overfitting. However more investigation will be required to
determine which factors are important. Is it the sheer number of categories or is it their diversity,
granularity, frequency? Or is the main factor semantic relationship as results from Sbai et al. (2020)
and Jiang et al. (2020) suggest? Finally we have to find a way to transfer this success to smaller
datasets with less categories. While we achieve a new state-of-the-art on COCO the generalization
gap there (69%) is still larger than on LVIS (89%).

5.1 FUTURE DATASETS SHOULD FOCUS ON THE DIVERSITY OF CATEGORIES.

Our findings have important implications for the design of future datasets. For the goal of gener-
alization a broader range of categories is helpful at any dataset size (figure 5B: green curve above
blue curve at any data fraction), while from a certain point onward more examples per category lead
to diminishing returns (figure 5B: green curve flattens out). At a time where few-shot and long-tail
problems become more important in computer vision this suggest that future data collection and an-
notation efforts should focus more on a broad set of categories and less on the number of instances
for each of those categories.

An open question is, how broad datasets have to be. Despite being a big step forward, training on
LVIS still leaves a small generalization gap that widens when using stronger models. In other words:
some amount of overfitting on the training categories remains. The good news is that we don’t see
a saturation (figure 5B: dark blue curves still rise at the maximum number of categories) so further
increasing the number of categories should reduce the remaining gap.

5.2 THE BIGGER PICTURE

Our insight that applying existing methods on larger and more diverse datasets can lead to unex-
pected capabilities is mirrored in other areas. This phenomenon has been observed time and again
and was termed the “unreasonable effectiveness of data” Halevy et al. (2009); Sun et al. (2017)
or the “bitter lesson” Sutton (2019). It played a key role in the breakthrough of DNNs thanks to
ImageNet Russakovsky et al. (2015); Krizhevsky et al. (2012) as well as recent results on game-
play Berner et al. (2019) or language modelling Brown et al. (2020). Recently Kolesnikov et al.
(2019) and Radford et al. (2021) achieve impressive results demonstrating strong performance at
one-shot and zero-shot ImageNet classification. As in our study, simple methods (transfer learning
in Kolesnikov et al. (2019) and unsupervised image captioning in Radford et al. (2021)) on large
and diverse datasets led to results that are far better than what one would have expected: Achieving
ResNet performance with 10 Kolesnikov et al. (2019) respectively zero Radford et al. (2021) anno-
tated samples per class in their case; 89% relative performance on LVIS in our case. We hope that
by building on this insight we can soon move from trying to solve few-shot learning towards using
few-shot learning to solve other problems.
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A APPENDIX

A.1 ADDITIONAL FEW-SHOT RESULTS

We provide five-shot results for the experiments in figure 5 in figure A.1.
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Figure A.1: Performing the experiments in figure 5 with five reference images (five-shot) leads to
no qualitative difference.
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