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Abstract The distributed framework is built with a grid computing
We study the problem of complexity estima- environment in mind, i.e., a set of autonomous, Ioosel_y
tion in the context of parallelizing an advanced connected systems — notab lY' we cannot assume any kind
Branch and Bound-type algorithm over graph- of shared memory or dynamlc load palancmg which most
ical models. The algorithm’s pruning power parallel or distributed algorithms build upon (Chu et al.,

makes load balancing, one crucial element of ev- 2009; Gendron & Crainic, 19_94; Grama & Kumar, 1999;
Grama et al., 2003). The primary challenge is therefore
pose using a statistical regression model to iden- to determine a priori a set of subproblems with balanced
tify and tackle disproportionally complex paral- complexity, so that the overall parallel runtime will not be
lel subproblems, the cause of load imbalance dominated by just a few of them. In the optimization con-
ahead of time 'The proposed model is evalu-, text, however, the use of cost and heuristic functions for
ated and analyzed on various levels and shown pruning makes it very hard to reliably predict and balance

to yield robust predictions. We then demonstrate subproblem complexity ahead of time; in particular, struc-
its effectiveness for load balancing in practice tural parameters like the induced width are not sufficient to
' differentiate subproblems.

ery distributed system, very challenging. We pro-

] Our suggested approach and the main contribution of this
1. Introduction paper is to estimate subproblem complexity by learning
a regression model over several subproblem parameters,

This paper explores the application of learning for im- . ) X .
proved load balancing in the context of distributed searchSome static and structural (e.g., induced width, variable d

for discrete combinatorial optimization over graphical main sizes), others dynamically extracted at runtime (e.g.

models (e.g., Bayesian networks, weighted CSPs), Specinper and lower bounds on the subproblem solution based

: : . n th isti ion).
ically, we consider one of the best exact search algonthmg e heuristic function)

for solving the MPE task over graphical models, AND/OR A similar regression-based approach was developed in
Branch and Bound (AOBB) (Marinescu & Dechter, 2009), (Leyton-Brown et al., 2009) to predict the problem com-
ranked first and third, respectively, in the UAI'06 and 08 plexity (called “empirical hardness”) of combinatorialcau
evaluations and winning all three MPE categories of thetion instances; similarly the successful SAT sol8&Tzilla
2011 PASCAL Inference Challenge. uses linear regression models to choose among a set of
component solvers the one that is predicted to be fastest

We adapt the concept of parallel tree search (Grama & Kug’r a given SAT instance (Xu et al., 2008).

mar, 1999), where a search tree is explored centrally up to
certain depth and the remaining subtrees are solved in pa®ther general work on estimating search complexity goes
allel. In the graphical model context we explore the searctback to (Knuth, 1975) and more recently (Kilby et al.,
space of partial instantiations up to a certain point andesol 2006), which predict the size of general backtrack trees
the resulting conditioned subproblems in parallel. through random probing. Similar schemes were devised
for Branch and Bound algorithms (Coi&gjols et al., 2006),
Presented at the International Conference on Machine Learninghere search is run for a limited time and the partially

(ICML) workshop oninferning: Interactions be- tween Inference explored tree is extrapolated. These approaches typically

ﬁ]”d L?ﬁmi(”)g Atlanta, Georgia, USA, 2013. Copyright 2013 by require a substantial amount of probing, which is pro-
e author(s).
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Figure 1.(a) Example primal graph with six variables, (b) its pseudo tree aloreyioglA, B, C, D, E, F', (c) the corresponding context-
minimal AND/OR search graph, and (d) the parallel search spactingsfitom parallelizing at deptld = 2 with eight independent
subproblems.

hibitively expensive in our setup, where many hundreds, ifspeedups. The search space is defined uspsgado treg
not thousands of subproblems need to be evaluated quicklyhich captures problem decomposition:

The contribution of the present paper lies in proposing an . .
studying a general learning approach for estimating sub%E_F”?; '%'\)' 1??::5;?::2’; na%?reucr:ggef;i?egrsgg
problem complexity. In particular, we frame the problemT B (X7 E’), wi?h the sam set of nodds SL,JCh that ev-
as statistical regression analysis, which allows us torfeve © — V'™ . : Co ' .

age established, powerful techniques from machine learnz'Y 8¢ (_)fG thatis not included in=" is a back-_arc inT",
ing and statistics. Motivated by different parallelizatio nam(_aly '} connects a nOQe in to an ancestor irf/". The
scenarios, we distinguish three distinct levels of leagnin arcs in &’ may not all be included it .

based on a single problem instance, based on a specific h d hs: Gi hical
class of problems, and based on a combination of problerﬁ‘ND/OR Search Trees and Graphs: Given a graphica

classes. We evaluate, analyze, and contrast these three IéUOdE| instance with variable® and functionst”, its pri-

els on a sample set of more than 11,000 subproblem san’iTJaI graph(X, £), and a pseudo treg, the associated

ples from four problem classes and demonstrate general N dDA ON?) sezrch EFE‘EO”S'SIS of eflltﬁrnz"t\lln[?/cl)e%/els of r? R
robust prediction performance. We also demonstrate e AN noces. The structure of the search tree

- : - : . Is based on the underlying pseudo tfEe the root of the
pirically the model's potential for improved load balangn AND/OR search tree is an OR node labeled with the root
The remainder of the paper is organized as follows: Sectioaf 7. The children of an OR nod&; are AND nodes la-

2 summarizes the necessary background and outlines thgsled with assignmentsX;, z;) ; the children of an AND
distributed AND/OR Branch and Bound algorithm. Sec-node(X;, z;) are OR nodes labeled with the childrenof
tion 3 introduces the proposed regression model for comin 7", representing conditionally independent subproblems.
plexity estimation while Section 4 evaluates it on a varietyDifferent nodes may root identical subproblems and can
of instances from several problem classes. Section 5 prise merged througbkaching yielding anAND/OR search
vides selected parallel results that highlight the benefits graph of smaller size, at the expense of using additional
the proposed model and Section 6 concludes. memory during search.

Given a graphical model, its primal gragh, and a guid-
2. Background ing pseudo treg” of heighth, the size of the AND/OR
search tree iJ(n - k"), while O(n- k") bounds the
AND/OR search graph, where* is the induced width
of G over a depth-first traversal of and £ bounds the
domain size (Dechter & Mateescu, 2007). Figure 1(a)
shows an example problem primal graph with six vari-
ables, Figure 1(b) depicts a pseudo tree along ordering
2.1. AND/OR Search Spaces A,B,C,D,E,F. Figure 1(c) shows the corresponding
The concept of AND/OR search spaces has been introAND/OR search graph.
duced as a unifying framework for advanced algorithmiCAND/OR Branch and Bound : AND/OR Branch and

schemes for graphical models to better capture the Stru%ound (AOBB) is a state-of-the-art algorithm for solving
ture of the underlying graph (Dechter & Mateescu, 2007)'optimization problems over graphical models. Assuming

Its main virtue consists in exploiting conditional indepen aximization, it traverses the AND/OR graph in a depth-

dencies between variables, which can lead to exponenthrrrst manner while keeping track of a current lower bound

We assume the usual definitions ofji@phical modebs a
set of functionsF” = {f1,..., fm} Over discrete variables
X ={Xy,...,X,},itsprimal graph induced graphand
induced width
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on the optimal solution cost. During expansion of a nagde pedigreed41, 50 CPUs, p=64, fixed d=5

this lower bound is compared with a heuristic upper bound 3;82 sec oyetr)all e Subproblem runtimes
. . . max. Jo i

u(n) on the optimal solution below — if u(n) < [ the al- 10° 2l Overall runtime

L A

gorithm can prune the subproblem belawMarinescu &
Dechter, 2009).

Solution time [sec]
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Mini-Bucket Heuristics: The heuristich(n) that we use 1020 e Peee®®™ e, ]
in our experiments is the Mini-Bucket heuristic. It is based duianguliss Sububulubupupl. o Jubuiiefuubupue puuous i s
on Mini-Bucket elimination, an approximate variant of a mlol""edi 21607 AV9:2193-3 5;:‘“ 133490-6| s i
variable elimination scheme that computes approximation: Subproblems
to_ reasoning problems over graphlcal models (Dechter & pedigree19, 100 CPUs, p=144, fixed d=4
Rish, 2003). A cqnf[rol pa_ram_eter_allows to trade ac- 34424 sec overal Subproblem rantimes
curacy of the heuristic against its time and space require _ 10° 134382 max. job |- _ gyerall runtime E
ments. It was shown that the intermediate functions gener & ke ete
.. . ] @ X . @ o e T 3
ated by the Mini-Bucket algorithm MBE) can be used to £ T e -'*'*:,-.‘. LA Y Pl it
derive a heuristic function that underestimates the mihima  § 10® e S A oy’ .’o.'oﬂ:.* R A
cost solution to a subproblem in the AND/OR search grapt 5 | _°>° ¢ R o-22e. R _',;_ - _-'_'.,g
(Marinescu & Dechter, 2009). il SR R w® M Y T S gk,
. [[Med: 1132 Avg: 3382.1 Stdv: 5584.3| ‘ ‘
o ) 1075 20 40 60 80 100 120 140
2.2. Distributed AOBB & L oad Balancing Subproblems

Our distributed lmplemer?tatlon of AND/OR Branch and Figure 2.Subproblem statistics for fixed-depth parallelization
Bound draws from the notion of parallel tree search (Gram_qrontier showing large variance in subproblem runtime. Dashed
& Kumar, 1999; Grama et al., 2003), where a search tree ifines mark 0, 20, 80, and 100 percentile.

explored centrally up to a certain depth and the remain-

ing subtrees are solved in parallel. Applied to the search

graph from Figure 1(c), for instance, we could obtain eight

independent subproblems as shown in Figure 1(d), with a

conditioning search space (in gray) spanning the first two

levels (variablesA and B).

We refer to the boundary between conditioning searctP!€x subproblem, estimated by a complexity estimator
space and parallel subproblems aspheallelization fron-  /V, @nd splitting it into its immediate “sub-subproblems”,
tier. Its choice determines the shape and the number of sul§¢hich are in turn added to the frontier. This process is re-
problems and is thus crucial for effective paralteid bal- peateq untll.a desired number of subproblgms is obtam’ed,
ancing Namely, for best parallel performance we should@t which point all subproblems are submitted to the dis-
spread the parallel workload evenly across all availabldfiPuted environment.

CPUs, while minimizing overhead. Note that we assuman the context of depth-first Branch and Bound, however,
independent worker machines, with limited or very COStlydetermining the most Comp|ex Subprob|em is extreme]y
communication, hence dynamic load balancing at runtimejjficult and elusive. Due to the pruning power of the

(cf. (Grama et al., 2003)) is not applicable. algorithm, subproblem runtimes can differ greatly, even

Algorithm 1 shows pseudo code for our parallelization pol-When the underlying subgraph structure and the associated
icy: the parallelization frontier is generated in a breadth @ymptotic complexity guarantees (exponential in the in-
first manner by iteratively selecting the current most com-duced width of the AND/OR subspace) are identical.

To illustrate, consider the subproblem statistics of twe pa
allel runs shown in Figure 2, where instead the paralleliza-
tion frontier is placed at a fixed depth= 5 andd = 4,
respectively, yielding 64 and 144 subproblems (the hori-
zontal axis). In each case we see significant variance in

Algorithm 1 Finding the parallelization frontier

Require: Pseudo tred with root X, subproblem count, sub-

problem complexity estimata¥ .
Ensure: SetF of subproblem root nodes witti'| > p.

. subproblem runtime. In fact, the overall runtime is dom-
L F« {(Xo0)} , : .
2: while |F| <p: do inated exclusively by the handful of longest-running sub-
3 n' «+ argmaxner N(n) problems, with most other subproblems finishing long be-
4 F <« F\{n'} fore (note the log scale). Detecting and mitigating this im-
g' g T”F U children(n') balance ahead of time constitutes the central challenge in
. enawnile

this line of work, as we elaborate in the next sections.
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3. Learning Complexities through Regression Subproblem variable statistics (static):
1: Number of variables in subproblem.

This section introduces our learning approach to subproh- 2-6: Min, Max, mean, average, and std. dev. of variable
lem complexity prediction through regression analysis, domain sizes in subproblem.

. . . . Pseudotree depth/leaf statistics (static):
Previous work has investigated and evaluated various meth- ~"-. Depth of subproblem root in overall search space.

ods for balancing subproblem complexity, directly formu-| g.12: Min, max, mean, average, and std. dev. of depth of
lating metrics using human expert knowledge (Otten & subproblem pseudo tree leaf nodes, counted from |sub-
Dechter, 2010; 2011). These metrics were relative in na- 13 r’ilroblgm r?(cln.  rodes in suborop .

H H . umbper of lear nodes In subpronlem pseu o tree.
Eure, |.teh., the.){ho.nly aI_Iowed conlwlpansbtlan of onte subplroblerr Pseudo tree width statistics (Static):
0 another within a given overall problem Ins anc.:e. ncon- 14 1g: Min, max, mean, average, and std. dev. of indliced
trast, the present work does not depend as heavily on expert width of variables within subproblem.

knowledge and gives absolute complexity estimates. 19-23: Min, max, mean, average, and std. dev. of indiyiced

width of variables within subproblemyhen condition
ing on subproblem root conditioning set

3.1. General Methodology Subproblem cost bounds (dynamic):

We identify a subproblem by its search space root node 24: Lower boundL on subproblem solution cost, derived

We further measure the complexity of the subproblen from current best overall solution.
. p y P 25: Upper bound/ on subproblem solution cost, provided

rooted atn through the size of its explored search space by mini bucket heuristics.
which is the number of node expansions required for it ~ 26: Differencel/ — L between upper and lower bound, x-
solution, denotedV (n). We then aim to capture the expo- pressing “constrainedness” of the subproblem.

nential nature of the search space size by modeliiig) Pruning ra“t‘)’s (‘M‘ggé@* based on running 5000 node e
. . . pansion probe o .
as an exponential function of various subproblem features™ 57" otio of nodes pruned using the heuristic.

¢i(n) as follows: 28: Ratio of nodes pruned due of determinism (zero proba-
bilities, e.g.)
N(n) = eXP(Z Aidi(n)) N} 29: Ratio of nodes corresponding to pseudo tree leaf.
i Sample statistics (dynamic), based on running 5000 node ex-

pansion probe of AOBB:
The exponent has been chosen as a sum so that we can 30: Average depth of terminal search nodes within probe.

consider the log complexity and obtain the following: 31: Average node depth within probe (denotigd
32: Average branching degree, defined{s000 .
- s Various (static):
log NV (n) ; Aidi(n) @) 33: IS/Iini bL)lcketz‘-bound parameter.
34: Max. subproblem variable context size minus mini
Given a set ofn sample subproblems, finding suitable pa- bucketi-bound.
rameter values ; can thus be formulated as a well-known
linear regressionproblem, with themean squared error Table 1.Subproblem features for complexity estimation.

(MSE) as the loss functiofi(\) we aim to minimize:

m

1 2 Features can be divided into two distinct classes: “static”
Ly = m 1; (;A’@(nk) ~log N(nk)) ) which can be precompiled from the problem graph and

pseudo tree, and “dynamic” which are computed at run-
The MSE captures how well the learned regression modeime, as the parallelization frontier decision is made ¢not
fits the training data. In the context of load balancing forthat none of the dynamic features are costly to compute).
parallelism we can consider a secondary metric,Rbar-
son correlation coefficier@CC), which is simply the nor- 3 3. Subproblem Sample Domains
malized covariance between the vector of subproblem com-
plexities and their estimates, normalized by the product of" order to evaluate training and prediction error of the
each vector’s standard deviation. It is bounded-by, 1], ~ Proposed complexity model from a statistical learning per-
where 1 implies perfect linear correlation and -1 anticorre SPective, we need to specify the sample domain over which
lation. Hence a value close to 1 is desirable, as it signifies #/€ Will make predictions, for which we aim to generate a

model likely to correctly identify the hardest subproblems model, and from which subproblem samples are assumed
to be drawn. In fact, in the following we consider three

incrementally more general levels of sample domains and
learning, corresponding to three different designs in the
Table 1 lists the full set of basic subproblem featuges context of parallelizing AOBB:

that we consider. This list was compiled based on our prior

knowledge of what aspects can affect problem complexity. 1. Learningper problem instance: The sample domain

3.2. Subproblem Features
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is all subproblems from a single problem instance.[ domain [ M | n k w h]
This corresponds to learning a new complexity model pggigree 1;'33 4?(7)3— 1%;3 3 5 17 1lg —fg 4274— 12
for every problem instance the parallel scheme en P " - -
¢ yp dl P t dels for the largeFam| 8| 2569-3730 3-4 28-37 73-10
counters (e.g., we would learn separate models for the orid 5| 624675 2 37-39 111—19

two instances in Figure 2).

Bo®WN

Table 2.Summary statistics for problem classes usddjives the

all subproblems of problems from a specific class Innumber of instances in the class.denotes number of problem
o ) riabl max. domain si in idth r
the parallelization context we learn a separate modex"’lei:g"’lhbt esk max. domain sizey induced width,» pseudo tree
for every problem class we consider. For example, we '
would learn a single model for all pedigree problems,
but a different model for other problem classes like

protein sidechain prediction.

2. Learning per problem class: Take the domain to be

2009), which reports improved prediction performance us-
3. Learning across problem classes: Take the sample ing quadratic feature expansioralbeit in the context of
domain to be all subproblems of all problems from combinatorial auctions. Quadratic feature expansiom als
several classes. Ultimately this could translate to aeferred to as “quadratic regression”, works by adding new
parallel scheme that uses a single complexity modefeatures in the form of pairwise products of the original
for all problem classes under consideration. features; namely, for every pair of subproblem featyrgs
) _ ¢; with 4 < j, we create a new featurg - ¢;. We then
These three levels are increasingly more general and thss torm linear regression on the expanded feature set (629

potentially more challenging for robust estimation. On thej,, oy case), thereby effectively fitting a polynomial of 2nd
other hand, they require increasingly less computatidinal e degree. Results will be outlined in Section 4.5.
fort, since fewer distinct models need to be learned. Lastly

they can present different trade-offs between pre-comipile Next we evaluate the proposed regression model on a vari-

off-line learning and learning at runtime. ety of instances from several different problem classes.
3.4. Regression Algorithms 4. Evaluation and Analysis

We investigated a number of algorithms for fitting a lin- The basis for our evaluation are 31 hard problem instances
ear model. Ordinary least squares (OLS) regression wagom four classes: pedigree haplotyping problems, protein
problematic due to numerical issues (near-singular matrixjde-chain prediction ((Yanover & Weiss, 2003), named
inversion) and prone to overfitting (due to lack of regular-“pdb”), “large family” genetic linkage instances, and grid
ization) and we did not consider if further. Standard ridgenetworks (“75-2x-x"). Summary statistics of the different
regression adds the.-norm of the parameter vectorto  problem classes are given in Table 2. We note that all in-

the regularized loss function through a terrtiy", A?)%;  stances each take several hours, if not days to solve using
similarly, lasso regression (Tibshirani, 1996), places ansequential AOBB.

Lq-penalty on the parameter vector by adding the term . o
a>,|\i|. The so-called “Elastic Net’ combines both To compile a set of subproblem samples we revisit exper-

penalty terms (Zou & Hastie, 2005). In each case we foliments with fixed-depth parallelization (cf. Section 2.2):

lowed the common approach of determining the regulariza?/€ randomly choose not more than 500 subproblems from

tion parameter once through initial cross validation and & Previously recorded fixed-depth parallel run for each in-
held it fixed subsequently. stance. This leaves us with about 11,500 sample subprob-

lems (approx. 40% pedigree, 25% protein, 25% largeFam,
In our experiments we found all methods to perform simi-10% grids), which is very reasonable for the number of
larly in terms of training and prediction errors, with a $lig  features we have (the variance of the trained linear model
advantage for the lasso method. We will therefore focus orcgles withp/m, wherep is the number of features amad
lasso learning. This method has the additional benefit ofhe number of samples, cf. Section 7.3 in (Hastie et al.,
“built-in” feature selection: learned models are relagive 2011)).
sparse and thus compact, because kheregularization

pushes many parametexsto zero (Tibshirani, 1996). The empirical evaluation is organized as follows: Sections

4.1 through 4.3 assess the prediction power of our proposed
linear regression complexity model according to the three
levels of learning outlined in Section 3.3. Section 4.4 in-
In addition to the purely linear regression analysis pro-spects feature informativeness and Section 4.5 briefly in-
posed above, we also explored non-linear approaches. Mestigates performance of the quadratic model. Section 4.6
particular, we took inspiration from (Leyton-Brown et al., provides a summary of the learning results.

3.5. Non-linear regression
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Figure 3.Actual vs. predicted subproblem complexity when Figure 4. Actual vs. predicted subproblem complexity when
learning per problem instance, using 5-fold cross validation. learning per problem class.

Throughout this section results are presented as a log-log

scatter plot of actual versus predicted complexities, each

also containing mean squared prediction error (“MSE”, oncase. Finally, we note that the training error (“TER”) is
the test set) and Pearson correlation coefficient (“PCC”) asery close to the prediction error (“MSE”) in all cases, in-
well as mean squared training error (“TER”). dicating the absence of overfitting.

4.1. Learning per Problem Instance 4.2. Learning per Problem Class

This first set of experiments is meant to determine the preSecondly, we aim to assess how well we can learn a model
diction quality of a regression model that is learned for afor an entire problem class. That is, we learn only once
single instance only. To that end, we consider all subprobfrom sample subproblems of instances from the problem
lem samples from a given problem instance and apply 5€lass in question. For testing we perform cross validation
fold cross validation (i.e., partition the samples into 5su on the level of problem instances. Namely, we predict the
sets, then predict the complexities of each subset by learrsubproblems of a given instance by fitting a model using
ing a model on the remaining four). subproblem samples of other instances from the same class

. . . — but not of the test instance itself.
Figure 3 presents scatter plots for six problem instances

from the different problem classes considered. We see th&esults are shown in Figure 4. Compared to Figure 3 in
results are good for the protein and largeFam instance anithe previous section, estimates for the grid and largeFam
still acceptable fopedigreel9with slightly higher MSE.  instance are very similar and yield almost the same mean
Pedigree4lhas a relatively low MSE and good PCC, in squared error. MSE increases for the pedigree and large-
spite of the plot's flat appearance. In case of the grid ind~am instances, but the PCC and overall shape of the predic-
stance75-26-9the model’s discriminatory power is likely tions also remain similar, with the exceptiongEdigree41
limited by the small number of subproblem samples in thiswhich sees both MSE and PCC deteriorate.
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Figure 5.Actual vs. predicted subproblem complexity when
learning across problem classes.

4.3. Learning Multiple Problem Classes

Lastly, we investigate how good a model we can learn fro

sion model on the subproblems of all other instances, r
gardless of their problem class.

m
subproblems of instances across multiple problem classe
In particular, given a problem instance we learn a regres
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MSE: 0.116 R MSE: 2.074 .
S 9 PCC:-0.962 Sodhs S 9} PCC:0.886 . “
g g e
2 g S sp £ s J
3 3 mé}“
s T L T 4
£ g - ’
S 6f § of
° - .
g sk g st -
€ " <1 .
= . 14
F R bt o & apooob bt o
0 TERi0116 S TER:0,296
3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10
Actual complexity [log10] Actual complexity [log10]
nIargeFam3-11»59, p=200, fixed d=8 ulargeFam3-11-59, p=200, fixed d=8
MSE: 0.017 ‘ MSE: 3.309 .7
g | PCC: 0.965 5 10/ PCC: 0.959 5
> . = ;
8 8 8 S
z g’ z 9
3 3 -
g7 £ R
S 8 .
T L ?{ T 7+ $ee
5 L. A e 5 -
£ ; 3 .
i P
. ‘ . TER:0.017 : ... TER:0.304
5 6 7 8 5 6 7 8 9 10 11
Actual complexity [log10] Actual complexity [log10]
I pdblaém, p=511, fixed d=3 1 pdblaém, p=511, fixed d=3
MSE: 0.045 ’ MSE: 0.224 ‘
3 10rpcci0.991 PR 3 197PCCi0.98 ;
g or Py 2 9 S
N 4% = 7 g
2z 8 : WS 2z 8r 7 g
34l v wo 5 4l gt
a » a o
By A@a’# £ p
S Sl 53 s
g st 4 g 5
g 4l 2 a4l "
g N
W 3p : Lt 3p s R
S TER0.043 . TERO03Z
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11

Actual complexity [log10] Actual complexity [log10]

Figure 6.Example prediction results using a quadratic regression
model. Left: learning per problem instance, using 5-fold cross

validation (cf. Fig. 3). Right: learning from all problem classes
(cf. Fig. 5).

In addition, recall that thd.,-regularization in lasso re-
ression implicitly performs feature selection by assigni
; = 0forsomei. In our case, training on the entire sample
set (11,500 subproblem instances, regularization parame-

ter through cross-validation) yielded non-zexpfor nine
features, as shown in in Table 3. In addition each feature’s

Results are given in Figure 5, analogous to Figures 3 and 4.0st of omissiolf‘coo”) as defined in (Leyton-Brown et al.,
The two pedigree problems see an improved MSE and PC@009) is given, which measures the normalized difference

(significantly forpedigree4}, but the other instances suffer

from a slightly larger prediction error. However, we again
note that the overall shape of the plots remains roughly lin
ear, which is also captured by high PCC values.

4.4. Most informative features

Linear regression has the advantage that the resulting mo

els can be straightforward to interpret. Namely, to assess

the informativeness of featurg we simply look at the ab-
solute value of its coefficienk; in the regression model.

Featurep; [Ai] | coo
Average branching degree in probe 0.57 | 100
Average leaf node depth in probe 0.39| 87
Subproblem upper bound minus lower bound 0.22 | 17
Ratio of nodes pruned by heuristic in probe | 0.20| 27
Max. context size minus mini buckébound | 0.19| 16
d-Ratio of leaf nodes in probe 0.18| 10
Subproblem upper bound 0.11 7
Std. dev. of subproblem pseudo tree leaf depti®.06 2
Depth of subproblem root node in overall spgcé.05 2

Assuming a normalized sample set, features with largemable 3.Features present in the linear model trained by lasso re-
absolute values contribute more to the predictions and argression, with their model coefficients and their cost of omis-

thus intuitively more informative.

sion “coo” (normalized).
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between the prediction error of the model with all nine fea-lems to train on. Learning per problem class is more rea-

tures and the prediction error of a model trained with thesonable as the learned model can be reused within the given
respective feature omitted (using 5-fold cross-validatio  problem class; our experiments showed good performance.
all cases). Finally, learning across classes is the most challenging as

. . . the sample set is likely to be more diverse and have higher
The particular set of features can be somewhat misleading,_". - - )
c\’{anance, requiring more training samples; however, once

however, since lasso regression tends to pick only one o .
. e . we learn a model it can be used throughout.
several highly correlated features. Yet it is useful to gain
a conceptual understanding. In particular, we observe thaiknd indeed, our results in Section 4.3 show that, given our
the most informative features are dynamic, extracted fronsubstantial set of 11,500 subproblem samples, the model
a limited AOBB probe or based on the initial subproblem can accommodate this most general level of learning across
bounds. Only the fifth feature, max. subproblem contextproblem classes without a noticeable penalty, at least for
size minus mini-bucket-bound, is static, with a normal- the current collection of problem classes. A model learned
ized cost of omission of only 16. This ties in to Section 2.2,across classes is therefore also the basis for the nexasecti
where we observed that the asymptotic complexity boundvhere we demonstrate the benefit of robust complexity es-
of AOBB (based on static parameters) yields little informa-timates in the context of distributed AOBB.
tion in this context.

5. Regression-based L oad Balancing in

4.5. Non-linear Regression Practice

Here we briefly summarize results from our investigation . : .
. : L . gn this section we present selected experimental resuats th
of quadratic feature expansion, as detailed in Section 3.5,

L . show the potential of the proposed regression models in
Selected prediction results for three instances are shown .. - : . :
guiding the parallelization process, as described in 8ecti
2.2 —a comprehensive empirical evaluation of Distributed
rAOBB is beyond the scope of this paper. As noted above,
the regression model used for experiments in this section
Comparing the plots on the left (per-problem learning) withwas learned at the most general level, using all available
Figure 3, we note that quadratic regression does a bit beproblem classes as discussed in Section 4.3 (but always ex-
ter than linear regression in terms of MSE and very sim-cluding the test problem instance).
ilarly with regards to PCC. In contrast to (Leyton-Brown

et al., 2009), however, we find deteriorated prediction per-

learning from all problem classes.

=

o
N
T

formance when comparing the plots on the right with Fig- pedigree41, 50 CPUs, p=64, regr.-based

ure 5: while the PCC value is similar, the mean squared pre 2667 sec overall " [o Subproblem runtimes

diction error when learning from multiple problem classes - 10* J—|2665 max. job | ... |— overall runtime

increases considerably fpedigreel%ndlargeFam3-11- % . -

59. Notably, however, the training error remains fairly low £ 10°f, %207 % = = fwe0. e o TR e

in both cases, which is indicative of overfitting. And in- ;E *--l e My % O ]
&

deed, with over 600 subproblem features and just 31 dif:
fgrent mstan_c_es, the qua(_jra_\tlc regression model is IlkEIy_ [Mied 647 Avg 7983 Stav 5443 | |
pick up specific characteristics of each instance that taurt i 107, o %0 30 %0 50 60
predictive performance. Subproblems

pedigreel9, 100 CPUs, p=144, regr.-based

N

Since quadratic models are also more expensive to train ar : — ——
lack the straightforward interpretability of a i bd |[19973 pesiere ® Subproblem runtimes
ack the straightforward interpretability of a linear mbde 10°H19772 max. job |- Overall runtime !
we feel that the latter is better-suited for our purposes.

% % ey

é 10 !'."Co\*toiog'.bi m.—..—o __________
4.6. Interpretation of Results g wie By ey ey ;..:':J*:;:.;'_ B

K] L]
We have trained and evaluated our proposed regressic @ 102p i —.3;.-.4-':6
model on the three levels of learning laid out in Section 3.3, ([Med- 2124 Avg: 3376.5 Stdv: 4059 ‘
trading off between the wider applicability of the learned ~ 0 20 4 6 8 10 120 140

Subproblems

models and the challenges of capturing increasingly gen-

eral sample sets. Learning per problem instance providelq, 2 Subbrobl atistics f ion-based lleli

a good baseline but has limited relevance in practice, sinc 'gure 7-Subprobiem S1alistcs Tof regression-based parafietiza-
. . . . jon (cf. fixed-depth parallelization in Fig. 2),denotes the num-

each new instance requires extensive sampling of subpro%—er of subproblems
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10t largeFam3-15-59, 200 CPUs, p=476, fixed d=8

70 T T
1391 sec overall e  Subproblem runtimes — pedigree4l
5 : —— Overall runtime sor __ pedigreel9| |
[0 [}
i) 250 — LF3-15-59 [
() [
£ 9 40t
s 9 30 R P R et SRR
5 e | S _.i-s
s & 20t PR
1ok LTI
10 i i i i
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Subproblems Number of CPUs
10° largeFam3-15-59, 200 CPUs, p=476, regr.-based
e Subproblem runtimes Figure 10Parallel speedup fopedigree4l pedigreel9 and
< 716 max. job i |— overall runtime largeFam3-15-59cf. Figures 2, 7, and 8) as a function of the
2 . number of parallel CPUs. Dashed lines represent fixed-depth par-
:gj goe o aIIeIizat?on, solid lines correspond to parallel runs guided by our
§ ._6.....3’_' o regression model.
A
i ) KO- . . o
1ot HMed: 58 Avg: 986 Stdv: T11.7_ ... ... obtained during the parallel execution with the actual
0 100 bproblems-C recorded values. In both cases we observe good prediction

error andpedigree19n particular also shows good PCC.

Figure 8.Subproblem statistics for fixed-depth (top) and o
regression-based (bottom) parallelization lngeFam3-15-59  9.2. Facilitating Parallel Speedup

instance. Figure 10 plots the parallel speedup for the three prob-

lem instances considered in Section 5.1 over the number

pedigree4l, p=64, regr.-based pedigreel9, p=144, regr.-based

©
T

T Comparing each instance’s two entries reveals a clear ad-
] vantage for the regression-based parallelization: it

O sE: 0.126 ) YricE D153 ) of parallel CPUs. For each instance we show (as a dashed
g |Pec0233 ’ g 1o PCC: 0833 ’ line) the speedup when using fixed-depth parallelization
> of , . > and (with a solid line) the speedup of the parallel execu-
H aghaghes 2 tion guided by the regression model.
¥ [P O 8r

‘ ‘ R S S higher speedups, roughly by a factor of two, and seems to
8 9 10 6 7 8 9 10 11 ; L. .
Actual complexity [1og10] Actual complexity [1og10] plateau later, i.e. it is able to utilize a larger number of

) ) ] parallel resources.
Figure 9.Actual vs. predicted subproblem complexity from the

two parallel executions in Figure 7. On the other hand, most curves appear to level off well be-
fore their theoretical limit. This indicates that furthem-i
provements are possible, even though “perfect” speedup is

5.1. Improving L oad Balancing unattainable in practice, since splitting a given subpobl

To demonstrate the profound impact the complexity predic-pften y_|elds comppnents of widely varying size and large
mps in complexity.

tions can have on the load balancing of the parallel schemél,J
we revisit the two parallel experiments presented in Sactio One way to mitigate these issues lies in increasing the sub-
2.2, Figure 2. In both cases the overall performance wagproblem granularity, i.e., setting the number of subprob-

heavily dominated by very few long-running subproblems.lems to match several times the number of parallel CPUs.

. . . . However, this may add overhead in the general distributed
Figure 7 shows runtime statistics for parallel execution on

. . ) ontext and redundancies in the particular graphical model

these instances, using the regression model for load bal- . . S
i ) . " context, which can negate potential gains in extreme cases.
ancing. Figure 8 gives an additional example on a larges; I : . o
. Indeed, finding the right balance in granularity is a central
Fam instance. In all cases we see that the max. subprob- : : ) o )
: research issue in the field of distributed computing.
lem runtime has been reduced greatly, close to 50% for

largeFam3-15-591,362 to 716 seconds for “max. job” )
in Figure 8). We also note the drastically lower standard6. Conclusion & Future Work

deviation in subproblem runtimes. We have presented a case study of complexity estimation

In addition, Figure 9 compares the complexity estimatesn the context of parallelizing the state-of-the-art sediz
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optimization algorithm AND/OR Branch and Bound. The vey and synthesis. Operations Research 42
pruning power of the algorithm makes parallel load balanc- (6):1042-1066, 1994. ISSN 0030364X. URL
ing very challenging, leading to inefficiencies in practice http://ww. jstor.org/stabl e/ 171985.

To address these symptoms we have proposed to empl@yrama, Ananth and Kumar, Vipin. State of the art in paral-
statistical regression analysis in order to identify [ottl |g| search techniques for discrete optimization problems.

necks for parallel performance ahead of time. In particular |EEE Trans. Knowl. Data Eng11(1):28-35, 1999.
we developed a linear regression model that uses a variety

of static as well as dynamic features to predict a subprobGrama, Ananth, Karypis, George, Kumar, Vipin, and
lem’s complexity, enabling us to detect and split problem- Gupta, Anshullntroduction to Parallel ComputingAd-
atic subproblems. dison Wesley, 2003.

We identified three distinct levels of learning and evaldate |y «tie Trevor. Tibshirani. Robert. and Friedman. Jerome.
our proposed model accordingly, using more than 11,000 ¢ Elements of Statistical Learningpringer, 5th cor-
subproblem samples from 31 problem instances and four .o iaq edition. 2011. ISBN 0387952845

problem classes. Results were good throughout, with gen- ’

erally low prediction error and high correlation coeffidi®n  Kilby, Philip, Slaney, John, Tkbaux, Sylvie, and Walsh,

In the context of our parallel scheme, we have shown how 10PY- Estimating search tree size. AMAI, pp. 1014~
the regression model can enable more effective load bal- 1019- AAAI Press, 2006. ISBN 978-1-57735-281-5.

ancing and improved parallel speedup. This last set of renuth. Donald E. Estimating the efficiency of back-
sults, however, also outlined opportunities for further im traci< programs. Mathematics of Computation29
provements and future research, including varying the par- (129):121-136 ' 1975 ISSN 00255718 URL

allel granularity. http://ww. jstor.org/stabl e/ 2005469.
Future work with respect to learning of complexity esti- )

mates will expand to more instances and additional propL-€yton-Brown, Kevin, Nudelman, Eugene, and Shoham,
lem classes. In that context we also plan to investigate how Y0av. Empirical hardness models: Methodology and
our learned models perform on instances from previously @ case study on combinatorial auctionslournal of
unseen problem classes. Furthermore, we are trying to de- th® ACM 56(4):1-52, 2009. ISSN 0004-5411. doi:
vise more subproblem features, for instance extracted di- NttP://doi.acm.org/10.1145/1538902.1538906.

rectly from the cost function tables within a subproblem. Marinescu, Radu and Dechter, Rina. AND/OR Branch-

and-Bound search for combinatorial optimization in
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