
A Case Study in Complexity Estimation:
Towards Parallel Branch-and-Bound over Graphical Models

Lars Otten LOTTEN@UCI.EDU

Department of Computer Science, University of California,Irvine, CA 92697

Rina Dechter DECHTER@ICS.UCI.EDU

Department of Computer Science, University of California,Irvine, CA 92697

Abstract
We study the problem of complexity estima-
tion in the context of parallelizing an advanced
Branch and Bound-type algorithm over graph-
ical models. The algorithm’s pruning power
makes load balancing, one crucial element of ev-
ery distributed system, very challenging. We pro-
pose using a statistical regression model to iden-
tify and tackle disproportionally complex paral-
lel subproblems, the cause of load imbalance,
ahead of time. The proposed model is evalu-
ated and analyzed on various levels and shown
to yield robust predictions. We then demonstrate
its effectiveness for load balancing in practice.

1. Introduction

This paper explores the application of learning for im-
proved load balancing in the context of distributed search
for discrete combinatorial optimization over graphical
models (e.g., Bayesian networks, weighted CSPs). Specif-
ically, we consider one of the best exact search algorithms
for solving the MPE task over graphical models, AND/OR
Branch and Bound (AOBB) (Marinescu & Dechter, 2009),
ranked first and third, respectively, in the UAI’06 and ’08
evaluations and winning all three MPE categories of the
2011 PASCAL Inference Challenge.

We adapt the concept of parallel tree search (Grama & Ku-
mar, 1999), where a search tree is explored centrally up to a
certain depth and the remaining subtrees are solved in par-
allel. In the graphical model context we explore the search
space of partial instantiations up to a certain point and solve
the resulting conditioned subproblems in parallel.

Presented at the International Conference on Machine Learning
(ICML) workshop onInferning: Interactions be- tween Inference
and Learning, Atlanta, Georgia, USA, 2013. Copyright 2013 by
the author(s).

The distributed framework is built with a grid computing
environment in mind, i.e., a set of autonomous, loosely
connected systems – notably, we cannot assume any kind
of shared memory or dynamic load balancing which most
parallel or distributed algorithms build upon (Chu et al.,
2009; Gendron & Crainic, 1994; Grama & Kumar, 1999;
Grama et al., 2003). The primary challenge is therefore
to determine a priori a set of subproblems with balanced
complexity, so that the overall parallel runtime will not be
dominated by just a few of them. In the optimization con-
text, however, the use of cost and heuristic functions for
pruning makes it very hard to reliably predict and balance
subproblem complexity ahead of time; in particular, struc-
tural parameters like the induced width are not sufficient to
differentiate subproblems.

Our suggested approach and the main contribution of this
paper is to estimate subproblem complexity by learning
a regression model over several subproblem parameters,
some static and structural (e.g., induced width, variable do-
main sizes), others dynamically extracted at runtime (e.g.
upper and lower bounds on the subproblem solution based
on the heuristic function).

A similar regression-based approach was developed in
(Leyton-Brown et al., 2009) to predict the problem com-
plexity (called “empirical hardness”) of combinatorial auc-
tion instances; similarly the successful SAT solverSATzilla
uses linear regression models to choose among a set of
component solvers the one that is predicted to be fastest
for a given SAT instance (Xu et al., 2008).

Other general work on estimating search complexity goes
back to (Knuth, 1975) and more recently (Kilby et al.,
2006), which predict the size of general backtrack trees
through random probing. Similar schemes were devised
for Branch and Bound algorithms (Cornuéjols et al., 2006),
where search is run for a limited time and the partially
explored tree is extrapolated. These approaches typically
require a substantial amount of probing, which is pro-

A Case Study in Complexity Estimation: Towards Parallel Branch-and-Bound over Graphical Models

(a) (b) (c) (d)

Figure 1.(a) Example primal graph with six variables, (b) its pseudo tree along orderingA,B,C,D,E, F , (c) the corresponding context-
minimal AND/OR search graph, and (d) the parallel search space resulting from parallelizing at depthd = 2 with eight independent
subproblems.

hibitively expensive in our setup, where many hundreds, if
not thousands of subproblems need to be evaluated quickly.

The contribution of the present paper lies in proposing and
studying a general learning approach for estimating sub-
problem complexity. In particular, we frame the problem
as statistical regression analysis, which allows us to lever-
age established, powerful techniques from machine learn-
ing and statistics. Motivated by different parallelization
scenarios, we distinguish three distinct levels of learning:
based on a single problem instance, based on a specific
class of problems, and based on a combination of problem
classes. We evaluate, analyze, and contrast these three lev-
els on a sample set of more than 11,000 subproblem sam-
ples from four problem classes and demonstrate generally
robust prediction performance. We also demonstrate em-
pirically the model’s potential for improved load balancing.

The remainder of the paper is organized as follows: Section
2 summarizes the necessary background and outlines the
distributed AND/OR Branch and Bound algorithm. Sec-
tion 3 introduces the proposed regression model for com-
plexity estimation while Section 4 evaluates it on a variety
of instances from several problem classes. Section 5 pro-
vides selected parallel results that highlight the benefitsof
the proposed model and Section 6 concludes.

2. Background

We assume the usual definitions of agraphical modelas a
set of functionsF = {f1, . . . , fm} over discrete variables
X = {X1, . . . , Xn} , its primal graph, induced graph, and
induced width.

2.1. AND/OR Search Spaces

The concept of AND/OR search spaces has been intro-
duced as a unifying framework for advanced algorithmic
schemes for graphical models to better capture the struc-
ture of the underlying graph (Dechter & Mateescu, 2007).
Its main virtue consists in exploiting conditional indepen-
dencies between variables, which can lead to exponential

speedups. The search space is defined using apseudo tree,
which captures problem decomposition:

DEFINITION 1 (pseudo tree) Given an undirected graph
G = (X,E) , a pseudo treeof G is a directed, rooted tree
T = (X,E′) with the same set of nodesX , such that ev-
ery arc ofG that is not included inE′ is a back-arc inT ,
namely it connects a node inT to an ancestor inT . The
arcs inE′ may not all be included inE .

AND/OR Search Trees and Graphs : Given a graphical
model instance with variablesX and functionsF , its pri-
mal graph(X,E) , and a pseudo treeT , the associated
AND/OR search treeconsists of alternating levels of OR
and AND nodes. The structure of the AND/OR search tree
is based on the underlying pseudo treeT : the root of the
AND/OR search tree is an OR node labeled with the root
of T . The children of an OR nodeXi are AND nodes la-
beled with assignments〈Xi, xi〉 ; the children of an AND
node〈Xi, xi〉 are OR nodes labeled with the children ofXi

in T , representing conditionally independent subproblems.
Different nodes may root identical subproblems and can
be merged throughcaching, yielding anAND/OR search
graph of smaller size, at the expense of using additional
memory during search.

Given a graphical model, its primal graphG , and a guid-
ing pseudo treeT of heighth, the size of the AND/OR
search tree isO(n · kh) , while O(n · kw

∗

) bounds the
AND/OR search graph, wherew∗ is the induced width
of G over a depth-first traversal ofT and k bounds the
domain size (Dechter & Mateescu, 2007). Figure 1(a)
shows an example problem primal graph with six vari-
ables, Figure 1(b) depicts a pseudo tree along ordering
A,B,C,D,E, F . Figure 1(c) shows the corresponding
AND/OR search graph.

AND/OR Branch and Bound : AND/OR Branch and
Bound (AOBB) is a state-of-the-art algorithm for solving
optimization problems over graphical models. Assuming
maximization, it traverses the AND/OR graph in a depth-
first manner while keeping track of a current lower bound

A Case Study in Complexity Estimation: Towards Parallel Branch-and-Bound over Graphical Models

on the optimal solution cost. During expansion of a noden,
this lower boundl is compared with a heuristic upper bound
u(n) on the optimal solution belown – if u(n) ≤ l the al-
gorithm can prune the subproblem belown (Marinescu &
Dechter, 2009).

Mini-Bucket Heuristics : The heuristich(n) that we use
in our experiments is the Mini-Bucket heuristic. It is based
on Mini-Bucket elimination, an approximate variant of a
variable elimination scheme that computes approximations
to reasoning problems over graphical models (Dechter &
Rish, 2003). A control parameteri allows to trade ac-
curacy of the heuristic against its time and space require-
ments. It was shown that the intermediate functions gener-
ated by the Mini-Bucket algorithm MBE(i) can be used to
derive a heuristic function that underestimates the minimal
cost solution to a subproblem in the AND/OR search graph
(Marinescu & Dechter, 2009).

2.2. Distributed AOBB & Load Balancing

Our distributed implementation of AND/OR Branch and
Bound draws from the notion of parallel tree search (Grama
& Kumar, 1999; Grama et al., 2003), where a search tree is
explored centrally up to a certain depth and the remain-
ing subtrees are solved in parallel. Applied to the search
graph from Figure 1(c), for instance, we could obtain eight
independent subproblems as shown in Figure 1(d), with a
conditioning search space (in gray) spanning the first two
levels (variablesA andB).

We refer to the boundary between conditioning search
space and parallel subproblems as theparallelization fron-
tier. Its choice determines the shape and the number of sub-
problems and is thus crucial for effective parallelload bal-
ancing. Namely, for best parallel performance we should
spread the parallel workload evenly across all available
CPUs, while minimizing overhead. Note that we assume
independent worker machines, with limited or very costly
communication, hence dynamic load balancing at runtime
(cf. (Grama et al., 2003)) is not applicable.

Algorithm 1 shows pseudo code for our parallelization pol-
icy: the parallelization frontier is generated in a breadth-
first manner by iteratively selecting the current most com-

Algorithm 1 Finding the parallelization frontier
Require: Pseudo treeT with rootX0, subproblem countp, sub-

problem complexity estimator̂N .
Ensure: SetF of subproblem root nodes with|F | ≥ p .
1: F ← {〈X0〉}
2: while |F | < p : do
3: n′ ← argmaxn∈F N̂(n)
4: F ← F \ {n′}
5: F ← F ∪ children(n′)
6: end while

0 10 20 30 40 50 60
Subproblems

101

102

103

104

So
lu

tio
n

tim
e

[s
ec

]

pedigree41, 50 CPUs, p=64, fixed d=5
Subproblem runtimes
Overall runtime

4706 sec overall
4704 max. job

Med: 267 Avg: 793.3 Stdv: 1339.6

0 20 40 60 80 100 120 140
Subproblems

101

102

103

104

105

So
lu

tio
n

tim
e

[s
ec

]

pedigree19, 100 CPUs, p=144, fixed d=4
Subproblem runtimes
Overall runtime

34424 sec overall
34382 max. job

Med: 1132 Avg: 3382.1 Stdv: 5584.3

Figure 2.Subproblem statistics for fixed-depth parallelization
frontier showing large variance in subproblem runtime. Dashed
lines mark 0, 20, 80, and 100 percentile.

plex subproblem, estimated by a complexity estimator
N̂ , and splitting it into its immediate “sub-subproblems”,
which are in turn added to the frontier. This process is re-
peated until a desired number of subproblems is obtained,
at which point all subproblems are submitted to the dis-
tributed environment.

In the context of depth-first Branch and Bound, however,
determining the most complex subproblem is extremely
difficult and elusive. Due to the pruning power of the
algorithm, subproblem runtimes can differ greatly, even
when the underlying subgraph structure and the associated
asymptotic complexity guarantees (exponential in the in-
duced width of the AND/OR subspace) are identical.

To illustrate, consider the subproblem statistics of two par-
allel runs shown in Figure 2, where instead the paralleliza-
tion frontier is placed at a fixed depthd = 5 andd = 4,
respectively, yielding 64 and 144 subproblems (the hori-
zontal axis). In each case we see significant variance in
subproblem runtime. In fact, the overall runtime is dom-
inated exclusively by the handful of longest-running sub-
problems, with most other subproblems finishing long be-
fore (note the log scale). Detecting and mitigating this im-
balance ahead of time constitutes the central challenge in
this line of work, as we elaborate in the next sections.

A Case Study in Complexity Estimation: Towards Parallel Branch-and-Bound over Graphical Models

3. Learning Complexities through Regression

This section introduces our learning approach to subprob-
lem complexity prediction through regression analysis.
Previous work has investigated and evaluated various meth-
ods for balancing subproblem complexity, directly formu-
lating metrics using human expert knowledge (Otten &
Dechter, 2010; 2011). These metrics were relative in na-
ture, i.e., they only allowed comparison of one subproblem
to another within a given overall problem instance. In con-
trast, the present work does not depend as heavily on expert
knowledge and gives absolute complexity estimates.

3.1. General Methodology

We identify a subproblem by its search space root node
n. We further measure the complexity of the subproblem
rooted atn through the size of its explored search space,
which is the number of node expansions required for its
solution, denotedN(n). We then aim to capture the expo-
nential nature of the search space size by modelingN(n)
as an exponential function of various subproblem features
φi(n) as follows:

N(n) = exp(
∑

i

λiφi(n)) (1)

The exponent has been chosen as a sum so that we can
consider the log complexity and obtain the following:

logN(n) =
∑

i

λiφi(n) (2)

Given a set ofm sample subproblems, finding suitable pa-
rameter valuesλj can thus be formulated as a well-known
linear regressionproblem, with themean squared error
(MSE) as the loss functionL(λ) we aim to minimize:

L(λ) =
1

m

m
∑

k=1

(

∑

i

λiφi(nk)− logN(nk)
)2

(3)

The MSE captures how well the learned regression model
fits the training data. In the context of load balancing for
parallelism we can consider a secondary metric, thePear-
son correlation coefficient(PCC), which is simply the nor-
malized covariance between the vector of subproblem com-
plexities and their estimates, normalized by the product of
each vector’s standard deviation. It is bounded by[−1, 1] ,
where 1 implies perfect linear correlation and -1 anticorre-
lation. Hence a value close to 1 is desirable, as it signifies a
model likely to correctly identify the hardest subproblems.

3.2. Subproblem Features

Table 1 lists the full set of basic subproblem featuresφi

that we consider. This list was compiled based on our prior
knowledge of what aspects can affect problem complexity.

Subproblem variable statistics (static):
1: Number of variables in subproblem.

2-6: Min, Max, mean, average, and std. dev. of variable
domain sizes in subproblem.

Pseudotree depth/leaf statistics (static):
7: Depth of subproblem root in overall search space.

8-12: Min, max, mean, average, and std. dev. of depth of
subproblem pseudo tree leaf nodes, counted from sub-
problem root.

13: Number of leaf nodes in subproblem pseudo tree.
Pseudo tree width statistics (static):
14-18: Min, max, mean, average, and std. dev. of induced

width of variables within subproblem.
19-23: Min, max, mean, average, and std. dev. of induced

width of variables within subproblem,when condition-
ing on subproblem root conditioning set.

Subproblem cost bounds (dynamic):
24: Lower boundL on subproblem solution cost, derived

from current best overall solution.
25: Upper boundU on subproblem solution cost, provided

by mini bucket heuristics.
26: DifferenceU − L between upper and lower bound, ex-

pressing “constrainedness” of the subproblem.
Pruning ratios (dynamic), based on running 5000 node ex-
pansion probe of AOBB:

27: Ratio of nodes pruned using the heuristic.
28: Ratio of nodes pruned due of determinism (zero proba-

bilities, e.g.)
29: Ratio of nodes corresponding to pseudo tree leaf.

Sample statistics (dynamic), based on running 5000 node ex-
pansion probe of AOBB:

30: Average depth of terminal search nodes within probe.
31: Average node depth within probe (denotedd̄).
32: Average branching degree, defined asd̄

√
5000 .

Various (static):
33: Mini bucketi-bound parameter.
34: Max. subproblem variable context size minus mini

bucketi-bound.

Table 1.Subproblem features for complexity estimation.

Features can be divided into two distinct classes: “static”,
which can be precompiled from the problem graph and
pseudo tree, and “dynamic” which are computed at run-
time, as the parallelization frontier decision is made (note
that none of the dynamic features are costly to compute).

3.3. Subproblem Sample Domains

In order to evaluate training and prediction error of the
proposed complexity model from a statistical learning per-
spective, we need to specify the sample domain over which
we will make predictions, for which we aim to generate a
model, and from which subproblem samples are assumed
to be drawn. In fact, in the following we consider three
incrementally more general levels of sample domains and
learning, corresponding to three different designs in the
context of parallelizing AOBB:

1. Learning per problem instance: The sample domain

A Case Study in Complexity Estimation: Towards Parallel Branch-and-Bound over Graphical Models

is all subproblems from a single problem instance.
This corresponds to learning a new complexity model
for every problem instance the parallel scheme en-
counters (e.g., we would learn separate models for the
two instances in Figure 2).

2. Learning per problem class: Take the domain to be
all subproblems of problems from a specific class. In
the parallelization context we learn a separate model
for every problem class we consider. For example, we
would learn a single model for all pedigree problems,
but a different model for other problem classes like
protein sidechain prediction.

3. Learning across problem classes: Take the sample
domain to be all subproblems of all problems from
several classes. Ultimately this could translate to a
parallel scheme that uses a single complexity model
for all problem classes under consideration.

These three levels are increasingly more general and thus
potentially more challenging for robust estimation. On the
other hand, they require increasingly less computational ef-
fort, since fewer distinct models need to be learned. Lastly,
they can present different trade-offs between pre-compiled
off-line learning and learning at runtime.

3.4. Regression Algorithms

We investigated a number of algorithms for fitting a lin-
ear model. Ordinary least squares (OLS) regression was
problematic due to numerical issues (near-singular matrix
inversion) and prone to overfitting (due to lack of regular-
ization) and we did not consider if further. Standard ridge
regression adds theL2-norm of the parameter vectorλ to
the regularized loss function through a termα(

∑

i λ
2

i)
1

2 ;
similarly, lasso regression (Tibshirani, 1996), places an
L1-penalty on the parameter vector by adding the term
α
∑

i |λi| . The so-called “Elastic Net” combines both
penalty terms (Zou & Hastie, 2005). In each case we fol-
lowed the common approach of determining the regulariza-
tion parameterα once through initial cross validation and
held it fixed subsequently.

In our experiments we found all methods to perform simi-
larly in terms of training and prediction errors, with a slight
advantage for the lasso method. We will therefore focus on
lasso learning. This method has the additional benefit of
“built-in” feature selection: learned models are relatively
sparse and thus compact, because theL1-regularization
pushes many parametersλi to zero (Tibshirani, 1996).

3.5. Non-linear regression

In addition to the purely linear regression analysis pro-
posed above, we also explored non-linear approaches. In
particular, we took inspiration from (Leyton-Brown et al.,

domain M n k w h

pedigree 13 437 – 1272 3 – 7 17 – 39 47 – 102
pdb 5 103 – 172 81 10 – 15 24 – 43
largeFam 8 2569 – 3730 3 – 4 28 – 37 73 – 108
grid 5 624 – 675 2 37 – 39 111 – 124

Table 2.Summary statistics for problem classes used,M gives the
number of instances in the class.n denotes number of problem
variables,k max. domain size,w induced width,h pseudo tree
height.

2009), which reports improved prediction performance us-
ing quadratic feature expansion, albeit in the context of
combinatorial auctions. Quadratic feature expansion, also
referred to as “quadratic regression”, works by adding new
features in the form of pairwise products of the original
features; namely, for every pair of subproblem featuresφi,
φj with i ≤ j, we create a new featureφi · φj . We then
perform linear regression on the expanded feature set (629
in our case), thereby effectively fitting a polynomial of 2nd
degree. Results will be outlined in Section 4.5.

Next we evaluate the proposed regression model on a vari-
ety of instances from several different problem classes.

4. Evaluation and Analysis

The basis for our evaluation are 31 hard problem instances
from four classes: pedigree haplotyping problems, protein
side-chain prediction ((Yanover & Weiss, 2003), named
“pdb”), “large family” genetic linkage instances, and grid
networks (“75-2x-x”). Summary statistics of the different
problem classes are given in Table 2. We note that all in-
stances each take several hours, if not days to solve using
sequential AOBB.

To compile a set of subproblem samples we revisit exper-
iments with fixed-depth parallelization (cf. Section 2.2):
we randomly choose not more than 500 subproblems from
a previously recorded fixed-depth parallel run for each in-
stance. This leaves us with about 11,500 sample subprob-
lems (approx. 40% pedigree, 25% protein, 25% largeFam,
10% grids), which is very reasonable for the number of
features we have (the variance of the trained linear model
scales withp/m, wherep is the number of features andm
the number of samples, cf. Section 7.3 in (Hastie et al.,
2011)).

The empirical evaluation is organized as follows: Sections
4.1 through 4.3 assess the prediction power of our proposed
linear regression complexity model according to the three
levels of learning outlined in Section 3.3. Section 4.4 in-
spects feature informativeness and Section 4.5 briefly in-
vestigates performance of the quadratic model. Section 4.6
provides a summary of the learning results.

A Case Study in Complexity Estimation: Towards Parallel Branch-and-Bound over Graphical Models

3 4 5 6 7 8 9 10
Actual complexity [log10]

3

4

5

6

7

8

9

10

Es
tim

at
ed

 c
om

pl
ex

ity
 [l

og
10

]

pedigree19, p=1440, fixed d=6
MSE: 0.469
PCC: 0.835

TER: 0.468
5 6 7 8 9

Actual complexity [log10]
5

6

7

8

9

Es
tim

at
ed

 c
om

pl
ex

ity
 [l

og
10

]

pedigree41, p=1408, fixed d=10
MSE: 0.212
PCC: 0.842

TER: 0.212

3 4 5 6 7 8 9 10
Actual complexity [log10]

3

4

5

6

7

8

9

10

Es
tim

at
ed

 c
om

pl
ex

ity
 [l

og
10

]

largeFam3-15-59, p=936, fixed d=9
MSE: 0.162
PCC: 0.937

TER: 0.159
5 6 7 8 9

Actual complexity [log10]
5

6

7

8

9
Es

tim
at

ed
 c

om
pl

ex
ity

 [l
og

10
]

largeFam3-11-59, p=200, fixed d=8
MSE: 0.071
PCC: 0.879

TER: 0.068

2 3 4 5 6 7 8 9 10 11
Actual complexity [log10]

2

3

4

5

6

7

8

9

10

11

Es
tim

at
ed

 c
om

pl
ex

ity
 [l

og
10

]

pdb1a6m, p=511, fixed d=3
MSE: 0.061
PCC: 0.990

TER: 0.059
6 7 8 9

Actual complexity [log10]
6

7

8

9

Es
tim

at
ed

 c
om

pl
ex

ity
 [l

og
10

]

75-26-9, p=240, fixed d=9
MSE: 0.129
PCC: 0.801

TER: 0.127

Figure 3.Actual vs. predicted subproblem complexity when
learning per problem instance, using 5-fold cross validation.

Throughout this section results are presented as a log-log
scatter plot of actual versus predicted complexities, each
also containing mean squared prediction error (“MSE”, on
the test set) and Pearson correlation coefficient (“PCC”) as
well as mean squared training error (“TER”).

4.1. Learning per Problem Instance

This first set of experiments is meant to determine the pre-
diction quality of a regression model that is learned for a
single instance only. To that end, we consider all subprob-
lem samples from a given problem instance and apply 5-
fold cross validation (i.e., partition the samples into 5 sub-
sets, then predict the complexities of each subset by learn-
ing a model on the remaining four).

Figure 3 presents scatter plots for six problem instances
from the different problem classes considered. We see that
results are good for the protein and largeFam instance and
still acceptable forpedigree19with slightly higher MSE.
Pedigree41has a relatively low MSE and good PCC, in
spite of the plot’s flat appearance. In case of the grid in-
stance75-26-9the model’s discriminatory power is likely
limited by the small number of subproblem samples in this

3 4 5 6 7 8 9 10
Actual complexity [log10]

3

4

5

6

7

8

9

10

Pr
ed

ic
te

d
co

m
pl

ex
ity

 [l
og

10
]

pedigree19, p=1440, fixed d=6
MSE: 1.384
PCC: 0.835

TER: 0.585
5 6 7 8 9

Actual complexity [log10]
5

6

7

8

9

Pr
ed

ic
te

d
co

m
pl

ex
ity

 [l
og

10
]

pedigree41, p=1408, fixed d=10
MSE: 0.590
PCC: 0.322

TER: 0.656

3 4 5 6 7 8 9 10
Actual complexity [log10]

3

4

5

6

7

8

9

10

Pr
ed

ic
te

d
co

m
pl

ex
ity

 [l
og

10
]

largeFam3-15-59, p=936, fixed d=9
MSE: 0.164
PCC: 0.968

TER: 0.160
5 6 7 8 9

Actual complexity [log10]
5

6

7

8

9

Pr
ed

ic
te

d
co

m
pl

ex
ity

 [l
og

10
]

largeFam3-11-59, p=200, fixed d=8
MSE: 0.150
PCC: 0.964

TER: 0.160

2 3 4 5 6 7 8 9 10 11
Actual complexity [log10]

2

3

4

5

6

7

8

9

10

11

Pr
ed

ic
te

d
co

m
pl

ex
ity

 [l
og

10
]

pdb1a6m, p=511, fixed d=3
MSE: 0.619
PCC: 0.984

TER: 0.156
6 7 8 9

Actual complexity [log10]
6

7

8

9

Pr
ed

ic
te

d
co

m
pl

ex
ity

 [l
og

10
]

75-26-9, p=240, fixed d=9
MSE: 0.121
PCC: 0.815

TER: 0.347

Figure 4.Actual vs. predicted subproblem complexity when
learning per problem class.

case. Finally, we note that the training error (“TER”) is
very close to the prediction error (“MSE”) in all cases, in-
dicating the absence of overfitting.

4.2. Learning per Problem Class

Secondly, we aim to assess how well we can learn a model
for an entire problem class. That is, we learn only once
from sample subproblems of instances from the problem
class in question. For testing we perform cross validation
on the level of problem instances. Namely, we predict the
subproblems of a given instance by fitting a model using
subproblem samples of other instances from the same class
– but not of the test instance itself.

Results are shown in Figure 4. Compared to Figure 3 in
the previous section, estimates for the grid and largeFam
instance are very similar and yield almost the same mean
squared error. MSE increases for the pedigree and large-
Fam instances, but the PCC and overall shape of the predic-
tions also remain similar, with the exception ofpedigree41
which sees both MSE and PCC deteriorate.

A Case Study in Complexity Estimation: Towards Parallel Branch-and-Bound over Graphical Models

3 4 5 6 7 8 9 10
Actual complexity [log10]

3

4

5

6

7

8

9

10

Pr
ed

ic
te

d
co

m
pl

ex
ity

 [l
og

10
]

pedigree19, p=1440, fixed d=6
MSE: 0.656
PCC: 0.885

TER: 0.651
5 6 7 8 9 10

Actual complexity [log10]
5

6

7

8

9

10

Pr
ed

ic
te

d
co

m
pl

ex
ity

 [l
og

10
]

pedigree41, p=1408, fixed d=10
MSE: 0.527
PCC: 0.819

TER: 0.635

3 4 5 6 7 8 9 10
Actual complexity [log10]

3

4

5

6

7

8

9

10

Pr
ed

ic
te

d
co

m
pl

ex
ity

 [l
og

10
]

largeFam3-15-59, p=936, fixed d=9
MSE: 0.370
PCC: 0.966

TER: 0.648
5 6 7 8 9

Actual complexity [log10]
5

6

7

8

9
Pr

ed
ic

te
d

co
m

pl
ex

ity
 [l

og
10

]
largeFam3-11-59, p=200, fixed d=8

MSE: 0.094
PCC: 0.957

TER: 0.646

2 3 4 5 6 7 8 9 10 11
Actual complexity [log10]

2

3

4

5

6

7

8

9

10

11

Pr
ed

ic
te

d
co

m
pl

ex
ity

 [l
og

10
]

pdb1a6m, p=511, fixed d=3
MSE: 0.422
PCC: 0.989

TER: 0.646
6 7 8 9

Actual complexity [log10]
6

7

8

9

Pr
ed

ic
te

d
co

m
pl

ex
ity

 [l
og

10
]

75-26-9, p=240, fixed d=9
MSE: 0.228
PCC: 0.825

TER: 0.643

Figure 5.Actual vs. predicted subproblem complexity when
learning across problem classes.

4.3. Learning Multiple Problem Classes

Lastly, we investigate how good a model we can learn from
subproblems of instances across multiple problem classes.
In particular, given a problem instance we learn a regres-
sion model on the subproblems of all other instances, re-
gardless of their problem class.

Results are given in Figure 5, analogous to Figures 3 and 4.
The two pedigree problems see an improved MSE and PCC
(significantly forpedigree41), but the other instances suffer
from a slightly larger prediction error. However, we again
note that the overall shape of the plots remains roughly lin-
ear, which is also captured by high PCC values.

4.4. Most informative features

Linear regression has the advantage that the resulting mod-
els can be straightforward to interpret. Namely, to assess
the informativeness of featureφi we simply look at the ab-
solute value of its coefficientλi in the regression model.
Assuming a normalized sample set, features with larger
absolute values contribute more to the predictions and are
thus intuitively more informative.

3 4 5 6 7 8 9 10
Actual complexity [log10]

3

4

5

6

7

8

9

10

Es
tim

at
ed

 c
om

pl
ex

ity
 [l

og
10

]

pedigree19, p=1440, fixed d=6
MSE: 0.116
PCC: 0.962

TER: 0.116
3 4 5 6 7 8 9 10

Actual complexity [log10]
3

4

5

6

7

8

9

10

Pr
ed

ic
te

d
co

m
pl

ex
ity

 [l
og

10
]

pedigree19, p=1440, fixed d=6
MSE: 2.074
PCC: 0.886

TER: 0.296

5 6 7 8 9
Actual complexity [log10]

5

6

7

8

9

Es
tim

at
ed

 c
om

pl
ex

ity
 [l

og
10

]

largeFam3-11-59, p=200, fixed d=8
MSE: 0.017
PCC: 0.965

TER: 0.017
5 6 7 8 9 10 11

Actual complexity [log10]
5

6

7

8

9

10

11

Pr
ed

ic
te

d
co

m
pl

ex
ity

 [l
og

10
]

largeFam3-11-59, p=200, fixed d=8
MSE: 3.309
PCC: 0.959

TER: 0.304

2 3 4 5 6 7 8 9 10 11
Actual complexity [log10]

2

3

4

5

6

7

8

9

10

11

Es
tim

at
ed

 c
om

pl
ex

ity
 [l

og
10

]

pdb1a6m, p=511, fixed d=3
MSE: 0.045
PCC: 0.991

TER: 0.043
2 3 4 5 6 7 8 9 10 11

Actual complexity [log10]
2

3

4

5

6

7

8

9

10

11

Pr
ed

ic
te

d
co

m
pl

ex
ity

 [l
og

10
]

pdb1a6m, p=511, fixed d=3
MSE: 0.224
PCC: 0.989

TER: 0.322

Figure 6.Example prediction results using a quadratic regression
model. Left: learning per problem instance, using 5-fold cross
validation (cf. Fig. 3). Right: learning from all problem classes
(cf. Fig. 5).

In addition, recall that theL1-regularization in lasso re-
gression implicitly performs feature selection by assigning
λi = 0 for somei. In our case, training on the entire sample
set (11,500 subproblem instances, regularization parame-
ter through cross-validation) yielded non-zeroλi for nine
features, as shown in in Table 3. In addition each feature’s
cost of omission(“coo”) as defined in (Leyton-Brown et al.,
2009) is given, which measures the normalized difference

Featureφi |λi| coo
Average branching degree in probe 0.57 100
Average leaf node depth in probe 0.39 87
Subproblem upper bound minus lower bound 0.22 17
Ratio of nodes pruned by heuristic in probe 0.20 27
Max. context size minus mini bucketi-bound 0.19 16
Ratio of leaf nodes in probe 0.18 10
Subproblem upper bound 0.11 7
Std. dev. of subproblem pseudo tree leaf depth0.06 2
Depth of subproblem root node in overall space0.05 2

Table 3.Features present in the linear model trained by lasso re-
gression, with their model coefficientsλi and their cost of omis-
sion “coo” (normalized).

A Case Study in Complexity Estimation: Towards Parallel Branch-and-Bound over Graphical Models

between the prediction error of the model with all nine fea-
tures and the prediction error of a model trained with the
respective feature omitted (using 5-fold cross-validation in
all cases).

The particular set of features can be somewhat misleading,
however, since lasso regression tends to pick only one of
several highly correlated features. Yet it is useful to gain
a conceptual understanding. In particular, we observe that
the most informative features are dynamic, extracted from
a limited AOBB probe or based on the initial subproblem
bounds. Only the fifth feature, max. subproblem context
size minus mini-bucketi-bound, is static, with a normal-
ized cost of omission of only 16. This ties in to Section 2.2,
where we observed that the asymptotic complexity bound
of AOBB (based on static parameters) yields little informa-
tion in this context.

4.5. Non-linear Regression

Here we briefly summarize results from our investigation
of quadratic feature expansion, as detailed in Section 3.5.
Selected prediction results for three instances are shown
in Figure 6. On the left are results of learning per problem
instances, on the right we plot the prediction accuracy when
learning from all problem classes.

Comparing the plots on the left (per-problem learning) with
Figure 3, we note that quadratic regression does a bit bet-
ter than linear regression in terms of MSE and very sim-
ilarly with regards to PCC. In contrast to (Leyton-Brown
et al., 2009), however, we find deteriorated prediction per-
formance when comparing the plots on the right with Fig-
ure 5: while the PCC value is similar, the mean squared pre-
diction error when learning from multiple problem classes
increases considerably forpedigree19and largeFam3-11-
59. Notably, however, the training error remains fairly low
in both cases, which is indicative of overfitting. And in-
deed, with over 600 subproblem features and just 31 dif-
ferent instances, the quadratic regression model is likelyto
pick up specific characteristics of each instance that hurt its
predictive performance.

Since quadratic models are also more expensive to train and
lack the straightforward interpretability of a linear model,
we feel that the latter is better-suited for our purposes.

4.6. Interpretation of Results

We have trained and evaluated our proposed regression
model on the three levels of learning laid out in Section 3.3,
trading off between the wider applicability of the learned
models and the challenges of capturing increasingly gen-
eral sample sets. Learning per problem instance provided
a good baseline but has limited relevance in practice, since
each new instance requires extensive sampling of subprob-

lems to train on. Learning per problem class is more rea-
sonable as the learned model can be reused within the given
problem class; our experiments showed good performance.
Finally, learning across classes is the most challenging as
the sample set is likely to be more diverse and have higher
variance, requiring more training samples; however, once
we learn a model it can be used throughout.

And indeed, our results in Section 4.3 show that, given our
substantial set of 11,500 subproblem samples, the model
can accommodate this most general level of learning across
problem classes without a noticeable penalty, at least for
the current collection of problem classes. A model learned
across classes is therefore also the basis for the next section,
where we demonstrate the benefit of robust complexity es-
timates in the context of distributed AOBB.

5. Regression-based Load Balancing in
Practice

In this section we present selected experimental results that
show the potential of the proposed regression models in
guiding the parallelization process, as described in Section
2.2 – a comprehensive empirical evaluation of Distributed
AOBB is beyond the scope of this paper. As noted above,
the regression model used for experiments in this section
was learned at the most general level, using all available
problem classes as discussed in Section 4.3 (but always ex-
cluding the test problem instance).

0 10 20 30 40 50 60
Subproblems

101

102

103

104

So
lu

tio
n

tim
e

[s
ec

]

pedigree41, 50 CPUs, p=64, regr.-based
Subproblem runtimes
Overall runtime

2667 sec overall
2665 max. job

Med: 644 Avg: 798.3 Stdv: 544.8

0 20 40 60 80 100 120 140
Subproblems

101

102

103

104

105

So
lu

tio
n

tim
e

[s
ec

]

pedigree19, 100 CPUs, p=144, regr.-based
Subproblem runtimes
Overall runtime

19814 sec overall
19772 max. job

Med: 2124 Avg: 3376.5 Stdv: 4059.9

Figure 7.Subproblem statistics for regression-based paralleliza-
tion (cf. fixed-depth parallelization in Fig. 2),p denotes the num-
ber of subproblems.

A Case Study in Complexity Estimation: Towards Parallel Branch-and-Bound over Graphical Models

0 100 200 300 400
Subproblems

101

102

103

104
So
lu
tio

n
tim

e
[s
ec
]

largeFam3-15-59, 200 CPUs, p=476, fixed d=8
Subproblem runtimes
Overall runtime

1391 sec overall
1362 max. job

Med: 22 Avg: 97.5 Stdv: 192.1

0 100 200 300 400
Subproblems

101

102

103

104

So
lu

tio
n

tim
e

[s
ec

]

largeFam3-15-59, 200 CPUs, p=476, regr.-based
Subproblem runtimes
Overall runtime

731 sec overall
716 max. job

Med: 58 Avg: 98.6 Stdv: 111.2

Figure 8.Subproblem statistics for fixed-depth (top) and
regression-based (bottom) parallelization onlargeFam3-15-59
instance.

7 8 9 10
Actual complexity [log10]

7

8

9

10

Pr
ed

ic
te
d
co
m
pl
ex
ity

 [l
og

10
]

pedigree41, p=64, regr.-based
MSE: 0.126
PCC: 0.233

6 7 8 9 10 11
Actual complexity [log10]

6

7

8

9

10

11

Pr
ed

ic
te
d
co
m
pl
ex
ity

 [l
og

10
]

pedigree19, p=144, regr.-based
MSE: 0.153
PCC: 0.833

Figure 9.Actual vs. predicted subproblem complexity from the
two parallel executions in Figure 7.

5.1. Improving Load Balancing

To demonstrate the profound impact the complexity predic-
tions can have on the load balancing of the parallel scheme,
we revisit the two parallel experiments presented in Section
2.2, Figure 2. In both cases the overall performance was
heavily dominated by very few long-running subproblems.

Figure 7 shows runtime statistics for parallel execution on
these instances, using the regression model for load bal-
ancing. Figure 8 gives an additional example on a large-
Fam instance. In all cases we see that the max. subprob-
lem runtime has been reduced greatly, close to 50% for
largeFam3-15-59(1,362 to 716 seconds for “max. job”
in Figure 8). We also note the drastically lower standard
deviation in subproblem runtimes.

In addition, Figure 9 compares the complexity estimates

20 40 60 80 100
Number of CPUs

10

20

30

40

50

60

70

Pa
ra

lle
l s

pe
ed

up

pedigree41
pedigree19
LF3-15-59

Figure 10.Parallel speedup forpedigree41, pedigree19, and
largeFam3-15-59(cf. Figures 2, 7, and 8) as a function of the
number of parallel CPUs. Dashed lines represent fixed-depth par-
allelization, solid lines correspond to parallel runs guided by our
regression model.

obtained during the parallel execution with the actual
recorded values. In both cases we observe good prediction
error andpedigree19in particular also shows good PCC.

5.2. Facilitating Parallel Speedup

Figure 10 plots the parallel speedup for the three prob-
lem instances considered in Section 5.1 over the number
of parallel CPUs. For each instance we show (as a dashed
line) the speedup when using fixed-depth parallelization
and (with a solid line) the speedup of the parallel execu-
tion guided by the regression model.

Comparing each instance’s two entries reveals a clear ad-
vantage for the regression-based parallelization: it achieves
higher speedups, roughly by a factor of two, and seems to
plateau later, i.e. it is able to utilize a larger number of
parallel resources.

On the other hand, most curves appear to level off well be-
fore their theoretical limit. This indicates that further im-
provements are possible, even though “perfect” speedup is
unattainable in practice, since splitting a given subproblem
often yields components of widely varying size and large
jumps in complexity.

One way to mitigate these issues lies in increasing the sub-
problem granularity, i.e., setting the number of subprob-
lems to match several times the number of parallel CPUs.
However, this may add overhead in the general distributed
context and redundancies in the particular graphical model
context, which can negate potential gains in extreme cases.
Indeed, finding the right balance in granularity is a central
research issue in the field of distributed computing.

6. Conclusion & Future Work

We have presented a case study of complexity estimation
in the context of parallelizing the state-of-the-art sequential

A Case Study in Complexity Estimation: Towards Parallel Branch-and-Bound over Graphical Models

optimization algorithm AND/OR Branch and Bound. The
pruning power of the algorithm makes parallel load balanc-
ing very challenging, leading to inefficiencies in practice.

To address these symptoms we have proposed to employ
statistical regression analysis in order to identify bottle-
necks for parallel performance ahead of time. In particular,
we developed a linear regression model that uses a variety
of static as well as dynamic features to predict a subprob-
lem’s complexity, enabling us to detect and split problem-
atic subproblems.

We identified three distinct levels of learning and evaluated
our proposed model accordingly, using more than 11,000
subproblem samples from 31 problem instances and four
problem classes. Results were good throughout, with gen-
erally low prediction error and high correlation coefficients.

In the context of our parallel scheme, we have shown how
the regression model can enable more effective load bal-
ancing and improved parallel speedup. This last set of re-
sults, however, also outlined opportunities for further im-
provements and future research, including varying the par-
allel granularity.

Future work with respect to learning of complexity esti-
mates will expand to more instances and additional prob-
lem classes. In that context we also plan to investigate how
our learned models perform on instances from previously
unseen problem classes. Furthermore, we are trying to de-
vise more subproblem features, for instance extracted di-
rectly from the cost function tables within a subproblem.

Acknowledgments

Work supported in part by NSF grants IIS-0713118, IIS-
1065618 and NIH grant 5R01HG004175-03.

References

Chu, Geoffrey, Schulte, Christian, and Stuckey, Peter J.
Confidence-based work stealing in parallel constraint
programming. InCP, pp. 226–241, 2009.

Cornúejols, Ǵerard, Karamanov, Miroslav, and Li, Yanjun.
Early estimates of the size of branch-and-bound trees.
INFORMS Journal on Computing, 18(1):86–96, 2006.

Dechter, Rina and Mateescu, Robert. AND/OR search
spaces for graphical models.Artif. Intell., 171(2-3):73–
106, 2007.

Dechter, Rina and Rish, Irina. Mini-buckets: A general
scheme for bounded inference.Journal of the ACM, 50
(2):107–153, 2003.

Gendron, Bernard and Crainic, Teodor Gabriel.
Parallel branch-and-bound algorithms: Sur-

vey and synthesis. Operations Research, 42
(6):1042–1066, 1994. ISSN 0030364X. URL
http://www.jstor.org/stable/171985.

Grama, Ananth and Kumar, Vipin. State of the art in paral-
lel search techniques for discrete optimization problems.
IEEE Trans. Knowl. Data Eng., 11(1):28–35, 1999.

Grama, Ananth, Karypis, George, Kumar, Vipin, and
Gupta, Anshul.Introduction to Parallel Computing. Ad-
dison Wesley, 2003.

Hastie, Trevor, Tibshirani, Robert, and Friedman, Jerome.
The Elements of Statistical Learning. Springer, 5th cor-
rected edition, 2011. ISBN 0387952845.

Kilby, Philip, Slaney, John, Thiébaux, Sylvie, and Walsh,
Toby. Estimating search tree size. InAAAI, pp. 1014–
1019. AAAI Press, 2006. ISBN 978-1-57735-281-5.

Knuth, Donald E. Estimating the efficiency of back-
track programs. Mathematics of Computation, 29
(129):121–136, 1975. ISSN 00255718. URL
http://www.jstor.org/stable/2005469.

Leyton-Brown, Kevin, Nudelman, Eugene, and Shoham,
Yoav. Empirical hardness models: Methodology and
a case study on combinatorial auctions.Journal of
the ACM, 56(4):1–52, 2009. ISSN 0004-5411. doi:
http://doi.acm.org/10.1145/1538902.1538906.

Marinescu, Radu and Dechter, Rina. AND/OR Branch-
and-Bound search for combinatorial optimization in
graphical models.Artif. Intell., 173(16-17):1457–1491,
2009.

Otten, Lars and Dechter, Rina. Towards parallel search for
optimization in graphical models. InISAIM, 2010.

Otten, Lars and Dechter, Rina. Finding most likely haplo-
types in general pedigrees through parallel search with
dynamic load balancing. InPSB, 2011.

Tibshirani, Robert. Regression shrinkage and selection via
the lasso.Journal of the Royal Statistical Society, Series
B, 58(1):267–288, 1996.

Xu, Lin, Hutter, Frank, Hoos, Holger H., and Leyton-
Brown, Kevin. SATzilla: portfolio-based algorithm se-
lection for SAT. Journal of Artificial Intelligence Re-
search, 32:565–606, June 2008.

Yanover, Chen and Weiss, Yair. Approximate inference
and protein-folding. In S. Becker, S. Thrun and Ober-
mayer, K. (eds.),Advances in Neural Information Pro-
cessing Systems 15, pp. 1457–1464. MIT Press, Cam-
bridge, MA, 2003.

A Case Study in Complexity Estimation: Towards Parallel Branch-and-Bound over Graphical Models

Zou, Hui and Hastie, Trevor. Regularization and variable
selection via the elastic net.Journal of the Royal Statis-
tical Society, Series B, 67(2):301–320, 2005.

