
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LIME: LINK-BASED USER-ITEM INTERACTION MOD-
ELING WITH DECOUPLED XOR ATTENTION FOR EFFI-
CIENT TEST TIME SCALING

Anonymous authors
Paper under double-blind review

ABSTRACT

Scaling large recommendation systems requires advancing three major frontiers:
processing longer user histories, expanding candidate sets, and increasing model
capacity. While promising, transformers’ computational cost scales quadratically
with the user sequence length and linearly with the number of candidates. This
trade-off makes it prohibitively expensive to expand candidate sets or increase
sequence length at inference, despite the significant performance improvements.
We introduce LIME, a novel architecture that resolves this trade-off. Through
two key innovations, LIME fundamentally reduces computational complexity.
First, low-rank “link embeddings” enable pre-computation of attention weights
by decoupling user and candidate interactions, making the inference cost nearly
independent of candidate set size. Second, a linear attention mechanism, LIME-
XOR, reduces the complexity with respect to user sequence length from quadratic
(O(N2)) to linear (O(N)).
Experiments on public and industrial datasets show LIME achieves near-parity
with state-of-the-art transformers but with a 10× inference speedup on large can-
didate sets or long sequence lengths. When tested on a major recommendation
platform, LIME improved user engagement while maintaining minimal inference
costs with respect to candidate set size and user history length, establishing a new
paradigm for efficient and expressive recommendation systems.

2
6

2
8

2
10

2
12

2
14

2
15

2
16

0

10

20

Number of Candidates

L
at

en
cy

(m
s)

2
6

2
8

2
10

2
12

2
14

0

10

20

30

User History Length

2
4

2
6

2
8

2
10

2
12

0

10

20

30

QK dim

MHA HSTU LIME-MHA LIME-XOR

Figure 1: Overall latency analysis across different model parameters. Both LIME models scale well
with history length and number of candidates to rank whereas skyline model latencies explode.

1 INTRODUCTION

Modern recommendation systems operate at a massive scale, facing the challenge of ranking mil-
lions of candidate items within strict real-time latency constraints. To succeed, ranking models must
navigate a fundamental trade-off between computational efficiency and predictive accuracy. This

*Joint first authors.
†Corresponding author.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

has led to two dominant but conflicting architectural paradigms. On one end of the spectrum is the
two-tower model (Covington et al., 2016a), which achieves unparalleled inference speed by encod-
ing users and items into separate, independent representations. This separation enables the use of
efficient approximate nearest-neighbor search (Shrivastava & Li, 2014), making real-time recom-
mendations feasible at scale.

On the other end are powerful cross-attention Transformer models like SASRec (Kang & McAuley,
2018b), which deliver state-of-the-art accuracy by encoding users’ long interaction history (UIH)
via multi-layer self attention and explicitly modeling deep, contextual interactions between that and
each candidate item. Although this approach provides rich expressiveness, it comes with a signif-
icant computational cost: the self-attention over long sequences and the cross-attention between
the full user sequence and each candidate become major performance bottlenecks. This architec-
tural dilemma is becoming increasingly acute. The push for higher quality recommendations now
demands scaling along three axes simultaneously: accommodating vast candidate sets, processing
longer user histories, and deploying models of increasing complexity. These demands are funda-
mentally at odds, as existing efficient models lack expressiveness, while expressive models lack
efficiency. Hybrid approaches (Li et al., 2022) offer only incremental improvements.

To fundamentally solve this problem and enable scaling along all three axes, we propose a new ar-
chitectural blueprint: the Link-based User-Item Interaction Modeling for Efficient inference (LIME)
framework. LIME is designed from the ground up to achieve the modeling power of a full cross-
attention system while operating within the strict efficiency budget of a two-tower model. Its central
innovation is a globally learned intermediate ”link embedding” sequence that acts as a bridge be-
tween the long user history and candidate items. This design decouples the user and item represen-
tations during online inference, making scoring independent of history length by pre-computing the
most expensive attention components offline. Furthermore, it enables the introduction of a new low
rank attention mechanism to reduce user interaction history (UIH) self-attention complexity from
quadratic to linear. By resolving these two primary computational bottlenecks, LIME provides a
comprehensive solution to the expressiveness-versus-efficiency challenge, enabling deep interaction
modeling at minimal latency (Figure 1).

Our primary contributions are as follows:

The Link Embedding Mechanism: We introduce a link embedding sequence that effectively ap-
proximates full cross-attention. This mechanism allows the expensive Query-Key attention weight,
ϕ(Q̃K̃⊤), to be pre-computed and cached offline, enabling cross-attention-like expressiveness with
the efficiency of Two-Tower modeling during online inference.

XOR Attention Masking: To overcome the quadratic time complexity of Transformers with respect
to user history length, we propose an XOR attention mask that factorizes the full self-attention matrix
into a bidirectional linear attention between the link embeddings and the user history sequence.

State-of-the-Art Performance and Impact: We demonstrate through extensive experiments that
LIME achieves performance competitive with computationally intensive ranking models like
HSTU (Zhai et al., 2024) with 10x lower latency. Deployed in production, LIME has yielded up
to 38% source rate1 gain on a major platform serving billions of users.

2 RELATED WORK

LIME addresses the long-standing trade-off between model expressiveness and inference efficiency
in large-scale ranking. We situate our contributions in the context of two primary research areas:
efficient ranking architectures and innovations in sequence modeling.

2.1 EFFICIENT RANKING ARCHITECTURES

The design of ranking models is dominated by a conflict between efficiency and interaction depth.
On one end of the spectrum, two-tower models (Covington et al., 2016b; Yi et al., 2019) achieve
unparalleled efficiency. By encoding users and items into separate embedding spaces, they enable
fast candidate retrieval using Approximate Nearest Neighbor (ANN) search. However, this sepa-

1This refers to the percentage of positively engaged items attributable to the ranking model using LIME.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ration prevents deep, feature-level interactions, limiting model expressiveness. On the other end,
cross-attention models like DIN (Zhou et al., 2018) enable rich, target-aware interactions by dynam-
ically attending to user history for each candidate, but their per-item computational cost makes them
prohibitive for ranking large candidate sets.

Several approaches have sought to bridge this gap. Hybrid models add shallow interaction layers
on top of a two-tower base (Li et al., 2022), though these often provide only marginal improve-
ments. LIME offers a more fundamental solution. It introduces a novel bridge built upon a fixed set
of global, learnable parameters, which we term link embeddings. These link embeddings act as an
intermediary, allowing LIME to capture the rich dynamics of cross-attention while retaining the ar-
chitectural efficiency of a two-tower model. This design, where a static, user-independent key space
(raw links) retrieves information from a dynamic, personalized value space (personalized links), is
conceptually similar to key-value memory networks (Miller et al., 2016) and the retrieval stage of
retrieval-augmented models, enabling massive pre-computation. This approach directly tackles the
sequential nature of user history and the need for scalable target-item interaction, striking a new
balance between efficiency and expressiveness.

2.2 EFFICIENT ATTENTION FOR LONG SEQUENCE MODELING

The Transformer’s quadratic complexity (O(N2)) for self-attention remains a fundamental bottle-
neck for modeling long sequences. This challenge has driven the recent advances in Large Language
Models (LLMs), moving beyond early approximations such as kernelization (Choromanski et al.,
2021) or low-rank projections (Wang et al., 2020). More recent breakthroughs include new model
classes—State Space Models (e.g., Mamba (Gu & Dao, 2023))—and hardware-aware techniques
such as Lightning Attention (Dao et al., 2024) that directly optimize attention computation.

Within recommender systems, progress has often focused on adapting NLP-inspired attention mech-
anisms to click-through rate (CTR) prediction (Zhang et al., 2022; Li et al., 2023; Song et al., 2025)
or using pruning to shorten sequences before attention is applied (Pi et al., 2020). While general-
purpose mechanisms for handling set-based inputs exist, they often do not align with the specific
needs of sequential recommendation. For instance, the Set Transformer (Lee et al., 2019) and its
Pooling Multi-Head Attention (PMA) mechanism efficiently summarize a set into a fixed-size rep-
resentation using learnable seed vectors. However, their primary goal is permutation-invariant sum-
marization, whereas ranking requires target-aware representations that preserve the sequential nature
of user histories.

LIME’s XOR Attention contributes a distinct, task-specific solution. Rather than being a general-
purpose approximation of the self-attention matrix, it is a mechanism co-designed with the LIME
architecture. By using link embeddings as intermediaries, LIME structurally eliminates the need for
direct history-to-history self-attention at inference time. This design enforces a linear complexity
(O(L ·N)) tailored specifically for the user–item ranking context, representing a novel approach to
building efficient and expressive sequence models for recommendations.

3 MODEL OVERVIEW

We propose the Link-based user-item Interaction Modeling for Efficient inference (LIME), a novel
sequential-modeling architecture tailored for Click-Through Rate (CTR) prediction. LIME is de-
signed to bridge the gap between highly efficient but less expressive two-tower models and powerful
but computationally expensive cross-attention architectures. We present its design by progressively
building from a simple, efficient baseline to a scalable model with deeper interactions.

To represent a user U ’s interaction history, we learn embedding tables to generate embeddings for
each of the N(U) items the user has interacted with. Each item is characterized by a set of attributes,
which can be categorical (e.g., user action, topic id) or continuous (e.g., video length), and we learn
embedding tables for each attribute. Continuous features are first transformed into categorical ones
via bucketization to index into the embedding tables. For each item, we concatenate the learned
embeddings of all its attributes and project them through a Multi-Layer Perceptron (MLP) to ob-
tain a unified representation, Ej . The entire user history is then represented as a sequence of these
embeddings, E = {Ej}N(U)

j=1 ∈ RN(U)×d.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Architecture of TTSN (left), LIME-MHA (middle), and MHA (right). With a lightweight
cross module using precomputed attention weights in a decoupled attention framework, LIME-MHA
achieves MHA-level expressiveness with similar latency to TTSN.

3.1 FROM TWO-TOWERS TO LIME-MHA: BRIDGING EFFICIENCY AND EXPRESSIVENESS

While a two-tower model (TTSN) is highly efficient for scoring millions of items in retrieval, its
expressivity is limited, as user-item interaction is confined to a late-stage dot product. At the other
extreme, full cross-attention, prototyped by Multi-Head Attention (MHA), allows deep interaction
between every candidate item and the entire user history. However, its computational cost, which
scales with both candidate count (M(U)) and history length (N(U)), places the entire burden on the
online interaction stage, making it prohibitively expensive.

LIME-MHA bridges this gap by introducing a small, fixed-size set of ℓ ≪ N(U) auxiliary tokens,
or link embeddings L ∈ Rℓ×d. These learned embeddings act as a compact summary of user
interests, which are first personalized based on the user’s history and then exposed to candidate
items. This factorization is achieved via two MHA stages, effectively reducing the complexity from
O(M(U) ·N(U)) to O(ℓ(M(U) +N(U))).

Multi-Head Attention (MHA), introduced by Vaswani et al. (Vaswani et al., 2017), is a function that
maps q query vectors Q ∈ Rq×d to outputs using n key and value vectors K,V ∈ Rn×d as:

MHA(Q,K, V ;M ; θ) =
(
ϕ(Q̃K̃⊤)⊙M

)
Ṽ (1)

where Q̃ = QWQ, K̃ = KWK , Ṽ = VWV , with learnable parameters θ = {WQ,WK ,WV ∈
Rd×d}. Here, ϕ is an activation function (e.g., scaled Softmax or SiLU) and M ∈ {0, 1}q×n is a
binary mask. For intance, J [i, j] :≡ 1 is the trivially all-1 mask pattern. (A⊙B)ij := AijBij stands
for Hadamard product (elementwise multiplication).

The LIME-MHA architecture operates in two steps:

1. User-Side Link Personalization. The globally shared link embeddings L are first contextual-
ized with user features EC (e.g., location, device type) via an MLP:

LC = MLP(L⊕ EC) (2)
These contextualized links are then personalized by attending to the user’s full interaction history E
using a single MHA layer, producing personalized link embeddings LP :

LP = MHA(LC , E,E;J ; θ) (3)

2. Candidate-Side Decoupled Interaction. A key innovation of LIME is how candidate (target)
embeddings T interact with the personalized links. Instead of a standard MHA where keys and
values both come from LP , we use the raw, user-independent link embeddings L as keys:

O = MHA(T,L, LP ; J ; θ) = ϕ(TLt)LP (4)
This seemingly small change has a profound impact on efficiency. The attention weight matrix,
ϕ(TLt) ∈ RM(U)×ℓ, is now independent of the user. It can be pre-computed offline for all items
in the corpus and cached. At inference time, this expensive matrix multiplication is replaced by a
simple lookup, and the interaction reduces to a lightweight weighted sum of the personalized link
embeddings LP . This makes the serving latency per candidate effectively constant, O(1), rather than
scaling with history length.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: Architecture of HSTU Transformer (left) and LIME-XOR Decoupled Transformer (right)
with a visual comparison of our proposed XOR attention mask against the standard HSTU causal
self-attention mask.

3.2 FROM LIME-MHA TO LIME-XOR: SCALING TO DEEPER INTERACTIONS

To enhance LIME’s expressiveness, we can deepen the user-side module by stacking multiple inter-
action layers, akin to the architecture of a multi-layer Transformer. This computation is performed
only once per user request, so its complexity does not impact the per-candidate scoring latency.
A state-of-the-art approach for this would be to adapt a powerful sequential model block, such as
the Hierarchical Sequential Transducer Unit (HSTU) (Zhai et al., 2024), which can be conceptually
summarized as follows (see Appendix A for full notations):

HSTUBlock(X; θ) = GatedMLP(MHA(X,X,X;Mcausal; θ); η) (5)

where X = E ⊕ LC is the concatenation of the user history and contextualized link embeddings.
However, the standard HSTU attention uses causal self-attention mask, Mcausal[i, j] := i ≥ j, where
every token in the user history attends to all preceding tokens (self-attention) and every candi-
date attends to the entire user history (cross-attention), results in a computational complexity of
O(N(U)2 + N(U) · M(U)). This creates a major bottleneck for users with long interaction se-
quences or large candidate sets to rank.

To overcome this, we introduce XOR Attention (XORA), a novel attention kernel designed to re-
place the standard self-attention mechanism within the user-side module.

XORA(X,X,X; θ) = MHA(X,X,X;Mxor; θ) (6)

= MHA(E,LC , LC ; J ; θ)⊕MHA(LC , E,E;J ; θ) (7)

where Mxor[i, j] := 1i∈[0,|E|)∧1j∈[0,|E|) is the exclusive-or mask pattern that ensures the source and
target embeddings attend to one another only. As depicted in Figure 3, the XOR mask structurally
eliminates the expensive history-to-history (E ↔ E) interactions. Instead, it facilitates an efficient,
two-way, block-wise attention (7): the link embeddings attend to the user history (LC → E), and
crucially, the user history (source) embeddings now also attend back to the link embeddings (E →
LC).

This modification provides two main advantages. First, it reduces the computational complexity
from quadratic to linear, O(ℓ ·N(U)), making deep, multi-layer processing of long histories feasi-
ble. Second, it enriches the model’s expressivity by enabling the user history representation to be
modulated by the global context of the link embeddings from the very first layer.

This leads to our advanced variant, LIME-XOR. In this model, we define an XOR-Layer by re-
placing the causal mask in (5) with our efficient XOR mask, MXOR in (6). The personalized links
are then computed by stacking and summing the outputs of n such layers:

LP =

n∑
j=1

GatedMLP
(
XORA

(
E ⊕ LC , E ⊕ LC , E ⊕ LC ; θ

)
; ηj
)

(8)

This entire deep computation occurs on the user side, preserving the efficient, per-candidate scoring
mechanism and LIME’s overall scalability. Note that by using contextual links LC as targets instead

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 4: LIME Inference as part of the entire recommendation system

of candidate embeddings T , the process remains fully decoupled from individual candidates during
this stage.

3.3 LIME’S ARCHITECTURAL ADVANTAGES FOR EFFICIENT INFERENCE

The LIME framework is designed from the ground up to resolve the conflict between model expres-
siveness and inference latency. Its core efficiency stems from a strategic decoupling of user-side and
item-side computations, bridged by the link embeddings. This design enables a multi-stage infer-
ence pipeline that maximizes offline pre-computation and minimizes online work, making it highly
scalable for real-world recommendation systems.

To facilitate this efficiency, we employ a technique called decoupled attention, used in the final
candidate interaction stage (Equation 4). Instead of using the user-specific personalized links (LP)
for both keys and values, we use the raw, user-independent link embeddings (L) as keys and the
personalized links (LP) as values. This asymmetric structure ensures that the expensive Query-Key
dot product, ϕ(CLt), depends only on item-side information (candidate embeddings C and raw
links L). Consequently, this attention weight matrix can be pre-computed for all items in the corpus
and stored in an efficient key-value store or index, such as FAISS (Johnson et al., 2017), effectively
creating a cache of attention weights.

This architectural choice allows us to structure the entire inference process into three distinct stages,
as illustrated in Figure 4.

Offline Item-Side Pre-computation. This stage is performed offline whenever the model or item
catalog is updated, eliminating redundant computation during online serving. Standard item fea-
tures are processed by an item tower to produce item embeddings. The decoupled attention weights
(ϕ(CL⊤)) between all candidate item embeddings (C) and the raw link embeddings (L) are pre-
computed and cached. This transforms the most intensive part of cross-attention into a simple
lookup.

Online User-Side Computation. This stage runs once per user request and is independent of the
number of candidates being scored. The user’s context and interaction history are processed by the
LIME user module (using either MHA or the multi-layer XOR Transformer) to produce the personal-
ized link embeddings (LP), as described in Equations (2)–(8). Crucially, this user-side computation
can be executed in parallel with the candidate retrieval process. In a production environment, its
latency is therefore largely masked, making even a deep, multi-layer Transformer on the user side
feasible.

Lightweight User-Item Interaction. This final stage is executed online for each candidate but is
extremely lightweight. For each candidate, the pre-computed attention weights are retrieved from
the QK Cache. These weights are used to perform a simple weighted sum over the personalized
link embeddings (LP) to generate the final LIME embedding. This embedding is then passed to a
shallow interaction network for scoring.

By structuring inference this way, LIME achieves significant computational savings. Compared to
a full cross-attention model like HSTU, which has a complexity of O(N(U) · (N(U) + M(U))),
LIME’s complexity is reduced to O(ℓ · (N(U) + M(U))), where ℓ ≪ N(U),M(U). More im-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

portantly, Model serving is reduced to a near-constant time operation with respect to the number
of candidates, making LIME highly suitable for latency-sensitive ranking deployments with large
candidate sets and long user histories.

4 EXPERIMENTAL RESULTS

4.1 BASELINES

We test multiple baseline models ranging from the simplest sum-pooling of user history embeddings
to other sequence compression techniques listed below.

TTSN (Two-tower sparse network): Depicted in Figure 2, this baseline applies sum-pooling of all
the user history embeddings instead of target attention with candidate embeddings.

4.2 SKYLINES

We cannot launch naive target attention (candidate against user history) directly for long user his-
tories and large numbers of candidates to rank. But such powerful models can serve as our skyline
goal on performance.

MHA Skyline computes a single layer of target attention between candidate items and user history
items.

HSTU Skyline computes 3 layers of causal self attention and cross attention at each layer, between
the candidate items and user history items.

4.3 LIME VARIANTS

To thoroughly evaluate our proposed architecture, we conducted experiments with two primary vari-
ants of LIME that differ specifically in the sophistication of the link personalization module.

LIME-MHA: This is the fundamental implementation of our model, as described in Equation (3).
It employs a standard attention mechanism to generate a personalized representation for each link
by pooling information from the user’s historical item embeddings.

LIME-XOR: This advanced variant, detailed in Equation (8), incorporates 3-layers of HSTU be-
tween the user history and link embeddings for deeper contextualization with our proposed efficient
XOR-style masking.

LIME-XOR+Window: This variant extends the LIME-XOR attention mask by adding a sliding-
window pattern over the user history, where each token attends to its ℓ neighbors on both sides
(similar to Longformer (Beltagy et al., 2020)). The attention remains linear: each token attends to
2ℓ tokens—ℓ link tokens and ℓ local neighbors. XOR attention captures global interactions between
user history tokens, while the windowed attention captures local interactions.

To ensure a fair and controlled comparison, all other architectural components were held constant
across all models (see details in Appendix C).

4.4 ACCURACY

We present the normalized entropy metrics as well as (session) AUC metrics for all the variants and
baselines/skylines. On the in-house industrial datasets, we measure accuracy on two tasks: video
completion (VC) and watch time (WT).

Normalized Entropy (NE) (He et al., 2014) is defined for binary classification task as

NE({(pi, ℓi)}ni=1) :=

∑n
i=1 ℓi log pi + (1− ℓi) log(1− pi)

log(
∑n

i=1 ℓi/n)
.

Note that similar to logloss or binary cross entropy, lower NE means better accuracy. Usually 0.1%
drop in NE will lead to online metric improvement.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 5: Offline, online, and public dataset experimental results.

(a) Industrial Results

Model Offline Online A/B
VC NE WT AUC VC WT

TTSN – – – –

LIME-MHA -0.72% +0.46% +28.6% +22.1%
MHA Sky. -0.73% +0.53% N/A N/A

LIME-XOR -1.04% +0.76% +37.9% +28.6%
LIME-XOR+Window -1.11% +0.80% N/A N/A

HSTU Sky. -1.06% +0.77% N/A N/A

MHA and HSTU Skylines cannot be tested in on-
line setting due to high serving latency from the
large number of candidates.

(b) Public Dataset Results

KuaiRand-1K Taobao-Ad
Model Click AUC AUC

TTSN 0.7389 (+0%) 0.6452 (+0%)
DIN 0.7404 (+0.20%) 0.6468 (+0.25%)
SASRec 0.7419 (+0.41%) 0.6462 (+0.15%)
Trunc. MHA 0.7351 (-0.51%) 0.6456 (+0.06%)
LREA 0.7408 (+0.26%) 0.6447(-0.08%)

LIME-MHA 0.7433 (+0.60%) 0.6465 (+0.20%)
MHA Sky. 0.7428 (+0.53%) 0.6464 (+0.19%)

LIME-XOR 0.7448 (+0.80%) 0.6467 (+0.23%)
LIME-XOR+Window 0.7453 (+0.87%) 0.6468 (+0.25%)
HSTU Sky. 0.7444 (+0.74%) 0.6475 (+0.36%)

4.5 INDUSTRIAL EXPERIMENTS SETUP

For the industrial dataset, we take 3 days of logged data for training, and 6 hours for evaluation.
Compared to the public datasets, this is a larger scale dataset with longer user history sequences. As
shown in Table 5, both LIME variants significantly outperform the TTSN baseline.

LIME-MHA nearly matches the MHA skyline, while the multi-layer LIME-XOR closes the gap
further, achieving performance competitive with the much more complex HSTU skyline across all
tasks, even with a 32x sequence compression rate. The 1.04% VC NE improvement of LIME-XOR
over the TTSN baseline is a significant gain, which translated to a +37.9% VC and +28.6% WT
increase from LIME-ranked candidates during online A/B experiments (Table 5).

4.6 PUBLIC EXPERIMENTS SETUP

We also benchmark on public datasets, namely Taobao Ads (Lyu et al., 2020) and KuaiRand-1K
dataset (Gao et al., 2022). Taobao-Ads contains 25 million interactions with a maximum sequence
length of 50 whereas KuaiRand-1K contains 12 million interactions with a maximum sequence
length of 256. To unify data processing and evaluation framework, we leaned heavily on FuxiCTR,
a comprehensive sequential recommendation model benchmark platform (Zhu et al., 2021).

On both public datasets, LIME-MHA matches or outperforms the respective skyline with signifi-
cant improvements over the sum-pooling baseline. The improvement is largest in the KuaiRand-1K
dataset as it contains longer sequences (length 256). On KuaiRand-1K, LIME-XOR performs com-
parably to the HSTU skyline but slightly worse on Taobao-Ad, though still outperforming LIME-
MHA models. This is likely due to shorter sequence lengths in Taobao-Ad, leading to noisier results.

We also benchmark existing sequence-compression methods, including Truncated MHA—which
applies the MHA skyline only to the most recent ℓ interacted items—and Linformer-style LREA
(Song et al., 2025) with a low rank of ℓ. At the same low rank, LIME outperforms both compression
techniques. Additionally we benchmark skyline models SASRec (Kang & McAuley, 2018a) (a state-
of-the-art transformer) and DIN (Deep Interest Network) (Zhou et al., 2018) to validate our LIME
variants and skylines are indeed improvements over existing state-of-the-art models.

4.7 ABLATION STUDY & SCALING LAWS

We ablate various components of LIME-XOR to demonstrate the effectiveness of its design by
considering the following variants:

LIME-XOR w/ Link Pooling: Instead of decoupled attention with candidate embeddings, we apply
sum pooling to the personalized link embeddings.

LIME-XOR w/ Dot Product: Instead of decoupled attention with candidate embeddings, we pass
the ℓ dot products between candidate embedding and personalized link embeddings to the final
prediction MLP.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: Ablation Study and comparison to linear sparse attention variants on KuaiRand-1K dataset.

(a) Ablation Study

Model Variant AUC

LIME-XOR 0.7448
LIME-XOR w/ Link Pooling 0.7400
LIME-XOR w/ Dot Product 0.7404
LIME-MLP 0.7407
LIME-XOR–MLP Hybrid 0.7442

(b) Comparison to SOTA Linear Attention Variants

Model Variant AUC Complexity

HSTU Skyline 0.7444 O(N(U)2 +N(U) ·M(U))

Linear Transformer 0.7423 O(N(U) ·M(U))
Longformer 0.7443 O(N(U) ·M(U))
LREA (Linformer) 0.7408 O(N(U) ·M(U))

LIME-XOR 0.7448 O(N(U)ℓ+M(U)ℓ)
LIME-XOR+Window 0.7453 O(N(U)ℓ+M(U)ℓ)

LIME-MLP: Instead of leveraging attention mechanisms, we directly learn MLPs to generate per-
sonalized low-rank embeddings (after padding the user history to fixed length) and cached weights.

LIME-XOR-MLP: We preserve the LIME-XOR user module with multi-layer XOR attention and
replace the LIME item module cached attention weights with weights learned from an MLP on the
candidate item embeddings.

The ablation results in Figure 6(a) demonstrate that both multi-layer XOR attention from the LIME
user module and the decoupled attention mechanism in the LIME item module are critical to strong
performance. The attention mechanisms cannot easily be replaced by MLP, sum pooling, or dot
products in either user or item module especially due to variable user history sequence lengths.

For both NLP and CTR prediction tasks, transformer-based models (e.g., LLMs, HSTU) have shown
improved performance as compute scales. On our large-scale ranking dataset, the decoupled trans-
former LIME-XOR similarly achieves substantial gains when scaling sequence length, link count,
and model depth. Detailed results are provided in Appendix G.

4.8 SPARSE LINEAR ATTENTION VARIANTS

We note that several alternate sparse linear attention mechanisms exist such as Linear Transformer
(Katharopoulos et al., 2020), Longformer (Beltagy et al., 2020), and Linformer-style LREA (Wang
et al., 2020; Song et al., 2025). These can be integrated into the skyline transformer to reduce the
quadratic self-attention cost (O(N(U)2)) to linear O(N(U)ℓ) for low-rank ℓ, though they will still
suffer from O(N(U) · M(U)) target attention cost. We can also integrate these linear attention
variants within our proposed decoupled LIME framework to also optimize the target attention cost
(e.g. LIME-XOR+Window).

From Figure 6(b), both Linear Transformer and Linformer-based methods have severe performance
degradation but sliding-window based Longformer performs comparably to the HSTU skyline. How-
ever, it is still prohibitively expensive to serve (see Appendix J for latency analysis) due to the
cross-attention cost. Yet, when we integrate sliding window attention into LIME-XOR we see im-
proved performance with minimal latency, demonstrating the benefits of the LIME-XOR decoupled
attention framework.

4.9 INFERENCE SPEED

LIME is highly scalable for ranking large candidate sets, an advantage for pre-ranking and retrieval.
Figure 1 demonstrates that while MHA and HSTU latency grows significantly with more candidates
or longer user histories, LIME’s latency remains nearly constant (see Appendix F for a detailed
comparison). This robustness makes it suitable for settings with very long sequences (e.g.,>30k
items). Furthermore, the user backbone computation can be parallelized with candidate retrieval,
masking most of its latency in production and yielding even greater savings than shown in these
benchmarks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 ANALYSIS AND DISCUSSIONS

LIME effectively projects the high-dimensional user-user and user-candidate interaction spaces into
low-rank subspaces, acting as a surrogate attention mechanism. This decomposition can be viewed
as a structured approximation of the full attention matrix, analogous to techniques in sparse/dense
low-rank compression (Figure 8).

To this end, we compute the singular value decomposition (SVD) of the self-attention and cross-
attention matrices in a trained HSTU Transformer skyline model averaged across layers and heads
over 256 sequence-candidate pairs where each sequence has length 1024 and we rank 1024 candi-
dates against the sequence. In Figure 7, the results clearly demonstrate a long-tailed pattern where
the largest 32 singular values (denoted by the vertical black line) capture more than 90% of the
information in both self and cross-attention matrices. We also compute the SVD of the raw link
embeddings L and personalized link embeddings LP of a trained LIME-XOR model and analyze
the spectral distribution. The singular values of L and LP demonstrate strong separation amongst
the link embeddings with nearly full rank. This analysis indicates that 32 links are able to cap-
ture the majority of the information in the self-attention and cross-attention matrices with minimal
redundancy for sequence lengths of 1024.

0 200 400 600 800 1,000

0.5

0.6

0.7

0.8

0.9

1

Singular Value Index

N
or

m
al

iz
ed

C
um

ul
at

iv
e

Si
ng

ul
ar

V
al

ue

Self Attention Matrix
Cross Attention Matrix

0 10 20 30
0

0.5

1

Singular Value Index

N
or

m
al

iz
ed

C
um

ul
at

iv
e

Si
ng

ul
ar

V
al

ue

Personalized Link Embeddings
Link Embeddings

Figure 7: Left: cumulative singular value of self/cross attention matrices in a pretrained transformer
model. Right: cumulative singular value of the raw/personalized link embeddings.

6 LIMITATIONS AND FUTURE WORK

Despite LIME’s strong empirical performance, several limitations warrant discussion. First, LIME’s
effectiveness relies on the low-rank approximation assumption; domains with highly fragmented
user interests may require higher-rank representations. Second, pre-computing QK caches requires
periodic updates for evolving item catalogs, which makes it better suited for early stage ranking.

We are actively exploring the following directions: (1) building a larger pool of link embeddings
and dynamically selecting link subsets based on user-side features or context, enabling personalized
link allocation across different user segments, (2) extensions to multi-modal recommendation and
cross-domain transfer learning to address the cold start user and item problem.

7 CONCLUSION

We proposed LIME, a framework that resolves the efficiency-expressiveness trade-off in large-scale
recommenders by using link embeddings as a low-rank approximation for target attention or more
general transformer style sequence encoders. Experiments on public and industrial datasets show
LIME matches the accuracy of state-of-the-art models like HSTU while drastically reducing infer-
ence latency, a result confirmed by significant online A/B test improvements. Our analysis confirmed
that LIME’s learned link embeddings effectively capture user interests, validating the low-rank hy-
pothesis. By decoupling the user representation from target items, LIME offers a practical and pow-
erful solution for building high-performance, scalable recommender systems.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer,
2020. URL https://arxiv.org/abs/2004.05150.

Jianxin Chang, Chenbin Zhang, Zhiyi Fu, Xiaoxue Zang, Lin Guan, Jing Lu, Yiqun Hui, Dewei
Leng, Yanan Niu, Yang Song, and Kun Gai. Twin: Two-stage interest network for lifelong user
behavior modeling in ctr prediction at kuaishou, 2023. URL https://arxiv.org/abs/2302.02352.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, , et al. Rethinking attention with
performers. In International Conference on Learning Representations, 2021.

Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations.
In Proceedings of the 10th ACM conference on recommender systems, pp. 191–198, 2016a.

Paul Covington, Justin Adams, and Emre Sargin. Deep neural networks for youtube recommenda-
tions. In Proceedings of the 10th ACM conference on recommender systems, pp. 191–198, 2016b.

Tri Dao, Albert Gu, Alexander Smith, , et al. Lightning attention-2: A free lunch for handling
unlimited sequence lengths in llms. arXiv preprint arXiv:2407.05230, 2024.

Chuanqi Dong, Andrew Kerr, Christian Puhrsch, Horace He, and Zachary DeVito. Flex attention: A
programming model for generating optimized attention kernels. arXiv:2412.05496, 2024. URL
https://arxiv.org/abs/2412.05496.

Chongming Gao, Shijun Li, Yuan Zhang, Jiawei Chen, Biao Li, Wenqiang Lei, Peng Jiang, and
Xiangnan He. Kuairand: An unbiased sequential recommendation dataset with randomly exposed
videos. In Proceedings of the 31st ACM International Conference on Information and Knowledge
Management, CIKM ’22, pp. 3953–3957, 2022. doi: 10.1145/3511808.3557624. URL https:
//doi.org/10.1145/3511808.3557624.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine Atallah, Ralf
Herbrich, Stuart Bowers, et al. Practical lessons from predicting clicks on ads at facebook. In
Proceedings of the eighth international workshop on data mining for online advertising, pp. 1–9,
2014.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus, 2017.
URL https://arxiv.org/abs/1702.08734.

Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018 IEEE
international conference on data mining (ICDM), pp. 197–206. IEEE, 2018a.

Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018 IEEE
international conference on data mining (ICDM), pp. 197–206. IEEE, 2018b.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention, 2020. URL https://arxiv.org/abs/2006.
16236.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In Interna-
tional conference on machine learning, pp. 3744–3753. PMLR, 2019.

Pan Li, Yuting Su, Xiao Sun, , et al. Eta: A tmall-ads framework for efficient user behavior mod-
eling with full-interaction. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 4307–4316, 2023.

Xiangyang Li, Bo Chen, HuiFeng Guo, Jingjie Li, Chenxu Zhu, Xiang Long, Sujian Li, Yichao
Wang, Wei Guo, Longxia Mao, et al. Inttower: the next generation of two-tower model for pre-
ranking system. In Proceedings of the 31st ACM International Conference on Information &
Knowledge Management, pp. 3292–3301, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ze Lyu, Yu Dong, Chengfu Huo, and Weijun Ren. Deep match to rank model for personalized click-
through rate prediction. Proceedings of the AAAI Conference on Artificial Intelligence, 34(01):
156–163, Apr. 2020. doi: 10.1609/aaai.v34i01.5346. URL https://ojs.aaai.org/index.php/AAAI/
article/view/5346.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, and Ja-
son Weston. Key-value memory networks for directly reading documents. arXiv preprint
arXiv:1606.03126, 2016.

Qi Pi, Guorui Zhou, Yujing Zhang, Zhe Wang, Lejian Ren, Ying Fan, Xiaoqiang Zhu, and Kun
Gai. Search-based user interest modeling with lifelong sequential behavior data for click-through
rate prediction. In Proceedings of the 29th ACM International Conference on Information &
Knowledge Management, pp. 2685–2692, 2020.

Anshumali Shrivastava and Ping Li. Improved asymmetric locality sensitive hashing (alsh) for
maximum inner product search (mips), 2014. URL https://arxiv.org/abs/1410.5410.

Xin Song, Xiaochen Li, Jinxin Hu, Hong Wen, Zulong Chen, Yu Zhang, Xiaoyi Zeng, and Jing
Zhang. Lrea: Low-rank efficient attention on modeling long-term user behaviors for ctr prediction.
In Proceedings of the 48th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’25, pp. 2843–2847. ACM, July 2025. doi: 10.1145/3726302.
3730228. URL http://dx.doi.org/10.1145/3726302.3730228.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Xinyang Yi, Ji Yang, Lichan Hong, , et al. Sampling-bias-corrected neural modeling for large corpus
item recommendations. In Proceedings of the 13th ACM conference on recommender systems,
pp. 269–277, 2019.

Jiaqi Zhai, Lucy Liao, Xing Liu, Yueming Wang, Rui Li, Xuan Cao, Leon Gao, Zhaojie Gong,
Fangda Gu, Michael He, et al. Actions speak louder than words: Trillion-parameter sequential
transducers for generative recommendations. arXiv preprint arXiv:2402.17152, 2024.

Wentao Zhang, Xiangnan Liu, Zhaocheng Zhang, , et al. Fum: Fast user modeling for click-through
rate prediction. In Proceedings of the 31st ACM International Conference on Information &
Knowledge Management, pp. 2507–2516, 2022.

Guorui Zhou, Xiaoqiang Zhu, Chenru Song, , et al. Deep interest network for click-through rate
prediction. In Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 1059–1068, 2018.

Jieming Zhu, Jinyang Liu, Shuai Yang, Qi Zhang, and Xiuqiang He. Open benchmarking for click-
through rate prediction. In Gianluca Demartini, Guido Zuccon, J. Shane Culpepper, Zi Huang,
and Hanghang Tong (eds.), CIKM ’21: The 30th ACM International Conference on Information
and Knowledge Management, Virtual Event, Queensland, Australia, November 1 - 5, 2021, pp.
2759–2769. ACM, 2021. doi: 10.1145/3459637.3482486. URL https://doi.org/10.1145/3459637.
3482486.

A SUMMARY OF NOTATIONS

We summarize the key notations used in the paper in Table 1.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Symbol Description
U User
N(U) Number of items in user U ’s interaction history
M(U) Number of candidate items for user U

Ej Embedding representation of item j

E = {Ej}N(U)
j=1 Sequence of user history embeddings, E ∈ RN(U)×d

EC User context features (e.g., location, device type)
T Candidate (target) item embeddings
d Embedding dimension
L ∈ Rℓ×d Link embeddings (auxiliary tokens), ℓ≪ N(U)
LC Contextualized link embeddings (personalized with user features)
LP Personalized link embeddings (after attention to user history)

MHA(Q,K, V ;M ; θ) Multi-Head Attention function
WQ,WK ,WV Learnable projection matrices for queries, keys, values (∈ Rd×d)
θ, η Set of learnable parameters
ϕ Activation function (e.g., scaled Softmax, SiLU)
O Final LIME output embedding after candidate-side MHA

M Binary mask for attention, M ∈ {0, 1}q×n

J All-ones mask pattern, J [i, j] ≡ 1
Mcausal Causal self-attention mask, Mcausal[i, j] := i ≥ j
Mxor XOR attention mask, Mxor[i, j] := 1i∈[0,|E|) ∧ 1j∈[0,|E|)
⊙ Hadamard (elementwise) product
⊕ Concatenation operator

GatedMLP MLP block with parameters η to learn a gated element-wise product
HSTUBlock(X; θ) Hierarchical Sequential Transducer Unit block with parameters theta
XORA XOR Attention Block
n Number of stacked XOR layers

Table 1: Notation Table

B RANKING MODEL ARCHITECTURE COMPARISONS

Outlined in Table 2, two-tower based models have the highest scalability in both candidate set
size and user history length but suffer from extremely limited (e.g. dot product) late interaction.
Conversely, transformer-based models have deep user-item interactions through full self-attention
(amongst user history) and cross-attention (between candidates and user history) at every layer.
However, transformer-based models suffer from high latency and low scalability on both user his-
tory length and candidate set size.

SIM (Pi et al., 2020) and TWIN (Chang et al., 2023) improve scalability over Transformer-based
methods through a two-stage approach. The general-search unit (GSU) first searches for the top-K
relevant user history interactions for a particular candidate and exact-search unit (ESU) performs
a full cross-attention against the retrieved items. While the latency is reduced compared to Trans-
former, we also sacrifice some model expressivity when we completely remove user history self-
attention and the GSU runtime complexity is O(MN) which can still be inefficient.

On the other hand, LIME is able to model deep user-item interactions (through the decoupled Trans-
former framework introduced in Section 3) and achieves high scalability to both candidate set size
and user history length when L≪ N .

C EXPERIMENT IMPLEMENTATION DETAILS

C.1 DATASET PREPARATION

For the Taobao Ad dataset, we leverage the preprocessed version provided by the FuxiCTR (Zhu
et al., 2021) sequential modeling platform. For the KuaiRand dataset (Gao et al., 2022), we pre-

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 2: Comparison of Ranking Model Architectures where N is the user history length, M is the
number of candidates to rank, and L≪ N is the LIME-compressed history size.

Axis Transformers (HSTU) SIM/TWIN Two-Tower LIME (Ours)
User-Item Interaction Deep Medium Limited late interaction Deep
Latency High Medium Low Low
Complexity O(MN +N2) O(MN) O(N) O(ML+NL)
Pre-computation Minimal Minimal Item Emb QK Attention Weights

process it ourselves by partitioning the first 14 days of interactions for training and last 2 days for
testing. We also discarded all items from the train and test set with less than 30 total interactions for
more reliable results. For the industrial dataset, we took 3 days of logged data for model training
and 6 hours of data for evaluation.

C.1.1 MODEL HYPERPARAMETERS

For both public datasets and the industrial datasets, we fix model hyperparameters and seeds for all
variants for a fair comparison (see Table 3). The industrial dataset is of the largest scale both in terms
of the number of interactions and maximum sequence length. Due to the large size of the industrial
dataset, we only train for a single epoch in a streaming single-pass setting for the industrial dataset.

Parameter KuaiRand TaoBao Ad Industrial
Num. of Interactions 12× 106 25× 106 100× 109

Learning Rate 1× 10−4 1× 10−3 4× 10−4

Batch Size 1024 8192 1024
Number of Heads 4 4 4
Epochs 2 10 1
Embedding Dimension 32 32 256
Number of Links 16 8 32
Max Sequence Length 256 50 1024
Interaction MLP [512, 128, 64] [512, 256, 128] [96]

Table 3: Model Hyperparameters for KuaiRand, TaoBao Ad, and Industrial datasets

C.2 MODEL DESIGN

Several additional design choices were crucial to stabilize training and ensure generalization:

• Normalization: We apply Layer normalization before each linear projection in the QKV
projections. Without normalization, the embeddings can drift toward high magnitudes,
which can collapse attention weights.

• Link Initialization: The raw link embeddings ℓi are initialized with samples from a stan-
dard normal distribution. This encourages diversity and allows the model to discover inter-
pretable interest clusters during training.

• Attention Function: In single-layer MHA experiments we use scaled Softmax which per-
forms the best and in multi-layer transformer experiments we leverage SiLU as the attention
activation ϕ.

• Training Objective: We use a standard cross-entropy loss with multi-task objectives per
request. Other loss terms (e.g., contrastive objectives or auxiliary disentanglement losses)
may be explored in future work.

D LOW RANK EXPRESSIONS FOR SELF-ATTENTION AND CROSS-ATTENTION

LIME effectively projects the high-dimensional user-user and user-candidate interaction spaces into
low-rank subspaces, acting as a surrogate attention mechanism:

MHA(T,E) ≈ MHA(T, L) ·MHA(L,E),

MHA(E,E) ≈ MHA(E,L) ·MHA(L,E).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

This decomposition can be viewed as a structured approximation of the full attention matrix, analo-
gous to techniques in sparse/dense low-rank compression (e.g. Performer, Linformer, SVDNet).

E INFORMATION BOTTLENECK PERSPECTIVE

From an information-theoretic viewpoint, LIME compresses the user history E into a set of link
embeddings L, which are optimized to retain relevance to the user’s behavior (via personalized
attention pooling) and retain discriminative power for candidate (T) ranking.

This fits into the Information Bottleneck (IB) principle:

min
L
I(L;E)− βI(L;T)

where I denotes mutual information. That is, we retain only those aspects of the user history that
are useful for predicting interaction with candidates.

MHA
(Q = Candidates,

KV = UIH)
≈

MHA
(Q = Candidates,

KV = Links)
×

M
H

A
(Q

=
Li

nk
s,

K
V

=
U

IH
)

MHA
(QKV = UIH) ≈

M
H

A
(Q

=
U

IH
,

K
V

=
Li

nk
s)

×
MHA

(Q = Links,
KV = UIH)

Figure 8: Top: Cross-attention as a low-rank product. Bottom: Self-attention as two low-rank cross-
attentions. UIH stands for user interaction history.

F INFERENCE SPEED COMPARISON

Depicted in Figure 1 and Table 4, we observe that LIME-MHA and LIME-XOR have significantly
lower latencies under large candidate sets to rank, long user histories, and high QK dimensions (due
to the attention weight cacheing).

G SCALING LAW FOR LIME-XOR DECOUPLED TRANSFORMER

Transformers (such as HSTU) have demonstrated strong scaling law for large-scale recommendation
systems, mirroring scaling laws from LLMs from NLP. For our decoupled transformer, LIME-XOR,
we test scaling across three axes on the large-scale industrial dataset: sequence length, number of
links, and number of layers.

From Table 5, we observe that scaling sequence length is very effective in improving both VC NE
and WT AUC. However, it is only effective under the presence of sufficient links. Scaling sequence
length from 2k to 4k under 32 links is neutral but similar scaling with 256 links demonstrates sig-
nificant NE and AUC wins. Moreover, for shorter sequences (e.g. 1k) scaling the number of links
seems to reach an inflection point faster than scaling links for longer sequences.

From Table 6, we observe that scaling number of layers demonstrates significant NE and AUC
improvements which helps demonstrate that LIME-XOR can also achieve scaling law up to the
limits we were able to test.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 4: Latency (in seconds) comparison for different models under varying conditions. The
columns correspond to the models: LIME-MHA, MHA Skyline, HSTU Skyline, and LIME-XOR.
All numerical values are truncated to two decimal places.

(a) vs. Number of Candidates (FlashAttention V2)

Cand. LIME-MHA MHA Sky. HSTU Sky. LIME-XOR

16 0.84 0.87 3.60 2.62
32 0.83 0.87 3.66 2.53
64 0.88 0.88 3.74 2.52

128 0.84 0.87 3.64 2.55
256 0.87 0.88 3.67 2.52
512 0.85 0.88 4.01 2.56

1024 0.87 0.89 3.76 2.61
2048 0.85 0.95 3.70 2.43
4096 0.83 1.06 4.17 2.51
8192 0.86 1.11 4.42 2.53

16384 0.87 1.64 7.86 3.21
32768 0.99 2.76 11.66 4.06
65536 1.35 4.25 23.83 5.95

(b) vs. User History Length (FlashAttention V2)

Hist. Len. LIME-MHA MHA Sky. HSTU Sky. LIME-XOR

16 0.68 0.72 4.18 3.02
32 0.76 0.80 3.97 3.00
64 0.83 0.72 4.19 3.01

128 0.71 0.71 5.75 2.97
256 0.72 0.70 4.00 3.25
512 0.81 0.73 4.17 3.29

1024 0.77 0.85 4.11 2.94
2048 0.68 0.91 4.83 3.05
4096 0.87 1.63 7.83 3.04
8192 0.88 1.62 7.72 3.06

16384 1.39 3.56 14.00 3.84
32768 2.54 7.29 32.78 6.25

(c) vs. QK Dimension (PyTorch)

QK dim LIME-MHA MHA Sky. HSTU Sky. LIME-XOR

16 1.22 1.28 7.46 2.56
32 1.28 1.38 7.10 2.55
64 1.25 1.31 7.02 2.57

128 1.26 1.44 7.21 2.59
256 1.26 1.88 8.18 2.65
512 1.24 1.66 7.54 2.64

1024 1.30 3.13 11.02 2.90
2048 1.51 3.31 10.78 3.36
4096 3.07 13.57 35.23 7.93

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

32 64 128 256

1k 0% -0.04% -0.19% -0.20%
2k -0.16% -0.19% -0.34% -0.39%
4k -0.11% -0.36% -0.36% -0.55%

(a) VC NE % improvement across sequence lengths and link counts

32 64 128 256

1k 0% +0.01% +0.08% +0.11%
2k +0.03% +0.05% +0.18% +0.18%
4k +0.03% +0.13% +0.17% +0.27%

(b) WT AUC across sequence lengths and link counts

Table 5: Performance across varying sequence lengths (1k, 2k, 4k) and link counts (32, 64, 128,
256). Each cell reports metric value and relative change from the baseline (1k, 32 links).

Number of Layers VC NE % Improvement WT AUC % Improvement

3 0% 0%
6 -0.25% +0.12%
9 -0.34% +0.18%
12 -0.38% +0.19%

Table 6: VC NE and WT AUC for increasing model depth on fixed 1k sequence length with 32 links.

H DERIVATIONS FOR XOR ATTENTION KERNEL

H.1 FORWARD PASS

Let the output of the XOR-attention be O = (O[S], O[T]), where S, T stand for source and target
respectively. In the context of LIME, source is the user history item embeddings, while target is the
link embeddings. Similarly define Q[S], Q[T],K[S],K[T], V [S], V [T] to be the source and target
portion of the query, key, value embedding sequences.

O[T] = ϕ(Q[T]K[S]⊤)V [S]

O[S] = ϕ(Q[S]K[T]⊤)V [T]

H.2 BACKWARD PASS

Let dO[T] denote an infinitesimally small change in O[T], also known as the its differential. Simi-
larly define dO[S], dV [S], dV [T], dQ[S], dQ[T], dK[S], dK[T].

Trivially we have
∂O[T]

∂Q[S]
=

∂O[T]

∂K[T]
=

∂O[T]

∂V [T]
= 0

∂O[S]

∂Q[T]
=

∂O[S]

∂K[S]
=

∂O[S]

∂V [S]
= 0

The total differential of the loss function is given by

dL = Tr

((
∂L

∂O[S]

)⊤

dO[S]

)
+Tr

((
∂L

∂O[T]

)⊤

dO[T]

)
.

Since dO[S] = ϕ(Q[S]K[T]⊤)dV [T] and dO[T] = ϕ(Q[T]K[S]⊤)dV [S],

dLV = Tr

((
∂L

∂O[S]

)⊤

ϕ(Q[S]K[T]⊤)dV [T]

)
+Tr

((
∂L

∂O[T]

)⊤

ϕ(Q[T]K[S]⊤)dV [S]

)
.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

By comparing coefficient with the matrix chain rule dLV [T] = Tr

((
∂L

∂V [T]

)⊤
dV [T]

)
, we see that

∂L

∂V [T]
= ϕ(K[T]Q[S]⊤)

∂L

∂O[S]
.

Similarly

∂L

∂V [S]
= ϕ(K[S]Q[T]⊤)

∂L

∂O[T]
.

Next for derivatives with respect to Q, we have

dLQ[S] = Tr

((
∂L

∂O[S]

)⊤

ϕ′(Q[S]K[T]⊤)V [T]K[T]⊤dQ[S]

)

dLQ[T] = Tr

((
∂L

∂O[T]

)⊤

ϕ′(Q[T]K[S]⊤)V [S]K[S]⊤dQ[T]

)
.

Hence

∂L

∂Q[S]
= K[T]V [T]⊤ϕ′(K[T]Q[S]⊤)

∂L

∂O[S]

∂L

∂Q[T]
= K[S]V [S]⊤ϕ′(K[S]Q[T]⊤)

∂L

∂O[T]
.

Finally from

dLK[T] = Tr

((
∂L

∂O[S]

)⊤

ϕ′(Q[S]K[T]⊤)V [T]Q[S]⊤dK[T]

)

dLK[S] = Tr

((
∂L

∂O[T]

)⊤

ϕ′(Q[T]K[S]⊤)V [S]Q[T]⊤dK[S]

)
,

we get

∂L

∂K[S]
= Q[T]V [S]⊤ϕ′(K[S]Q[T]⊤)

∂L

∂O[T]

∂L

∂K[T]
= Q[S]V [T]⊤ϕ′(K[T]Q[S]⊤)

∂L

∂O[S]

I TRITON PSEUDOCODE

Algorithm 1: XOR Mask and Denominator Computation

Require: Query index i, key index j, number of sources ns

Ensure: Binary mask m, normalization denominator d
1: is srcq ← (i < ns)
2: is srck ← (j < ns)
3: m← is srcq ⊕ is srck ▷ Attend iff exactly one is source
4: d← is srcq ? nt : ns ▷ Normalize by opposite partition size
5: return m, d

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 2: Forward Pass with Block Range Selection

Require: Q,K,V ∈ Rn×d, number of sources ns

Ensure: Output O ∈ Rn×d

1: for qstart ← 0 to n step BM do ▷ Parallel over query blocks
2: Qb ← Q[qstart : qstart +BM , :] ▷ Load to SRAM
3: acc← 0BM×d

4:
5: // Block range selection (critical optimization)
6: if qstart +BM ≤ ns then ▷ Pure source queries
7: klo, khi ← ns, n ▷ Load target keys only
8: else if qstart ≥ ns then ▷ Pure target queries
9: klo, khi ← 0, ns ▷ Load source keys only

10: else ▷ Boundary case
11: klo, khi ← 0, n
12: end if
13:
14: for kstart ← klo to khi step BN do ▷ Over selected K,V blocks
15: Kb ← K[:, kstart : kstart +BN] ▷ Load K,V to SRAM
16: Vb ← V[kstart : kstart +BN , :]
17: S← QbKb ▷ Compute scores (tensor cores)
18:
19: for i← 0 to BM do ▷ Mask & normalize in registers
20: for j ← 0 to BN do
21: m, d← XORMASK(qstart + i, kstart + j, ns)
22: S[i, j]← m ? SiLU(S[i, j])/d : 0
23: end for
24: end for
25:
26: acc← acc + SVb ▷ Accumulate (tensor cores)
27: end for
28:
29: O[qstart : qstart +BM , :]← acc ▷ Write to HBM
30: end for
31: return O

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 3: Backward Pass (Transposed Access Pattern)

Require: dO,Q,K,V, number of sources ns

Ensure: Gradients dQ,dK,dV
1: dQ,dK,dV← 0
2: for kstart ← 0 to n step BN do ▷ Parallel over K,V blocks
3: Kb ← K[:, kstart : kstart +BN] ▷ Load K,V to SRAM (resident)
4: Vb ← V[kstart : kstart +BN , :]
5: dKacc,dVacc ← 0d×BN

,0BN×d

6:
7: if kstart +BN ≤ ns then ▷ Source K,V block
8: qlo, qhi ← ns, n ▷ Process target queries only
9: else if kstart ≥ ns then ▷ Target K,V block

10: qlo, qhi ← 0, ns ▷ Process source queries only
11: else ▷ Boundary case
12: qlo, qhi ← 0, n
13: end if
14:
15: for qstart ← qlo to qhi step BM do ▷ Over selected Q blocks
16: Qb ← Q[qstart : qstart +BM , :]
17: dOb ← dO[qstart : qstart +BM , :]
18: S← QbKb ▷ Recompute forward (activation remat)
19:
20: for i← 0 to BM , j ← 0 to BN do
21: m, d← XORMASK(qstart + i, kstart + j, ns)
22: if m then
23: sij ← SiLU(S[i, j])/d
24: S[i, j]← sij · (1− sij) · (1 + S[i, j])/d ▷ SiLU gradient
25: else
26: S[i, j]← 0
27: end if
28: end for
29:
30: dVacc ← dVacc + S⊤dOb ▷ Accumulate (tensor cores)
31: dKacc ← dKacc + (S⊤Qb)

⊤

32: ATOMICADD(dQ[qstart : qstart +BM , :], (dObV
⊤
b)S

⊤)
33: end for
34:
35: dK[:, kstart : kstart +BN]← dKacc ▷ Write gradients
36: dV[kstart : kstart +BN , :]← dVacc
37: end for
38: return dQ,dK,dV

J LINEAR ATTENTION PERFORMANCE & LATENCY ANALYSIS

In Figure 9, we compare various linear attention methods (not decoupled so still more expensive than
LIME) to both LIME variants and skyline HSTU. The results demonstrate that LIME variants con-
sistently match (or exceed) HSTU skyline AUC under varying sequence length and QK-dimension
settings.

We benchmark all variants using PyTorch’s FlexAttention library (Dong et al., 2024) which enables
us to flexibly compare various masking strategies, ensuring that unnecessary blocks of computation
are skipped, without writing custom Triton logic for each type of linear attention. In Figure 10,
we observe that Longformer is less expensive than Skyline HSTU when scaling user history length
and number of candidates. However, it is still more expensive than LIME decoupled variants in
complexity (O(NM) vs O(Nℓ + Mℓ)). We observe it is more than twice as expensive across all
user history lengths and spikes at user histories longer than 4096 and at number of candidates to
rank greater than 2048.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 9: AUC Comparison of Sparse Attention Variants with columns reporting on a particular
Sequence Length/QK Dimension (e.g. 256/32 means 256 sequence length, 32 QK-dimension).

Variant 256/128 64/128 256/32 64/32 Complexity
HSTU Skyline 0.7444 0.7300 0.7425 0.7296 O(N2 +NM)

Linear Trans. 0.7423 0.7292 0.7404 0.7278 O(NM)
Longformer 0.7443 0.7300 0.7425 0.7292 O(NM)
Linformer (LREA) 0.7408 0.7289 0.7406 0.7275 O(NM)

LIME-XOR 0.7448 0.7301 0.7427 0.7295 O(Nℓ+Mℓ)

LIME-XOR+Win. 0.7453 0.7305 0.7425 0.7292 O(Nℓ+Mℓ)

2
5

2
7

2
9

2
11

2
13

2
14

0

100

200

User History Length

L
at

en
cy

(m
s)

2
5

2
7

2
9

2
11

2
13

2
14

0

50

100

150

200

Number of Candidates

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

0

50

100

150

QK Embedding Dim

L
at

en
cy

(m
s)

XOR-LIME XOR+Window Longformer HSTU

Figure 10: Latency comparison of linear attention to LIME-XOR and HSTU.

K LINK CLUSTERING ANALYSIS

For one of the LIME-XOR models trained on the industrial dataset, we pick several links and ex-
amine the items that have the largest attention weights with that particular link. In doing so, we find
that the clustered items for each link share strong semantic properties (e.g., video topic, length, etc.).
Some examples include:

• Link 2: Long videos

• Link 3: Food & Cooking videos

• Link 5: Dog & Animal videos

• Link 10: Furniture & DIY videos

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

• Link 30: Sports videos
• Link 31: Foreign videos

L LIME PERFORMANCE ON COLD-START USERS

Although LIME is not explicitly designed for cold-start users, we observe that it delivers topline
improvements for this group in online A/B testing that are comparable to those seen in the overall
user cohort. To further understand this empirical behavior, we evaluate our pretrained HSTU skyline
and LIME-XOR models on the cold-start subset of KuaiRand-1k. In this evaluation (see Table 7),
we vary the maximum number of prior interactions a user may have to qualify as a cold-start user.

Cold-Start User Threshold LIME-XOR HSTU
N(U) ≤ 4 0.7022 0.7016
N(U) ≤ 8 0.7179 0.7173
N(U) ≤ 16 0.7284 0.7273
N(U) ≤ 32 0.7369 0.7356

Table 7: LIME-XOR vs HSTU Performance (AUC) on the cold-start user cohort in KuaiRand-1k

One hypothesis for why LIME leads to improved performance for cold-start users is that LIME
compresses a user’s history into a fixed length embedding (equal to number of links) regardless of
whether the user is a power user or cold-start user. This normalization allows the model to extract
useful patterns even from sparse histories, reducing variance and improving robustness compared to
models like HSTU that depend more directly on the number of prior interactions.

M LLM USAGE IN PREPARATION

We used LLM significantly to polish the language of all sections in the paper, including the abstract
and appendix sections. The tikz codes in Figure 1, 7, 8, and 10 were generated based on data points
we collected ourselves. Most of the tables were also formatted by LLM.

22

