
Structured Inverse-Free Natural Gradient Descent:
Memory-Efficient & Numerically-Stable KFAC

Wu Lin * 1 Felix Dangel * 1 Runa Eschenhagen 2 Kirill Neklyudov 1 Agustinus Kristiadi 1

Richard E. Turner 2 Alireza Makhzani 1 3

Abstract
Second-order methods such as KFAC can be use-
ful for neural net training. However, they are
often memory-inefficient since their precondition-
ing Kronecker factors are dense, and numerically
unstable in low precision as they require matrix
inversion or decomposition. These limitations ren-
der such methods unpopular for modern mixed-
precision training. We address them by (i) for-
mulating an inverse-free KFAC update and (ii)
imposing structures in the Kronecker factors, re-
sulting in structured inverse-free natural gradient
descent (SINGD). On modern neural networks,
we show that SINGD is memory-efficient and nu-
merically robust, in contrast to KFAC, and often
outperforms AdamW even in half precision. Our
work closes a gap between first- and second-order
methods in modern low-precision training.

1. Introduction
The continuing success of deep learning (DL) is—to
a large extent—powered by scaling up computational
power (Thompson et al., 2020) to increase the number of
trainable neural network (NN) parameters. Contemporary
natural language processing (Radford et al., 2019; Brown
et al., 2020; Touvron et al., 2023) and computer vision
(Dehghani et al., 2023) models often consist of billions of
parameters, and will likely grow further in the future. To
compensate for increasing computational demands, many
training pipelines use lower precision data types (Micikevi-
cius et al., 2018) and memory-efficient first-order optimizers
like SGD (Robbins & Monro, 1951) or Adam(W) (Kingma
& Ba, 2015; Loshchilov & Hutter, 2019).

Second-order methods, like natural gradient descent (NGD,

*Equal contribution 1Vector Institute 2University of Cam-
bridge 3University of Toronto. Correspondence to: Wu Lin
<yorker.lin@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Amari, 1998), leverage curvature information which has
many applications in DL: It is useful for improving training
dynamics (Martens & Grosse, 2015; Osawa et al., 2023),
pruning (Wang et al., 2019), understanding the influence of
training examples (Bae et al., 2022), and uncertainty estima-
tion (Zhang et al., 2018; Immer et al., 2021; Daxberger et al.,
2021). One major obstacle why those methods are rarely
used is their higher memory consumption and iteration cost.

The perhaps most common concept to scale second-order
methods for DL is Kronecker-factored approximate curva-
ture (KFAC, Heskes, 2000; Martens & Grosse, 2015) which
approximates the Fisher’s block diagonals via Kronecker
products. The KFAC optimizer built on top of this curvature
approximation, and its variants such as George et al. (2018)
show promising results for medium-sized NNs (e.g. Osawa
et al., 2023), its usefulness is often limited by (i) memory
consumption, and (ii) the use of low-precision floating-point
(FP) training that renders matrix decompositions/inversions
required to pre-condition the gradient numerically unstable.

Recently, Lin et al. (2023) proposed an inverse-free
Kronecker-factored natural gradient descent (INGD) algo-
rithm that replaces matrix inversion with subtraction in a
matrix logarithm space. Their update is purely based on
matrix multiplications and therefore numerically stable in
single-precision (FP-32); however, it is unclear whether this
extends to half-precision (BFP-16). Furthermore, INGD
has not been derived from the popular natural gradient ap-
proaches for DL. It is unclear if and how the method is con-
nected to the predominant KFAC optimizer. Also, INGD
does not improve over KFAC’s memory complexity since
its Kronecker factors are dense matrices of the same size.
And lastly, INGD has only been tested on convolution-based
models and it is unclear whether it is useful for training mod-
ern transformer-based architectures (Vaswani et al., 2017).

Here, we extend INGD to lower its computational cost and
theoretically resolve its connection to other approximate
NGD methods for DL (overview in Figure 2): First, we show
that a special case of INGD recovers the KFAC method.
This allows us to effectively perform KFAC updates in an
inverse-free fashion. We call this modification of INGD
inverse-free KFAC (IKFAC). Second, we exploit an alge-

1

Structured Inverse-Free Natural Gradient Descent (SINGD)

50 100

Epoch

25

50

75

T
es

t
er

r.
(%

)
float32

ADAMW

SINGD-Diag*

KFAC

INGD

IKFAC*

SGD

50 100

Epoch

25

50

75

T
es

t
er

r.
(%

)

bfloat16

Methods
2

3

4

5

6

P
ea

k
m

em
(G

B
)

32

16

32

16

32

16

32

16

Costs

Figure 1: CIFAR-100 experiments on VGG net. Left/Center: Our methods (IKFAC and SINGD) outperform AdamW and
perform stably in FP-32 and BFP-16—unlike KFAC—as they do not require matrix inversions. IKFAC effectively performs
KFAC updates and achieves similar performance in FP-32. For this task, replacing the dense Kronecker factors (INGD
= SINGD-Dense) with diagonal ones (SINGD-Diag) does not harm performance while reducing cost. Right: Memory
consumption. Removing Riemannian momentum (IKFAC) or using structured Kronecker factors (SINGD-Diag) reduces
INGD’s memory in FP-32 and BFP-16. In BFP-16, SINGD-Diag achieves AdamW’s memory consumption (dashed line).

braic structure in the matrix logarithm space and propose
structure-preserving updates to maintain sparse structures
on Kronecker factors. This significantly reduces memory
and leads to a novel, scalable second-order optimization al-
gorithm we call structured inverse-free natural gradient de-
scent (SINGD) which contains INGD and IKFAC as special
cases. We evaluate SINGD on convolution- and transformer-
based models and show that it can (i) outperform SGD and
AdamW while using as little memory as the latter thanks
to structured Kronecker factors and (ii) yield better perfor-
mance than KFAC while being stable in half-precision:

(a) We bridge the gap between INGD (Lin et al., 2023) and
the original KFAC (Martens & Grosse, 2015), whose
matrix inversions are unstable in low precision. Thereby,
we effectively make KFAC inverse-free and amenable
to low-precision training (Figure 1, left/center).

(b) We impose various structures (block-diagonal, low-rank,
Toeplitz, hierarchical) on INGD’s Kronecker factors,
allowing them to be sparse to lower the memory con-
sumption and run time (Figure 1, right and Table 1).
Unlike many existing second-order methods tailored
to a form of structure, our proposed update rule (Fig-
ure 4) is unified, efficient, and inverse-free for a range
of structures. We analyze the impact of structures on
downstream performance and find that structures with
considerably lower memory consumption (even lower
than AdamW) can yield competitive performance.

(c) Unlike other second-order methods, we show that
SINGD can stably train a range of modern architectures
(transformers, CNNs, GNNs) in BFP-16. In contrast to
first-order methods which are often useful in narrower

Table 1: Training times and memory consumption for the
optimizers shown in Figure 1 (parenthesized values are
normalized relative to SGD; our methods are marked with an
asterisk). INGD has 80 % time and 30 % memory overhead
compared to SGD. In contrast, our SINGD-Diag only has
30 % time and 2 % memory overhead. This means that by
using structures we can reduce INGD’s time overhead by
more than half, and basically eliminate its memory overhead
compared to first-order competitors.

Method Peak memory Training time
[GiB] [min]

SGD (BFP-16) 2.63 (1.00 x) 18.5 (1.00 x)
AdamW (BFP-16) 2.69 (1.02 x) 19.7 (1.07 x)
SINGD-Diag* (BFP-16) 2.67 (1.02 x) 23.8 (1.29 x)
IKFAC* (BFP-16) 3.18 (1.21 x) 34.0 (1.84 x)
INGD (BFP-16) 3.39 (1.29 x) 34.1 (1.84 x)
KFAC (FP-32) 4.00 (1.52 x) 83.2 (4.49 x)

scopes (SGD is best for CNNs, AdamW is best for trans-
formers), SINGD works well and outperforms SGD and
AdamW in many cases (see Section 4).

Our work closes a gap between first- and second-order meth-
ods in modern low precision neural network training1.

2. Preliminaries
We first introduce the necessary ingredients to establish a
connection between INGD and KFAC, which are derived
from different perspectives. We start by describing New-
ton’s method since both methods can be seen as approxi-

1PyTorch implementation: github.com/f-dangel/singd

2

https://github.com/f-dangel/singd

Structured Inverse-Free Natural Gradient Descent (SINGD)

KFAC
(Martens &
Grosse, 2015)

Inverse-free
Natural Gra-
dient De-
scent (INGD,
Lin et al.,
2023)

Inverse-free
KFAC (IKFAC,
ours)

Structured
Inverse-free
KFAC
(SIKFAC,
ours)

Structured
Inverse-free
Natural Gra-
dient Descent
(SINGD,
ours)

(·)−1 → Expm(·) Structured Kron. factors

Riem. momentum &
adaptive terms

Structured Kron. factors

Figure 2: Existing methods and their relation
to our proposed methods. IKFAC behaves like
KFAC (Theorem 1), but is numerically stable in
low precision. In contrast to IKFAC, INGD has
Riemannian momenta and adaptive damping
and curvature, which can yield better perfor-
mance in practice (Section 4). INGD is equiv-
alent to SINGD with unstructured Kronecker
factors (SINGD-Dense). Structured Kronecker
factors reduce memory and computational cost.

mate Newton methods using NGD. NN training often corre-
sponds to an unconstrained minimization problem. Consider
training a NN for image classification. Given a set of N
examples {yi,xi}Ni=1 with labels yi and images xi, the op-
timization problem is

min
µ

ℓ(µ;y,X) := min
µ

∑N
i=1 c(yi, f(µ;xi)) , (1)

where y := (y1, . . . , yN), X := (x1, . . . ,xN), and ŷi :=
f(µ;xi) is a NN that outputs a predicted label ŷi for an
image xi. Parameters µ denote learnable weights of the NN
and c(yi, ŷi) is a differentiable loss function to measure the
difference between a true label yi and a predicted label ŷi.
To solve Equation (1), Newton’s method follows the update

µ← µ− S−1 (∇µℓ(µ;y,X)) , (2)

where S := ∇2
µℓ(µ;y,X) is the Hessian of the loss.

2.1. KFAC: Approximate NGD for MLE

Computing the Hessian, as required by Newton’s method,
is usually intractable for NNs. NGD uses a Fisher in-
formation matrix (FIM) instead of the Hessian by refor-
mulating problem (1) as maximum likelihood estimation
(MLE) of p(y | µ,X) =

∏
i p(yi | µ,xi), where p(yi |

µ,xi) := exp(−c(yi, f(µ,xi))). The maximization prob-
lem maxµ p(y | µ,X) is equivalent to the MLE problem

min
µ
− log p(y | µ,X) = min

µ
ℓ(µ;y,X) . (3)

This formulation allows to exploit additional statistical struc-
tures such as the FIM which is defined as shown below
(Kunstner et al., 2019), where we assume a label y is sam-
pled from the likelihood p(y | µ,xi) given an image xi.
With si(y) := log p(y | µ,xi), we have

F (µ) :=

N∑
i=1

Ey∼p(y|µ,xi)

[
∇µsi(y)(∇µsi(y))

⊤]
=

N∑
i=1

Ey∼p(y|µ,xi)

[
−∇2

µsi(y)
]
.

(4)

For ubiquitous loss functions like the mean-squared error
and cross-entropy, and more generally, many members of

the exponential family with natural parameterization, the
FIM coincides with the generalized Gauss-Newton (GGN)
matrix (Wang, 2010; Martens, 2014), a common approxi-
mation of the Hessian in deep learning (Schraudolph, 2002;
Botev et al., 2017). This relationship connects NGD to New-
ton’s method. A common approximation of the FIM/GGN
and Hessian is the so-called empirical Fisher F̂ (µ), which
replaces the samples y from the model’s predictive distribu-
tion in Equation (4) with the empirical data labels yi:

F̂ (µ) :=

N∑
i=1

∇µsi(yi)(∇µsi(yi))
⊤

≈ −
N∑
i=1

∇2
µsi(yi) = S .

While there is no clear theoretical justification for this Hes-
sian approximation (Kunstner et al., 2019), it simplifies the
implementation, reduces cost, and has been shown to work
well in practice (Graves, 2011; Osawa et al., 2019). This ap-
proximation is also known as Fisher’s scoring with observed
FIM for nonlinear models (Osborne, 1992; Smyth, 1996;
2015). With this, we can formulate an NGD update with the
empirical FIM F̂ (µ) to approximate Newton’s method as

µ← µ− β
(
F̂ (µ)

)−1

∇µℓ(µ;y,X)

≈ µ− βS−1∇µℓ(µ;y,X).

We call this update NGD for MLE.

KFAC (Heskes, 2000; Martens & Grosse, 2015) is the prob-
ably most common second-order optimizer in DL. The
KFAC algorithm is based on a Kronecker-factored approx-
imation of the Fisher, which is also sometimes referred
to as KFAC. Here, we refer to the algorithm as KFAC or
KFAC method and to the approximation as Kronecker ap-
proximation; we will consider the empirical Fisher’s Kro-
necker approximation. It approximates the per-layer FIM
with a Kronecker-factored block F̃ l for each layer l of the
net. This approximation has first been derived for linear
layers, later for convolutional (Grosse & Martens, 2016)
and recurrent layers (Martens et al., 2018), and recently
been generalized to all linear layers that use weight shar-
ing (Eschenhagen et al., 2023), e.g. graph neural networks

3

Structured Inverse-Free Natural Gradient Descent (SINGD)

and transformers. A block is given by F̃l(µ) := Ul ⊗Gl,
with Ul := ulu

⊤
l ∈ Rdi×di and Gl := glg

⊤
l ∈ Rdo×do ,

where ul ∈ Rdi is the lth layer’s input and gl ∈ Rdo is the
gradient of the loss w.r.t. the layer’s output. We suppress
the dependence on the parameters µ and the input xi and,
for simplicity, assume no weight sharing. KFAC also uses
exponential moving averages (β1) over U and G (yielding
SK ,SC) and damping λ, see Figure 3.

While the Kronecker approximation enables more efficient
gradient preconditioning, KFAC needs to store the dense
Kronecker factors SK and SC and invert them at every
preconditioner update. The run time overhead is usually
amortized by updating the preconditioner less frequently,
but this can cause instabilities, especially in low-precision
settings. Second, the Kronecker factors introduce signifi-
cant memory overhead, which poses issues in large models.
Since low-precision training is becoming the standard norm
in fields like natural language processing, these issues will
become more apparent in modern DL. There are multiple
numerical concerns when using KFAC or variants thereof
in low precision. In PyTorch (Paszke et al., 2019) and JAX
(Bradbury et al., 2018) implementations, all tensors must
be casted into FP-32 as (B)FP-16 matrix inverses/decompo-
sitions are not supported. Moreover, gl has to be rescaled
to avoid over- or under-flows when calculating Gl. Mem-
ory consumption has previously been addressed through
diagonal or block-diagonal versions of Ul,Gl (Zhang et al.,
2018; Grosse et al., 2023). However, it is unclear if these
simple structures maintain downstream performance.

2.2. INGD: Approximate NGD for Bayesian estimation

Derived from Bayesian principles, INGD (Lin et al., 2023)
directly approximates the Hessian inverse. We first intro-
duce two ingredients INGD builds on: the Bayesian learning
rule (BLR, Khan & Lin, 2017; Zhang et al., 2018; Khan
et al., 2018; Osawa et al., 2019; Lin et al., 2020; Khan & Rue,
2021; Tan, 2022) and an inverse-free second-order method
from Lin et al. (2021). By the BLR, Newton’s method to
solve the MLE (3) can be seen as another natural-gradient
update to solve a variational inference (VI) problem with
a delta approximation (Khan & Rue, 2021). This interpre-
tation allows to view a precision matrix in the variational
problem as Hessian estimation in the MLE problem. Thus,
Lin et al. (2021) suggest reparameterizing the Hessian as
the precision of the Gaussian posterior in a matrix loga-
rithm space and exploiting the parameterization invariance
of natural gradients to obtain an inverse-free update.

BLR Consider a Bayesian problem formulation, where
NN weights are random variables. We denote these weights
by new parameters w since random variables are no longer
learnable and use a variational Gaussian distribution to ap-
proximate the posterior over the random variables. Its mean

and precision will be treated as the learnable weights µ and
the Hessian estimation S in Newton’s step (2).

The VI problem considered in the learning rule is defined as
minτ −L(τ) with the evidence lower bound (ELBO)

L(τ) := Ew∼q(w|τ) [log p(w) + log p(y | w,X)]

+Hq(τ) .
(5)

τ = {µ,S} are the learnable parameters of the variational
Gaussian distribution q(w | τ) = N (w | µ,S) with
mean µ and precision S. The likelihood p(y | w,X) =
exp(−ℓ(w;y,X)) takes the same form as in the MLE set-
ting while the prior p(w) ∝ exp(−R(w)) is defined by
a regularizer R(w) ≥ 0. To recover the MLE problem,
we consider an uninformative prior p(w) (i.e., R(w) = 0).
Hq(τ) := Ew∼q [− log q] is the entropy of q(w | τ).

Similar to the MLE case, the Bayesian formulation allows
to exploit additional statistical structures in form of another
FIM, which is that of the variational Gaussian defined as

F (τ) := Ew∼q(w|τ)
[
∇τ log q(w | τ)∇⊤

τ log q(w | τ)
]

= −Ew∼q

[
∇2

τ log q(w | τ)
]
,

and has a closed-form expression. This FIM should not be
confused with the FIM used for MLE (4).

Under the BLR, we perform NGD updates not only on µ
but also on S. Khan & Rue (2021) formulate a step with the
exact FIM F (τ) and stepsize β > 0 to update τ = {µ,S},

τ ← τ − β
(
F (τ)

)−1

∇τ (−L(τ)) .

This is the NGD update for BLR, vis-à-vis for MLE. Fol-
lowing Khan & Nielsen (2018), the update simplifies to

S← (1− β)S+ βEw∼q(w|µ,S)

[
∇2

wℓ(w;y,X)
]
,

µ← µ− βS−1Ew∼q(w|µ,S) [∇wℓ(w;y,X)] .

Further simplifying expectations with a delta approximation
(highlighted in red) at mean µ, we obtain

S← (1− β)S+ β∇2
µℓ(µ;y,X) ,

µ← µ− βS−1∇µℓ(µ;y,X) .

which recovers Newton’s method in (2) for β = 1.

Removing inversion Lin et al. (2021) reparameterize the
precision matrix S in a matrix logarithm space and perform
natural gradient updates in this space, which transforms
inversion into subtraction. One can go back directly to the
original space, without explicitly inverting a matrix, via a
truncated matrix exponential. The method is inverse-free
and, since NGs are parameterization invariant, Newton-like.

4

Structured Inverse-Free Natural Gradient Descent (SINGD)

KFAC (Martens & Grosse, 2015)
1: Each T iters, update SK , SC

Obtain U⊗G to approximate∇2
µℓ(µ)

SK ← (1− β1)SK + β1U
SC ← (1− β1)SC + β1G

S−1
K ← (SK + λIdi)

−1

S−1
C ← (SC + λIdo)

−1

2: mµ ← α2mµ + S−1
C vec−1(g)S−1

K + γvec−1(µ)
3: µ← µ− β2vec(mµ)

IKFAC (ours)
1: Each T iters, update mK , mC , K, C

Obtain U⊗G to approximate∇2
µℓ(µ)

mK ← 0mK + 1
2do

(doHK + λdoK
⊤K− doIdi)

mC ← 0mC + 1
2di

(diHC + λdiC
⊤C− diIdo)

K← K(Idi − β1mK)
C← C(Ido − β1mC)

2: mµ ← α2mµ +CC⊤vec−1(g)KK⊤ + γvec−1(µ)
3: µ← µ− β2vec(mµ)

Figure 3: Comparison between KFAC and IKFAC update for one weight matrix vec−1(µ) ∈ Rdo×di . The flattened gradient
is g := ∇µℓ(µ) ∈ Rdodi and vec−1(g) ∈ Rdo×di is its matrix reshape. IKFAC uses HK := K⊤UK and HC := C⊤GC
to incorporate the Kronecker curvature U and G. Both methods use momentum buffers mµ for the weight-decayed update
direction with momentum α2 and weight decay γ, and a learning rate β2 for the parameter update. (Left) KFAC uses an
exponentially moving average with decay 1 − β1 to accumulate the Kronecker factors and applies a damping term λI
before inversion to handle potential singularities in SK , SC . (Right) In contrast to KFAC, IKFAC directly approximates
(SK + λI)−1 and (SC + λI)−1 by KK⊤ and CC⊤. The pre-conditioner update is a modification of INGD (Lin et al.,
2023) and the changes—zero Riemannian momentum, and non-adaptive damping and curvature—are highlighted in red.

INGD (Lin et al., 2023)
1: Each T iterations, update mK , mC , K, C

Obtain U⊗G to approximate∇2
µℓ(µ)

mK ← α1mK + 1
2do

(Tr(HC)HK + c2K⊤K− doIdi)

mC ← α1mC + 1
2di

(Tr(HK)HC + κ2C⊤C− diIdo)

K← K(Idi − β1mK)
C← C(Ido − β1mC)

2: mµ ← α2mµ +CC⊤vec−1(g)KK⊤ + γvec−1(µ)
3: µ← µ− β2vec(mµ)

SINGD (ours)
1: Each T iterations, update L̂mK , L̂mC , L̂K , L̂C

Obtain U⊗G to approximate∇2
µℓ(µ)

L̂mK ← α1L̂mK + 1
2do

Π̂K(Tr(HL̂C
)HL̂K

+ c2(L̂K)⊤L̂K − doIdi)

L̂mC ← α1L̂mC + 1
2di

Π̂C(Tr(HL̂K
)HL̂C

+ κ2(L̂C)
⊤L̂C − diIdo)

L̂K ← L̂K(Idi − β1L̂mK)

L̂C ← L̂C(Ido − β1L̂mC)
2: mµ ← α2mµ + L̂C(L̂C)

⊤vec−1(g)L̂K(L̂K)⊤ + γvec−1(µ)
3: µ← µ− β2vec(mµ)

Figure 4: Comparison of a single weight matrix’s update between INGD and our extension—SINGD—via structured
Kronecker factors. (Left) INGD features Riemannian momentum (α1), adaptive curvature (Tr(HC), Tr(HK)), adaptive
damping (c2 := λTr(C⊤C), κ2 := λTr(K⊤K)), and correlated updates of K and C (mK , mC). The pre-conditioner
matrices are updated with a learning rate β1, and the optimizer keeps a momentum buffer on the weight-decayed update
with momentum α2 and weight decay γ. The learning rate for the parameters is β2. (Right) SINGD’s update is similar but
each Kronecker factor and its momentum (•) is replaced by its structured version (L̂•, e.g. (block-)diagonal); likewise in the
computation of c2, κ2, HK , and HC . When updating the momenta, their structure is preserved through a subspace projection
map Π̂•(·) that restores L̂•’s structure from a dense symmetric matrix · (e.g. taking the (block) diagonal). Importantly, we
can efficiently compute the extraction map without expanding its argument in dense form, which reduces memory and run
time. The extension of IKFAC to SIKFAC is analogous. One of the notable elements of INGD and SINGD is that they are
scale invariant to the choice of the Kronecker approximation (see Appendix E) as the approximation is not unique.

The first step is to express the precision matrix S using a non-
singular square matrix A as S = A−⊤A−1 and perform a
natural gradient step using the exact FIM in a tangent space
(denoted by M) of At at iteration t. We then construct a new
map as A := ϕ(At,M) := AtExpm(1/2M) using both
the current point At and M as input, where Expm(N) =
I+

∑∞
j=1

Nj

/j! is the matrix exponential. Observe that M
stays in a matrix logarithm space. At each iteration t, we use
a new matrix logarithm space associated to At and generate
a new origin M0 = 0 in this space to represent At since
At ≡ ϕ(At,0) = AtExpm(1/2M0). The map ϕ is a local
reparameterization map that takes not only M but also At

as input. Thanks to this map, the Fisher block is locally
orthonormalized (Lin et al., 2023) at origin M0. Since we

used the origin to represent At in the local coordinate M, a
natural gradient step becomes a (Euclidean) gradient step
in the space of M, which makes it easy to add Riemannian
momentum (Lin et al., 2023) into the structured positive-
definite matrix S. This allows to perform updates in the
logarithmic space of M and avoid matrix inversions:

M←M0 − βN ,

µ← µ− βAt+1A
⊤
t+1∇µℓ(µ;y,X) ,

(6)

where At+1 := ϕ(At,M) = AtExpm (1/2M) and N :=
A⊤

t ∇2
µℓ(µ;y,X)At − I. Equation (6) is a Newton-like

update without matrix inverse. To see that, we can reexpress
the update of A in terms of S and use properties of the

5

Structured Inverse-Free Natural Gradient Descent (SINGD)

matrix exponential function,

St+1 = A−T
t+1A

−1
t+1 = A−T

t Expm (βN)A−1
t

= (1− β)St + β∇2
µℓ(µ;y,X) +O(β2).

Next, we can construct a structured precision matrix S as a
structured Hessian estimation using a sparse non-singular
matrix A. As we will discuss in Section 3.2, it is essential
to update M to preserve sparsity in A. The space of M
as a tangent/logarithm space of A allows us to efficiently
impose sparse structures on A without requiring the Hes-
sian ∇2

µℓ(µ;y,X) or a Hessian approximation to be sparse
or structured. This is different from another inverse-free
method (Tan, 2022) that considers directly performing NGD
updates of A instead of M, where A must be restricted to a
(triangular) Cholesky factor. This does not preserve sparsity
in A unless the Hessian or its approximation admit a special
structure, which is usually not the case in DL problems.

INGD Our work is built on INGD (Figure 4) where
A = K⊗C is factorized into two Kronecker factors. The
exact FIM under this parameterization is singular due to a
correlation between K and C: the Kronecker factorization
is not unique. Lin et al. (2023) propose a (non-singular)
block-diagonal approximated FIM by ignoring the correla-
tion in the original FIM and perform NGD with this block-
diagonal FIM on tangent spaces of the factors. Riemannian
momentum is further introduced in the update of K and
C. They use the Kronecker approximation discussed in
Section 2.1 to approximate the Hessian ∇2

µℓ(µ;y,X) and
truncate the matrix exponential to obtain a purely matrix-
multiplication based update scheme. It is unclear how INGD
is related to KFAC which uses another Kronecker factoriza-
tion S = SK ⊗SC . INGD also remains memory-inefficient
due to the use of dense Kronecker factors. The authors only
consider and evaluate it on convolution-based models in
single precision. It remains unclear whether INGD is useful
to train transformer-based models, and in half-precision.

3. Structured inverse-free NGD
Inspired by INGD, we propose an inverse-free KFAC update
as a specific setting of INGD to address KFAC’s numeri-
cal instability in low precision. We show that this scheme
effectively recovers KFAC. We then address the memory
inefficiency of KFAC and INGD for training transformer-
based models by extending INGD with structures.

3.1. Inverse-free KFAC Updates for Numerical Stability

We first propose a new inverse-free update to mimic the
behavior of the KFAC update; we call this update IKFAC.
We then show that IKFAC corresponds to a specific setting
of INGD. This bridges the gap between INGD and KFAC
and sheds light on the difference between both methods.

Inspired by INGD, we replace matrix inversion with matrix
subtraction in a matrix logarithm space, then go back to the
original space without explicitly inverting any matrix using
a truncated matrix exponential map. The IKFAC update is
related to the KFAC update as we will use KK⊤ and CC⊤

to approximate the inverse Kronecker factors
(
SK + λI

)−1

and
(
SC + λI

)−1
in KFAC, respectively. We propose the

following IKFAC update with learning rate β1 for K and C
using a truncated matrix exponential

Knew ← K (I− β1/2mK) ,

Cnew ← C (I− β1/2mC) ,
(7)

where HK := K⊤UK, HC := C⊤GC, mK := HK +
λK⊤K−I, mC := HC+λC⊤C−I. This update is inverse-
and matrix-decomposition-free. Since we truncate the ma-
trix exponential Expm(−β1/2mK) ≈ (I− β1/2mK), mK

indeed stays in a matrix logarithm space (see Appendix C).
The logarithm space allows to impose structural constraints
on K we discuss in Section 3.2.

The following theorem—proof in Appendix D—formally
shows that KK⊤ used in IKFAC is an approximation of
(SK + λI)−1 in KFAC at every step even with a truncated
matrix exponential. Similarly, CC⊤ is an approximation of
(SC + λI)−1. Thus, IKFAC effectively recovers KFAC up
to a first-order accuracy.
Theorem 1. If K is updated according to the IKFAC scheme
(Figure 3) with the truncation of the matrix exponential and
these two updates use the same initialization and the same se-
quence of curvature matrices U, then the product KK⊤ has
a first-order accuracy of the KFAC update of

(
SK + λI

)−1

at each iteration, i.e., KK⊤ =
(
SK + λI

)−1
+O(β2

1).

Theorem 1 trivially extends to diagonal and block-diagonal
structures. I.e., KFAC with diagonal or block-diagonal
Kronecker factors is equivalent to IKFAC with diagonal
or block-diagonal structure up to first order in β1.

Now, we show that IKFAC is a specific case of INGD, whose
update of K without Riemannian momentum (α1 = 0) is

Knew← K
[
Idi −

β1

2do

(
Tr(HC)HK + λTr(C⊤C)K⊤K− doIdi

)]
(8)

Since Tr(Ido
) = do, HC ∈ Rdo×do , C ∈ Rdo×do , and

K ∈ Rdi×di , we can obtain IKFAC from INGD by simply
replacing Tr(HC) and Tr(C⊤C) with Tr(Ido):

Knew ← K
[
Idi
− β1

2do

(
Tr(Ido

)HK + λTr(Ido
)K⊤K− doIdi

)]
. (9)

This sheds light on the difference between both methods. In
IKFAC (see Appendix C for details), HK and λK⊤K are
used for incorporating KFAC’s curvature U and damping
λI, respectively. In contrast, the curvature and damping are
adaptively incorporated in INGD using (Tr(HC)/do)HK

and (λTr(C⊤C)/do)K
⊤K. The updates of K and C are

6

Structured Inverse-Free Natural Gradient Descent (SINGD)

Table 2: Subspaces of the logarithm space and their projection
maps Π̂(M), where M is a symmetric matrix. The hierarchical
structure is constructed by replacing the diagonal matrix D22 in
the rank-k upper-triangular structure with another rank-k triangular
matrix

[
A22 0
A23 A33

]
for a better approximation.

Subspace of the log
(Lie-algebraic)

space

Matrix Lie
sub-group

structure in K

Subspace projection
map Π̂(M)


a1,1 0 . . . 0
a2,1 a2,2 0

...
...

. . .
...

adi,1 adi,2 . . . adi,di

 Lower-
triangular

(Tril.)


m1,1 0 . . . 0
2m2,1 m2,2 0

...
...

. . .
...

2mdi,1 2mdi,2 . . . mdi,di




A11 0 · · · 0
0 A22 · · · 0
...

...
. . .

...
0 0 · · · Aqq

 (Block)
Diagonal

(block size k)


M11 0 · · · 0
0 M22 · · · 0
...

...
. . .

...
0 0 · · · Mqq


A11 A12 A13

0 A22 0
0 A32 A33

,

A22 is diag.,
A11 ∈ Rd2×d2 ,
A33 ∈ Rd3×d3

Hierarchical
(k := d2+d3)

M11 2M12 2M13

0 Diag(M22) 0
0 2M32 M33



[
A11 A12

0 D22

]
,

D22 is diag., A11 ∈ Rk×k

Rank-k upper-
triangular

[
M11 2M12

0 Diag(M22)

]



a0 a1 a2 · · · a(di−1)

0 a0 a1

. . .
...

0 0
. . .

. . . a2

...
. . .

. . .
. . . a1

0 · · ·
. . . 0 a0


Upper-

triangular
Toeplitz

(Triu-Toepl.)



b0 2b1 2b2 · · · 2b(di−1)

0 b0 2b1
. . .

...

0 0
. . .

. . . 2b2
...

. . .
. . .

. . . 2b1
0 · · · · · · 0 b0


bj := 1

di−j

∑di−j
k=1 mk,k+j

K KK⊤ (
KK⊤)−1

Dense

Diagonal

Block-diag.

Tril-Toepl.

Triu-Toepl.

Hierarchical

Sparse Triu.

Sparse Triu.

Sparse Tril.

Sparse Tril.

Figure 5: Illustration of structured matrices (Kronecker
factors) supported by SINGD, their self-outer product
(approximate inverse Hessian factor), and its inverse
(approximate Hessian factor). With rank-one triangular
matrices K, we can easily impose a low-rank structure
on KK⊤ or (KK⊤)−1; the latter is difficult to achieve
with other approaches.

correlated in INGD due to the trace terms, while K and
C are updated independently in IKFAC—just like SK and
SC in KFAC. These trace terms are needed to satisfy the
orthonormalization condition of the Fisher matrix (Lin et al.,
2023). They make INGD and SINGD scale-invariant to the
Kronecker approximation (see Appendix E) as the approxi-
mation is not unique. In contrast, KFAC and IKFAC are not
scale-invariant. The trace terms together with Riemannian
momentum (α1 > 0) are missing in KFAC and IKFAC. Our
experiments show that they can contribute to stability.

3.2. Sparse Kronecker Factors for Reducing Memory

Now, we extend INGD to reduce its memory and iteration
cost. Existing sparse KFAC methods use (block-)diagonal
structures for SK and SC (Zhang et al., 2019; Grosse et al.,
2023). In contrast, we propose using sparse Kronecker
factors K and C in INGD and exploiting Lie-algebraic
properties in the logarithm space and algebraic sparsity of

the Kronecker factors. This enables more flexible struc-
tures (Figure 5) that potentially achieve better downstream
performance than (block-)diagonal structures in SK , SC .

Other related works are Lie group preconditioners (Li, 2018;
2022) derived from directly approximating the Hessian.
However, these methods can be computationally expensive
and numerically unstable due to sampling random weights,
using Hessian-vector products (Pearlmutter, 1994), and solv-
ing linear systems that are unstable in low precision. Our
approach is sampling-free and inverse-free.

We want to construct sparse factors K and C without requir-
ing the Kronecker/Hessian approximation (U ⊗G) to be
further sparse or structured. Imposing sparsity often leads to
a complicated FIM which makes it difficult to perform NGD
due to the FIM inversion. It is essential to update mK as the
logarithm space of K to impose sparsity on K as the FIM
in this (moving) coordinate mK is simplified and becomes
an identity matrix due to the orthonormalization condition.

7

Structured Inverse-Free Natural Gradient Descent (SINGD)

100 200 300

Epoch

18

20

22

24

26

28

30

T
es

t
er

r.
(%

)
HDVT-CIFAR100

100 200 300

Epoch

22

24

26

28

30

32
CompactViT-CIFAR100

100 200 300

Epoch

12

14

16

18

20

22
SwinViT-ImageWoof10

100 200 300

Epoch

10

15

20

25

30
GCViT-ImageWoof10

AdamW

INGD

SINGD-Hier*

IKFAC*

SINGD-BDiag*

Figure 6: Test error curves for mixed-precision training in the transformer-based models with BFP-16 on datasets ‘CIFAR-
100’ and ‘ImageWoof-10’. SINGD performs as well as INGD while being memory efficient and, including IKFAC and
INGD as special cases, outperforms AdamW in most of the cases. We omit KFAC since it performs unstably in BFP-16.
The hierarchical structure often performs as well as the dense structure and outperforms the block-diagonal structure.

This condition (Lin et al., 2023) makes it easy for us to
impose a range of sparse structures on K through a unified
and inverse-free update rule (Figure 4) since we can avoid
inverting the Fisher block regarding the sparse structures.
We also exploit the algebraic sparsity in these structures to
make our rule more efficient than INGD (Table 3).

We exploit Lie-algebraic properties in the log space of mK

to construct sparse structures of K. As a general design
principle, we consider structures of K preserved under (i)
elementwise matrix operations (subtraction and scalar mul-
tiplication) and (ii) matrix multiplication, which are needed
for our updates. Concretely, we construct a new local repa-
rameterization for K at iteration t via

K := ψ(Kt,mK) := KtExpm

(
1√
2di

Π̂K(mK)

)
,

where Π̂K(mK) projects the dense mK to a subspace (iden-
tically for C, but potentially using a different structure Π̂C .

Many popular structures such as tri-diagonal matrices do not
satisfy our requirements as they are not closed under matrix
multiplication. Moreover, it can be difficult to construct
the projection map to satisfy the orthonormalization con-
dition. One subspace structure satisfying the requirements
are upper/lower triangular matrices. The subspace projec-
tion Π̂K is a weighted extraction map since projecting the
logarithm space onto a subspace is like projecting a dense
square matrix onto a triangular matrix. Technically, we use

A := KtExpm

(
Π̂K(mK)√

2di

)
⊗Ct

to update K at iteration t, treating Ct and Kt as constants.
Given a subspace ΩK ⊂ Rdi×di in the matrix logarithm

space, the subspace projection map Π̂K : Symdi×di 7→
ΩK is specified by satisfying the local orthonormalization
condition of the Fisher block regarding mK :

F |mK=0 := −Ew∼q

[
∇2

mK
log q(w | µ,S)

] ∣∣
mK=0

= I ,

with the variational Gaussian q(w | µ,S) with mean µ, pre-
cision S := A−⊤A−1 and Symdi×di the set of symmetric
square real matrices. Similarly, we can obtain Π̂C for C.

We consider several sparsities and block extensions of tri-
angular matrices illustrated in Figure 5. E.g., the subspace
projection map for a diagonal structure simply extracts di-
agonal entries of its input. As a non-trivial example, the
subspace projection map for a lower-triangular structure ex-
tracts lower-triangular entries of its input and multiplies the
entries below the main diagonal by 2. Table 2 summarizes
structures and their projection maps mathematically.

Using such a subspace and its projection map, we obtain a
structured INGD update (Figure 4), and similar for IKFAC.
Our approach allows to use more expressive structures than
the block-diagonal structure shown in Figure 5, e.g. low-
rank, flexible hierarchical, and Toeplitz structures. While
existing methods mainly support low-rank structures. For
an efficient implementation, we only compute and store non-
zero entries of Π̂K(mK) and K without explicitly forming
dense matrices. These structures lower not only memory
consumption (Table 4), but also the iteration cost (Table 3).

4. Experiments
We evaluate SINGD on convolutional, transformer, and
graph NNs, using mixed-precision training in BFP-16 with
KFAC-reduce (Eschenhagen et al., 2023) and numerical
tricks (Dangel, 2023) to further reduce memory consump-

8

Structured Inverse-Free Natural Gradient Descent (SINGD)

0 200

Epoch

10

15

20

25

30

35

T
es

t
er

r.
(%

)
RepViT-ImageWoof10 (BFP16)

50 100

Epoch

25

30

35

40
VGG-CIFAR100 (BFP16)

50 100

Epoch

25

30

35

40

45

50
ConvMixer-CIFAR100 (BFP16)

AdamW

IKFAC*

INGD

SINGD-Diag*

SGD

KFAC

200 400

Epoch

12

14

16

18

20

22
GNN-Cora (FP32)

Figure 7: Test error curves for mixed-precision training in CNN and GNN models on datasets ‘ImageWoof-10’, ‘CIFAR-100’
and ‘Cora’. ‘Rep-ViT’ is a CNN model inspired by transformers. SINGD performs as well as INGD while being memory
efficient. SINGD including IKFAC and INGD as special cases, outperforms AdamW on all the models. The diagonal
structure can perform as well as the dense structure on these models. KFAC only appears in the rightmost plot since it
performs unstably in the other plots due to numerical issues in half-precision settings.

tion and iteration cost for convolutions. The performance
metric is test error. To be memory-efficient, we consider
SINGD with sparse structures such as ‘diagonal’, ‘block-
diagonal’, and ‘hierarchical’. We also consider IKFAC,
INGD (recall SINGD with dense structure becomes INGD),
and AdamW as baselines. All methods except KFAC di-
rectly support training in BFP-16. For KFAC, we have to
transform a matrix into FP-32 and then transform its inverse
into BFP-16. We find that KFAC performs unstably in BFP-
16. For ‘VGG’ and ‘ConvMixer’, we also consider SGD as
a strong baseline, We fix momentum to 0.9 and tune other
hyper-parameters of each optimizer using random search.
For ‘VGG’ and ‘ConvMixer’, we decrease the learning rate
β2 every 40 epochs. For ‘GNN’, we use a constant learning
rate; all other models use a cosine learning rate schedule.
We consider KFAC as a strong baseline for the GNN as
suggested by Izadi et al. (2020). We train the GNN in FP-32
so that KFAC performs stably. The search space for the
random search can be found in Table 5 in Appendix B.

From Figure 6 and 7, we can observe that SINGD, including
IKFAC and INGD as special cases, outperforms AdamW
in many cases. SINGD works well for mixed-precision
training. We do not show KFAC in the plots as it performs
unstably due to numerical issues. We also observe that the
hierarchical structure often performs as well as the dense
structure (INGD) on all the models. In several cases, the
hierarchical structure outperforms the block-diagonal and
diagonal structures. However, on the models shown in Fig-
ure 7, even the diagonal structure can perform as well as the
dense one. Thus, we can reduce INGD’s memory consump-
tion and make SINGD as competitive as AdamW. We also
train a ViT model on “ImageNet-100" to demonstrate the
superior performance of SINGD over AdamW in large-scale

settings (see Figure 9 in Appendix B).

5. Conclusion
We propose an inverse-free, memory-efficient natural gra-
dient descent method—SINGD—which addresses the nu-
merical instability and memory inefficiency of second-order
methods like KFAC (Martens & Grosse, 2015). The algo-
rithm is an extension of the inverse-free natural gradient
(INGD) method from Lin et al. (2023), whose update re-
lies only on matrix multiplications. We theoretically es-
tablish the algorithm’s relation to KFAC by showing that
a modification of INGD effectively performs KFAC-like
updates and further improve its memory efficiency through
sparse Kronecker factors. We showed that SINGD supports
low-precision training and often outperforms AdamW on
transformer-based models. Our work expands the scope of
second-order methods to training transformer-based NNs
and in low precision, making them more widely applicable.

Acknowledgements
Resources used in preparing this research were provided, in
part, by the Province of Ontario, the Government of Canada
through CIFAR, and companies sponsoring Vector Institute.
Runa Eschenhagen is supported by ARM and the Cambridge
Trust. Richard E. Turner is supported by Google, Amazon,
ARM, Improbable and EPSRC grant EP/T005386/1.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal

9

Structured Inverse-Free Natural Gradient Descent (SINGD)

consequences of our work, none which we feel must be
specifically highlighted here.

References
Amari, S.-I. Natural gradient works efficiently in learning.

Neural computation, 10(2):251–276, 1998.

Bae, J., Ng, N., Lo, A., Ghassemi, M., and Grosse, R. B.
If influence functions are the answer, then what is the
question? In NeurIPS, 2022.

Botev, A., Ritter, H., and Barber, D. Practical Gauss-Newton
optimisation for deep learning. In ICML, 2017.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
In NeurIPS, 2020.

Dangel, F. Convolutions through the lens of tensor networks.
arXiv 2307.02275, 2023.

Daxberger, E., Kristiadi, A., Immer, A., Eschenhagen, R.,
Bauer, M., and Hennig, P. Laplace redux—effortless
Bayesian deep learning. In NeurIPS, 2021.

Dehghani, M., Djolonga, J., Mustafa, B., Padlewski, P.,
Heek, J., Gilmer, J., Steiner, A. P., Caron, M., Geirhos,
R., Alabdulmohsin, I., et al. Scaling vision transformers
to 22 billion parameters. In ICML, 2023.

Eschenhagen, R., Immer, A., Turner, R. E., Schneider, F.,
and Hennig, P. Kronecker-Factored Approximate Curva-
ture for modern neural network architectures. In NeurIPS,
2023.

George, T., Laurent, C., Bouthillier, X., Ballas, N., and
Vincent, P. Fast approximate natural gradient descent in
a kronecker factored eigenbasis. In NeurIPS, 2018.

Graves, A. Practical variational inference for neural net-
works. In NeurIPS, 2011.

Grosse, R. and Martens, J. A kronecker-factored approxi-
mate fisher matrix for convolution layers. In ICML, 2016.

Grosse, R., Bae, J., Anil, C., Elhage, N., Tamkin, A., Tajdini,
A., Steiner, B., Li, D., Durmus, E., Perez, E., et al. Study-
ing large language model generalization with influence
functions. arXiv preprint arXiv:2308.03296, 2023.

Hassani, A., Walton, S., Shah, N., Abuduweili, A., Li, J.,
and Shi, H. Escaping the big data paradigm with compact
transformers. arXiv preprint arXiv:2104.05704, 2021.

Hatamizadeh, A., Yin, H., Heinrich, G., Kautz, J., and
Molchanov, P. Global context vision transformers. In In-
ternational Conference on Machine Learning, pp. 12633–
12646. PMLR, 2023.

Heskes, T. On “natural” learning and pruning in multilay-
ered perceptrons. Neural Computation, 12(4), 2000.

Immer, A., Bauer, M., Fortuin, V., Rätsch, G., and Emtiyaz,
K. M. Scalable marginal likelihood estimation for model
selection in deep learning. In ICML, 2021.

Izadi, M. R., Fang, Y., Stevenson, R., and Lin, L. Opti-
mization of graph neural networks with natural gradient
descent. In 2020 IEEE international conference on big
data (big data), pp. 171–179. IEEE, 2020.

Khan, M. and Lin, W. Conjugate-computation varia-
tional inference: Converting variational inference in non-
conjugate models to inferences in conjugate models. In
Artificial Intelligence and Statistics, pp. 878–887, 2017.

Khan, M. E. and Nielsen, D. Fast yet Simple Natural-
Gradient Descent for Variational Inference in Complex
Models. arXiv preprint arXiv:1807.04489, 2018.

Khan, M. E. and Rue, H. The bayesian learning rule. arXiv
preprint arXiv:2107.04562, 2021.

Khan, M. E., Nielsen, D., Tangkaratt, V., Lin, W., Gal,
Y., and Srivastava, A. Fast and scalable Bayesian deep
learning by weight-perturbation in Adam. In ICML, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Kunstner, F., Balles, L., and Hennig, P. Limitations of
the empirical Fisher approximation for natural gradient
descent. In NeurIPS, 2019.

Li, X. Black box lie group preconditioners for sgd. arXiv
preprint arXiv:2211.04422, 2022.

Li, X.-L. Preconditioner on matrix lie group for sgd. In
International Conference on Learning Representations,
2018.

Lin, W., Schmidt, M., and Khan, M. E. Handling the
positive-definite constraint in the bayesian learning rule.
In ICML, 2020.

10

http://github.com/google/jax

Structured Inverse-Free Natural Gradient Descent (SINGD)

Lin, W., Nielsen, F., Emtiyaz, K. M., and Schmidt, M.
Tractable structured natural-gradient descent using local
parameterizations. In ICML, 2021.

Lin, W., Duruisseaux, V., Leok, M., Nielsen, F., Khan, M. E.,
and Schmidt, M. Simplifying momentum-based positive-
definite submanifold optimization with applications to
deep learning. In ICML, 2023.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. Swin transformer: Hierarchical vision
transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision,
pp. 10012–10022, 2021.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. In ICLR, 2019.

Lu, Z., Xie, H., Liu, C., and Zhang, Y. Bridging the gap
between vision transformers and convolutional neural net-
works on small datasets. Advances in Neural Information
Processing Systems, 35:14663–14677, 2022.

Martens, J. New insights and perspectives on the natural
gradient method. JMLR, 21(146), 2014.

Martens, J. and Grosse, R. Optimizing neural networks with
Kronecker-factored approximate curvature. In ICML,
2015.

Martens, J., Ba, J., and Johnson, M. Kronecker-factored
curvature approximations for recurrent neural networks.
In ICLR, 2018.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O.,
Venkatesh, G., and Wu, H. Mixed precision training. In
International Conference on Learning Representations
(ICLR), 2018.

Osawa, K., Swaroop, S., Khan, M. E. E., Jain, A., Eschen-
hagen, R., Turner, R. E., and Yokota, R. Practical deep
learning with Bayesian principles. In NeurIPS, 2019.

Osawa, K., Li, S., and Hoefler, T. PipeFisher: Efficient
training of large language models using pipelining and
Fisher information matrices. In MLSys, 2023.

Osborne, M. R. Fisher’s method of scoring. International
Statistical Review/Revue Internationale de Statistique, pp.
99–117, 1992.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. PyTorch: An imperative style, high-performance
deep learning library. In NeurIPS, 2019.

Pearlmutter, B. A. Fast exact multiplication by the Hessian.
Neural Computation, 1994.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Robbins, H. and Monro, S. A Stochastic Approximation
Method. The Annals of Mathematical Statistics, 1951.

Schraudolph, N. N. Fast curvature matrix-vector products
for second-order gradient descent. Neural computation,
14(7), 2002.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Smyth, G. K. Partitioned algorithms for maximum like-
lihood and other non-linear estimation. Statistics and
Computing, 6:201–216, 1996.

Smyth, G. K. Optimization and nonlinear equations. Statis-
tics reference online, 1:1–9, 2015.

Tan, L. S. Analytic natural gradient updates for cholesky fac-
tor in gaussian variational approximation. arXiv preprint
arXiv:2109.00375, 2022.

Thompson, N. C., Greenewald, K., Lee, K., and Manso,
G. F. The computational limits of deep learning. 2020.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. LLaMA: Open and efficient founda-
tion language models. arXiv preprint arXiv:2302.13971,
2023.

Trockman, A. and Kolter, J. Z. Patches are all you need?
Transactions on Machine Learning Research, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention
is all you need. In NIPS, 2017.

Wang, A., Chen, H., Lin, Z., Pu, H., and Ding, G. Repvit:
Revisiting mobile cnn from vit perspective. arXiv preprint
arXiv:2307.09283, 2023.

Wang, C., Grosse, R., Fidler, S., and Zhang, G. Eigen-
damage: Structured pruning in the kronecker-factored
eigenbasis. In ICML, 2019.

Wang, Y. Fisher scoring: An interpolation family and its
Monte Carlo implementations. Comput. Stat. Data Anal.,
54(7), 2010.

Zhang, G., Sun, S., Duvenaud, D., and Grosse, R. Noisy
natural gradient as variational inference. In ICML, 2018.

Zhang, G., Li, L., Nado, Z., Martens, J., Sachdeva, S., Dahl,
G. E., Shallue, C. J., and Grosse, R. B. Which algorithmic
choices matter at which batch sizes? Insights from a noisy
quadratic model. In NeurIPS, 2019.

11

Structured Inverse-Free Natural Gradient Descent (SINGD)

A. space and time complexity

Method △µ (descent direction) Update SK or K Update SC or C ∇µℓ (BackProp)

Iteration Cost
KFAC O(d2i do + d2odi) O(1

T (md2i + d3i)) O(1
T (md2o + d3o)) O(mdido)

INGD/SINGD (Dense) O(d2i do + d2odi) O(1
T (md2i + d3i)) O(1

T (md2o + d3o)) O(mdido)
SINGD (Block-Diag. with block size k) O(kdido) O(1

T (kmdi)) O(1
T (kmdo)) O(mdido)

SINGD (Toeplitz) O(dido log(dodi)) O(1
T (mdi log di)) O(1

T (mdo log do)) O(mdido)
SINGD (Rank-1 Triangular) O(dido) O(1

T (mdi)) O(1
T (mdo)) O(mdido)

SINGD (Hierarchical with parameter k) O(kdido) O(1
T (kmdi)) O(1

T (kmdo)) O(mdido)
AdamW O(dido) NA NA O(mdido)

Table 3: Iteration cost for a non-weight-sharing layer, where m is the size of a mini-batch and µ ∈ Rdi×do is a learnable
weight matrix. We assume factors K and C use the same structure.

Method ∇µℓ⊙∇µℓ SK or K SC or C

Memory Usage
KFAC NA O(d2i) O(d2o)

INGD/SINGD (Dense) NA O(d2i) O(d2o)
SINGD (Block-Diag. with block size k) NA O(kdi) O(kdo)

SINGD (Toeplitz) NA O(di) O(do)
SINGD (Rank-1 Triangular) NA O(di) O(do)

SINGD (Hierarchical with parameter k) NA O(kdi) O(kdo)
AdamW O(dido) NA NA

Table 4: Additional Storage

B. Details of the Experiments
To demonstrate the robustness and memory efficiency of our method, we consider image classification tasks with transformer-
based models such as “Compact-ViT" (Hassani et al., 2021), “Swin-ViT" (Liu et al., 2021), “GC-ViT" (Hatamizadeh et al.,
2023), and “HDVT” (Lu et al., 2022). We also consider convolution-based models such as “VGG” (Simonyan & Zisserman,
2014), “ConvMixer” (Trockman & Kolter, 2023), and “Rep-ViT" (Wang et al., 2023). We train these models on datasets
“CIFAR-100" and “ImageWoof-10". Note that “Rep-ViT" is a CNN model inspired by transformers while “Compact-ViT"
is a data-efficient transformer using convolutional tokenization. We also consider a graph convolution model (Kipf &
Welling, 2016) denoted by “GNN” for node classification on dataset “Cora". We also train a ViT model on “ImageNet-100"
(https://www.kaggle.com/datasets/ambityga/imagenet100) to demonstrate the performance of SINGD
in large-scale settings (see Fig. 9).

B.1. Hyper-parameter Tuning

Hyperparameter Meaning KFAC/IKFAC/SINGD in Figure 4 and 8 AdamW in Figure 8

β2 Standard stepsize Tuned Tuned

α2 Standard momentum weight 0.9 0.9

γ (L2) weight decay Tuned Tuned

λ Damping Tuned Tuned

β1 Stepsize for preconditioner Tuned Tuned

α1 Riemannian Momentum (SINGD only) Tuned NA

Table 5: Hyperparameters used for a random search.

12

 https://www.kaggle.com/datasets/ambityga/imagenet100

Structured Inverse-Free Natural Gradient Descent (SINGD)

Table 6: Peak memory and run time of different optimizers for GCViT on ImageWoof10 (Figure 6, right). Parenthesized
values are normalized relative to SGD. For this vision transformer task, we observe that the backpropagation dominates both
run time and memory. In this setting, all our methods as well as INGD have basically no run time and memory overhead
compared to the first-order methods. INGD and our proposed methods are even able to beat AdamW and SGD in terms of
test error. INGD, KFAC and SINGD update their preconditioner every T = 5 iterations.

Method Peak memory Training time
[GiB] [min]

SGD (BFP-16) 15.6 (1.00 x) 190 (1.00 x)
AdamW (BFP-16) 15.7 (1.00 x) 191 (1.01 x)
SINGD-Diag* (BFP-16) 15.8 (1.02 x) 200 (1.06 x)
IKFAC* (BFP-16) 16.0 (1.02 x) 197 (1.04 x)
INGD (BFP-16) 16.0 (1.02 x) 203 (1.07 x)
KFAC (FP-32) 16.0 (1.02 x) 359 (1.89 x)

INGD
1: Each T iter., update mK , mC , K, C

Obtain µAA ⊗ µGG to approximate∇2
µℓ(µ)

mK ← α1mK + β1
2d

(Tr(HC)HK + c2KTK− dIp)

mC ← α1mC + β1
2p

(Tr(HK)HC + κ2CTC− pId)

K← KExpm(−mK) ≈ K(Ip −mK)

C← CExpm(−mC) ≈ C(Id −mC)

2: Mµ ← α2Mµ +CCT vec−1(∇µℓ(µ))KKT + γvec−1(µ)

3: µ← µ− β2vec(Mµ)

AdamW Optimizer
1: At iter. t, update ms, s

Use (∇µℓ(µ))
2 to approximate diag

(
∇2

µℓ(µ)
)

ms ← (1− β1)ms + β1 (∇µℓ(µ))
2

s2 ←ms/(1−(1−β1)
t)

s←
√
s2 + λ

2: mµ ← α2mµ + (1− α2)∇µℓ(µ)

Mµ ← s−1mµ/
(
1− αt

2

)
3: µ← µ− β2Mµ + γµ

Figure 8: Baseline methods in the same notation for a hyperparameter search.

20 40 60 80 100 120

Epoch

10

20

30

40

50

60

T
es

t
E

rr
o
r

GCViT-ImageNet100

AdamW

SINGD-Dense

Figure 9: Test error curves for mixed-precision training on a GCViT model on dataset ‘ImageNet-100’. SINGD has a similar
iteration cost as AdamW while achieving better performance.

C. Connection between IKFAC and KFAC
To relate to the KFAC method, we now show that Knew(Knew)⊤ is an approximation of

(
Snew
K + λI

)−1
at a new step of our

scheme. For simplicity, we first assume KK⊤ exactly equals to (Scur
K + λI)

−1 at the current step. Later, we will relax this
assumption and prove that KK⊤ is an approximation of (SK + λI)

−1 at every step as stated in Theorem 1. For notation
simplicity, we denote S̄K := SK + λI. The update of SK with damping λI can be reexpressed as an update of S̄K :

(Snew
K + λI) = S̄

new
K ← (1− β1)S̄

cur
K + β1 (U+ λI) .

Since Ŝ
cur
K = K−TK−1 by our assumption, we can express update of SK in terms of K as follows.

S̄
new
K ← (1− β1)S̄

cur
K + β1 (U+ λI) = K−T

(
I+ β1

(
K⊤UK+ λK⊤K− I

))
K−1 = K−T (I+ β1mK)K−1

S̄
new
K in the KFAC update can be approximated as below, where we consider I + β1mK as an ap-

13

Structured Inverse-Free Natural Gradient Descent (SINGD)

proximate of the matrix exponential Expm(β1mK) ≈ I + β1mK and notice that mK is symmetric.

S̄
new
K = K−T (I+ β1mK)K−1 ≈ K−TExpm (β1mK)K−1 = K−TExpm

(β1

2
mK

)⊤
Expm

(β1

2
mK

)
K−1.

Informally, we can see that Knew(Knew)⊤ approximates
(
S̄

new
K

)−1
by using the matrix exponential. We can see that mK

stays in a matrix logarithm space.

(
S̄

new
K

)−1 ≈ KExpm
(
−β1

2
mK

)
Expm

(
−β1

2
mK

)⊤
K⊤ ≈ K

(
I− β1

2
mK

)(
I− β1

2
mK

)T
K⊤ = Knew(Knew)⊤

Theorem 1 formally shows that KK⊤ used in our update is an approximation of
(
SK + λI

)−1

in the KFAC update for
every step even when the truncation of the matrix exponential is employed.

D. Proof of Theorem 1
We first consider the following lemmas in order to prove Theorem 1.

Recall that we denote S̄K := SK + λI. For notation simplicity, we will drop the subscript K in this section and use S̄t to
denote S̄K at iteration t. Notice that S̄t is non-singular at each iteration t so that we can inverse it in the original KFAC
update (see Figure 3).

Lemma D.1. Consider the following update in the original KFAC update at iteration t.

S̄t := (1− β1)S̄t−1 + β1

(
Ût−1 + λI

)
where St is the factor SK used in the original KFAC update, β1 is known as the weight of the moving average, and Ût−1 is
a curvature matrix.

The initial factor S̄0 can be decomposed as S̄0 = K̂
−T

0 K̂
−1

0 since S̄0 as a preconditioning factor is symmetric positive
definite.

Define N̂i := K̂
T

0 ÛiK̂0 + λK̂
T

0 K̂0 − I.

The Kronecker factor can be reexpressed as

S̄t = K̂
−T

0

(
I+ β1

t−1∑
i=0

N̂i

)
K̂

−1

0 +O(β2
1)

Lemma D.2. Consider the following update in our inverse-free KFAC at iteration t.

Kt := Kt−1

(
I− β1

2

(
K⊤

t−1Ut−1Kt−1 + λK⊤
t−1Kt−1 − I

))
where K⊤

t−1Ut−1Kt−1 is used in our update and Ut−1 is a curvature matrix.

Define Ni := K⊤
i UiKi + λK⊤

i Ki − I.

Our update of K can be reexpressed as

Kt = K0

(
I− β1

2

t−1∑
i=0

Ni

)
+O(β2

1)

Moreover, the product KK⊤ can be reexpressed as

KtK
⊤
t = K0

(
I− β1

t−1∑
i=0

Ni

)
K⊤

0 +O(β2
1)

Lemma D.3 is useful to establish a relationship between the KFAC update and our inverse-free update.

14

Structured Inverse-Free Natural Gradient Descent (SINGD)

Lemma D.3. If we use the same sequence of curvature matrices in both the original KFAC update and our update such as
Ûi = Ui for each iteration i and K̂0 = K0 are used on the initialization, we have the following expression.

Ni = N̂i +O(β1)

Similarly, we have the following result for C.

Theorem 2. The product CC⊤ has a first-order accuracy of the KFAC update of
(
SC + λI

)−1
at each iteration if the update

of C is updated according to Figure 3 with the truncation of the matrix exponential and these two updates use the same
initialization and the same sequence of curvature matrices G.

CC⊤ =
(
SC + λI

)−1
+O(β2

1)

D.1. Proof of Lemma D.1

We prove the lemma by induction We first show the base case when t = 1. By definition, we have

S̄1 = (1− β1)S̄0 + β1

(
Û0 + λI

)
(10)

= (1− β1)K̂
−T

0 K̂
−1

0 + β1

(
Û0 + λI

)
(11)

= K̂
−T

0

[
I+ β1

(
K̂

T

0 Û0K̂0 + λK̂
T

0 K̂0 − I
)

︸ ︷︷ ︸
=

ˆN0

]
K̂

−1

0 (12)

= K̂
−T

0

[
I+ β1N̂0

]
K̂

−1

0 (13)

Thus, the claim holds when t = 1.

Suppose, the claim holds when t = n. By the claim, we have

S̄n = K̂
−T

0

(
I+ β1

n−1∑
i=0

N̂i

)
K̂

−1

0 +O(β2
1) (14)

Now, we consider the case when t = n+ 1. Notice that

(1− β1)S̄n = K̂
−T

0

(
I+ β1

n−1∑
i=0

N̂i − β1I+O(β2
1)

)
K̂

−1

0 +O(β2
1)

= K̂
−T

0

(
I+ β1

n−1∑
i=0

N̂i − β1I

)
K̂

−1

0 +O(β2
1)

By the definition of Ŝn+1, we have

S̄n+1 = (1− β1)S̄n + β1

(
Ûn + λI

)
(15)

= K̂
−T

0

I+ β1

n−1∑
i=0

N̂i−β1I+ β1K̂
T

0 ÛnK̂0 + β1λK̂
T

0 K̂0︸ ︷︷ ︸
=β1

ˆNn

 K̂
−1

0 +O(β2
1) (16)

= K̂
−T

0

(
I+ β1

n∑
i=0

N̂i

)
K̂

−1

0 +O(β2
1) (17)

which is exactly the claim when t = n+ 1.

Thus, by induction, the claim holds.

15

Structured Inverse-Free Natural Gradient Descent (SINGD)

D.2. Proof of Lemma D.2

We prove the lemma by induction We first show the base case when t = 1. By definition, we have

K1 = K0

(
I− β1

2

(
K⊤

0 U0K0 + λK⊤
0 K0 − I

)
︸ ︷︷ ︸

=N0

)
(18)

Thus, the claim holds when t = 1.

Suppose, the claim holds when t = n. By the claim, we have

Kn = K0

(
I− β1

2

n−1∑
i=0

Ni

)
+O(β2

1) (19)

Now, we consider the case when t = n+ 1. Notice that

Kn+1 = Kn

(
I− β1

2

(
K⊤

nUnKn + λK⊤
nKn − I

)
︸ ︷︷ ︸

=Nn

)
(20)

= K0

(
I− β1

2

n−1∑
i=0

Ni

)
︸ ︷︷ ︸

=Kn−O(β2
1)

(
I− β1

2
Nn

)
+O(β2

1) (21)

= K0

(
I− β1

2

n−1∑
i=0

Ni −
β1

2
Nn +O(β2

1)

)
+O(β2

1) (22)

= K0

(
I− β1

2

n∑
i=0

Ni

)
+O(β2

1) (23)

which is exactly the claim when t = n+ 1.

Thus, by induction, the claim holds.

Notice that Ni by definition is symmetric. It is easy to see that

KtK
⊤
t = K0

(
I− β1

2

t−1∑
i=0

Ni

)(
I− β1

2

t−1∑
i=0

Ni

)⊤

K⊤
0 +O(β2

1) (24)

= K0

(
I− β1

2

t−1∑
i=0

Ni

)(
I− β1

2

t−1∑
i=0

Ni

)
K⊤

0 +O(β2
1) (25)

= K0

(
I− β1

t−1∑
i=0

Ni

)
K⊤

0 +O(β2
1) (26)

Thus, the claim also holds.

D.3. Proof of Lemma D.3

We first show the base case when t = 0. By the assumption, we have K0 = K̂0. Similarly, we have U0 = Û0 by the
assumption.

By definition, we have

N0 = K⊤
0 U0K0 + λK⊤

0 K0 − I (27)

= K̂
⊤
0 Û0K̂0 + λK̂

⊤
0 K̂0 − I (28)

= N̂0 (29)

16

Structured Inverse-Free Natural Gradient Descent (SINGD)

Thus, the claim holds when t = 0.

When t > 0, we can use Lemma D.2 to obtain the claim. Notice that

Nn+1 = K⊤
n+1Un+1Kn+1 + λK⊤

n+1Kn+1 − I (30)

=

(
I− β1

2

n∑
i=0

Ni

)⊤

K⊤
0

(
Un+1 + λI

)
K0

(
I− β1

2

n∑
i=0

Ni

)
− I+O(β2

1) (Lemma 2) (31)

= K⊤
0

(
Un+1 + λI)K0 +O(β1) +O(β2

1) (32)

= K̂
⊤
0

(
Ûn+1 + λI

)
K̂0 +O(β1) (Assumption) (33)

= N̂n+1 +O(β1) (34)

D.4. Proof of Theorem 1

It is sufficient to show that the following claim holds at iteration t since S̄t is non-singular.

KtK
⊤
t S̄t = I+O(β2

1)

where we use S̄t to denote S̄K at iteration t.

By assumptions, we know that Lemmas D.1, D.2, D.3 hold. Moreover, we have K0 = K̂0. Thus, we have

KtK
⊤
t S̄t = K0

(
I− β1

t−1∑
i=0

Ni

)
K⊤

0 S̄t +O(β2
1) (by Lemma D.2) (35)

= K0

(
I− β1

t−1∑
i=0

Ni

)
K⊤

0 K̂
−T

0

(
I+ β1

t−1∑
i=0

N̂i

)
K̂

−1

0 +O(β2
1) (by Lemma D.1) (36)

= K̂0

(
I− β1

t−1∑
i=0

N̂i +O(β2
1)

)(
I+ β1

t−1∑
i=0

N̂i

)
K̂

−1

0 +O(β2
1) (by Lemma D.3) (37)

= K̂0IK̂
−1

0 +O(β2
1) (38)

= I+O(β2
1) (39)

E. Invariance of INGD and SINGD
INGD and SINGD are scale invariant to the choice of the Kronecker approximation while KFAC and IKFAC are not. Recall
that we use the following Kronecker approximation to approximate the Hessian.

U⊗G ≈ ∇2
µℓ(µ)

However, such an approximation is not unique. We can consider an equivalent approximation such as

(αU)⊗ (α−1G) ≈ ∇2
µℓ(µ)

where α ̸= 0 can be any arbitrary non-zero scalar.

INGD is invariant since the update scheme involving the approximation is scale invariant: Tr(HC)HK =
Tr(CTGC)KTUK = Tr(CT (α−1G)C)KT (αU)K. The invariance is also preserved in SINGD since structures and
their subspace projection maps are closed under scalar multiplications.

In contrast, the updates of KFAC and IKFAC are not scale invariant. As an example, we consider using curvature
approximations U and (αU) to update S−1

K in KFAC, and denote the updated S−1
K by Ŝ

−1

K and S̄
−1
K , respectively. As shown

below, we cannot recover Ŝ
−1

K from S̄
−1
K by scale transformations and thus, the KFAC update is not scale invariant.

Ŝ
−1

K =
[
(1− β1)ŜK + β1U+ λI

]−1 ̸=
[
(1− β1)S̄K + β1(αU) + λI

]−1
= S̄

−1
K

17

Structured Inverse-Free Natural Gradient Descent (SINGD)

An attempt to make the update of SK invariant is to set the damping weight to be αλ. However, the update of SC requires us
to set the damping weight to be α−1λ as shown below. Thus, it is impossible to make KFAC invariant without introducing
individual damping weights.

Ŝ
−1

C =
[
(1− β1)ŜC + β1G+ λI

]−1 ̸=
[
(1− β1)S̄C + β1(α

−1G) + λI
]−1

= S̄
−1
C

18

