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ABSTRACT

In recent years, graph neural network (GNN) based approaches have emerged as a
powerful technique to encode complex topological structure of crystal materials in
an enriched representation space. These models are often supervised in nature and
using the property-specific training data, learn relationship between crystal structure
and different properties like formation energy, bandgap, bulk modulus, etc. Most
of these methods require a huge amount of property-tagged data to train the system
which may not be available for different properties. However, there is an availability
of a huge amount of crystal data with its chemical composition and structural bonds.
To leverage these untapped data, this paper presents CrysGNN, a new pre-trained
GNN framework for crystalline materials, which captures both node and graph
level structural information of crystal graphs using a huge amount of unlabelled
material data. Further, we extract distilled knowledge from CrysGNN and inject
into different state of the art property predictors to enhance their property prediction
accuracy. We conduct extensive experiments to show that with distilled knowledge
from the pre-trained model, all the SOTA algorithms are able to outperform their
own vanilla version with good margins. We also observe that the distillation process
provides a significant improvement over the conventional approach of finetuning
the pre-trained model.

1 INTRODUCTION

Fast and accurate prediction of different material properties is a challenging and important task in
material science. Though there has been an ample amount of data-driven works in recent times,
the architectural innovations of these approaches towards accurate property predictions come from
incorporating specific domain knowledge into a deep encoding module. For example, in order to
encode the neighbourhood structural information around a node (atom), GNN based approaches Xie
& Grossman (2018); Chen et al. (2019); Louis et al. (2020); Park & Wolverton (2020); Schmidt
et al. (2021) gained some popularity in this domain. Understanding the importance of many-body
interactions, ALIGNN Choudhary & DeCost (2021) incorporates bond angular information into their
encoder module and became SOTA for a large range of property predictions. However, as different
properties expressed by a crystalline material are a complex function of different inherent structural
and chemical properties of the constituent atoms, it is extremely difficult to explicitly incorporate
them into the encoder architecture. Moreover, data sparsity across properties is a known issue Das
et al. (2022); Jha et al. (2019), which makes these models difficult to train for all the properties. To
circumvent this problem we adopt the concept of self-supervised pre-training Devlin et al. (2018);
Trinh et al. (2019); Chen et al. (2020); Hu et al. (2020); Qiu et al. (2020); You et al. (2020) for
crystalline materials which enables us to leverage a large amount of untagged material structures to
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Figure 1: Overview of both node and graph-level decoding methods for CrysGNN. (a) In node-
level decoding, node feature attributes and connectivity between nodes are reconstructed in a self-
supervised way. (b) In graph-level decoding, G2 is the pivot graph and G1 is from the same crystal
system (Cubic), whereas G3, G4, G5 are from different crystal systems. First we reconstruct space
group information of G2, then through contrastive loss, CrysGNN will maximize similarities between
positive pair (G2, G1) and minimize similarities between negative pairs (G2, G3), (G2, G4) and
(G2, G5) in embedding space.

learn the complex hidden features which otherwise are difficult to identify.
In this paper, we introduce a graph pre-training method which captures (a) connectivity of different
atoms, (b) different atomic properties and (c) graph similarity from a large set of unlabeled data. To
this effect, we curate a new large untagged crystal dataset with 800K crystal graphs and undertake a
pre-training framework (named CrysGNN1 ) with the dataset. CrysGNN learns the representation of
a crystal graph by initiating self-supervised loss at both node (atom) and graph (crystal) level. At the
node level, we pre-train the GNN model to reconstruct the node features and connectivity between
nodes in a self-supervised way, whereas at the graph level, we adopt supervised and contrastive
learning to learn structural similarities between graph structures using the space group and crystal
system information of the crystal materials respectively.
We subsequently distill important structural and chemical information of a crystal from the pre-
trained CrysGNN model and pass it to the property predictor. The distillation process provides wider
usage than the conventional pretrain-finetuning framework as transferring pre-trained knowledge
to a property predictor and finetuning it requires a similar graph encoder architecture between the
pre-trained model and the property predictor, which limits the knowledge transfer capability of the
pre-trained model. On the other hand, using knowledge distillation Romero et al. (2014); Hinton et al.
(2015), we can retrofit the pre-trained CrysGNN model into any existing state-of-the-art property
predictor, irrespective of their architectural design, to improve their property prediction performance.
Also experimental results (presented later) show that even in case of similar graph encoder, distillation
performs better than finetuning.
With rigorous experimentation across two popular benchmark materials datasets, we show that
distilling necessary information from CrysGNN to various property predictors results in substantial
performance gains for GNN based architectures and complex ALIGNN model. The improvements
range from 4.19% to 16.20% over several highly optimized SOTA models.

2 METHODOLOGY

2.1 CRYSGNN PRE-TRAINING

We build a deep auto-encoder architecture CrysGNN, comprises of a graph convolution based encoder
followed by an effective decoder which is (pre)trained end to end, using a large amount of property
un-tagged crystal graphs Du = {Gi}, which we have curated from various materials datasets.

1Source code, pre-trained model, and dataset of CrysGNN is made available at
https://github.com/kdmsit/crysgnn

2



Published as a conference paper at ICLR 2023

u
xu

v

Crystal Graph
(multigraph)

Pre-trained CrysGNN 
Encoder

Node 
Embeddings

Graph 
Embeddings

P̂

Node Embedding 
Distillation

Supervised 
Property 

Prediction

SOTA Property 
Predictor

Loss Backpropagate
(Distillation and Property 

Prediction Loss)

Node 
Embeddings

Figure 2: Overview of Property Prediction using Knowledge Distillation from CrysGNN.

2.1.1 SELF SUPERVISION.

We first develop a graph convolution Xie & Grossman (2018) based encoding module, which
takes crystal multi-graph structure G = (V, E ,X ,F) as input and encodes structural semantics
of the crystal graph into lower dimensional space. Each layer of convolution follows an iterative
neighbourhood aggregation (or message passing) scheme to capture the structural information within
node’s (atom’s) neighbourhood. After L-layers of such aggregation, the encoder returns the final set
of node embeddings Z = {z1, ..., z|V|}, where zu := zLu represents the final embedding of node u.
Next, we design an effective decoding module, which takes node embeddings Z as input and learns
local chemical features and global structural information through node and graph-level decoding,
respectively.
Node-Level Decoding. For node-level decoding, we propose two self-supervised learning methods,
where given an atom/node u we first reconstruct its node features xu, which represent different
chemical properties of atom u. Further, we reconstruct local connectivity around an atom, where
given node embeddings of two nodes u and v, we apply a bi-linear transformation module to generate
combined transformed embedding of two nodes zuv , which we pass through a feed forward network
to predict the strength of association between two atoms.
Graph-level Decoding. We aim to capture periodic structure of a crystal material through graph-level
decoding. We specifically leverage two concepts in doing so. (a). Space group and (b). Crystal system.
Given the set of node embeddings Z = {z1, ..., z|V|}, we use a symmetric aggregation function to
generate graph-level representation ZG . First, we pass ZG through a feed-forward neural network to
predict the space group number of graph G. Further, we develop a contrastive learning framework for
pre-training of CrysGNN, where pre-training is performed by maximizing (minimizing) similarity
between two crystal graphs belonging to the same (different) crystal system via contrastive loss
in graph embedding space. A mini-batch of N crystal graphs is randomly sampled and processed
through contrastive learning to align the positive pairs ZGi

,ZGj
of graph embeddings, which belong

to the same crystal system and contrast the negative pairs which are from different crystal systems.
Here we adopt the normalized temperature-scaled cross-entropy loss (NT-Xent)Sohn (2016); Van den
Oord et al. (2018); Wu et al. (2018) and NT-Xent for the ith graph is defined:

Li = −log
exp(sim(ZGi ,ZGj )/τ)∑K
k=1 exp(sim(ZGi ,ZGk

)/τ)
(1)

where τ denotes the temperature parameter and sim(ZGi ,ZGj ) denotes cosine similarity function.
The final loss LNTXent is computed across all positive pairs in the minibatch. Overall we pre-train
this deep auto-encoder architecture CrysGNN end to end to optimize the following loss :

Lpretrain = αLFR + βLCR + γLSG + λLNTXent (2)

where LFR,LCR are the reconstruction losses for node feature, and local connectivity, ,LSG is
the space group supervision loss, LNTXent is the contrastive loss and α, β, γ, λ are the weighting
coefficients of each loss. We denote the set of parameters in CrysGNN model as θ and the pre-trained
CrysGNN as fθ.
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Property CGCNN CGCNN CrysXPP CrysXPP GATGNN GATGNN ALIGNN ALIGNN
(Distilled) (Distilled) (Distilled) (Distilled)

Formation Energy 0.039 0.032 0.041 0.035 0.096 0.091 0.026 0.024
Bandgap (OPT) 0.388 0.293 0.347 0.287 0.427 0.403 0.271 0.253

Formation Energy 0.063 0.047 0.062 0.048 0.132 0.117 0.036 0.035
Bandgap (OPT) 0.200 0.160 0.190 0.176 0.275 0.235 0.148 0.131

Total Energy 0.078 0.053 0.072 0.055 0.194 0.137 0.039 0.038
Ehull 0.170 0.121 0.139 0.114 0.241 0.203 0.091 0.083

Bandgap (MBJ) 0.410 0.340 0.378 0.350 0.395 0.386 0.331 0.325
Spillage 0.386 0.374 0.363 0.357 0.350 0.348 0.358 0.356

SLME (%) 5.040 4.790 5.110 4.630 5.050 4.950 4.650 4.590
Bulk Modulus (Kv) 12.45 12.31 13.61 12.70 11.64 11.53 11.20 10.99
Shear Modulus (Gv) 11.24 10.87 11.20 10.56 10.41 10.35 9.860 9.800

Table 1: Summary of the prediction performance (MAE) of different properties in Materials project
(Top) and JARVIS-DFT (Bottom). Model M is the vanilla variant of a SOTA model and M (Distilled)
is the distilled variant using the pretrained CrysGNN. The best performance is highlighted in bold.

2.2 DISTILLATION AND PROPERTY PREDICTION

We aim to retrofit the pre-trained CrysGNN model into any SOTA property predictor to enhance its
learning process and improve performance (Fig-2). Hence we incorporate the idea of knowledge
distillation to distill important structural and chemical information from the pre-trained model, which
is useful for the downstream property prediction task, and feed it into the property prediction process.
Formally, given the pre-trained CrysGNN model fθ, any SOTA property predictor Pψ and set of
property tagged training data Dt = {Gi, yi}, we aim to find optimal parameter values ψ∗ for P . We
train Pψ using dataset Dt to optimize the following multitask loss:

Lprop = δLMSE + (1− δ)LKD (3)

where LMSE = (ŷi − yi)
2 denotes the discrepancy between predicted and true property values by

Pψ (property prediction loss). We define knowledge distillation loss LKD to match intermediate node
feature representation between the pre-trained CrysGNN model and the SOTA property predictor Pψ
as follows:

LKD = ∥ZT
i −ZS

i ∥2 (4)

where ZT
i and ZS

i denote intermediate node embeddings of the pre-trained CrysGNN and the property
predictor Pψ for crystal graph Gi, respectively. Note, both ZT

i and ZS
i are projected on the same

latent space. Finally, δ signifies relative weightage between two losses, which is a hyper-parameter
to be tuned on validation data. During property prediction the pre-trained network is frozen and we
backpropagate Lprop through the predictor Pψ end to end.

3 EXPERIMENTAL RESULTS

3.1 DATASETS

We curated 800K untagged crystal graph data from two popular materials databases, Materials
Project (MP) and OQMD, to pre-train CrysGNN model. Further to evaluate the performance of
different SOTA models with distilled knowledge from CrysGNN, we select MP 2018.6.1 version of
Materials Project and 2021.8.18 version of JARVIS-DFT, for property prediction as suggested by
Choudhary & DeCost (2021). Please note, MP 2018.6.1 dataset is a subset of the dataset used for
pre-training, whereas JARVIS-DFT is a separate dataset which is not seen during the pre-training.
MP 2018.6.1 consists of 69,239 materials with two properties bandgap and formation energy, whereas
JARVIS-DFT consists of 55,722 materials with 9 different properties.

3.2 DOWNSTREAM TASK EVALUATION

To evaluate the effectiveness of CrysGNN, we choose four diverse state of the art algorithms
for crystal property prediction, CGCNN Xie & Grossman (2018), GATGNN Louis et al. (2020),
CrysXPP Das et al. (2022) and ALIGNN Choudhary & DeCost (2021). To train these models for any
specific property, we adopt the multi-task setting discussed in equation 3 ,where we distill relevant
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knowledge from the pre-trained CrysGNN to each of these algorithms to predict different properties.
We report mean absolute error (MAE) of the predicted and actual value of a particular property to
compare the performance of different participating methods. For each property, we trained on 80%
data, validated on 10% and evaluated on 10% of the data. We compare the results of distilled version
of each SOTA model with its vanilla version (version reported in the respective papers), to show the
effectiveness of the proposed framework.
Results. In Table 1, we report MAE of different crystal properties of Materials project and
JARVIS-DFT datasets. In the distilled version of the SOTA models, while training the model, we
distill information from the pre-trained CrysGNN model. We observe that the distilled version of any
state-of-the-art model outperforms the vanilla model across all the properties. In specific, average
improvement in CGCNN, CrysXPP, GATGNN and ALIGNN are 16.20%, 12.21%, 8.02% and
4.19%, respectively. These improvements are particularly significant as in most of the cases, the
MAE is already low for SOTA models, still pretraining enables improvement over that. In fact, lower
the MAE, higher the improvement. We calculate Spearman’s Rank Correlation between MAE for
each property across different SOTA models and their improvement due to distilled knowledge and
found it to be very high (0.72), which supports the aforementioned observations. The average relative
improvement across all properties for ALIGNN (4.19%) and GATGNN (8.02%) is lesser compared to
CGCNN (16.20%) and CrysXPP (12.21%). A possible reason could be that ALIGNN and GATGNN
are more complex models (more number of parameters) than the pre-trained CrysGNN framework.
Hence designing a deeper pre-training model or additionally incorporating angle-based information
(ALIGNN) or attention mechanism (GATGNN) as a part of pre-training framework may help to
improve further. This requires further investigation and we keep it as a scope of future work.

4 CONCLUSION

In this work, we present a novel but simple pre-trained GNN framework, CrysGNN, for crystalline
materials, which captures both local chemical and global structural semantics of crystal graphs.
To pre-train the model, we curate a huge dataset of 800k unlabelled crystal graphs. Further, while
predicting different crystal properties, we distill important knowledge from CrysGNN and inject it into
different state of the art property predictors and enhance their performance. Extensive experiments
on multiple popular datasets and diverse set of SOTA models show that with distilled knowledge
from the pre-trained model, all the SOTA models outperform their vanilla versions. The pretraining
framework can be extended beyond structural graph information in a multi-modal setting to include
other important (text and image) information about a crystal which would be our immediate future
work.
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