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Abstract—Learning based on multimodal data has attracted
increasing interest recently. While a variety of sensory modalities
can be collected for training, not all of them are always available
in practical scenarios, which raises the challenge to infer with
incomplete modality. This paper presents a general framework
termed multimodal hallucination (MMH) to bridge the gap
between ideal training scenarios and real-world deployment
scenarios with incomplete modality data by transferring the
complete multimodal knowledge to the hallucination network
with incomplete modality input. Compared with the modality
hallucination methods that restore privileged modalities infor-
mation for late fusion, the proposed framework not only helps
to preserve the crucial cross-modal cues but relates the study
in complete modalities and in incomplete modalities. Then, we
introduce two strategies called region-aware distillation and
discrepancy-aware distillation to transfer the response-based and
joint-representation-based knowledge of pre-trained multimodal
networks, respectively. Region-aware distillation establishes and
weights knowledge transferring pipelines between the response
of multimodal and hallucination networks at multiple regions,
which guides the hallucination network to focus on discriminative
regions and avoid wasted gradients. Discrepancy-aware distilla-
tion guides the hallucination network to mimic the local inter-
sample distance of multimodal representations, which enables
the hallucination network to acquire the inter-class discrimi-
nation refined by multimodal cues. Extensive experiments on
multimodal action recognition and face anti-spoofing demonstrate
the proposed multimodal hallucination framework can overcome
the problem of incomplete modality input in various scenes
and achieve state-of-the-art performance. Code is available at
https://github.com/shicaiwei123/TMM-MMH

Index Terms—Privileged modality, incomplete modality, mul-
timodal hallucination, knowledge distillation.

I. INTRODUCTION

In recent years, joining the success of deep learning, deep
multimodal learning gathers growing attention from the re-
search community and shows great power in practice, such as
medical image analysis [1], [2], action recognition [3], [4] and
face anti-spoofing [5], [6]. While deep multimodal learning has
significant potentials power in improving the robustness and
performance of models, it is difficult to meet the setting of
multimodal data in practice due to the limitation of devices [7],
[8] or user privacy [9], [10]. Therefore, how to bridge the gap
between the ideal training scenarios with complete modalities
and the real-world deployment scenarios with incomplete
modalities is of great significance for multimodal tasks.

Generally, the additional information only available at the
training stage is defined as privileged information [12] or side
information [13]. Thus, the modality data only available at
training time is called the privileged modality [14]. Different
from other privileged information, such as the future frames

Fig. 1. Comparison of modality hallucination and the proposed multimodal
hallucination frameworks. Here M1 and M2 denote two different inputs of
the multimodal networks, respectively, and M2 is not available during the
inference. Modality hallucination [11] hallucinates the privileged information
of M2 from the available M1 for late fusion to overcome the problem of
incomplete modality inference. Multimodal hallucination directly inherits the
complete multimodal cues from the pre-trained multimodal model to bridge
the gap between ideal training scenarios and real-world deployment scenarios.
This not only helps to preserve the cross-modal interactions extracted in the
joint representation but also relates the study in complete modalities and in
incomplete modalities.

in online action recognition [15] and the user behaviors in
recommendation systems [16], the privileged modalities share
the same semantics with the available inferring modalities,
and their sample or representation can be generated by
the available inferring modalities [17]. Therefore, privileged
modalities learning methods such as modality imputation [18]–
[21] and modality hallucination [11], [14], [22], [23] have been
proposed to address the challenge to infer with incomplete
modality. The imputation-based methods utilize the generative
model to reconstruct the privileged modality sample and then
combine it with the inference modality as the input to a com-
mon multimodal model. The hallucination-based methods train
a hallucination model to reconstruct the privileged modality
representation and fuse it with the model trained with the
inference modality to make the final decision.

While these methods achieve fairly good performance, they
still suffer from some limitations. The generative model of
imputation-based methods is trained independently of the sub-
sequent classification task, which may limit the discriminative
capacity of the generated modality for the target task [18].
Although the hallucination-based methods can alleviate this
issue by fusing the hallucination and normal models at the
output layer, they ignore the intermediate cross-modal inter-
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actions. Note that the cross-modal cues are the cruciality for
multimodal learning to realize better performance than the
single modality [17], [24]. More importantly, both of them
are focusing on restoring the privileged modality information
from the available modalities while ignoring the model trained
for the scenarios with complete modalities. This disadvantages
the community to build a unified framework to integrate the
study with incomplete modalities as well as the study with
complete modalities. Note that the study on the scenarios with
complete modalities is more comprehensive and advanced than
the scenarios with incomplete modalities [17], [23].

In this paper, we propose a novel privilege modality learning
framework called multimodal hallucination to overcome the
aforementioned challenges. As shown in Fig. 1, the pro-
posed framework guides the hallucination network to learn
the complete multimodal information from the pre-trained
multimodal network directly. Compared with existing methods
that preserve the privileged modality information for late
processing, this not only helps to preserve the intermedi-
ate cross-modal interaction extracted in multimodal networks
but relates the study in complete modalities and in incom-
plete modalities. However, compared with the conventional
modality hallucination methods, the multimodal hallucination
also introduces the additional architecture and information
gap because the architecture of multimodal and hallucination
networks is different, and the hallucination network needs to
restore the information of U modalities with only V modalities
(V <U). These challenges will increase the difficulty of
knowledge transfer [25], [26] and limit the optimization of
the primary task at hand, such as recognition or segmentation
with incomplete modality data.

To tackle the flaws of the multimodal hallucination frame-
work, we propose two strategies called region-aware distilla-
tion and discrepancy-aware distillation, to learn the response-
based and joint-representation-based knowledge of multimodal
networks, respectively. Specifically, the region-aware distilla-
tion establishes and weights knowledge transferring pipelines
between the multimodal and hallucination network at multiple
regions. This enables the hallucination network to perceive
the local patterns that are crucial for multimodal task [27],
[27] and guides it to focus on the informative regions, which
avoids wasted gradients from unimportant regions and alle-
viates the learning pressure [28], [29]. Besides, discrepancy-
aware distillation encourages the hallucination network to
acquire the sample representation that has the same inter-
class discrimination as the multimodal network. The prior
knowledge behind this is straightforward: it is the inter-class
discrimination refined by the cross-modal interactions that
make the multimodal model performs better than the unimodal
one [30]–[32]. Besides, compared with the previous hallucina-
tion distillation methods that match the global value [11], [14],
[22] or distribution [23] of the representations, the proposed
strategy only requires to satisfy the local distance consistency
between two arbitrary samples, which contributes to a simpler
optimization objective. In summary, our main contributions are
three-fold.

• We present a multimodal hallucination framework to
leverage the privileged modality data by transferring

the complete multimodal knowledge to the hallucination
network with incomplete modality. This not only helps to
relate the study with complete and incomplete modalities
data but also preserves the crucial cross-modal interac-
tion.

• We propose region-aware distillation to guide the hallu-
cination network to learn response-based knowledge of
the multimodal network by establishing the knowledge
transferring pipelines between them at multiple regions.
This helps to guide the hallucination network to focus on
the informative regions and avoid wasted gradients.

• We propose discrepancy-aware distillation to guide the
hallucination network to learn the multimodal joint-
representation-based knowledge by learning the represen-
tation distance between multimodal samples. This helps
it to acquire the inter-class discrimination refined by
multimodal cues.

• Extensive experiments on two typical multimodal tasks
demonstrate the proposed multimodal hallucination
framework can overcome the problem of inferring with
incomplete multimodal data in various scenes and achieve
state-of-the-art performance.

II. RELATED WORK

A. Knowledge Distillation

The knowledge distillation aims to transfer the representa-
tion capability of a large model (teacher) to a small one (stu-
dent) to improve its performance [33]. Generally, transferred
knowledge can be divided into three types: response-based
knowledge, representation-based knowledge, and relation-
based knowledge. Response-based knowledge refers to the
neural response of the last output layer of the teacher model
and it is usually transferred to the student network by match-
ing the soft output distribution of teacher and student net-
works [34]. While the idea of the response-based knowledge
is straightforward and easy to understand, it only considers
the output of the last layer and thus fails to address the
intermediate-level supervision from the teacher model [33].
Therefore some researchers propose the representation-based
methods to model the knowledge of intermediate feature maps
and transfer it to the student network by minimizing the
discrepancy between the value [35], attention map [36], [37],
and attention project [38] of their feature maps. Because the
representation-based knowledge only considers specific layers
in the teacher model, researchers further introduce relation-
based knowledge to model the relationships between different
layers or data samples. This knowledge is transferred from
the teacher network to the student network by minimizing the
discrepancy between the similarity map [39], distribution [40],
inter-data relations [41] of feature pairs from different layers
or samples.

B. Privileged Information Learning

The privileged information learning focuses on exploiting
auxiliary information that is only available in the training
stage to assist the optimization of the model and improve the
inference performance [42], which has been used for multiple
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tasks. For example, Lee et al. take the intermediate repre-
sentation of reconstructed high-resolution ground truth image
to assist the image super-resolution task [43]. Feyereisl et
al. leverage auxiliary segmentation labels and attributes to
improve the performance of object detection [44]. Xu et al.
take the predicted pedestrian attributes and the semantics-
preserving deep embeddings as the privileged information to
assist the metric learning for person re-identification [45].
Generally, these methods utilize the privileged information
by multi-task learning, i.e, introducing a constraint term for
privileged information via an additional task [16]. However,
in multi-task learning, each task does not necessarily satisfy
the no-harm guarantee (i.e., privileged features can harm the
learning of the original model). Besides, from the practical
point of view, it may be a challenge to tune all the tasks when
using dozens of privileged features at once.

C. Privileged Modality Learning
The privileged modality learning is proposed to exploit

auxiliary modalities data that is only available in training.
Unlike the privileged learning tasks that utilize the auxiliary
information as extra input to assist the model optimization,
privileged modalities learning focuses on restoring the privi-
leged information from available inference modalities based on
the consistency among multimodal data. For example, Jiang et
al. utilize the CycleGAN [46] to generate the MRI image from
the CT image to aid mediastinal lung tumor segmentation [19].
Pan et al. impute the missing PET images based on their
corresponding MRI scans using a hybrid generative adversarial
network and leverage them to aid the diagnosis of brain
disease [18]. Liu et al. extend the CycleGAN for multimodal
face reconstruction and generate the infrared face image
from the corresponding RGB image to assist the face anti-
spoofing task [8]. Because the training of GAN-based models
is unstable and the generation of the privileged modality is
independent of the subsequent classification task [11], [47], the
imputation-based methods may limit the discriminative capac-
ity of the generated modality. Thus some researchers propose
to restore privileged information via knowledge distillation.
Hoffman et al. present a modality hallucination architecture for
improving the RGB object detection performance by distilling
the depth information to the hallucination model and fusing
it with the RGB model to make the final prediction [11].
Garcia et al. further extend the hallucination architecture
for the video action recognition to model the motion flow
explicitly to improve its performance [22]. Li et al. propose
the dynamic-hierarchical attention distillation to hallucinate
the SAR image feature from RGB images to aid the land
cover classification [48]. In summary, these works aim to
train a hallucination model to restore the privileged modalities
information by matching the feature maps of hallucination and
privileged networks. This may lead to overfitting and limit the
performance of the hallucination model since the inputs of the
hallucination and privileged networks are different.

D. Incomplete Multi-view Clustering
Incomplete multi-view clustering is proposed to address

the challenge of missing some view data in clustering tasks.

Generally, they can be categorized into two types: grouping-
based methods and imputation-based methods. Grouping-
based methods [49], [50] aim to group the data according
to the existence of views and then divide them into multiple
learning tasks. Imputation-based methods, such as SURE [51],
COMPLETER [52], COMIC [53], and OS-LF-IMVC [54],
focus on focus on recovering the missing-view data and then
leverage them with the in the common multi-view clustering
methods. While these methods also focus on addressing the
problem of missing data, they are different from the privileged
modality learning in the following aspects. First, they are pro-
posed for the clustering task, which is unsupervised. However,
to our best knowledge, the privilege modality learning methods
are focusing on the supervised task, such as classification [11],
[14], [48], detection [55]–[57], and segmentation [58]–[60].
Second, they take the features extracted from the pre-trained
model or other handcrafted operators such as HOG, as the
input. In contrast, the privilege modality learning methods
take the original image as input and learn the features through
training.

III. METHOD

In this section, we first introduce the proposed multimodal
hallucination framework that transfers complete multimodal
information to the hallucination model with incomplete modal-
ity input. This helps to preserve the cross-modal interaction
and ensures that the hallucination model benefits from the
development of multimodal learning because it learns from the
pre-trained multimodal directly. Then, we propose the region-
aware distillation and discrepancy-aware distillation strate-
gies to alleviate the optimization drawback caused by input
and architecture differences and transfer the response-based
and joint-representation-based knowledge to the hallucination
model, respectively.

A. The Framework of Multimodal Hallucination

For a task, let Θ denotes the collected training dataset
whose sample consists of full modalities {M1, . . . ,MU}. T
denotes the target application scenario that can only access
the incomplete data in the dataset Ψ whose sample consists of
modalities {M1, . . . ,MV }. And the rest {M(V+1), . . . ,MU}
are the missing modalities.

The overall framework is shown in Fig. 1, the training
pipeline of the proposed multimodal hallucination framework
consists of three stages. 1) Training a multimodal model
Mm with the data in Θ to perform the task with complete
multimodal data. 2) Training a hallucination model Mi with
the data in Ψ and the guidance of the pre-trained multimodal
model Mm whose weights are frozen. 3) Inferring with the
hallucination model Mi in target scenario T . The details of
our method are introduced in the following sections.

Network architecture: Stage one is exactly the procedure
of a general multimodal task and the network can be imple-
mented with any structure proposed for multimodal learning
(e.g. CNN, Transformer, or heterogeneous one) [17]. Stage two
leverages the knowledge extracted from complete multimodal
data to alleviate the information loss caused by incomplete

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2023.3282874

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on June 29,2023 at 14:49:26 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

modality data and improve performance in the target applica-
tion scenario T . Besides, because the effectiveness of knowl-
edge transfer is highly dependent on structural similarity [?],
[?], we propose to minimize structural differences by removing
the module only used by the missing modality. For example,
here we remove the feature extraction module of the modality
M2. Finally, to further cope with remaining structural and
input differences, we propose propose the joint distribution
distillation module to transfer the modality-shared knowledge
from multimodal network to hallucination network, The detail
will be introduced in Section III-C.

Relation to prior work: As shown in Fig. 1, compared with
the modality hallucination [11], the multimodal hallucination
framework is designed to transfer the complete multimodal
cues directly, which not only allows it to preserve the interme-
diate cross-modal cues but also relates the study in complete
modalities and in incomplete modalities. Compared with the
modality imputation [18], the multimodal hallucination frame-
work focuses on the task at hand and the trained hallucination
model is exactly the inference model, which would not limit
the discriminative capacity of the inference model.

Relation to general multimodal tasks: The multimodal
hallucination framework can be regarded as a novel attempt
to push multimodal learning into general scenarios because it
bridges the gap between ideal training scenarios with complete
multi-modal data and real deployment scenarios that can only
access partial modality data.

B. Region-aware Distillation

The existing response-based distillation methods calculate
the logit output from the global feature vector of inputs,
with the implication that each region of the input image
contributes equally to classification. However, the input im-
ages may contain regions that are irrelevant to the category
information, e.g. background, and it may be sub-optimal to
transfer the response-based knowledge by matching global
response directly. Especially in the multimodal hallucination
task where both the input and network structure of teacher and
student networks differ, the gradients from the invalid regions
would limit the learning of the hallucination model. To address
this issue, we propose the region-aware distillation (Fig. 2)
to establish the knowledge transferring pipelines at multiple
regions and guide the hallucination network to focus on the
informative regions.

We first introduce our notation. Let x = (xm, xi) be a paired
training sample with the same label y, where xm and xi are
randomly chosen from the sample set Θ and Ψ, respectively.
ϕm(xm) ∈ Rwm×hm×cm and ϕi(xi) ∈ Rwi×hi×ci denote the
feature maps in the penultimate layer of multimodal network
and hallucination network, respectively. Here, h and w are
spatial dimensions, c is the number of feature channels. Then,
fm(j, k) and fi(j, k) denote the feature vector ϕm(xm)(j, k, :
) ∈ R1×1×cm and ϕi(xi)(j, k, :) ∈ R1×1×ci , respectively. d
is the downsampling factor between the input and the final
feature map.

According to the analysis in [61], [62], fm(j, k) and
fi(j, k) can be regarded as the representation of the region

Fig. 2. Illustration of the region-aware distillation. The response-based knowl-
edge of the multimodal network is modeled at different regions by spatial
pyramid representation. The knowledge is transferred to the hallucination
network by minimizing the weighting sum of the distillation loss between
different selected region pairs.

(tx, ty, tx + d, ty + d) in xm and xi, respectively, where
tx = d ∗ j, ty = d ∗ k. Therefore, we can guide the
hallucination network to learn the region pattern of multimodal
networks by measuring KL divergence of the logits outputs
of fi(j, k) and fm(j, k) as the training loss. Furthermore, we
can adjust the downsampling factor and the position of feature
vectors to acquire knowledge at multiple regions. Compared
with existing methods to segment multiple regions at the
input space [27], [63], the proposed strategy calculates the
representation for multiple regions via the feature pyramid,
reducing the computational burden significantly.

As shown in Fig. 2, the region-aware distillation (RAD) con-
sists of four parts: feature map normalizing, spatial pyramid
pooling, region-based distilling, and information weighting.
Specifically, we firstly introduce a normalizing pooling to
restraint the width and height of ϕm(xm) and ϕi(xi) to the
same size w×w to align their downsampling factors. It ensures
each pixel of them represents the same size region in the
input space. Then, we run the spatial pyramid pooling [61]
on the normalizing feature maps, which splits the feature map
into cells at different scales and performs pooling operations
to aggregate the representations in each cell. This helps to
acquire the representations that cover different regions in the
input space. In contrast to the traditional spatial pyramid
pooling, we perform average pooling instead of max pooling
to draw the cell representation, which helps preserve the
complete information of covered regions. Let (a(s, n), b(s, n))
denotes the spatial position of the nth cell at sth scale,
Z(s, n) denotes the input region corresponding to this cell,
πm(s, n) ∈ R1×1×cm denotes the representation for Z(s, n)
in xm, which is the aggregate representation of this cell,


πm(s, n) =

a(s,n)+s−1∑
j=a(s,n)

b(s,n)+s−1∑
k=b(s,n)

1

s2
fm(j, k) (1)

a(s, n) = s(⌊(n− 1)/s⌋) (2)
b(s, n) = s((n− 1) mod s) (3)

where ⌊.⌋ denotes floor operations. And the paired represen-
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tations for the same region Z(s, n) in xi is the πi(s, n) ∈
R1×1×ci ,

πi(s, n) =

a(s,n)+s−1∑
j=a(s,n)

b(s,n)+s−1∑
k=b(s,n)

1

s2
fi(j, k) (4)

where s and n are the same as those in πi(s, n). For
each paired representations, the region-based distillation loss
Lr(s, n) that transfers multimodal feature pattern at region
Z(s, n) to the hallucination network is defined as follow,

Lr(s, n) = KL(σ(Fm(πm(s, n)))∥σ(Fi(πi(s, n)))) (5)

where KL(., .) denotes the KL divergence and σ(.) denotes
the softmax function, Fm(.) and Fi(.) denote the fully-
connected layer function of multimodal and hallucination
networks, respectively. By traversing all the scales s and their
corresponding cells Ns = (ws )

2, we can get N =
∑

s Ns loss
components in G = {Lr(1, 1), Lr(1, 2)..., Lr(w, 1)} ∈ RN×1

for N regions. In order to ensure the hallucination networks
can always focus on the informative regions containing target
cues, we further introduce an information weighting layer
to calculate the importance for each component in G and
assign it as the weight to aggregate the distillation loss in G.
Here, we implement this via the self-attention mechanism [64]
that calculates the importance based the value rather than the
position of the loss components, which can adapt to varying
input with varying informative regions. Thus, the region-aware
distillation loss is defined as follow,

LRAD =
∑
N

σ(F1(G)F2(G)T )F3(G) (6)

where F1, F2, F3 means different fully-connect layers.
In order to make the proposed intuition more rigorous and

help quantify precisely the way in which vanilla knowledge
distillation and region-aware distillation differ, we rewrite the
vanilla knowledge distillation loss [34] as follow,



LKD = KL(σ(Fm(fg
m))∥σ(Fi(f

g
i ))) (7)

fg
m =

w−1∑
j=0

w−1∑
k=0

1

w2
fm(j, k) (8)

fg
i =

w−1∑
j=0

w−1∑
k=0

1

w2
fi(j, k) (9)

Specifically, we can derive that fg
m = πm(s, n) and fg

i =
πi(s, n) when s = w, n = 1. Thus, the vanilla knowledge
distillation loss can be regarded as a term of the region-aware
distillation loss, covering the entire image (0,0,w ∗ d,w ∗ d).
It encourages the hallucination network to learn the global
response of the multimodal network. Particularly, the region-
aware distillation loss also contains other terms calculated
in fine-grained levels that cover different local regions when
1 ≤ s<w. Weighted them by their importance can guide
the hallucination network to focus on the informative local
patterns from the multimodal network. Combined with the

Fig. 3. Illustration of the discrepancy-aware distillation. The joint-
representation-based knowledge of the multimodal network is modeled as
the local inter-sample distance of multimodal representations. The knowledge
is then transferred to the hallucination network by matching the discrepancy
matrix between the multimodal network and the hallucination network.

label supervision, the total training loss for the hallucination
networks to leverage local patterns from multimodal networks
to improve its performance is defined as follow,

L1 = LCE + αLRAD (10)

where LCE(., .) denotes the the label supervision loss for the
task at hand, α is a balancing factor.

C. Discrepancy-Aware Distillation

The conventional modality hallucination methods transfer
the privileged representation knowledge by matching the fea-
ture map directly. However, it is not feasible for the hallucina-
tion model to generate the same feature map as the multimodal
model and this may lead to overfitting and harm the perfor-
mance of the multimodal hallucination model since both the
input and network structure of multimodal and hallucination
networks are different. To overcome this issue and preserve the
sample discrimination refined by multimodal cues, we present
discrepancy-aware distillation (DAD) approach that guides
the hallucination networks to learning the joint representation
knowledge from the multimodal network by mimicking its
inter-sample representation distance.

As shown in Fig. 3, given a paired input mini-batch X =
{Xm, Xi, Y }, we define the joint representation of multimodal
networks at lmth layer as ϕlm

m (xm) ∈ Rb×wm×hm×cm and
the paired joint representation of hallucination networks as
ϕli

i (xi) ∈ Rb×wi×hi×ci. Here, lm means the layers of mul-
timodal network where multimodal feature are fused. Similar
to modality hallucination [11], if the depths of multimodal
and hallucination networks are the same, li represents the
layer at the same depth as lm. Otherwise, it represents the
layer at the end of the same cell. For each mini-batch, the
proposed distillation strategy will expand the feature groups
of multimodal and hallucination input into feature matrix
H lm

m ∈ Rb×wm·hm·cm and H li

i ∈ Rb×wi·hi·ci , respectively, in
order to calculate the representation distance between different
samples. Because the dimension of the feature vectors of the
multimodal and the hallucinated network could be very high,
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to eliminate the curse of dimensionality, we choose cosine
distance as the discrepancy metric,

dcosine(u,v) =
1

2
− 1

2

uTv

∥u∥2||v∥2
(11)

where u and v are two arbitrary feature vectors with same
dimension. For each mini-batch, let Dlm

m ∈ b× b denotes the
discrepancy matrix of the multimodal network at the lmth layer,
whose component at jth row and kth column can be expressed
as follow,

Dlm

m (j, k) = dcosine((H
lm

m )j , (H
lm

m )k) (12)

And Dli

i ∈ b×b denotes the corresponding discrepancy matrix
of the hallucination network at the lith layer, whose component
at jth row and kth column can be expressed as follow,

Dli

i (j, k) = dcosine((H
li

i )j , (H
li

i )k) (13)

Then, the discrepancy-aware distillation loss is defined as,

LDAD =
∑

(lm,li)∈O

∥∥∥Dlm

m −Dli

i

∥∥∥
2

(14)

where O contains the (lm, li) layer pairs (e.g. layers at the
same depth, as discussed above). This loss can guide the
hallucination network to mimic the representation distance
between different multimodal samples and preserve multi-
modal complementary clues. Finally, the total training loss
guiding the hallucination networks to leverage the inter-class
discrimination refined by multimodal networks is defined as
follow,

L2 = LCE + βLDAD (15)

where β is a balancing factor.

IV. EXPERIMENTS

We conduct experiments on the two-stream architecture
task (multimodal action recognition) that fuses multimodal
information at the output space and the joint architecture task
(multimodal face anti-spoofing) that fuses multimodal infor-
mation at the feature space. In the following, we first compare
the proposed multimodal hallucination framework with the
previous state-of-the-arts on the two tasks. Then, we ablate
the important design elements of multimodal hallucination.
Particularly, all experiments set the general RGB modality as
the available modality in the inference like previous work [8],
[11], [14], [22], [23], [65]. Still, due to its general design, the
proposed framework can also be used to assist other modalities
as well.

A. Face Anti-spoofing Performance and Comparison.
Settings: For multimodal face anti-spoofing, we report

the result on the CASIA-SURF [66] and CASIA-CeFA [70]
datasets with the intra-testing protocol as well as cross-
ethnicity and cross-attack protocol suggested by authors, re-
spectively. For a fair comparison, we follow the same bench-
mark model and data augmentation strategy with CASIA-
SURF [66]. The models are trained with the SGD optimizer,

Fig. 4. The prediction distribution of the Vanilla and DAD models with
only RGB modality on the test set of CASIA-SURF dataset [66]. the X-axis
represents the normalized logit output and x=0.5 is the classification boundary.
Orange and blue dots denote two different classes. Compared with the vanilla
model trained with incomplete modalities only, the hallucination model trained
by the DAD strategy has better semantic separation.

where learning rate is 0.001, momentum is 0.9, batch size is
64, and maximum epoch is 50. The metric used is Average
Classification Error Rate (ACER) [66].

Comparison methods: We compare our method with two
groups of methods. The first group includes the baseline
methods that are trained and tested with the same modal-
ity data (marked as ‘complete’). Here, we take SURF, the
benchmark method of the CASIA-SURF dataset, as the
baseline. Another is the state-of-the-art privileged modality
learning methods (marked as ‘incomplete’). Here, we con-
sider the MARS [22], MERS [22], ADDA [23], MT-Net [8],
WCoRD [67], TAKD [68], and CMKD [69]. Specifically,
MARS transfers the privilege modality knowledge from the
privileged model to the hallucination model by matching their
feature maps directly. MERS further fine-tunes MARS on
the available modality data. Taking the framework of MERS
as the baseline, ADDA proposes to transfer the privileged
modality knowledge by matching the feature distribution via
adversarial discriminative distillation. WCoRD proposes to
match the feature distribution via contrastive learning with
the 1-Lipschitz constraint. This can leverage global and local
information simultaneously. TAKD introduces an assistant
network to match the logit outputs between teacher and student
networks. CMKD proposes to match the feature map and
logit outputs simultaneously. Besides, MT-Net proposes to
reconstruct the privileged modality sample from the available
ones by the CycleGAN with the complexion regularizer and
subspace-based discriminator.

Finally, for a fair comparison, we follow the implementation
of the baseline method for all the privileged learning methods,
e.g. we unify their modality encoders as the ResNet18 used
in SURF.

Result and analysis: As shown in Table I, the proposed
framework implemented with RAD and DAD strategies out-
performs all other privileged modality learning methods in
the multimodal face anti-spoofing task. This is because the
proposed multimodal hallucination framework is designed to
learn from the pre-trained multimodal network directly, which
can acquire the crucial cross-modal interactions that make
the multi-modal model better than the single-modal model.
Besides, in both datasets, the DAD strategy designed to learn
the complete joint-representation-based knowledge from the
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TABLE I
THE PERFORMANCE ON THE MULTIMODAL FACE ANTI-SPOOFING TASK. THE METRIC IS ACER(%) AND THE ↓ MEANS THAT THE LOWER THE VALUE,

THE BETTER THE PERFORMANCE.

Method Training Modalities Testing Modalities CASIA-SURF(↓) CASIA-CeFA (↓)

Complete SURF [66] RGB RGB 10.32 36.12
SURF [66] RGB, D, IR RGB, D, IR 3.53 28.62

Incomplete

MARS [22] RGB, D, IR RGB 9.83 33.50
MERS [22] RGB, D, IR RGB 8.95 33.89
ADDA [23] RGB, D, IR RGB 8.64 33.20
MT-Net [8] RGB, D, IR RGB 8.45 30.60

WCoRD [67] RGB, D, IR RGB 8.08 29.64
TAKD [68] RGB, D, IR RGB 7.78 29.33
CMKD [69] RGB, D, IR RGB 7.45 28.90
RAD (Ours) RGB, D, IR RGB 7.25 28.70
DAD (Ours) RGB, D, IR RGB 6.75 27.60

RAD+DAD (Ours) RGB, D, IR RGB 5.92 27.14

pre-trained multimodal model outperforms the RAD strategy
designed to learn the complete response-based knowledge.
This is because the joint representation contains more infor-
mation than the output logits [33]. However, this does not
mean the complete response-based knowledge is redundant
because the ensemble of the models trained by DAD and RAD
strategies, respectively, outperforms the single model trained
with DAD strategy by 0.83% in CASIA-SURF and 0.46%
in CASIA-CeFA. Particularly, the proposed framework even
outperforms the baseline model with complete multimodal in-
formation in CASIA-CeFA by 1.48%, which will be discussed
in Section IV-E in detail.

B. Action Recognition Performance and Comparison

Settings: For multimodal action recognition, we conduct ex-
periments on four classic datasets with two different modality
combinations. Specifically, NW-UCLA [71] and NTUD60 [72]
consist of RGB and Depth modalities. HMDB51 [73] and
UCF101 [74] consist of RGB and Flow modalities. For the
NW-UCLA, we follow the cross-view protocol in the original
paper, using two views for training and the rest for testing.
For NTUD60, we follow the cross-subject protocol provided
in the original paper, using twenty individuals for training and
the remaining for testing. Besides, the clip length for NW-
UCLA is set as 8 frames and for NTUD60 is 16 frames. For
both HMDB51 and UCF101, we conduct experiments using
their first split with 16 frames. Besides, we use the TV-L1
method [22] to extract optical flow, with the default parameter
setting from OpenCV.

For a fair comparison, we take a basic two-stream archi-
tecture that consists of classic I3D [75] as the backbone of
multimodal networks. It is trained with the SGD optimizer,
where the learning rate is 0.001, momentum is 0.9, batch
size is 16, and maximum epoch is 250. Particularly, we use
random flipping, and cropping for data augmentation and ini-
tialize all models with weights pre-trained on the Kinetics400
dataset [76]. The metric is the proportion of the accurate
classification.

Comparison methods: We take the classic I3D [75] model
as the baseline. We compare our method with MARS [22],
MERS [22], ADDA [23], WCoRD [67], TAKD [68], and
CMKD [69] except for the MT-Net, since it is specially

designed for multimodal face reconstruction. For a fair com-
parison, we follow the implementation of the baseline method
for all the privileged learning methods, e.g., we set their
modality encoders as the I3D-ResNet50.

Result and analysis: Table II shows the results on the
NW-UCLA and NTUD60 datasets that consist of RGB and
Depth modalities. Specifically, the top part of the table presents
the performance of baseline methods. Here we can see that
the multimodal method outperforms the unimodal one by
0.9%∼5.7%. The bottom part of the table refers to the methods
that leverage the privileged modalities to assist the network
that can only access the incomplete modalities. Here, the
multimodal hallucination framework implemented with the
RAD strategy outperforms all other privileged modality learn-
ing methods, including the recent state-of-the-art, TAKD, and
CMKD. This demonstrates that learning from the pre-trained
multimodal model is still the most effective way to leverage
the privileged modality even if it does not explicitly model
the cross-modal interaction. This is because the proposed
framework focuses on improving the inference performance
with incomplete modality data directly. This avoids the sub-
optimal results caused by the two-stage procedures that aim
to preserve privilege modality information for fine-tuning.
Particularly, the proposed framework even outperforms the
baseline model with complete multimodal information in NW-
UCLA by 0.47%, which will be discussed in Section IV-E in
detail. Also, this verifies its scalability to different multimodal
tasks (e.g. action recognition and face anti-spoofing). Note that
we do not show the result of the multimodal hallucination
framework implemented with DAD here, because the two-
stream architecture that fuses multimodal information at the
output layer does not have the joint representation.

Besides, Table III shows the results on HMDB51 and
UCF101 dataset that consist of RGB and Flow modalities.
Also, the multimodal hallucination framework implemented
with the RAD strategy outperforms all other privileged modal-
ity learning methods. Especially, it improves the performance
of the RGB baseline by 3.69% and 2.11% in HMDB51 and
UCF101 datasets, respectively. This demonstrates the robust-
ness of the multimodal hallucination framework to different
modality combinations (e.g. RGB+Depth and RGB+Flow).
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TABLE II
THE PERFORMANCE ON THE MULTIMODAL ACTION RECOGNITION TASK WITH NW-UCLA AND NTUD60 DATASETS. THE METRIC IS ACCURACY(%)

AND THE ↑ MEANS THAT THE HIGHER THE VALUE, THE BETTER THE PERFORMANCE.

Method Training Modalities Testing Modalities NW-UCLA(↑) NTUD60 (↑)

Complete I3D [75] RGB RGB 93.12 81.93
I3D [75] RGB, D RGB,D 94.03 87.41

Incomplete

MARS [22] RGB, D RGB 93.33 82.90
MERS [22] RGB, D RGB 93.45 83.89
ADDA [23] RGB, D RGB 93.54 82.50

WCoRD [67] RGB, D RGB 93.62 83.91
TAKD [68] RGB, D RGB 93.89 84.11
CMKD [69] RGB, D RGB 94.05 84.45
RAD (Ours) RGB, D RGB 94.50 85.64

TABLE III
THE PERFORMANCE ON THE MULTIMODAL ACTION RECOGNITION TASK WITH HMDB51 AND UCF101 DATASETS. THE METRIC IS ACCURACY(%) AND

THE ↑ MEANS THAT THE HIGHER THE VALUE, THE BETTER THE PERFORMANCE.

Method Training Modalities Testing Modalities HMDB51(↑) UCF101(↑)

Complete I3D [75] RGB RGB 68.2 90.02
I3D [75] RGB, Flow RGB,Flow 75.0 93.9

Incomplete

MARS [22] RGB, Flow RGB 68.30 90.23
MERS [22] RGB, Flow RGB 68.61 90.41
ADDA [23] RGB, Flow RGB 69.30 91.22

WCoRD [67] RGB, Flow RGB 69.88 91.50
TAKD [68] RGB, Flow RGB 70.02 91.67
CMKD [69] RGB, Flow RGB 70.23 91.73
RAD (Ours) RGB, Flow RGB 71.89 92.13

TABLE IV
THE PERFORMANCE OF DIFFERENT SYSTEM FRAMEWORK ON THE FACE

ANTI-SPOOFING TASK.

Framework CASIA-SURF CASIA-CeFA

MH 8.78 30.65
DMCL 7.65 29.70
MMH 5.92 27.14

C. Ablation Study

In this section, we ablate important design elements in the
proposed method. To study both the RAD and DAD strategies,
we report the result on the multimodal face anti-spoofing task
with the joint representation architecture. The metric used in
the ablation is the ACER(↓)

Impact of system framework: To study the effectiveness
of the proposed MMH framework, we compare it with the
conventional modality hallucination(MH) framework [11] and
state-of-the-art modality hallucination framework, DMCL [77]
on the face anti-spoofing task. Note that both of them distill
knowledge from the privileged model to the hallucination
model by matching the feature map. For a fair comparison,
their distillation methods are replaced with the proposed
RAD and DAD strategies to provide a common basis. The
result is shown in Table IV, the DMCL framework intro-
duces the multiple-choice learning to fuse modality adaptively
and outperforms the conventional MH framework by 1.13%
in CASIA-SURF and 0.95% in CASIA-CeFA, respectively.
Furthermore, the proposed MMH framework outperforms the
DMCL framework by 1.73% in CASIA-SURF and 2.56%

TABLE V
THE PERFORMANCE OF DIFFERENT PRE-TRAINED MULTIMODAL MODELS

AND MULTIMODAL HALLUCINATION MODELS LEARNING FROM THEM.
‘CM(.)’ REFERS TO THE DIFFERENT MULTIMODAL MODELS TRAINED

WITH COMPLETE MODALITY DATA. ‘RAD(.)’ AND ‘DAD(.)’ REFER TO
THE HALLUCINATION MODELS THAT LEARN FROM DIFFERENT

PRE-TRAINED MULTIMODAL MODELS VIA THE RAD AND DAD
STRATEGIES, RESPECTIVELY.

Model CASIA-SURF CASIA-CeFA

CM(SURF) 3.53 28.62
CM(PSMM) 2.21 (+1.31) 25.51 (+3.11)

RAD(SURF) 7.25 28.70
RAD(PSMM) 6.85 (+0.40) 26.24 (+2.46)
DAD(SURF) 6.75 27.60

DAD(PSMM) 5.56 (+0.79) 25.12 (+2.48)

in CASIA-CeFA, respectively. This is because the MMH
framework guides the hallucination network to learn from
the pre-trained multimodal model directly. Compared with the
modality hallucination framework that restores the information
of missing modality for late fusion, this helps to preserve the
crucial cross-modal interaction for the multimodal tasks.

Impact of pre-trained multimodal model: To study
whether our framework can benefit from the development
of multimodal learning with complete modality data, we
introduce the PSMM model [78] that introduces an advanced
multimodal fusion module on the basis of the SURF model.
Then we guide the hallucination network to learn from the
pre-trained SURF and PSMM model, respectively. As shown
in Table V, in both datasets, the PSMM model outperforms
the SURF model. Also, in both datasets, the hallucination
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TABLE VI
THE ABLATION EXPERIMENTS FOR RAD STRATEGY. WE REPORT THE

RESULT OF THE COMPLETE RAD STRATEGY (FULL), THE RAD WITHOUT
INFORMATION WEIGHTING (IW), AND THE RAD WITHOUT INFORMATION

WEIGHTING AND MULTIPLE KNOWLEDGE TRANSFERRING PIPELINES
(MKTP).

Setting CASIA-SURF CASIA-CeFA

Full 7.25 28.70
- IW 7.96 29.52

- IW-MKTP 9.5 31.80

TABLE VII
THE PERFORMANCE OF DIFFERENT PRIVILEGE DISTILLATION STRATEGIES

THAT GUIDE THE HALLUCINATION NETWORK TO LEARN THE
MULTIMODAL JOINT-REPRESENTATION-BASED KNOWLEDGE.

Methods CASIA-SURF CASIA-CeFA

LCE 10.11 36.20
LCE + LHall 10.82 37.12
LCE + LGAN 8.14 30.20

LCE + LDAD(ours) 6.75 27.60

networks learning from the pre-trained PSMM model via RAD
and DAD strategies outperform that learning from the pre-
trained SURF, respectively.

Study of RAD strategy: Here we ablate the multiple knowl-
edge transferring pipelines and information weighting layer in
the RAD to evaluate their impacts. Table VI shows the results.
The RAD module without information weighting degrades
the performance of the complete one by 0.71% in CASIA-
SURF and 0.82% in CASIA-CeFA, showing the effectiveness
to guide the hallucination network focus on discriminative
regions. Then, the RAD module further degrades the perfor-
mance by 1.54% in CASIA-SURF and 2.28% in CASIA-CeFA
when removing the multiple multiple knowledge transferring
pipelines at different scales and positions, which demonstrates
the effectiveness to enable the hallucination network to per-
ceive local patterns. Here, the information weight module
introduces extra 882 parameters due to the fully connected
layers for calculating the weighting factor. However, compared
to the parameter number of the vanilla model,11172042, the
0.0078% (882/11172042) increase is generally economic.

Effectiveness of DAD strategy: To study the effect of
the DAD strategy, we report and compare the performance
of different privilege distillation strategies that guide the
hallucination network to learn the joint-representation-based
knowledge from the pre-trained multimodal model. Here LCE

represents the baseline label supervision without the assist of
privilege distillation strategies. LHall [11], LGAN [23], and
LDAD means to guide the hallucination network to learn
from the pre-trained multimodal model by matching their
feature map, feature distribution, and the discrepancy matrix,
respectively.

As shown in Table VII, the model trained by matching the
feature map degrades the performance of baseline methods
in both datasets. This is because of the huge gap between
the multimodal and hallucination networks caused by input
and architecture differences, so do their feature maps. Thus
matching the feature map directly would introduce extra noise

Fig. 5. The performance of the proposed distillation strategies with different
parameters α and β on the CASIA-SURF dataset.

to the model training and limits the label supervision task
at hand [23]. In contrast, the proposed DAD strategy brings
an increase of 3.4% and 8.60% over the baseline method in
CASIA-SURF and CASIA-CeFA, respectively, demonstrating
it is an effective way to cope with the input and architec-
ture gap and leverage the multimodal joint-representation-
based knowledge. Also, the DAD strategy outperforms the
existing feature-based privileged modality learning methods
LGAN , which shows the superiority to transfer multimodal
joint-representation-based by matching the discrepancy matrix.
Finally, the prediction distribution in Fig. 4 demonstrates the
DAD strategy can guide the hallucination network to inherit
the inter-class discrimination refined by complete multimodal
cues and acquire a more separable inter-class margin.

D. Hyper-parameter Analysis

As discussed above, the proposed distillation strategies
have two hyper-parameters α and β. We tested their im-
pact on the accuracy of the hallucination network on the
validation set of the CASIA-SURF dataset. It can be seen
from Fig. 5 that the hallucination networks trained with RAD
and DAD achieve the lowest ACER(7.25% and 6.75%) on
the validation set when α = 0.4 and β = 100, respectively.
This is exactly the suggested point to maintain the multiple
losses (distillation and cross-entropy loss) in the same order
of magnitude [79]. Therefore, the hyper-parameters on other
datasets are also determined via this principle. And (α, β) is
set as (0.4,100),(0.25,100),(0.25,100) for CASIA-CeFA, NW-
UCLA, NTUD60 datasets respectively.

E. Discussion

Why model with incomplete modality data outperforms
that with complete modality data: Particularly, the multiple
modality data is collected to leverage their complementary
information to enhance the discrimination of the target [1], [2],
[4], [8], [17]. However, previous studies have shown that mul-
timodal models are not always better than single-modal mod-
els [80]–[82] because the black-box multimodal algorithms
do not model the cross-modal interaction of multimodal input.
Besides, the work in [7], [42] demonstrates that the distillation
is an effective way to fuse extra information to the target black-
box network. Thus, the proposed multimodal hallucination
framework exactly provides the possibility of extracting cross-
modal interaction from the pre-trained multimodal model and
integrating it into the hallucination network. And the proposed
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RAD and DAD strategies that focus on the informative regions
and inter-class distance, respectively, are two ways to extract
the cross-modal cues from the pre-trained multimodal model.
This is because it is cross-modal cues from the multimodal
data that refine the target regions and inter-class discrimination
in multimodal input and network, respectively.

Limitation and future work: The proposed multimodal
hallucination framework guides the hallucination network with
incomplete modality input to learn from the model trained with
complete modality data directly, which is independent of target
tasks and has the potential to handle dense prediction task,
such as segmentation [83]. However, the proposed RAD and
DAD strategies are designed for the classification task that one
image has only one semantics, which may not suitable for the
dense prediction task [84]. Therefore, future work will extend
the multimodal modality hallucination to dense prediction
tasks by introducing new privilege distillation strategies.

V. CONCLUSION

This paper introduces a general framework called multi-
modal hallucination to bridge the gap between ideal training
scenarios and real deployment scenarios with partial modality
data by transferring the complete multimodal knowledge to the
hallucination network with incomplete modality input. Then
we propose two strategies called region-aware distillation and
discrepancy-aware distillation to overcome the gap between
multimodal and hallucination networks caused by input and
architecture differences and transfer the multimodal response-
based and joint-representation-based knowledge to the halluci-
nation network, respectively. Region-aware distillation estab-
lishes and weights knowledge transferring pipelines at multiple
scales and regions, encouraging the hallucination network
to focus on informative regions, reducing the learning com-
plexity. In addition, discrepancy-aware distillation guides the
hallucination network to acquire the inter-class discrimination
refined by multimodal cues by mimicking the local distance
between the representation of two arbitrary samples. Finally,
extensive experiments are conducted to verify the effectiveness
of our methods.
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