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Abstract

Information popularity prediction, aiming to predict the
growth of user participation in a trending topic diffusion, is
a fundamental task in social networks. Existing methods of-
ten treat information diffusion as a single independent pro-
cess, ignoring the “public opinion field effect” where multiple
trending topics coexist and compete for user attention simul-
taneously. Inspired by Hawkes theory, we propose a novel
Hawkes-process-based learning model for information popu-
larity prediction, which takes into account both the temporal
correlation among users’ propagation behaviors in several top-
ics diffusion and public opinion field effect in social networks.
We first propose an improved neural Hawkes process to cap-
ture comprehensive propagation law from multiple dimensions
and then propose a novel public opinion field paradigm based
on the improved Hawkes process and cascade structure. We
design a novel learning framework incorporating the public
opinion field paradigm to extract high-quality representations
for information popularity prediction. Extensive experiments
on four real-world datasets validate that our model signifi-
cantly outperforms the state-of-the-art competitors.

Code and Appendix — https://github.com/ki-ljl/POFHP

Introduction
Information popularity prediction is a fundamental task in so-
cial networks, which can assist in understanding the evolution
of trending topics and has many important applications such
as public opinion analysis, fake news controlling (Masud et al.
2021; Wang et al. 2023), and online social marketing (Arava-
mudan, Zhang, and Anagnostopoulos 2023).

Existing methods for popularity prediction fall into two cat-
egories: probabilistic generative and cascade learning-based.
Probabilistic generative method treats information diffusion
as a sequence of events (Zhao et al. 2015) and design var-
ious diffusion models to simulate the occurrence of events
based on time-dependent probabilistic process, e.g., Poisson
process (Daley, Vere-Jones et al. 2003) and Hawkes pro-
cess (Hawkes 1971). These methods well utilize the laws of
propagation in physical world for prediction and then retains
good interpretability. However, these methods simplify the
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propagation process and neglect the influence of various fac-
tors on the topic propagation in the public opinion field. Cas-
cade learning-based method is proposed to learn data-driven
diffusion models from historical diffusion cascades. These
models use recurrent neural network (RNN) (Li et al. 2017;
Wang et al. 2017) and graph neural network (GNN) (Welling
and Kipf 2016; Velickovic et al. 2017) respectively to capture
the temporal correlation among user behaviors in cascade
and the structural features of social networks. Some works
combine RNN and GNN to capture cascade contexts and so-
cial networks simultaneously, e.g., CasCN (Chen et al. 2019)
and DyHGCN (Yuan et al. 2021).

Both of the above two kinds of methods regard information
diffusion as a single independent process. However, in real
world, several trending topics always coexist in the public
opinion space and compete for user attention at the same
time, which deeply affects information diffusion. Recently,
POFD (Li et al. 2023) is proposed to incorporate “public opin-
ion field effect” for enhancing representation learning. Each
topic forms a public opinion field and these fields compete for
user attention in information diffusion. By modeling the com-
petition mechanism between different public opinion fields,
POFD can obtain better user representation for information
diffusion prediction. Unfortunately, POFD only utilizes the
network structure for representation learning but does not
investigate how to use information cascade for prediction.

We propose a novel Hawkes-process-based learning model
that integrates probabilistic generative and cascade-learning
methods while incorporating public opinion field effects for
information popularity prediction. Unlike traditional Hawkes
process, which focus solely on temporal correlations and
past events, our model accounts for additional factors like
public opinion field effects. Inspired by the Hawkes process,
we define the public opinion attraction based on the condi-
tional intensity function and design a new public opinion
field paradigm. We propose a novel neural Hawkes process
to capture implicit temporal correlation among user retweet-
ing behaviors in three dimensions: historical retweeting se-
quences, within a single topic, and across multiple topics.
Then, a representation learning framework incorporating pub-
lic opinion field effect and Hawkes process can be designed
to extract high-quality node representations for information
popularity prediction. The main contributions of this paper
are summarized as follows.
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(1) We propose an improved neural Hawkes process to learn
the comprehensive propagation law in information diffu-
sion from multiple dimensions.

(2) We propose a novel public opinion field paradigm com-
bining our improved Hawkes process and information cas-
cade structure. We further design a representation learning
framework based on this paradigm for high-quality infor-
mation popularity prediction.

(3) We conduct extensive experiments on four real-world
datasets. The experimental results validate the superiority
of our method.

Problem Definition
This section gives a formal definition of the information
popularity prediction problem.
Definition 1 (Information Cascade). Given a social network
G = (U,E) and a topic set M = {mk|i = 1, 2, · · · } on G,
U is the set of users and E ⊆ U × U represents friendship.
The i-th cascade sequence of a topic mk before time point to
is defined as a sequence of tuples Ck,i(to) = {(uj , tj)|uj ∈
U∧tj < to}, where the tuple (uj , tj) indicates that user uj is
participated in the propagation of topic mk at time tj . Then,
the information cascade of mk is defined as the union of all
cascade sequences, i.e., Ck(to) =

⋃Rk

i=1 Ck,i(to), where Rk

is the number of cascade sequences of mk.

Example 1. Fig. 1(a) illustrates the four cascade sequences
of topic mk: mk → u1 → u3, mk → u2 → u5, mk →
u2 → u6 and mk → u4. The four cascade sequences consist
of the information cascade Ck(t6).

Based on information cascade, we give the definition of
heterogeneous cascade graph.
Definition 2 (Heterogeneous Cascade Graph, HCG). Let
heterogeneous cascade graph Gt = (V, Et) = (U ∪M, Et)
denote the diffusion process formed by all topics up to time t,
where U and M denote the set of users and topics, respec-
tively. Et = E∪Dt∪It is the set of edges, whereE ⊆ U×U
denotes friendship between users. (ui → uj) inDt ⊆ U×U
denotes the set of propagation relations, and ui → mj in
It ⊆ U ×M denotes that the user ui participates in the
retweeting of mj , which is called an interest relation.

Example 2. Fig. 1(b) gives an example of a HCG with two
kinds of nodes (users and topics) and three kinds of edges
(friendship between users, propagation between users, and
user interest in topics).

Finally, based on heterogeneous cascade graph, we give a
definition of information popularity prediction.
Definition 3 (Information Popularity Prediction). Given a
heterogeneous cascade graph Gto , the information popu-
larity prediction aims to predict the incremental popularity
∆RCk

= |Ck(tp)| − |Ck(to)| of any cascade Ck from the
observation time to to the prediction time tp, where to ≪ tp.

Formalization of Public Opinion Field Effect
In order to generalize public opinion field paradigm (Li et al.
2023) to the field of information popularity prediction, in this

section we give the public opinion field paradigm incorporat-
ing the Hawkes process based on HCG.

Hawkes Process
The Hawkes process (Hawkes 1971) is a self-exciting mathe-
matical model that describes the occurrence of events over
time. Its conditional intensity function is defined as:

λ(t) = µ+
∑

j:tj<t

ψ(t− tj) (1)

where µ denotes the basic intensity. ψ(t − tj) is a pre-
specified decay function that describes how past events af-
fect future events. Further, neural Hawkes process (Mei and
Eisner 2017) generalizes the classical Hawkes process by
parameterizing its intensity function with a RNN:

λ(t) = f(w⊤h(t)), f(x) = β log(1 + exp(
x

β
)) (2)

where h(t) is the hidden state of the historical event encoded
by the continuous-time LSTM, w is the learnable weight,
and f(·) is the softplus function with parameter β.

Conditional Intensity Function
Let Hi

k = {(uj , tj)|tj < to} = Ck,i(to) denote the i-th
cascade sequence of the topic mk before the observation
time to. Inspired by the Hawkes process, we innovatively
define the conditional intensity function of the i-th cascade
sequence of topic mk at time t as:

λik(t|θ,Hi
k) = f(

∑
j:tj<t

g(t− tj) ·w⊤
h h(tj)︸ ︷︷ ︸

history

+w⊤
ΦΦ(t)︸ ︷︷ ︸

intra-topic

+w⊤
ΨΨ(t)︸ ︷︷ ︸

inter-topic

+w⊤
b xmk︸ ︷︷ ︸
base

)

(3)

where θ is the set of trainable parameters. Eq. (3) shows that
the conditional intensity function consists of the following
four parts:

(1) history. The “history” term is used to measure the
influence of retweeting behavior occurring earlier
in the sequence on the conditional intensity at fu-
ture moments. We use GRU (Cho et al. 2014) to
encode the user who retweeted at time tj as h(tj).
g(t − tj) = e−β(t−tj) denotes the influence of the
retweeting behavior occurring at tj on the conditional
intensity at t.

(2) intra-topic. The “intra-topic” term measures the influ-
ence of other cascade sequences of the same topic
on the current cascade sequence. For example, in
Fig. 1(a), u6 may be influenced by his/her friend u4 to
retweetmk. We use the hidden state at the last moment
in other cascade sequences to represent the influence
of “intra-topic”, and it decreases over time:

Φ(t) =

Rk∑
c=1∧c̸=i

g(t− tc) · h(tc) (4)

where tc is the last retweeting time in the c-th cascade
sequenceHc

k.
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(a) An example of information cascade.

Active users within 

the observation time
Messages Inactive users

User-Friendship-UserUser-Propagation-UserUser-Interest-Message

(b) Heterogeneous cascade graph. (c) An example of several POFs.

Figure 1: Related illustrations of public opinion field effect.

(3) inter-topic. The “inter-topic” term is used to measure
the mutual influence of different topics. For example,
the basketball enthusiast u2 in Fig. 1(a) has retweeted
another basketball topic mb before t2, and the retweet-
ing of mb drives u2 to retweet mk. We use Ψ(t) to
measure this influence:

Ψ(t) =

|M |∑
b=1∧b̸=k

g(t− tb) · xmb
(5)

where tb denotes the time when topic mb was first
retweeted and xmb

denotes the embedding of topic
mb. We also use a time decay function to attenuate
the influence of topics that are propagated for a longer
period of time.

(4) base. The “base” term denotes the basic intensity, rep-
resented by the initial feature w⊤

b xmk
of the topic

node mk.
Finally, to ensure that the intensity is positive while avoid-

ing drastic changes in intensity, we use the softplus function
f(·) to map the sum of the above four terms.

Maximum Likelihood Estimation
The conditional intensity function of the i-th cascade se-
quence Hi

k of the topic mk at time t is λik(t|θ,Hi
k), and its

time window is [t1, t2, ..., to). According to λik(t|θ,Hi
k), the

probability of observing a retweeting event in the cascade
sequence at time t (t > to) after the observation time to is
defined as:

P (t) = λik(t) exp(−
∫ t

to

λik(τ)dτ) (6)

where τ ∈ [to, t]. Our goal is to maximize the log-likelihood
ℓk,i of observing each user’s retweeting event inHi

k:

ℓk,i(θ|Hi
k) =

∑
j:tj<to

log(P (tj))

=
∑

j:tj<to

log(λik(tj |θ))︸ ︷︷ ︸
retweet

−
∫ to

t=t1

λ(t)dt︸ ︷︷ ︸
non-retweet

(7)

where λ(t) =
∑|M |

k=1

∑Rk

i=1 λ
i
k denotes the sum of the inten-

sity of all cascades in the entire heterogeneous cascade graph.

The first term of Eq. (7) is the probability of retweeting at
each time in the cascade sequence; the second term repre-
sents the probability of not retweeting in an infinitely small
interval [t, t+∆t). Since the probability of not existing any
retweeting event within the interval [t, t+∆t) is 1− λ(t)dt,
its log is −λ(t)dt.

Ultimately, the loss function is defined as the opposite
of the sum of the log-likelihood functions of all cascade
sequences:

Lm = −
|M |∑
k=1

Rk∑
i=1

ℓk,i (8)

Public Opinion Field
(Li et al. 2023) proposes that every public opinion field has a
center that dominates it, namely “public opinion center node”
(POC node). It is obvious that in a HCG, each topic node can
be considered as the “whirlpool center” of the corresponding
cascade. With a topic at the center, the cascade spreads among
users. Next, we define the public opinion field as follows.
Definition 4 (Public Opinion Field, POF). Given a heteroge-
neous cascade graphGto = (V, Eto) = (U∪M,E∪Dt∪It)
and a topic mk ∈M , the public opinion field Pk centered on
POC node mk is defined as a subgraph Gmk

= (Vmk
, Emk

)
of Gto . Vmk

= {mk} ∪ Umk
denotes the set of nodes, and

Umk
denotes the user who has retweeted mk before obser-

vation time to. Emk
⊆ (Dt ∪ It) denotes the set of edges,

i.e., the propagation relations between Umk
and the interest

relations between Umk
and mk.

A public opinion field Gmk
formed with mk at the center

at observation time t3 is given in Fig. 1(a). Fig. 1(c) illustrates
an example of several POC nodes and their corresponding
POFs in a HCG. In fact, a public opinion field records the
propagation of the corresponding topic before the observation
time. As described in (Li et al. 2023), there are two well-
known real-world public opinion field effects that influence
the subsequent propagation of topic:
Observation 1 (Attention Competition Effect). News popu-
larity declines as the number of competing items increases,
with a user’s attention span remaining constant and limited
in the diversity of memes they can focus on (Lorenz-Spreen
et al. 2019).
Observation 2 (Popularity Dominance Effect). In public
opinion space, the topics with the higher popularity are more
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powerful to attract users’ attention (Schulz and Roessler
2012).

The two public opinion field effects show that topics com-
pete for user attention during the propagation process, and
topics with stronger “ability” will attract more attention and
be retweeted more. We use “public opinion field energy”
(POFE) proposed in (Li et al. 2023) to quantify the abil-
ity of a topic to attract attention. The greater the conditional
intensity, the greater the probability of a future retweeting
event. Retweeting behavior is the result of the success of a
topic in grabbing the user’s attention, so conditional intensity
and public opinion field energy are naturally linked. In this
paper, we use the sum of the conditional intensity of the last
time in all cascade sequences in a POF as the POFE of this
POF. Specifically, the energy of the public opinion field Pk

for topic mk is defined as:

E(Pk) =

Rk∑
i=1

λik(ti) (9)

where ti is the last retweeting time in the i-th cascade se-
quenceHi

k.

Representation Learning
This section explores the combination of public opinion field
effect with HCG’s node representation learning for informa-
tion popularity prediction. Specifically, the representation
learning is divided into three modules: (1) Public opinion
field learning. Learning the representation of POC nodes,
i.e., topic nodes; (2) User global dependency learning. Learn-
ing user representation through user propagation, interest
and friendship relationships; (3) Prediction module. Pooling
the public opinion field based on the node’s representation
learned earlier, and then performing information popularity
prediction. We will describe each module in detail below.

Public Opinion Field Learning
Because the nodes with different types always have different
feature spaces, we first utilize hi = Axi to project the fea-
tures of all the nodes in Gto = (V, Eto) into the same space,
where xi is original feature of node vi ∈ V , A is a projection
matrix, and hi ∈ Rd is the projected features. Note that A is
different depending on the type of node, i.e., U and M .

Consider that the energy of different POFs has different
scales, to simplify the comparison, we first normalize the
energies of all POFs to between 0 and 1:

E(Pk)←
E(Pk)∑

mk∈M E(Pk)
(10)

In this paper, we use the popular graph attention mech-
anism (Velickovic et al. 2017) to learn the dependencies
between a topic and its user neighbors. Specifically, the at-
tention score of node vi ∈ V and its neighbor vj ∈ V is:

att(hi,hj ,Φ) = σ(Φ⊤ · (hi∥hj)) (11)

where σ denotes the LeakyReLU activation function, Φ ∈
R2d denotes the weight to perform the attention mechanism,
and ∥ denotes the concatenation operation.

Next, given a topic mk, its node representation hk,1 based
on “user-interest-topic” relationship is shown as follows:

hk,1 =
∑

vi∈Nk,1

αk,i · hi (12)

where Nk,1 denotes the set of user neighbors of mk. αk,i

denotes the attention score between mk and its neighbor
vi ∈ U , with the following expression:

αk,i =
exp(g(to − ti) · att(hk,hi,Φo))∑

vj∈Nk,1
exp(g(to − tj) · att(hk,hj ,Φo))

(13)

where g(to − ti) is used to describe the different importance
of retweeting behaviors at different times. Φo is a learnable
parameter and ti denotes the time when user vi retweets mk.

User Global Dependency Learning
In information popularity prediction, users are the pivotal
participants in the information propagation, so it is crucial
to consider the dependency relationships among users and
between users and topics. In a HCG, user dependencies
include “user-propagation-user”, “user-interest-topic” and
“user-friendship-user” relationships.

User-Propagation-User. There is a natural temporality
in the propagation relationship between users. This tempo-
rality is usually categorized into short-term and long-term
dependence.

(1) Short-term dependence usually refers to the phe-
nomenon of immediate reaction in information prop-
agation. For example, users engage in retweeting be-
haviors shortly after receiving new topics, and such
behaviors are often directly influenced by the most
recently exposed users. We use the graph attention
mechanism to extract associations between users and
the nearest users around them to reflect the short-term
dependence of propagation. Specifically, the node rep-
resentation hi,1 of user vi ∈ U based on short-term
dependencies is:

hi,1 =
∑

vj∈Ni,1

αi,j · hj

αi,j = softmax(att(hi,hj ,Φs))

(14)

where Ni,1 denotes the neighbors (including itself)
of user vi based on the propagation relationship, αi,j

denotes the attention score, and Φs is the learnable
weight.

(2) Long-term dependence involves the cumulative effect
of information propagation, which focuses on how be-
havior at a more distant time point in the past affects
the current user’s decisions. Transformer (Vaswani
et al. 2017) is able to capture complex dependencies
in long-distance sequences. We first form a user prop-
agation matrix Ω ∈ RR×N of all cascade sequences
of all topics:

Ω =

 . . . . . . . . . . . .
mk ui uj . . .
mk+1 us ut . . .
. . . . . . . . . . . .


R×N

(15)
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where R =
∑|M |

k=1

∑Rk

i=1 denotes the number of cas-
cade sequences andN denotes the maximum length of
all cascade sequences. To facilitate parallel operations,
we use 0 for padding. Therefore, there is a correspond-
ing mask matrix Ωmask ∈ RR×N . Ωmask(i, j) = 1
indicates that a user exists at that location, otherwise
Ωmask(i, j) = − inf indicates the absence of a user.
In order to consider the time at which different users
are involved in retweeting, we define the time en-
coding matrix Ωtime ∈ RR×N . Ωtime(i, j) denotes
the value after normalizing the Unix timestamps of
the user’s retweeted topic at position (i, j). Then, the
Transformer operation is defined as follows:

Q = WQ(H + ft(Ωtime))

K = WK(H + ft(Ωtime))

V = WV (H + ft(Ωtime))

H
′
= softmax((QK⊤ ⊙ Ω̃mask)/

√
d)V

(16)

where H ∈ RR×N×d denotes the embedding ma-
trix of all entities in Ω. WQ, WK and WV are the
learnable parameters. ft(·) denotes the time encod-
ing function, a simple MLP which maps the time en-
coding matrix Ωtime from RR×N to RR×N×d. We
broadcast Ωmask ∈ RR×N to Ω̃mask ∈ RR×N×N to
fit the shape of the attention matrix. Finally, we ob-
tain the representation matrix H

′ ∈ RR×N×d for all
entities after extracting the long-term dependencies.
Since our task is to predict topic nodes, we regard the
first column in H

′
as the calculation result of long-

term dependency. Considering that any mk ∈M may
have multiple cascade sequences, we average the Rk

sequence representations of mk to obtain its final rep-
resentation, that is, the representation hk,2 of topic
mk based on long-term dependencies:

hk,2 =
1

Rk

∑
Ω[i,0]=mk

H
′
[i, 0, :] (17)

User-Interest-Topic. Users’ interest in the topic directly
determines whether they will participate in further propaga-
tion of the topic, and thus providing useful knowledge for
subsequent popularity prediction. In general, a user usually
retweets multiple topics. For each user node, its different
POC neighbor nodes (topics) will compete for user vi’s at-
tention (Attention Competition Effect). The POC neigbor
node with the larger POFE will gain more attention from
vi (Popularity Dominance Effect). We consider both self
attention mechanism and public opinion field effect in node
representation hi,2 for user vi:

hi,2 =
∑

mk∈Ni,2

αi,k · (hk + E(Pk)⊙ h
′

k)

αi,k = softmax(att(hi,hk,Φt))

(18)

where Ni,2 denotes the POC neighbors of user vi based on
interest relationship. Note that h

′

k = hk,1 + hk,2 is the
final representation of the POC node mk and E(Pk) ←

E(Pk)/
∑

mj∈Ni,2
E(Pj) denotes the normalized public

opinion field energy. In Eq. (18), the term E(Pk) ⊙ h
′

k is
utilized to reflect the influence of POF Pk for representation
of vi, because h

′

k is the representation of Pk.
User-Friendship-User. Since the first two relationships

can only last until observation time to, neither of them can
establish interactions between users in the POF and poten-
tial future retweeters. By considering the friend relationship
between users, users inside and outside the POF can be as-
sociated to build a more comprehensive user portrait. The
node representation hi,3 of user vi ∈ U based on friendship
relationship is shown as follows:

hi,3 =
∑

vj∈Ni,3

αi,j · hj

αi,j = softmax(att(hi,hj ,Φf ))

(19)

where Ni,3 denotes the friends of user vi (including vi), αi,j

denotes the attention score, and Φf is the weight for perform-
ing the attention mechanism.

Ultimately, we get the final representation of user vi based
on the representation of three relations:

h
′

i = hi,1 + hi,2 + hi,3 (20)

Prediction Module
The incremental popularity of a topic depends not only on
its intrinsic attributes (e.g., topic heat), but is also influenced
by the number of retweeted users (e.g., the number of high-
influence users). In other words, the popularity increment
is related to the public opinion field, as the public opinion
field accurately records the spread of the topic up to the
observation time.

In this paper, we first use a readout function to aggregate
the features of all the nodes within the public opinion field
Pk formed by the topic mk in order to generate the overall
embedding ek ∈ Rd of Pk:

ek = fr(Gmk
) (21)

where fr(·) denotes a graph pooling function with the fol-
lowing expression:

fr(Gmk
) = h

′

k ⊙ (
∑

vi∈Umk

ek,i · h
′

i) (22)

where Umk
denotes the user who has retweeted mk before

observation time to,⊙ denotes the Hadamard product. h
′

k and
h

′

i denote the node representations of topic mk and user vi ∈
Umk

, respectively. Since different users within Pk contribute
differently to the incremental popularity of topic mk in the
future, we use ek,i to measure the contribution of user vi ∈
Umk

to topic mk with the following expression:

wk,i = σ(att(h
′

k,h
′

i,Φp)), τk,i = σ(cov(h
′

k,h
′

i))

ek,i =
exp(wk,i · τk,i)∑

vj∈Umk
exp(wk,j · τk,j)

(23)

where wk,i reflects how much popularity or attention can be
brought if user vi participates in the discussion or propagation
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of topic mk. It is obvious that Michael Jordan brings more
attention than the ordinary person when discussing basketball
topics.
τk,i reflects how much attention that user vi intends to

pay on the topic mk. Considering that most people prefer
to talk about information that is more relevant to them, we
select covariance function cov(x,y) = (

∑d
i=1(xi− x̄)(yi−

ȳ))/(d − 1), which indicates the correlation between two
vectors x,y ∈ Rd, to measure the amount of attention that
user vi intends to pay on the topic mk.

Then we feed the overall representation ek of the public
opinion field Pk into a MLP to obtain incremental popularity
prediction of the cascade Ck:

∆̂RCk
= MLP(ek) (24)

We use the Mean Squared Logarithmic Error (MSLE) as
the loss function, which can be formulated as follows:

Ls =
1

Y

∑
(log(∆RCk

)− log(∆̂RCk
))2 (25)

where Y represents the number of training samples. Finally,
we define the total loss by linearly combining the supervised
loss Ls and the maximum likelihood estimation loss Lm:
L = Ls + ρLm + φLreg, where ρ is a hyperparameter and
φLreg is the regularization term to alleviate overfitting.

Experiments
Experimental Setup
Datasets. Detailed statistical information of the datasets is
shown in Table 1. (1) Twitter (Hodas and Lerman 2014)
contains tweets during October 2010 and their paths through
users and friendships between users. (2) Douban (Zhong
et al. 2012) is collected from a social platform where users
post updates about the books they read or the movies they
watch. We utilize whether users read the same book or not
to build friendship networks. (3) Android and Christian-
ity (Sankar et al. 2020) are collected from the community
Q&A platform StackExchange, and the cascade corresponds
to a chronological series of posts associated with the same
hashtag. Finally, we use 80% of the cascades in each dataset
as training sets and 20% of the cascades as test sets. Details
of data processing are given in the Appendix.

Baselines. For simplicity, our model is denoted as POFHP
(Public Opinion Field and Hawkes Process). We com-
pare POFHP against four categories of information popu-
larity prediction methods. (1) Feature-based mothods: XG-
Boost (Chen and Guestrin 2016) and MLP. (2) Hawkes
Process-based methods: SEISMIC (Zhao et al. 2015) and
DeepHawkes (Cao et al. 2017). (3) Graph-based methods:
CasCN (Chen et al. 2019), MS-HGAT(Sun et al. 2022)
and CTCP (Lu et al. 2023). (4) Public Opinion Field-based
method: POFD (Li et al. 2023).

Evaluation Metrics. We employed three widely-used met-
rics: Mean Squared Logarithmic Error (MSLE), Mean Ab-
solute Logarithmic Error (MALE), and Symmetric Mean
Absolute Percentage Error (SMAPE). The definitions of all
evaluation metrics are given in the Appendix.

Datasets #Cascades #Sequences #Users #Retweets #Friendship

Twitter 1044 1044 12627 19408 619262
Douban 2594 2594 24926 19638 758310
Android 313 582 9953 9313 48573

Christianity 145 466 2897 6513 35624

Table 1: Statistics of datasets.

Parameter Settings. The feature dimensions of user and
topic are both 64, all models are two-layer, with hidden and
output layer dimensions of 32 and 64 respectively, and the
number of attention heads (if applicable) is 4. In POFHP, we
set β = 2.0, ρ = 0.01, and use a single-layer GRU. For all
neural network models, the learning rate is 0.001 and the
number of training epochs is 200. We run 10 times with the
same partition and report the average results.

Performance Comparison
Table 2 reports the performance of the different methods on
the four datasets, and some conclusions can be summarized
as follows.

(1) Feature-based methods (XGBoost and MLP) per-
formed the worst due to their inability to extract structural
and sequence information. (2) Graph-based models exploit
both network structure and sequence information, and thus
perform better than Hawkes process-based models that only
exploit sequences for self-motivated modeling. (3) POFD is
second only to our model POFHP in multiple metrics, prov-
ing the effectiveness of considering the public opinion field
effect in information popularity prediction. (4) Our model
POFHP takes into account both the public opinion field effect
and sequence modeling, and thus achieves the best perfor-
mance on all metrics of the four datasets.

Ablation Study
In this section, we study how the various modules of POFHP
affect its performance on the Twitter and Douban datasets.
Specifically, we create the following model variants: (1) w/o
HP removes the Hawkes Process, while the Lm loss function
is removed. (2) w/o SD removes short-term dependencies
from the user-propagation-user relationship. (3) w/o LD re-
moves long-term dependencies from the user-propagation-
user relationship. (4) w/o RD removes the readout function
in the prediction module and directly uses a simple two-layer
MLP for prediction.

The results of ablation experiments are reported in Table 3.
We find that w/o HP and w/o LD perform poorly, suggesting
that it is important to consider complex propagation laws and
long-term dependencies. In addition, POFHP outperforms
the above four variants, which indicates that our design is
reasonable and all modules can improve the performance of
the model individually.

Parameter Sensitivity Analysis
Parameter sensitivity analysis can be used to evaluate how
sensitive model performance is to different hyperparameter
settings, thus guiding researchers to find the ideal parameter
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Methods
Twitter Douban Android Christianity

MSLE MALE SMAPE MSLE MALE SMAPE MSLE MALE SMAPE MSLE MALE SMAPE

XGBoost 3.2251 1.5726 0.6135 1.8463 1.0853 0.4345 1.7466 0.9951 0.4136 1.4841 0.9127 0.3684
MLP 3.0476 1.5273 0.5965 1.8176 1.1084 0.4454 1.9289 1.0542 0.4416 1.6141 0.9788 0.3895

SEISMIC 2.2377 1.2974 0.5431 1.6160 1.0031 0.4194 1.6151 0.9516 0.3939 1.2614 0.7858 0.3266
DeepHawkes 2.0141 1.2534 0.5285 1.4982 0.9641 0.4025 1.4889 0.9187 0.3789 1.1078 0.6859 0.2987

CasCN 1.9538 1.1623 0.4875 1.5496 0.9788 0.3987 1.3005 0.7674 0.3123 0.8247 0.5515 0.2464
MS-HGAT 2.0539 1.1838 0.4974 1.4718 0.9516 0.4025 1.2274 0.7397 0.2938 0.9015 0.6245 0.2693

CTCP 1.8077 0.9636 0.4578 1.3015 0.8931 0.3776 1.0894 0.6536 0.2775 0.7250 0.5041 0.2257
POFD 1.7774 0.9556 0.4419 1.2387 0.8696 0.3623 1.2834 0.7847 0.3256 0.6045 0.4397 0.2035

POFHP (Ours) 1.5197 0.9149 0.4132 1.0347 0.7342 0.3341 0.6986 0.5208 0.2522 0.3906 0.3676 0.1760
Improvements (%) ↑ 14.50 ↑ 4.26 ↑ 6.49 ↑ 16.47 ↑ 15.57 ↑ 7.78 ↑ 35.87 ↑ 20.32 ↑ 9.12 ↑ 35.38 ↑ 16.40 ↑ 13.51

Table 2: Experimental results on 4 datasets. The best results appear in bold.
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(c) Proportion of unsupervised loss.

Figure 2: Parameter sensitivity analysis of POFHP on Twitter dataset.

Methods Twitter Douban

MSLE MALE SMAPE MSLE MALE SMAPE

w/o HP 1.7012 0.9354 0.4483 1.3258 0.9258 0.3978
w/o SD 1.6113 0.9284 0.4351 1.2478 0.8041 0.3613
w/o LD 1.6514 0.9312 0.4412 1.2784 0.8553 0.3745
w/o RD 1.5438 0.9217 0.4256 1.1517 0.7654 0.3489
POFHP 1.5197 0.9149 0.4132 1.0347 0.7342 0.3341

Table 3: Ablation study of POFHP on Twitter and Douban.

combination. We analyze the sensitivity of the parameters in
this section and the results are shown in Fig. 2. We observe
that the model performance tends to be stable when the num-
ber of attention heads, hidden dimension, and unsupervised
loss ratio reach 4, 64, and 0.01, respectively. Our model is sta-
ble to small parameter changes and performs well under most
combinations, demonstrating strong robustness. It ensures
reliable results even with slight parameter variations.

Case Study
In order to verify the effectiveness and superiority of POFHP
in practical applications, we compare the performance of
CTCP, POFD and POFHP on three cases of low popularity
(A), medium popularity (B) and high popularity (C) in the
Twitter dataset.

We can draw the following three conclusions from the
experimental results in Table 4. (1) CTCP is unable to effec-
tively capture the diversion effect of multiple topics on users’
attention, and thus its prediction of extreme cases (A and C)
is highly biased. (2) POFD considers public opinion field

Cases Target CTCP POFD POFHP

A 3 1.1523 2.8417 2.8963
B 44 42.7936 48.1574 43.8741
C 195 203.7814 193.6587 194.3815

Table 4: Case study experimental results.

effect but fails to adequately capture the complex laws in
information propagation. Thus, POFD is unable to effectively
model cases such as B, which has a high initial popularity
but not ultimately high popularity. (3) Our POFHP models
both public opinion field effects and propagation laws, and
can more accurately capture the allocation of users’ attention
and the complex dynamics of the information propagation
process, thus providing more precise prediction results.

Conclusion
In this paper, we propose a novel Hawkes process-based
learning model for information popularity prediction. This
proposed method first designs an improved neural Hawkes
process to capture comprehensive propagation laws from
multiple dimensions. In addition, unlike the traditional diffu-
sion model that only considers time dependency and network
structure, we propose to use conditional intensity function
and cascade diffusion structure to define the public opinion
field paradigm and extract high-quality node representations
based on the public opinion field effect. Extensive experi-
mental results on four real-world datasets demonstrate the
effectiveness of the proposed method.
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