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Abstract
Distributed pre-training of large models at scale
often imposes heavy memory demands on individ-
ual nodes and incurs significant intra-node com-
munication costs. We propose a novel alternative
approach that reduces the memory requirements
by training small, structured subnetworks of the
model on separate workers. Unlike pipelining, our
method avoids inter-node activation communica-
tion and maintains bandwidth requirements that
are comparable to or lower than standard data par-
allel communication schemes based on all-reduce.
We evaluate two subnetwork construction strate-
gies guided by the principle of ensuring uniform
representation of each parameter across the dis-
tributed training setup. Our results show that the
stochastic block dropping technique consistently
outperforms the width-wise subnetwork construc-
tion previously explored in federated learning. We
empirically attribute this superior performance to
stronger gradient alignment in subnetworks that
retain blocks having skip connections. Prelimi-
nary experiments highlight the promise of our ap-
proach, achieving a 20–40% reduction in mem-
ory usage without any loss in performance.

1. Introduction
The rapid scaling of deep neural networks has led to unprece-
dented progress across a wide range of domains, from com-
puter vision (He et al., 2016a; Radford et al., 2021; Oquab
et al., 2023; Kirillov et al., 2023; Shang et al., 2024) to nat-
ural language processing (Bommasani et al., 2021; Achiam
et al., 2023; Touvron et al., 2023; Zhao et al., 2023a). Train-
ing such large models has necessitated distributed strategies
like data parallelism (Li et al., 2020) and model paral-
lelism (Shazeer et al., 2018; Shoeybi et al., 2019; Huang
et al., 2019), each with trade-offs. Data parallelism, espe-
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cially in the form of Distributed Data Parallel (DDP) (Li
et al., 2020), replicates the model on each GPU and synchro-
nizes gradients after each backward pass. While simple and
widely adopted, it incurs high memory overhead due to full
model replication and high communication cost during syn-
chronization. Model parallelism (e.g., GPipe (Huang et al.,
2019)) mitigates memory issues by splitting layers across
devices but requires expensive high-bandwidth intercon-
nects to communicate activations. Unlike data parallelism,
where several techniques effectively reduce communication
costs (Douillard et al., 2023a; Wang et al., 2023), reducing
the bandwidth constraints when communicating activations
is an open problem. Additionally, classic pipeline-based ap-
proaches often suffer from inefficiencies due to idle waiting
(pipeline bubbles).

In this work, we explore Subnetwork Data Parallelism as a
strategy to reduce per-node memory usage by fully distribut-
ing the training of model sub-components across devices.
Unlike pipelining, which divides computation across sequen-
tial stages, our approach assigns each worker a subnetwork,
defined as a structurally complete portion of the model with
a full path from input to loss, enabling independent gra-
dient computation without exchanging activations. Each
worker optimizes only its subset of parameters and synchro-
nizes overlapping parameters through averaging at each step.
Instead of replicating or fully sharding the model, we dis-
tribute these subnetwork s across nodes, so that each device
hosts only a fraction of the full model. Each subnetwork is
trained independently, with synchronization performed via
parameter averaging to form a unified model. Since each
node hosts only a fraction of the full model, overall mem-
ory usage is significantly reduced. Intra-node parallelism
follows standard data parallelism with parameter-level com-
munication, and the approach is compatible with existing
systems-level model parallelism techniques.

Subnetwork training draws on two key insights: (i) large
models often contain significant parameter redundancy, mak-
ing it possible to estimate the loss with subnetworks; and
(ii) partial training acts as a form of regularization, improv-
ing generalization. By training overlapping submodels and
synchronizing only shared parameters, our framework bal-
ances scalability and efficiency. This yields a substantial
reduction in memory footprint, as each GPU hosts only a
subnetwork rather than the full model. By relaxing the need
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for full replication and reducing synchronization overhead,
our approach improves both memory efficiency.

We formalize this approach as a distributed training frame-
work in which each worker optimizes a fixed subset of model
parameters, referred to as its subnetwork. Each parameter
is assigned to a fixed set of P ≤ N workers, ensuring that
all parameters are updated by at least one worker. Follow-
ing each local update, parameter replicas are averaged and
broadcasted to maintain coherence across the global model.
This strategy, which we term Subnetwork Data Parallelism,
avoids full model replication and pipeline dependencies,
enabling efficient training on memory-constrained accelera-
tors.

• We propose a distributed training
paradigm—Subnetwork Data Parallelism, based
on overlapping parameter assignment and averaging,
enabling memory efficient training.

• We explore two subnetwork construction strategies:
(i) selecting subsets of neurons or channels, and (ii)
removing entire layers (blocks) from the network.

• We demonstrate that our approach achieves competi-
tive performance on image classification tasks, while
substantially reducing per-device memory usage and
synchronization overhead.

2. Related Work
We now review the related work in model parallelism and
in federated learning.

Pipeline parallelism Pipeline parallelism addresses mem-
ory bottlenecks by dividing the model itself across de-
vices. In (Huang et al., 2019; Rivaud et al., 2024), the
model is partitioned layer-wise across multiple devices,
and micro-batches are pipelined to maximize hardware
utilization. Mesh-TensorFlow (Shazeer et al., 2018) and
Megatron-LM (Shoeybi et al., 2019) explore intra-layer
tensor-splitting, where weights and activations are sharded
across devices. While these methods allow overcoming
memory constraints, they require multiple well-connected
accelerators and also experience pipeline bubbles and load
imbalance.

Another model parallelism direction has considered parallel
learning of layers through auxiliary local losses (Belilovsky
et al., 2020).

Fully Sharded and Zero Redundancy Approaches. To
address memory inefficiencies in data parallelism, recent
advances such as Fully Sharded Data Parallel (FSDP) (Zhao
et al., 2023b), and ZeRO (Rajbhandari et al., 2020) de-
compose model parameters, gradients, and optimizer states

across devices. These methods significantly reduce the per-
device memory footprint and are well-supported by frame-
works like DeepSpeed (dee, 2020). While these techniques
significantly reduce per-device memory usage, they still in-
volve substantial inter-device communication, particularly
during gradient synchronization, which can lead to increased
communication overhead and latency.

SWARM Learning SWARM (Ryabinin et al., 2023)
learning attempts to address model parallelism and the con-
straints of individual GPUs by having a number of devices
available at each stage of pipeline parallelism while effi-
ciently routing samples through them. This is fundamen-
tally different than the approach described here as it still
requires communicating activations across potentially low-
bandwidth links, while subnetwork training focuses on re-
ducing all communication to parameters or gradients and
maintaining only data parallelism across nodes.

Federated Learning and Dropout-Based Subnetwork
Training. Federated learning frameworks (Konečný et al.,
2016) train models across decentralized data sources, often
focusing on tackling the associated non-iid problem.

Several works have considered training subnetworks per
device in a federated setting (Caldas et al., 2018; Horvath
et al., 2021; Guliani et al., 2022; Wen et al., 2022; Alam
et al., 2022). However, with significantly different goals,
context, and methodology. Specifically, these works focus
on reducing the communication load and the computational
resources of the devices, while in our case, we focus on
reducing the necessary memory requirements, an important
aspect of allowing training of large models across memory-
limited GPUs. Communication load is well addressed by
other techniques in the literature, such as multi-step training
and compression methods (Reddi et al., 2021; Douillard
et al., 2023a; Wang et al., 2023).

FedRolex and HeteroFL considers a scheme where models
can vary in their size depending on the client, with the goal
of addressing the heterogeneity across devices both in terms
of computation and memory. Our work on the other hand
focuses on a homogenous setting with the goal to reduce the
overall per node memory requirements.

Furthermore, these works are done in a context of data pri-
vacy and client heterogeneity, which also lead to problems
of small per worker dataset. On the other hand in our setting
we assume that each worker can have access to the entire
dataset, reducing any issues of heterogeneity or overfitting
due to small per worker datasets.

Our method of assigning the max also differs from any
of these prior works as we consider assigning masks in
a way that assures parameters equal representation in the
aggregation, and we systematically compare layer level vs
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neuron/channel level subnetwork creation.

Finally the assigned masks in these works are not fixed and
change dynamically, in a non-federated setting where wall
clock time is critical this would add significant communica-
tion and coordination overhead.

3. Method
3.1. Subnetwork Data Parallelism

We consider a distributed training framework designed to
enhance memory utilization by assigning each worker a
structured subnetwork: a subset of model parameters, en-
abling faster forward and backward passes with reduced
memory usage.

Consider a distributed setup comprising N workers (GPUs),
with the full model parameter vector denoted as θ ∈ Rd.
Each parameter θj is assigned exactly to P ≤ N distinct
workers, with possible overlapping assignments such that
multiple parameters may share subsets of responsible work-
ers. This assignment is represented by permanent binary
masks mi ∈ {0, 1}d, such that

∑N
i=1 mi = P · 1 for each

worker i. This ensures that each parameter is represented
precisely P times across the N workers. At optimization
step t, worker i samples a mini-batch B(t)

i and computes
gradients based on its masked parameter set:

θ
(t)
i = mi ⊙ θ(t),

where ⊙ denotes element-wise multiplication. The local
gradient computation is thus given by:

g
(t)
i = ∇θL(θ(t)

i ;B(t)
i ),

with the gradient inherently zero for parameters excluded
by the mask, i.e.,

(g
(t)
i )j = 0 if (mi)j = 0.

Each worker performs local gradient computation on its
assigned subset of parameters, and the gradients are syn-
chronized across their corresponding workers via averaging
at the end of each step. This can also be extended to multiple
local steps (Konečný et al., 2016; Douillard et al., 2023b),
but for this work, we limit our analysis to the single-step
case.

After local gradient computations, gradients from all work-
ers are aggregated via masked averaging:

ḡ(t) =

∑N
i=1 mi ⊙ g

(t)
i∑N

i=1 mi

=
1

P

N∑
i=1

mi ⊙ g
(t)
i .

The global parameters are updated using a generic optimiza-
tion step, denoted by OptUpdate(·), incorporating internal

optimizer state s:

θ(t+1) = θ(t) − OptUpdate(ḡ(t), s).

This framework simplifies to standard data-parallel training
when all masks are fully activated (i.e., P = N and mi = 1
for all i), resulting in:

ḡ(t) =
1

N

N∑
i=1

g
(t)
i .

This parameter update rule ensures that each parameter
evolves consistently across all participating workers, despite
being updated only by a subset. Reducing the value of P
proportionally decreases memory and communication costs
but introduces a potential optimization gap due to the bias
introduced into the gradient estimation.

3.2. Subnetwork construction

We consider two structured approaches for constructing
masks based on the classic dropout (Srivastava et al., 2014)
that gives neuron-level masking, which can be used with
fully connected or convolutional layers, and block-level
masking based on stochastic depth dropout (Huang et al.,
2016), which can be used with any residual architectures.

Neuron-Level Masking In neuron-level masking, we dis-
able neurons in fully connected (linear) layers or entire
channels in convolutional networks. Consider, for exam-
ple, two consecutive convolutional layers in a CNN having
the same input and output channel size C with weights:
W(l−1),W(l) ∈ RC×C×k×k. We can define a channel
level dropout masks M(l),M(l−1) ∈ {0, 1}C for output
channels of layer l and l − 1. These masks induce a param-
eter level mask m(l) on layer l as follows:

{
W(l)

c,:,:,:, b
(l)
c

}
=

{
0, if (M(l))c = 0,{
W

(l)
c,:,:,:, b

(l)
c

}
, otherwise,

(1)

W(l+1)
:,c,:,: =

{
0, if (M(l−1))c = 0,

W
(l+1)
:,c,:,: , otherwise.

(2)

This unified masking approach ensures that entire computa-
tion paths are deactivated, reducing both forward and back-
ward costs.

Block-Level Masking Block-level masking disables en-
tire computational blocks or layers along paths that have
skip connections. Suppose the model contains M blocks
B1, . . . , BK with per block parameters θ(k). Binary masks
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z
(m)
i ∈ {0, 1} indicate whether layer k is active, which in-

duces a mask on the parameters (removing the layers param-
eters). In models with skip connections, such as ResNets,
masking residual blocks results in identity mappings. Since
the input to the subsequent layer is typically a sum of the
skip connection and the dropped layer, it allows the repre-
sentation to still be plausible. Consider a skip connection
Bm(x) + x, then masked computation at layer m is:

B̂m(x) = z
(m)
i Bm(x) + x. (3)

The corresponding parameter mask is θ(k)
i = z

(k)
i θ(k)

4. Experiments
We evaluate our proposed partial parameter parallelism
framework on multiple datasets: CIFAR-10 (Krizhevsky
et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), and
SVHN (Netzer et al., 2011). We evaluate the effectiveness
of subnetwork training under varying parameter sharing
levels, defined by the ratio P/N , where each parameter is
updated by exactly P out of N workers. Using N = 8
GPUs, we vary P ∈ {8, 7, 6, 5, 4, 3} to assess how reduced
overlap affects convergence and generalization.

The baseline (P = N ) corresponds to standard Data Par-
allel (DP) training, where all parameters are updated by
every worker. In contrast, partial overlap settings restrict
each parameter to be updated by only a subset of work-
ers: for example, P/N = 0.875 (7 of 8 workers), down to
P/N = 0.375 (3 of 8 workers). We evaluate both neuron-
level (channel) and block-level (layer) masking strategies
under these settings and compare them to the DP baseline.
Subnetwork parallelism offers significant memory savings
of 1− P/N for activations, parameters, gradients, and op-
timizer states, for a given overlap ratio P/N . Thus, lower
overlap leads to greater memory.

Setup We conduct all experiments using ResNet-18 (He
et al., 2016b) and its wider variant (width = 2) (Zagoruyko
& Komodakis, 2016). Models are trained using SGD with
Nesterov momentum (Nesterov, 2013) and a momentum
factor of 0.9. The baseline (P/N = 1) is trained for 200
epochs on N = 8 GPUs. All subnetwork configurations are
FLOP-matched by increasing the number of training epochs
proportionally to the reduction in active parameters. For
example, when P/N = 4/8, training iterations are doubled
to maintain equivalent computational cost.

All models are trained with an effective batch size of
B = 512 (64 per GPU across N = 8 workers). Experi-
ments are conducted with two different types of learning
rate schedulers. A cosine annealing learning rate schedule
with ηmax = 0.2 and ηmin = 0.002. A linear warm-up is
applied over the first 5% of training iterations to improve
convergence stability. We also perform experiments with a

multi-step learning rate scheduler, from Goyal et al. (2017),
where the learning rate is decayed by a factor of 0.1 at spe-
cific milestones. For CIFAR-10, these milestones occur at
50% and 75% of the total training iterations. For CIFAR-
100, the milestones are set at 30%, 60%, and 80% of the
training process. Finally, for SVHN, the milestones are
reached at 25%, 33%, 50%, and 75% of the total iterations.

We use group normalization with 2 groups across all ex-
periments, ensuring that normalization is computed only
over active parameters in subnetwork configurations. Ad-
ditionally, we adopt a modified Kaiming initialization (He
et al., 2015), recalculating the fan-out based on the number
of active (unmasked) output units. This adjustment prevents
overestimation of activation variance that can occur with
standard initialization when masking is applied.

5. Results
Table 1 reports the top-1 test accuracy across different levels
of parameter overlap (P/N ) with a ResNet-18 as well as
its wide variant (width=2) across three benchmark datasets:
CIFAR-10, CIFAR-100, and SVHN. The results compare
two subnetwork strategies: Neuron Masking and Block
Masking using a cosine annealing scheduler.

On CIFAR-10, we observe clear benefits of our proposed
scheme—Subnetwork Data Parallelism. With only 87.5% of
the model parameters (P/N = 0.875), we achieve a slight
performance boost over the baseline across all datasets, high-
lighting both the regularization effect and computational effi-
ciency of subnetwork training. Notably, even at just 50% of
the total parameters P/N = 4/8, accuracy remains largely
unaffected. These trends are consistent across both variants
of ResNet-18 (width ∈ {1, 2}) and across all datasets.

For example, in ResNet-18 on CIFAR-10, subnetwork train-
ing at P/N = 0.625 reduces the number of active parame-
ters per worker from 11.2M to approximately 7.0M, saving
over 4M parameters per GPU without impacting perfor-
mance. This advantage becomes even more pronounced in
larger models such as WideResNet-18, which has roughly
44.6M parameters. Under the same setting, each worker
processes only 27.9M parameters, yielding a savings of over
16M per GPU. Such substantial reductions in memory and
compute overhead highlight the scalability and efficiency of
our approach, particularly for larger architectures.

When comparing neuron masking (NM) with block masking
(BM), we find that both strategies perform competitively
down to P/N = 0.50. However, below this threshold, neu-
ron masking suffers a sharp decline in accuracy. As shown in
Table 1, at P/N = 0.375, for ResNet-18 model (width=1)
block (or layer) masking remains robust as compared to neu-
ron masking by consistently giving a superior performance
across all the dataets, with only a modest drop—around
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Dataset Masking DP (P/N = 1.0) P/N = 0.875 P/N = 0.75 P/N = 0.625 P/N = 0.50 P/N = 0.375

RN-18 WRN-18 RN-18 WRN-18 RN-18 WRN-18 RN-18 WRN-18 RN-18 WRN-18 RN-18 WRN-18

CIFAR-10 NM 92.70 ±0.39 92.98 ±0.04
93.68 ±0.19 93.94 ±0.09 93.33 ±0.16 93.95 ±0.31 93.16 ±0.01 93.68 ±0.66 92.64 ±0.13 93.99 ±0.19 81.27 ±3.44 91.80 ±0.62

BM 92.94 ±0.39 93.45 ±0.13 92.82 ±0.08 93.55 ±0.18 92.19 ±0.24 93.09 ±0.18 91.45 ±0.34 92.54 ±0.22 88.03 ±0.16 88.23 ±0.94

CIFAR-100 NM 68.59 ±0.5 69.74 ±1.56
69.65 ±0.56 69.45 ±0.59 69.76 ±0.22 71.05 ±0.6 70.03 ±0.58 71.06 ±0.21 68.16 ±0.55 70.69 ±0.11 56.21 ±1.41 65.12 ±0.30

BM 69.89 ±0.24 71.25 ±0.07 69.53 ±1.09 72.01 ±0.09 68.10 ±0.36 70.89 ±0.19 68.12 ±0.41 70.87 ±0.2 61.57 ±0.39 62.92 ±0.8

SVHN NM 95.06 ±0.04 95.72 ±0.23
95.66 ±0.04 95.79 ±0.18 95.83 ±0.03 95.75 ±0.01 95.64 ±0.04 95.89 ±0.08 95.66 ±0.03 95.86 ±0.04 92.20 ±0.10 95.74 ±0.01

BM 95.27 ±0.04 95.73 ±0.23 95.06 ±0.05 95.63 ±0.08 95.53 ±0.04 95.75 ±0.06 94.92 ±0.05 94.87 ±0.12 94.10 ±0.08 93.18 ±0.16

Table 1. Top-1 test accuracy (%) results using a cosine annealing scheduler for the learning rate, across different levels of parameter overlap
(P/N ) for CIFAR-10, CIFAR-100, and SVHN using ResNet-18 (RN-18) and WideResNet-18 (WRN-18). Each row reports accuracy
under two masking strategies: neuron-level masking and block-level masking, abbreviated as NM and BM in the table, respectively.
P/N = 1.0 corresponds to standard data-parallel (DP) training. All experiments are FLOP-matched, with a batch size (B = 64 per
worker (N = 8): = 512)

Dataset Masking DP (P/N = 1.0) P/N = 0.875 P/N = 0.75 P/N = 0.625 P/N = 0.50 P/N = 0.375

RN-18 WRN-18 RN-18 WRN-18 RN-18 WRN-18 RN-18 WRN-18 RN-18 WRN-18 RN-18 WRN-18

CIFAR-10 NM 92.20 ±0.44 91.30 ±1.03
93.09 ±0.25 93.83 ±0.28 92.73 ±0.19 93.34 ±0.41 91.72 ±0.96 93.26 ±0.45 89.80 ±1.14 92.45 ±0.37 79.83 ±3.15 86.74 ±0.57

BM 92.02 ±0.49 92.74 ±0.36 92.39 ±0.07 92.59 ±0.32 91.44 ±0.18 91.92 ±0.24 90.47 ± 0.42 91.20 ±0.25 87.31 ±0.14 87.96 ±0.54

CIFAR-100 NM 65.39 ±0.95 65.74 ±1.04
66.13 ±0.33 66.72 ±1.32 66.11 ±2.04 66.84 ±0.71 63.85 ±0.91 68.23 ±1.08 59.81 ±1.21 65.91 ±1.55 44.92 ±3.35 52.43 ±5.73

BM 65.92 ±0.22 67.26 ±0.52 65.52 ±0.51 67.01 ±0.37 64.66 ±0.23 67.11 ±0.48 64.30 ±0.09 67.22 ±0.34 59.93 ±0.26 62.13 ±0.50

SVHN NM 94.77 ±0.19 93.81 ±0.91
95.22 ±0.43 95.18 ±0.32 95.56 ±0.08 95.38 ±0.17 95.51 ±0.04 95.60 ±0.24 95.08 ±0.30 95.42 ±0.10 94.97 ±0.66 91.98 ±5.08

BM 94.86 ±0.49 95.05 ±0.19 94.64 ±0.03 94.79 ±0.31 95.21 ±0.03 95.30 ±0.04 94.97 ±0.17 94.79 ±0.14 89.74 ±4.46 88.53 ±5.92

Table 2. Top-1 test accuracy (%) results using a linear scheduler for the learning rate, across different levels of parameter overlap (P/N )
for CIFAR-10, CIFAR-100, and SVHN using ResNet-18 (RN-18) and WideResNet-18 (WRN-18). Each row reports accuracy under two
masking strategies: neuron-level masking and block-level masking, abbreviated as NM and BM in the table, respectively. P/N = 1.0
corresponds to standard data-parallel (DP) training. All experiments are FLOP-matched, with a batch size (B = 64 per worker (N = 8):
= 512)

3% on CIFAR-10, 7% on CIFAR-100 and just 1% drop on
SVHN. Notably, this drop is even smaller with the wider
ResNet-18 (width = 2), indicating that greater represen-
tational capacity helps mitigate the impact of block-level
masking. This robustness makes block masking particularly
well-suited for scenarios with tight memory or compute
constraints.

Furthermore, Table 2 presents the results comparing block
masking and neuron masking when using a linear multi-step
scheduler. We observe consistently superior performance
with the block masking strategy, especially at lower overlaps.
For example, on CIFAR-100 with ResNet-18 and neuron-
level masking at an overlap of P/N = 0.50, the accuracy
achieved with linear scheduling is 59.81%, whereas block
masking yields a 5% improvement, reaching 64.30%. Ad-
ditionally, we find that the cosine scheduler delivers even
higher performance at the same overlaps for both 1x and 2x
model sizes. These observations demonstrate that the effec-
tiveness of the masking techniques is robust across different
learning rate schedules and architectures, underscoring their
scheduler-agnostic nature.

To quantitatively analyse the two masking strategies, we cal-
culate the gradient alignment between the active parameters
of a subnetwork and the corresponding same parameters,
when the masking is removed for the same input x. We
define gradient alignment as cos sim(gimask,θ, gunmask,θ),
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Figure 1. Cosine similarity of gradients in a convolutional layer
of a ResNet-18 model, across varying block masking (BM)
and neuron masking (NM) at sparsities of P/N = 0.375 and
P/N = 0.75. It can be observed that for a higher overlap, gra-
dient alignment for both subnetwork strategies are similar and
positive. For lower overlaps(0.375), it can be seen that gradient
alignment is positive for block masking as compared to neuron
masking for which alignment is close to zero.

where gmask is the gradient of a worker i and gunmask,θ

is the gradient of a worker with no masking but using the
same input as in gimask,θ and cos sim measures the cosine
similarity.

Figure 1 illustrates the gradient alignment for active pa-
rameters in the convolutional layer of the second basic
block, under two overlap settings: P/N = 0.75 and
P/N = 0.375. At higher overlap (P/N = 0.75), both
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neuron and block masking exhibit strong alignment early
in training—approximately 0.7 and 0.8, respectively, con-
verging with similar trends, though block masking achieves
a higher final alignment.

In contrast, at lower overlap (P/N = 0.375), a clear diver-
gence emerges: block masking maintains stable, positive
alignment throughout training, whereas neuron masking suf-
fers from sharp negative spikes and remains close to zero.
These observations, combined with the performance results
in Table 1, suggest that block masking is more robust. Un-
like neuron masking, which introduces sparsity within layers
and can disrupt the internal flow of information, block mask-
ing preserves the structural integrity of each layer and relies
on identity skip connections to maintain signal propagation.
This allows the network to continue learning effectively,
even with fewer active blocks.

6. Conclusion and Limitations
We presented a novel distributed training framework based
on subnetwork training, which improves memory efficiency
by isolating structured model components across accelera-
tors and training them in full data parallelism. This approach
achieves up to a 40% reduction in memory usage. While our
current study focuses on CNNs, future work will extend the
method to transformers and language model training. We
also plan to explore the impact of mixed masking strategies
on gradient alignment.
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