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Abstract

Low-rank adapters (LoRA) and their variants are popular parameter-efficient fine-
tuning (PEFT) techniques that closely match full model fine-tune performance
while requiring only a small number of additional parameters. These additional
LoRA parameters are specific to the base model being adapted. When the base
model needs to be deprecated and replaced with a new one, all the associated LoRA
modules need to be re-trained. Such re-training requires access to the data used
to train the LoRA for the original base model. This is especially problematic for
commercial cloud applications where the LoRA modules and the base models are
hosted by service providers who may not be allowed to host proprietary client task
data. To address this challenge, we propose Trans-LoRA— a novel method for
lossless, nearly data-free transfer of LoRAs across base models. Our approach
relies on synthetic data to transfer LoRA modules. Using large language models,
we design a synthetic data generator to approximate the data-generating process of
the observed task data subset. Training on the resulting synthetic dataset transfers
LoRA modules to new models. We show the effectiveness of our approach using
both LLama and Gemma model families. Our approach achieves lossless (mostly
improved) LoRA transfer between models within and across different base model
families, and even between different PEFT methods, on a wide variety of tasks.

1 Introduction
The remarkable progress in language modeling has led to the development of Large Language Models
(LLMs) [16, 13, 4, 2], achieving high performance on general language tasks via scaling model
parameters to multi-billion sizes. Despite their great progress, even the largest and strongest LLMs
[16] still significantly benefit from fine-tuning to downstream tasks for enhanced specialization
and consequent performance improvement [48]. However, it is commonly difficult to gain the
computational, memory, and disk resources needed for fine-tuning and later hosting fine-tuned
large-scale models, especially when serving model customization APIs to numerous clients. Thus, a
common approach to LLM finetuning is to use parameter-efficient finetuning (PEFT) methods, the
most widespread of which are Low-Rank Adapters (LoRA) [30, 42], which only train a small number
of additional parameters while freezing the base pre-trained model. Using PEFT can lead to more
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Figure 1: Trans-LoRA overview. Examples from ‘boolean expressions’ BBH task illustrate the lower
diversity of raw synthetic samples compared to the original task data, which is fixed by our filtering
approach. The source model is used to: 1. train the source LoRA; 2. synthesize data for discriminator
training; and 3. train the (LoRA) discriminator. Then, the target model is used to synthesize data for
transfer (filtered by discriminator) and train target LoRA using the source LoRA teacher.

efficient and compute-friendly training without sacrificing final performance [30], as well as allowing
efficient serving of large quantities of LoRA models ‘orbiting’ a common base model ‘core’ [54].
However, a LoRA model fine-tuned for a specific task is tied to its base model and cannot be used
without it, and also cannot be directly transferred to another base model. This is quite problematic in
commercial cloud model serving scenarios, where after the base model needs to be deprecated and
replaced by a newer LLM, the (potentially thousands of) clients’ LoRA models need to be switched to
the new base model. Naively, one would have to re-train all the LoRA models, which, understandably,
is a logistic nightmare given that clients’ proprietary task data is commonly confidential and is not
retained on the servers of the cloud service provider. Naturally, asking all of the clients to re-send the
data for re-training or retraining on their own is neither scalable nor practical.

In this work, we propose Trans-LoRA - an approach for ‘universal’ LoRA transfer offering an ability to
train LoRA models in a way that allows them to be transferred to new base models, and even to other
kinds of PEFT (e.g. LoRA [30]↔ DoRA [42] or PT[36]), in an automatic and centralized manner
on the model service provider side, while preserving or improving performance, and without the need
to access to the clients’ data used to train the original LoRAs. Our Trans-LoRA is based on using
the source base model LoRA to teach the target base model LoRA, while the main challenge is in
obtaining the training curriculum for such a transfer in a manner that is both data-free and sufficiently
effective to guarantee the resulting LoRA performance improvement beyond the maximum of the
respective target base model and the source LoRA performances. Surprisingly, in Trans-LoRA we
demonstrate it is possible to obtain an effective transfer curriculum for achieving these feats using
synthetic data generated from the target base model. However, this by itself is insufficient to obtain
the specified guarantees. We discover in Trans-LoRA that we need to additionally train a discriminator
model for synthetic data filtering. Our proposed discriminator is trained on a mix of synthetic and
real data alongside the source LoRA model and is optimized to ensure the filtered synthetic data most
closely resembles the source LoRA training distribution. We provide extensive evidence, insights,
and ablations as to why the proposed Trans-LoRA synthetic transfer curriculum works and is superior
to the alternative curriculum-building approaches.

We perform numerous experiments confirming that our Trans-LoRA achieves the above guarantees
while transferring within and across the popular Llama2 [15] and Gemma [14] model families,
popular LoRA [30], DoRA [42], and Prompt Tuning [36] PEFT variants, and using a large variety of
about 90 (language, code, and math) tasks contained in popular datasets such as BBH [58], MMLU
[27], GSM8K [10], MBPP [5], and MBPP+ [40]. Notably, our Trans-LoRA not only achieves overall
lossless transfer, it primarily improves performance (by up to 10% in some cases) over the maximum
among the fine-tuned source model and the target base model performances, thus consistently
achieving positive transfer! We perform an ablation comparing to transfer using unfiltered synthetic
data or random data from other sources. We explore transferring between different PEFT variants
(e.g., LoRA[30]↔ DoRA[42] or PT[36]), as well as multi-step transfer through an intermediate
model (simulating multiple transfers due to consecutive model deprecations), in all cases supporting
the robustness and merits of our Trans-LoRA approach. We also show that our Trans-LoRA positively
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benefits from scaling the synthetic data generation. Finally, we provide further error analysis of
Trans-LoRA and ways to mitigate some edge-case scenarios.

To the best of our knowledge, Trans-LoRA is the first approach to explore the automatic, nearly
data-free, and universal transferability of LoRA (or any other PEFT) models between base (LLM)
models. The effectiveness of our approach observed in numerous experiments and ablations strongly
suggests that our Trans-LoRA can be readily used for the said tasks in the challenging and yet very
practical massive-scale custom models serving cloud applications.

2 Related Work
Parameter Efficient Finetuning (PEFT) has emerged as an important area of research, particularly
in the domain of transfer learning where the adaptation of large pre-trained models to specific
tasks without extensive retraining is a significant challenge [17, 38, 24, 12, 67]. The literature on
PEFT spans various approaches, each characterized by its strategy to modify a minimal number
of parameters while maintaining competitive performance. Many different PEFT methods have
been proposed, spanning Adapter Modules [29, 71, 25, 57], Prompt Tuning [36, 31] including multi-
task variants [64], very popular Low-Rank Adaptation techniques including LoRA [30], DoRA
[42, 66, 52], NOLA [35] and others [73, 32, 68]. A major challenge with PEFT techniques is that
they do not transfer across base models and our proposed approach addresses this challenge for the
first time.

Knowledge Distillation (KD) is a technique where knowledge from a larger, typically more
complex model (teacher) is transferred to a smaller, more efficient model (student) [28, 20, 34, 49,
51, 43]. Additional variants proposed include Self-Distillation [69, 3, 70, 45, 72] with same model as
teacher and student, and Weak to Strong Distillation [6, 61, 33] that can under some circumstance
help the stronger model to avoid overfitting [9]. While these approaches have shown promise in
transferring between models, they still rely on training corpus for the distillation making them
challenging to apply in a data-free scenario. We see from our experiments that producing a good set
of data for distillation that would guarantee lossless transfer of PEFT models between base models
and/or PEFT types is challenging and addressed by our proposed approach.

Synthetic Data is increasingly used to train machine learning models [7, 47, 1, 50]. It has been
used in computer vision [19, 11, 23, 41, 60], language processing [22, 26, 62, 8, 53], and more
recently in instruction tuning and LLM alignment [63, 59, 65, 46, 44, 37, 56]. While synthetic data
has been researched for general model improvement, to the best of our knowledge we are the first to
explore its use for PEFT models transfer between base models and PEFT variants. As we show in our
experiments and ablations, lossless transfer can only be achieved with careful curation of synthetic
data achieved in our approach in an automatic and nearly source-data-free way.

3 Trans-LoRA
Given a pre-trained modelMs (dubbed the source model going forward) and a task-specific dataset,
D = {xn,yn}Nn=1 of prompt (xn) and completion (yn) pairs, we assume that we have tunedMs on
D using a PEFT method (e.g., LoRA [30]), obtaining a task-adapted set of additional parameters
θs (e.g., realized as a set of residual adapters in [30]). Next, given a distinct modelMt (the target
model) and access to only a small subset of ‘seed’ examples, D̄ ⊂ D, our goal is to learn task-adapted
parameters θt forMt such that θt bestows similar or better capabilities onMt as those bestowed
by θs onMs. In Trans-LoRA we consider D̄ to be a very small set of demonstrations (|D̄| = 5
in all experiments) explaining the intent of the task and its I/O format. Keeping this tiny set of 5
samples D̄ does not violate the nearly data-free property of our Trans-LoRA, as D̄ can be cleaned
from proprietary information, retaining only the core expected properties of the task.

3.1 Capabilities transfer through knowledge distillation on synthetic data

While D is unavailable when training θt forMt, we do have θs,Ms, and D̄ available to us. As such,
capabilities can be transferred between θs and θt via knowledge distillation, i.e., by tuning θt to
match the completions produced byMs with the task-adapted parameters θs. Unfortunately, naively
distilling on D̄ performs increasingly poorly with shrinking cardinality of D̄ and is often detrimental
to a point where the un-adaptedMt outperforms θt tuned on D̄. This is particularly so for |D̄| = 5
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Figure 2: Detailed breakdown of Trans-LoRA. Task Finetuning is done beforehand and produces the
source LoRA for the source model and the discriminator. Task Transfer utilizes the source LoRA
and discriminator to transfer the LoRA onto the target model and produce the target LoRA.

(Section 4.3) set by us as a requirement for Trans-LoRA to maintain its appealing nearly data-free
aspect.

But if D̄ is insufficient, and the original task data cannot be retained, what should then be used as the
necessary input samples (outputs are not required) for the knowledge distillation? One attempt could
just be using random pieces of text from the web (e.g. from Wikipedia). However, these samples do
not follow the input distribution of the task and result in a poor transfer (Section 4.3). A key insight
behind our approach is that augmenting D̄ with carefully synthesized data, Dsyn, allows for effective
learning of θt. However, interestingly, naive synthesis (e.g. fromMt) using D̄ as demonstrations
is by itself insufficient (Section 4.3) to produce the set of inputs for lossless transfer, that is for
guaranteeingMt + θt outperforms both the non-tunedMt and theMs + θs as desired. We find
that in addition to following the task distribution (which can be approximated via synthesizing from
D̄ as demonstrations), the synthetic data must also adhere to one additional important requirement -
it must also follow the distribution used to sample the original training set D out of all possible task
data. Clearly, this marginal distribution P of just the inputs {xn} of the training samples in D would
intuitively correspond to the ‘comfort zone’ of the intended teacher modelMs + θs (that learned
from observing D and not the entire task data). Hence making it more likely forMs + θs to produce
higher quality outputs for the transfer for inputs sampled from P .

Using above intuitions, we build a synthetic data simulator that generates dataDsyn that is statistically
indistinguishable from the observed task data D and is used for the aforementioned knowledge
distillation at the time of transfer. Drawing inspiration from GAN [19], our simulator consists
of a generator and a discriminator, described in greater detail below. While the generator part of
the simulator is achieved by an LLM endowed with our designed prompt and using the tiny D̄ as
in-context demonstrations, the discriminator is a separate PEFT model trained once alongside the
training of θs on D and kept for all future transfers. Hence we can safely assume access to D for
discriminator training. Discriminator training does not require knowledge of the target modelMt.

Data synthesis via a large language model generator. We use an instruction-tuned LLMMgen and
prompt it to generate prompt and completion pairs similar to those in D̄. In our experiments, we used
the target modelMt itself forMgen, but any model capable of following detailed instructions can be
used in its place. See Appendix A.1 for the prompt we used for data synthesis.

Data filtration via a large language model discriminator. To train a discriminator that would be
able to effectively filter synthetic data, determining how close a synthetic sample is to the marginal
distribution of the inputs in D, we need a synthetic sample set. This synthetic sample set is to serve
as ‘negatives’ for the discriminator training while the ‘real’ inputs from D serve as positives. As
stated above, during subsequent transfers of the PEFT model to future modelsMt we use these
Mt models themselves for the synthetic data generator. However, we do not have access to them
during the discriminator training (as it is trained in parallel to the source PEFT model). Hence, we
use synthetic data generated fromMs for our discriminator training and surprisingly find that the
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Table 1: BigBench-Hard (BBH) collection averaged zero-shot results. The accuracies listed are
averages of all 27 tasks from this collection. Evaluated using LM-Eval Harness [18].

Source
Model

Target
Model

Discriminator
Model

Source Model
LoRA Acc.

Target Model
no LoRA Acc. Ours

Llama-2-7b Llama-2-13b Llama-2-7b 43.32 37.85 43.41
Gemma-2b Gemma-7b Gemma-2b 31.84 37.75 43.61
Llama-2-7b Gemma-7b Gemma-2b 43.32 37.75 45.41
Llama-2-7b Gemma-7b Llama-2-7b 43.32 37.75 44.12

resulting discriminator generalizes well to filter synthetic data for a variety of unseen downstream
generators (Mt) as evaluated in our experiments (Section 4). For our discriminator, we use an LLM,
Mϕ

disc, endowed with a small set of learnable parameters, ϕ. We learn ϕ by optimizing,

ϕ∗ = argmax
ϕ

Ex∼D[log pMϕ
disc

(“yes” | t(x))] + Ex∼Ms
[log pMϕ

disc
(“no” | t(x))], (1)

where, we use t(x) to represent the prompt, “x \n Is the above question from NAME
dataset?” and replace NAME with a short descriptor identifying the dataset from which D
is drawn; and x ∼Ms represents sampling from our synthetic data generation process for the task
as explained above (withMs as the generator LLM in this case). See Appendix A.1 for the specific
prompts we used. In our experiments, we used the source modelMs and LoRA to instantiateMϕ

disc.

Curating Dsyn. At the time of PEFT transfer, we create Dsyn by filtering generations fromMgen

with the trained discriminator,Mϕ∗

disc. We incorporate x ∼ Mgen into Dsyn ifMϕ∗

disc is unable to
recognize x as a synthetic sample, i.e., pMϕ∗

disc
(“yes” | t(x)) > pMϕ∗

disc
(“no” | t(x)). Otherwise we

discard x. We repeat this rejection sampling procedure till the cardinality of Dsyn equals that of D.

We summarize our overall Trans-LoRA algorithm in Algorithm 1 and Figure 2.

4 Experiments

Algorithm 1 Trans-LoRA

Require: D̄, θs,Mt,Mϕ∗

disc
Mgen ←Mt

Dsyn ← ∅
while |Dsyn| < |D| do

s← generate(Mgen,D̄)
if verify(Mϕ∗

disc, s) then
Dsyn ← Dsyn ∪ {s}

end if
end while
Initialize θt

H ←CrossEntropyLoss()
while θt not converged do
L ← H(θt(Dsyn),θs(Dsyn))
θt ←update(θt,L)

end while
Figure 3: Transferred LoRA accuracy vs.
source LoRA accuracy on BBH tasks. De-
tails the rows of Table 1. Bottom left: row 3;
Bottom right: row 4.

4.1 Experimental Setup
We have evaluated the effectiveness of our Trans-LoRA on two popular LLM families: Llama-2
[15] and Gemma [14], using 86 tasks from a large variety of topics from the following popular
benchmarks: BigBench-Hard (BBH)[58] (27 reasoning tasks), Massive Multitask Language Under-
standing (MMLU)[27] (57 knowledge tasks), Mostly Basic Python Problems (MBPP)[5] (1 code
task), and Grade School Math 8K (GSM8K)[10] (1 math task). BBH is a collection of 27 tasks
where pre-existing LLMs could not outperform human evaluators. The tasks cover many different
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Table 2: Massive Multitask Language Understanding (MMLU) collection averaged zero-shot results.
Accuracies are averages of all 57 tasks from this collection. Evaluated using LM-Eval Harness [18].

Source
Model

Target
Model

Discriminator
Model

Source Model
LoRA Acc.

Target Model
no LoRA Acc. Ours

Llama-2-7b Llama-2-13b Llama-2-7b 45.89 53.72 55.09
Gemma-2b Gemma-7b Gemma-2b 42.34 60.45 61.23
Llama-2-7b Gemma-7b Gemma-2b 45.89 60.45 61.12
Llama-2-7b Gemma-7b Llama-2-7b 45.89 60.45 61.22

Figure 4: Transferred LoRA accuracy vs.
source LoRA accuracy on MMLU tasks. De-
tails the rows of Table 2. Bottom left: row 3;
Bottom right: row 4.

Figure 5: Scaling the number of synthetic
samples generated through Trans-LoRA. Total
training iterations in each experiment are kept
identical for fair comparison. Done on BBH
with Gemma-2b to Gemma-7b transfer and
Gemma-2b as discriminator.

formats including multiple-choice, question answering, and short response. MMLU consists of 57
multiple-choice QA tasks testing common academic subjects with several difficulty levels. MBPP is
a set of Python code generation problems with given problem descriptions and test cases. We also
report results on MBPP+[40], which is built upon MBPP with more strict evaluations and added test
cases. GSM8K dataset consists of a large number of grade school math problems. Due to the large
number of training samples in GSM8K, we only pick the first 250 samples for fine-tuning our source
LoRA models, and keep the number of filtered synthetic samples to 250 as in our other experiments.

More specifically, we attempted 4 groups of experiments of LoRA transfer on each collection of
tasks: 1. transfer from Llama2-7b to Llama2-13b with Llama2-7b based discriminator; 2. transfer
from Gemma-2b to Gemma-7b with Gemma-2b based discriminator; 3. transfer from Llama2-7b
to Gemma-7b with Gemma-2b based discriminator; and 4. transfer from Llama2-7b to Gemma-7b
with Llama2-7b based discriminator. We used the chat versions of Llama and the base versions of
Gemma, thus exploring both within and across chat and base models LoRA transfer. We evaluate
BBH, MMLU, and GSM8K using the Language Model Evaluation Harness [18], and we evaluate
MBPP/MBPP+ using Evalplus [39]. We evaluate all our models under the zero-shot setting.

Hyperparameter-wise, we search the learning rate between 2 ∗ 10−4 and 2 ∗ 10−5 on the validation
set using the AdamW optimizer with no weight decay and a linear learning rate scheduler without
warmup. We end up adopting 2 ∗ 10−4 for MMLU and 2 ∗ 10−5 for all other tasks. We use a fixed
20 epochs for BBH, MBPP, and GSM8K and 10 epochs for MMLU. We train on the default LoRA
configuration (adapters built only on query and value matrices of attention block) with effective batch
size 8 (gradient accumulation used for larger models). We run on 1 V100 40GB GPU per transfer
task. Each task takes on average 10 hours to finish. All tasks can be parallelized. 4

4Our code is provided in Supplementary and will be released upon acceptance. See Appendix A.3.
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Table 3: Mostly Basic Python Problems (MBPP) zero-shot results. Presented in format of (standard
MBPP evaluation / more strict MBPP+ evaluation). Evaluated using Evalplus [39].

Source
Model

Target
Model

Discriminator
Model

Source Model
LoRA Acc.

Target Model
no LoRA Acc. Ours

Llama-2-7b Llama-2-13b Llama-2-7b 27.2/25.0 37.1/31.7 39.7/34.4
Gemma-2b Gemma-7b Gemma-2b 41.1/33.9 37.9/32.1 50.0/40.6
Llama-2-7b Gemma-7b Gemma-2b 27.2/25.0 37.9/32.1 48.7/42.0
Llama-2-7b Gemma-7b Llama-2-7b 27.2/25.0 37.9/32.1 48.7/42.0

Table 4: Grade School Math 8K (GSM8K) no chain-of-thought prompting results.
Source
Model

Target
Model

Discriminator
Model

Source Model
LoRA Acc.

Target Model
no LoRA Acc. Ours

Llama-2-7b Llama-2-13b Llama-2-7b 19.64 28.86 30.70
Gemma-2b Gemma-7b Gemma-2b 14.94 40.64 44.58
Llama-2-7b Gemma-7b Gemma-2b 19.64 40.64 42.30
Llama-2-7b Gemma-7b Llama-2-7b 19.64 40.64 41.62

4.2 Main Results
In Tables 1 to 4, we summarize the results for each task collection (BBH, MMLU, MBPP, and
GSM8K respectively) for each source and target model combination. We test each task individually,
and the results in each table are obtained by averaging over all the tasks in the respective collection.
We observe that the LoRA models transferred by our Trans-LoRA consistently outperform both
the source LoRAs and the target base models, demonstrating that our transfer is indeed lossless.
Moreover, this suggests that our Trans-LoRA is effective at combining the information from LoRAs
on a weaker source base model with the improved capabilities of a stronger target base model to
create LoRAs on the target that are more powerful than both of them. And our Trans-LoRA is nearly
data-free requiring almost no access to original tasks training data (beyond the 5 seed examples). We
see that our Trans-LoRA consistently attains successful LoRA transfer independently of a specific
combination of source, target, discriminator models, or the initial relative performance difference
between the fine-tuned source LoRAs and the target base-models. We note that the performance
increase of our transferred model is relatively smaller on MMLU compared to other tasks. As MMLU
tasks are more knowledge-focused, we believe the pretraining is more influential than the finetuning
for MMLU. We also experimentally verified that increasing finetuning epochs (without adding more
synthetic data) on MMLU does not lead to further improvements.

For more details, Figures 3 and 4 show a detailed distribution of LoRA transfer results for each task
from the BBH and MMLU collections. We see that in both cases, the majority of data points are
near or above the y = x line (the dotted line), indicating our transferred target LoRAs match or
outperform the source ones. These individual task distributions demonstrate the robustness of our
Trans-LoRA. We analyze the few outliers in Section 5.

4.3 Ablation Experiments
Distillation Data Here we evaluate the effect of the choice of the input data for distillation. As
varying kinds of transfer on numerous tasks is time and resource-consuming, we run this ablation

Table 5: Distillation curriculum ablations on 27 tasks of the BigBench-Hard (BBH) collection.

Model Config

Source
Model
PEFT
Acc.

Target
Model

no PEFT
Acc.

Random
Wikipedia

Unfiltered
Synthetic

Data

5 Seed
Samples Ours

Source: Llama-2-7b
Target: Llama-2-13b

Discriminator: Llama-2-7b
43.32 37.85 37.32 41.95 39.82 43.41
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Table 6: Trans-LoRA for transferring between different base models and different PEFT methods on
BigBench-Hard (BBH). Accuracies are zero-shot averaged results of all tasks from this collection.

Source
Model

Target
Model

Discriminator
Model

Source
Model
PEFT
Acc.

Target
Model

no PEFT
Acc.

Ours

Gemma-2b (LoRA) Gemma-7b (LoRA) Gemma-2b 31.84 37.75 43.61
Gemma-2b (LoRA) Gemma-7b (DoRA) Gemma-2b 31.84 37.75 40.74
Gemma-2b (DoRA) Gemma-7b (LoRA) Gemma-2b 33.07 37.75 41.81
Gemma-2b (DoRA) Gemma-7b (DoRA) Gemma-2b 33.07 37.75 41.40
Gemma-2b (LoRA) Gemma-7b (PT) Gemma-2b 31.84 37.75 43.99

Gemma-2b (PT) Gemma-7b (LoRA) Gemma-2b 33.25 37.75 38.14
Gemma-2b (PT) Gemma-7b (PT) Gemma-2b 33.25 37.75 42.90

Table 7: Continuous transfer on several models on BigBench-Hard (BBH). We transfer from source
model to intermediate model, then from intermediate model to target model, all using the same
discriminator model. Accuracies are zero-shot averaged results of all tasks from this collection.

Model Config

Source
Model
LoRA
Acc.

Intermediate
Model

no LoRA
Acc.

Our
Transferred
Intermediate

Model

Target
Model

no LoRA
Acc.

Our
Transferred

Target
Model

Source: Llama-2-7b
Intermediate: Llama-2-13b

Target: Gemma-7b
Discriminator: Llama-2-7b

43.32 37.85 43.41 37.75 45.04

only on BBH tasks and the ‘between Llama-2 models transfer’ (most challenging, smallest gains)
objective. Results are summarized in Table 5. We compare distilling the source LoRAs on: (1)
random Wikipedia text; (2) raw synthesized samples without discriminator filtering; (3) only the
5 seed samples used for data synthesis; and (4) our Trans-LoRA. From Table 5, we see that our
Trans-LoRA outperforms other baselines by a large margin, indicating that: (a) synthetic data designed
to mimic task data is highly beneficial, and random or seed data does not suffice; and (b) discriminator
filtering is effective providing good gains over raw synthetic data. These results further verify our
hypothesis on the importance of the proximity of distillation inputs to the original training data.

Other PEFT Methods To further illustrate the robustness and wide applicability of our Trans-
LoRA, we test its ability to transfer non-LoRA PEFT models. In particular, we apply our Trans-LoRA
to Weight-Decomposed Low-Rank Adaptation (DoRA)[42], and Prompt Tuning (PT) [36]. For
DoRA, we use the same set of hyperparameters as LoRA, and for Prompt Tuning we use a higher
learning rate of 2 ∗ 10−3 and initialization text provided in Appendix A.2. Table 6 indicates that
despite the change of the specific PEFT approach, we can achieve satisfactory results upon transfer.

Continuous Transfer To further verify the practical use-case of using our Trans-LoRA for several
transfers in a row, we evaluate continuous transfer, where the LoRA model is transferred from
source to target via an intermediate model. The discriminator model is kept the same throughout this
process, closely mimicking real-world application scenarios where the discriminator model needs to
be re-used for all subsequent transfers. From Table 7, we see that continuous transfer does not lead to
degradation in performance. This result proves the robustness and practicality of our Trans-LoRA,
where the client only needs to deliver the discriminator and trained PEFT once to allow for multiple
future transfers to different future base models.

Scaling the amount of Synthetic Samples Another advantage of our Trans-LoRA is the theoreti-
cally unlimited data synthesis process. In all previous experiments, we kept the number of filtered
synthetic samples to be the same as the number of samples in the original training dataset (set to
250). We show in Figure 5 that our Trans-LoRA exhibits good scaling behavior w.r.t. the number of
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Table 8: Maximum mean discrepancy(MMD) comparing filtered and unfiltered synthetic data with
original dataset using first 4 tasks of BBH. Smaller values indicate smaller distance to original dataset.

Task Name Filtered Data MMD Unfiltered Data MMD

boolean expressions 0.7155 1.3072
causal judgement 0.2255 0.7714

date understanding 0.2438 0.8282
disambiguation QA 0.2097 0.9231

In the following sentences,
explain the antecedent of the
pronoun (which thing the pro-
noun refers to), or state that
it is ambiguous.
Sentence: Everyone in the
class had to wear a uniform
except for Sarah, who had to
wear something else.
Options:
(A) The uniform
(B) Something else
(C) Ambiguous

In the following sentences,
explain the antecedent of the
pronoun (which thing the pro-
noun refers to), or state that
it is ambiguous.
Sentence: Alex tells us that
they could not meet.
Options:
(A) Alex could not meet
(B) We could not meet
(C) Ambiguous

Figure 6: Comparison of problematic synthetic sample (left) and real sample (right) from
disambiguation-qa task.

filtered samples generated, which gives the user the freedom to balance the trade-off between final
task accuracy and total compute.

5 Analysis

5.1 Distribution of filtered synthetic data
In order to provide a more direct understanding of the difference between filtered synthetic samples
from our Trans-LoRA and unfiltered raw synthetic samples, we encode each sample into vector
representation using a MPNet encoder [55] and calculate maximum mean discrepancy [21] on the
encoded representations. The maximum mean discrepancy can be viewed as a measure of distance
between two high dimensional distributions, or in other words how much of the original distribution
can be explained by the given distribution. We run this analysis on the first 4 BBH tasks with synthetic
data filtered by their respective Llama2-7b discriminators from the Llama2-7b to Llama2-13b LoRA
transfer experiment. From Table 8, we clearly observe lower MMD values for our filtered synthetic
data, confirming the utility of the discriminators employed in our Trans-LoRA.

5.2 Error Analysis
We see from Figures 3 and 4 that for very few of our 86 evaluated tasks, the performance of LoRAs
transferred by our Trans-LoRA may become lower than the baseline. In this section, we take a closer
look at one such specific example task: Disambiguation-QA from BBH to analyze why this occurred.

Insufficient understanding of task Example comparison of problematic synthetic vs. real task
data is in Figure 6. The generated synthetic question is not valid because none of the answers is
correct. In this example, the generator model does not seem to have correctly understood the task
intent; rather, it just mimicked the pattern of the real samples. We observe similar failed samples for
(the few) other tasks residing under the Figures 3 and 4 diagonals.

Solution We observe that increasing the number of real samples used to prompt the data synthesis
(i.e., increasing |D̄|) can effectively help the generator model to learn the inherent reasoning and
structuring of the task questions. Increasing the number of samples from 5 to 15 on disambiguation-qa,
for example, leads to much more robust and realistic synthetic samples and significantly improved
(up by 13%) performance. Thus, we recommend tuning the number of seed samples for synthesis
when generated samples are not logically coherent and do not follow the task intent.
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6 Conclusions and Limitations
In this paper, we propose Trans-LoRA, an approach capable of nearly data-free LoRA model transfer
between different base models (and even supporting transfer between different PEFT configurations)
without requiring access to original task data. Trans-LoRA achieves equivalent or better performance
when compared with the source LoRA and the target base model. To our knowledge, this paper is
the first to explore the very practical use case of transferability of PEFT models. We hope that the
success of our approach will inspire future explorations in this exciting research direction.

Limitations Our Trans-LoRA requires synthesizing data before the transfer requiring small, yet
additional, compute. A promising future direction is to explore ways of direct PEFT transfer, without
additional computation. Additionally, we discussed a potential limitation in task understanding by
the synthesizer, observed in a few cases, and offered a path to mitigate it. We work with LLMs in our
experiments, and although LLMs can sometimes produce harmful content, we rely on their authors
for proper alignment.
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A Appendix

A.1 Prompt Examples

Figure 7: Example prompt used in data synthesis for boolean expressions task from BBH.

Here are 10 examples:
1. True and False or ( not True ) is
2. not not True and not False or True is
3. not False and False or False or False is
4. True or False or not True or False is
5. not not ( False and not False ) is
6.

Figure 8: Example prompt used in data filteration for boolean expressions task from BBH.

Answer in as few words as possible.
True and False or ( not True ) is
Is the above question from the boolean expres-
sions dataset?

A.2 Prompt Tuning Initialization

Figure 9: Initialization for prompt tuning.

Answer the following question correctly:

A.3 Code

Our code will be released after review.
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